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Abstract

In this paper we study the neoclassical growth model with idiosyncratic income
risk and aggregate risk in which risk sharing is endogenously constrained by one-
sided limited commitment. Households can trade a full set of contingent claims that
pay off depending on both idiosyncratic and aggregate risk, but limited commitment
rules out that households sell these assets short. The model results, under suitable
restrictions of the parameters of the model, in partial consumption insurance in equi-
librium. With log-utility and idiosyncratic income shocks taking two values one of
which is zero (e.g., employment and unemployment) we show that the equilibrium
can be characterized in closed form, despite the fact that it features a non-degenerate
consumption- and wealth distribution. We use the tractability of the model to study,
analytically, inequality over the business cycle and asset pricing, and derive condi-
tions under which our model has identical, as well as conditions under which it has
lower/higher risk premia than the corresponding representative agent version of the
model.
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1 Introduction

The canonical macroeconomic model with household heterogeneity developed by Bew-
ley| (1986), Imrohoroglu (1989), Huggett (1993), and Aiyagari (1994) envisions a large
population of households facing idiosyncratic income risk and incomplete asset markets.
This model has been used by a vast applied literature studying business cycles (as in
Krusell and Smith, (1998)), fiscal policy (as in Aiyagari and McGrattan, 1998) and mon-
etary policy (as in Kaplan, Moll, and Violante, 2018). From a theoretical perspective,
however, imperfect consumption insurance against income risk (and the resulting non-
degenerate wealth distribution) stems from the exogenous restriction of the set of insur-
ance contracts that individuals can enter, restricting explicit insurance that individuals
would otherwise choose to tradel[l] As an alternative, imperfect consumption insurance
can emerge as the consequence of limited contract enforcement or private information
that impedes the full insurance of idiosyncratic risk.

In this paper we seek to integrate a household consumption-saving problem with id-
iosyncratic income risk and limited contract enforcement into a discrete-time neoclassical
production economy, in the same way that Aiyagari (1994) and Krusell and Smith! (1998))
did for the standard incomplete markets structure. Specifically, households face idiosyn-
cratic and aggregate productivity (and potentially, stochastic depreciation) risk in which
risk sharing is endogenously constrained by one-sided limited commitment. Households
can trade a full set of contingent claims that pay off depending on both idiosyncratic and
aggregate risk, but limited commitment rules out that households sell these assets short.
The model results, under suitable restrictions of the parameters of the model, in partial
consumption insurance in equilibrium. With log-utility and idiosyncratic income shocks
taking two values one of which is zero (e.g., employment and unemployment) we show
that the equilibrium can be characterized in closed form, despite the fact that it features
a non-degenerate consumption- and wealth distribution which fluctuates over the cycle.

The key to this result is that if interest rates are low and/or future wage growth
is high, then households optimally do not purchase contingent claims that pay off in
their high idiosyncratic productivity state. Households with low productivity in contrast
hold assets, but in the absence of labor income their consumption-saving problem has
a simple solution (resembling that of the classic cake-eating problem) in which all low-

1On the empirical side, [Blundell, Pistaferri, and Preston| (2008) document a degree of consumption in-
surance especially with respect to highly persistent or permanent shocks that is difficult to fully rationalize
in the standard incomplete markets model, see Kaplan and Violante| (2010) or Krueger and Wu| (2021).
More recent empirical papers confirm the need for models in which household consumption smoothing
opportunities extend beyond simple self-insurance, see, e.g., Arellano, Blundell, and Bonhomme| (2017)),
Eika, Mogstad, and Vestad| (2020), Chatterjee, Morley, and Singh/ (2021)), [Braxton et al.| (2021),|Commault
(2022), and Balke and Lamadon| (2022)).



productivity households exhibit the same constant saving rate out of their capital income.
The constant saving rate is independent of the current (and expectations about future)
interest rates, a consequence of logarithmic period utility. Consequently, the model eas-
ily aggregates and the aggregate law of motion for capital can be given in closed form,
both in the case of an unexpected shock to aggregate productivity as well as in the case of
recurrent aggregate productivity fluctuations. We then verify that as long as the produc-
tivity fluctuations (expected or unexpected) are not too large (with precise conditions
given in terms of exogenous parameters only), then equilibrium interest rates are in-
deed sufficiently low (and wage growth is sufficiently high) that individuals indeed find
it optimal to not purchase contingent claim for the high-productivity state.

Finally, we demonstrate the potential usefulness of our theoretical framework for
applied work by studying two applications. First, we show that consumption inequality
is procyclical in our model: in response to a positive productivity shock, consumption of
high productivity individuals (those at the top of the consumption distribution) increases
proportionally with the wage, whereas the increase in consumption of those with only
capital income (who are located at the lower end of the consumption distribution) is more
sluggish. Thus, consumption inequality increases in response to a positive productivity
shock that expands output in the economy.

Second, we investigate whether the presence of idiosyncratic and only partially in-
sured risk changes the asset pricing implication of this production economy, relative to
that of the standard complete markets model. We first show that if (and only if) both
wages and returns move proportionally with the aggregate shock (which is the case in
a version of our model in which capital fully depreciates between periods, or in an en-
dowment version of the model), then the multiplicative equity premium in our economy
coincides with that of the representative agent (RA) economy. With less than full (but
deterministic) depreciation, capital income becomes less volatile than labor income and
the limited commitment model features a lower risk premium than the RA economy.
However, once we extend the model to permit the depreciation rate to be stochastic as
well, not only does capital income turn more volatile than labor income, but now the
risk premium in the model with idiosyncratic risk exceeds that of the RA economy, and,
depending on the size of idiosyncratic risk, can display a quantitatively sizable return
premium on risky capital. It is important to note that we can demonstrate all but the last
quantitative results theoretically, owing to the analytical tractability of our model with
(only partially insurable) idiosyncratic and aggregate risk.



1.1 Related Literature

Our paper is motivated by the large literature on general equilibrium models with id-
iosyncratic risk and incomplete markets cited in the previous section. Our limited com-
mitment alternative builds on the theoretical limited commitment literature pioneered
by Thomas and Worrall (1988), Kehoe and Levine(1993, |2001), Kocherlakota (1996),
Alvarez and Jermann (2000), |/Abrahdm and Laczd| (2018) and, for a continuum econ-
omy, Krueger and Perri (2006), Krueger and Perri| (2011) and Cole, Krueger, Mailath,
and Park| (2023). The papers by Krueger, Lustig, and Perri (2008) or Broer| (2013) ex-
plore the quantitative properties of this class of models.

In Krueger and Uhlig (2006) we studied theoretically and in partial equilibrium, a
version of this model with one-sided commitment in which households entered into long-
term insurance contracts with financial intermediaries and there was no exogenous pun-
ishment from default. Rather, households could sign the best available contract with a
competing intermediary, with the value of this contract being determined endogenously
in equilibrium. Crucially, for the current paper, we showed that the contract equilibrium
allocation could alternatively be decentralized in an asset market equilibrium with state-
contingent claims and state-contingent shortsale constraints (in the spirit of Alvarez and
Jermann, 2000) that are exactly at zero, i.e. ruling it borrowing altogether.

This paper embeds this structure into a general equilibrium production economy and
exhibits assumptions that allows for a characterization of equilibrium in closed form,
even in the presence of aggregate shocks | In Krueger and Uhlig| (2022)) and Krueger, Li,
and Uhlig (2023) we construct a limited commitment production economy in continuous
time and Poisson income risk to analytically characterize the steady state and transitional
dynamics of the model as the solution to a Bernoulli differential equation. The current
paper extends this analysis to aggregate shocks and casts it in a perhaps more familiar
discrete time setting, allowing for a direct connection and comparison with Alvarez and
Jermann/ (2000)’s analysis of state-contingent shortsale constraints in general equilib-
rium. Broer (2020)) studies the degree of consumption insurance over the business cycle,
providing a quantitative comparison of the standard incomplete markets model and the
limited commitment model with aggregate shocks.

Finally, we share the focus on analytical tractability in general equilibrium models
with idiosyncratic risk and partial consumption insurance with Krueger, Ludwig, and Vil-
lalvazo| (2021), /Achdou, Han, Lasry, Lions, and Moll (2022), and Kocherlakotal (2023)
who study the standard incomplete markets model. To provide intuition for the under-

2Related general equilibrium analyses also appear in the sovereign debt literature, see, e.g., Hellwig
and Lorenzoni| (2009) and |[Martins-da Rocha and Santos| (2019)), and in general equilibrium models with
collateral constraints, such as|Gottardi and Kubler| (2015)).



lying reason that makes our model tractable we also relate our results to that obtained
in the two-agent economy with workers and capitalists studied by Moll (2014).

The rest of the paper unfolds as follows. The next section sets up the model and de-
fines equilibrium, and Section |3| contains a general characterization of this equilibrium.
In Section {4/ we then analyze the stationary equilibrium and the transition path after a
one-time unexpected shock. We study the asset pricing implications of the model with
aggregate shocks in Section |5, Equipped with the results from our model we then re-
late these results to related versions of the neoclassical growth model from the existing
literature in Section [6] Section [7] concludes, and detailed derivations and proofs the are
contained in the Appendix.

2 Model

Time is discrete, infinite and indexed by ¢t = 0,1, ... The economy is populated by a
continuum of households of measure 1 and a representative, competitive production

firm.

2.1 Aggregate Risk

We consider an economy with idiosyncratic and potentially also aggregate productivity
shocks. Denote by A, current aggregate total factor productivity, and by A* = { A, --- , A;}
the history of productivity, with associated probability distribution 7(A; | A"). We treat
the initial productivity level A, as ﬁxedE] For most of the paper no further substantive
restrictions on the productivity process { A, } need to be imposedﬂ but for a subset of the
results we need to make further assumptions on the productivity process.

Assumption 1. Let the productivity process {A;}:°, satisfy one of three assumptions:
1. Steady state: A; = Ay with probability 1, for all t > 0.

2. MIT shock: at time t = 0 productivity is at its steady value Ay, which households
believe to last forever. At time t = 1 they learn that instead productivity is given by
the deterministic sequence {A;}.

3. Stochastic growth rates: the growth rate of aggregate productivity A;‘—:l follows a finite
state Markov chain.

3We introduce stochastic depreciation rates into the model in Section Until then, to keep the notation

concise, we set up the model (and its notation) only with aggregate shocks to total factor productivity.
“4For convenience of notation, we assume that A, takes only positive real values, A, € R, and that the

number of possible states in each period is finite.



2.2 Technology

The production side of the economy is described by a completely standard neoclassical
production function of the form

}/; - Kte(AtLt)lig (1)

where 0 is the capital share and A denotes the (potentially time-varying) level of ag-
gregate (labor-augmenting) productivity. Capital depreciates at rate §. This production
technology is operated by a representative and competitive firm hiring labor and capital
at rental rates wy, r;, and the standard optimality conditions read as

Wy = (1 — Q)At <AtLt> (2)
B Kt 0—-1
ry = Q(AtLt) — 90 3)

2.3 Idiosyncratic Risk, Household Endowments and Preferences

Individuals are indexed by i € [0,1] and in each period ¢ have idiosyncratic stochastic
labor productivity z;; € Z = {0,(}, where ¢ > 1 is a parameter. Since the identity
of individuals is irrelevant we will suppress the index i whenever there is no scope for
confusion and simply write z; for the current idiosyncratic labor productivity as well
as 2z = (20, 21,..,2) for the history of productivity realizations. The probability of a
given productivity history is denoted by 7 (2"). The distribution of idiosyncratic shocks is
assumed to be independent of aggregate shocks.

The idiosyncratic labor productivity process is Markov with time-invariant transition

matrix:

T(2e11]2t) = [1 ; Y . i 5] 4

where v is the probability of switching from productivity O to productivity ¢ and ¢ is the
probability of switching from ¢ to 0. The stationary distribution over labor productivity

v v
tial productivity from this stationary distribution (which is then also the cross-sectional

is then given by (¢, ¢p,) = ( £ v > , and households are assumed to draw their ini-

distribution of labor productivity at all future dates ¢t > 0). We normalize average labor
productivity to one, which implies the parameter restriction

v
E4v

(=1 ()

This assumption implies that the aggregate supply of labor is L, = 1 for all ¢. In addition
to labor productivity a given household is endowed with initial wealth a4, and we denote
the cross-section probability measure over wealth and labor productivity by ®(aq, z).



Each household has preferences representable by a standard intertemporal utility
function u(c) defined over stochastic consumption streams ¢ and given by

U(c) = Eg Z B log(cy) 6)
t=0

with logarithmic period utility function and time discount factor f.

2.4 Financial Markets and Household Budget Constraint

Households face idiosyncratic and aggregate risk and seek to insure against that risk
by trading a full set of contingent claims. For analytic convenience we will use con-
tingent claims that pay R, 1(A"™!) = 1 + ry 1 (A") units of consumption in aggregate
history A'™! for an individual with history (A?, 2*) if and only if tomorrow’s idiosyncratic
state is z;,1, and we denote by ¢;(As;1, z.41|AY, 2) the price of such a claim, and by
asy1(ag, 21, A1) the position of these assets for a household with initial characteristics
(a, 20). The budget constraint of the household then reads ag’|

ci(ag, 2, At)‘f‘z Z Gi( A1, 21| AL 2ag (a0, 27 A = wi (AN 2+ Ri(AY)ay (ag, 2, A”)
Apy1 zt41

(10)
Note the crucial difference to the budget constraint in the standard incomplete markets
in that we permit agents to trade assets that pay contingent on individual productivity
realizations (as in complete market models) whereas these assets are by assumption ruled

out there.

SA perhaps more familiar way of defining Arrow securities is that households pay a price
q*(Asy1, 2e41|AY, 2?) and receive one unit of consumption if the state (A;; 1, 2¢41) is realized. If we de-
note such an asset by b, 1, the budget constraint (I0) instead reads as:

ci(ag, 2', A*) + Z Z qb(At+17 ze41|A”, 2%)big (ao, 2, At+1) = wi(A")z + by(ag, 2", A (D)

Aty Ze41

Because we define a contingent claim that yields R; 1 (A'™!) at ¢ + 1, the relation between the prices and
asset positions of the two types of assets is given by:

q“(Apy1, ze41] AL 21)
Ry 1 (AT ’

and bt+1(a0, Zt+17 At+1) = Rt+1(At+1)at+1(a07 Zt+17 At+1) (9)

qb(At+17 Zt4+1 |At7 Zt) =

®

Since the return on both contingent claims is given by:

1 - Rt+1(At+1)
q"(At+1, Zt+1|14t7 Zt) qa(AtJrh Zt+1‘Ata Zt)7

the two formulations are completely equivalent. Our formulation of contingent claims gives a simpler and
perhaps more intuitive expression for the capital market clearing condition below, though.



The key distinction between our model and the standard complete markets model
is the the limited commitment friction, the implementation of which we now turn to.
Without any cost of defaulting on incurred state-contingent debt, all household contin-
gent claim positions are required to be non-negative, that is, we impose the constraints
asy1(ag, 2, A1) > 0. An alternative and (as shown in Krueger and Uhlig (2006))
equivalent formulation of the limited commitment friction without punishment from de-
fault would be to introduce financial intermediaries that offer long-term consumption
insurance contracts. These contracts would stipulate potentially fully income-history
contingent consumption payments in exchange for delivering all of labor income to the
intermediaries whenever the individual is productive. The one-sided limited commit-
ment friction implies that whereas intermediaries can fully commit to long-term con-
tracts, individuals cannot. Specifically, in every period, after having observed current
labor productivity, the individual can leave her current contract and sign up with an al-
ternative intermediary at no punishment, obtaining in equilibrium the highest lifetime
utility contract that allows an intermediary to break even. The lifetime utility from a
newly signed contract is the key (potentially time-varying) endogenous entity in this
formulation of the model. In Krueger and Uhlig (2006) we have shown that these two
formulations of the one-sided limited commitment friction are equivalent, and we there-
fore here focus on the financial market formulation, as in|Alvarez and Jermann| (2000),
and with the borrowing limits that are not “too tight" (in their nomenclature) being
exactly at zero, given that there is no punishment from default[]

The household optimization problem can then be stated as

max D YD Ba(AY)w(2) log(ei(ag, 2, AY)) (11)

{ct(a()vzt?At)7at+1(a0a2t+17‘4t+1)} t=0 At St
subject to the budget constraints (10)) and subject to the shortsale constraints:

a1 (ag, 2T, AT >0 (12)

2.5 Definition of Sequential Market Equilibrium

We now define a sequential market equilibrium with aggregate shocks. Households’
consumption and savings allocations depend on both the history of individual states
2 = (29,21, , 2;) and the history of aggregate states A' = (A, Ay,--- , A;). Aggregate
allocations and prices depend on the history of aggregate shocks A°.

5We could also motivate our model as a hybrid alternative (or intermediate) model located right in
between the |Aiyagari (1994) model with tight borrowing constraints and the complete markets model

with a full set of state-contingent claims and natural state contingent borrowing constraints.



Definition 1. For an initial condition (Ay, Ko, ®(ag, 20)), an equilibrium is sequences of
wages and interest rates {w;(A"), R;(A")}, prices of contingent claims {q,(As11, ze11| A%, 2) },
aggregate consumption and capital {Cy(A"), Ky11(A")} and individual consumption and

asset allocations {c;(ap, ', A%), a;1(ag, 2!, A™1)} such that

1. Given {wy(A"), Ri(A"), q(Asir, ze41| A% 2) 320 st 2t 4y, 0y the household consump-
tion and asset allocation {c;(ag, ', A), as,1(ag, 2!, A"}, for all initial conditions
(ap, 20), maximizes (11]) subject to the budget constraints (10]) and the shortsale con-
straints (12)).

2. Factor prices equal marginal products

t—1y\ ¢

w(A) = (1-0)4, (%) (13)
t—1y\ 0-1

Ry(AY) — 1+9(%) s (14)

3. The goods market and capital market clear

Ci(AY) + Ky (AY) = (KA (4)'0 + (1 — 8) K, (AY) (15)
K (4 = / > apa(ag, 2, AT () dD(ag, 29) YA (16)

where
Cy(AY) = /th(ao,zt,At)w(zt)dq)(ag,zo) 17)

3 Characterization of Equilibrium

This section characterizes a sequential equilibrium with aggregate shocks. We will first
derive the optimal household choices of consumption and savings for a given conjectured
stochastic process for interest rates and wages, { R;(A"), w;(A") };>0.¢ in subsection
then characterize the equilibrium asset distribution in subsection then use both re-
sults to confirm that the equilibrium prices of the state-contingent claims have the con-
jectured form in Section and finally determine the aggregate law of motion of the
economy in closed form in subsection

3.1 Optimal Household Choices

We will construct an equilibrium in which household choices take an especially simple
form. As long as the real interest rate is not too high, wages do not fall too fast and
households do not start life with too many assets, then they choose not to accumulate



state-contingent assets for the high income state tomorrow and insure against sequences
of low idiosyncratic income realizations through contingent asset purchases such that for
these households a standard complete markets Euler equation holds. The deviation from
the complete markets full insurance allocation (which would result in the equilibrium
collapsing to that of a representative agent economy) stems from the fact that currently
low-income individuals would want to borrow against the high idiosyncratic income state,
but are prevented from doing so due to limited commitment to repay their debts. Thus,
the best they can do is to set the contingent claim for the high idiosyncratic income state
to zero.

The following proposition makes this argument formal. It will require Assumptions
- 4] on equilibrium prices and initial conditions. In Section below we will verify
that Assumption [2]is indeed true in equilibrium[/] Assumption [3] on wages and interest
rate will be replaced below by assumptions purely on the exogenous fundamentals of
the economy, see Assumption [5| for the stationary equilibrium, Assumptions [6] or [7] for
the transition, and Assumption |G| for the economy with aggregate shocks.

Assumption 2 (Contingent Claims Prices). The prices of contingent claims are given byf|
Qe(Aryr, ze01| A, 2') = Tz |2) m (A |AY). (18)

Assumption 3 (No Savings Incentives). The equilibrium interest rate and wage rate pro-
cesses, { Ri(A"), w,(A")} satisfy:

BRy(Ag) < 1 (19)

At+1
SR < UtiT)

> t+1
(AT forallt > 0and A (20)

Assumption 4 (Initial Distribution). The initial distribution over wealth and labor produc-
tivity, ®(ao, 20), satisfies:

(1) ag = 0if zo = ¢ (high-productivity households (zy = () initially have zero wealth).

@) 0<ag<ag:= ﬁ(‘ if zo = 0 (the initial wealth of low-productivity households
is strictly positive but not too high).

"That is, we follow a guess-and-verify approach, guessing that asset prices have a specific form in
Assumption[2]and then verifying that the optimal household choices imply asset prices in equilibrium that

take indeed the form stipulated in Assumption
8Recall that these contingent claims pay R;,1(A‘*!) units of consumption in event history A**!. Under
Assumption[2] the price of a contingent claim that pays one state-contingent unit of consumption then takes
J A At .
the perhaps more familiar form ¢? (A, 1, 2, 1| A?, 2t) = ’T(Z”éitl)(” fgtﬁ)ﬂ ) as, for example, in Krueger and

Perri| (2006).




We will demonstrate below that under Assumption [3| the steady state of the model
will have an associated wealth distribution that satisfies Assumption |4} although the fol-
lowing proposition characterizing optimal household choices does not require the initial
distribution to be the steady state distribution (as long as it satisfies Assumption [4).

Proposition 1 (Optimal Household Consumption and Asset Allocation). Suppose As-
sumption [2|on contingent claims prices is satisfied and suppose that the sequence of wages
and interest rates {w;(A"), R,(A")}:2, satisfies the no-savings Assumption 3| and that the
initial wealth distribution satisfies Assumption 4} Then the optimal consumption and asset
allocation of individual households is given by

A?), where if 2 =
ct(ao,zt,At) _ Cowt( ) Co 1 v— g,@C if 2z = ( 21)
1—(1- I/)B]Rt(At)at(ao, ZAYN) ifz =0
0 if 241 =¢
at+1<a07 Zt“a AtH) = mcwt(At) ifzt =( and Ztr1 =0 (22)

BR(AYay(ag, 2', AY)  if z=0and z,, =0
where ao(ao, ZO, AO) = wo(AO)CLO

Proof. See Appendix O

We now discuss the intuition and implications of Proposition |1l First, it is easy to
verify that 2I) and (22) imply{]

i1 (ag, 27 A = BR 1 (A )ey(ag, 2, AY) if 240 = 0. (23)

that is, consumption growth between ¢ and ¢ + 1 follows a standard complete markets
Euler equation for those households that are unproductive in period ¢ + 1/ In contrast,
those that are productive in ¢ + 1 (i.e., have z;,,; = (), satisfy the Euler equation with
strict inequality, as one can show by combining Assumption [3| with equation (21)), see

Lemma [5)in Appendix[A.1.T}

Ct+1(a07 ZHI, At“) > ﬁRtH(AtH)Ct(ao, Zt,At) if 241 = C. (25)

°The derivation of this result can be found in Appendix
10 Another way to write this is:

1 Ry 1 (A 1
o~ A a4 2 t ot t+1_At+1
c¢(ag, 2t, At) Q(Argr, ze1|AL 28) 7 e (ag, 211, AT

prob. of (At+1,zt+1)

lf Zt4+1 = 0. (24)

return on a contingent claim discounted marginal utility

Independence of A;1 and 2,41 gives m(Aii1, 2e41| A%, 2Y) = 7(zi41|20)m(Ar1|AY), while Assumption
gives q; (A1, ze41|AY, 2Y) = m(2e41|20)7(Ary1|AY). Then, equation simplifies to equation (23).

10



Also note that households with currently positive labor income (i.e., with z = (),
consume and save a constant fraction of their current labor income, independent of the

aggregate shock (history) and independent of current or (expected) future interest rates:

ct(ag, 2%, AY) _ 1-(1-v)B %
Cur (A7) - (1—v—6p (26)

at+1(a0, (Zt, Zt+1 = O), At+1) o B
Cun (A7) i (-v-0p 7)

One aspect of the optimal household allocation that is perhaps surprising is the lack of
insurance against aggregate risk. All households are exposed to interest rate risk but
only households that will experience a high idiosyncratic productivity shock, z;,1 = ¢,
will also be exposed to wage risk. Thus, there appears scope for a better allocation of
this aggregate risk. The key to Proposition [1|is that under Assumption |3|it is optimal for
households to borrow against the future (A;.1, 2;.1 = () state, for all A, realizations.
But this is precisely what is ruled out by limited commitment, and thus the best they can
do is to set the a; 1 (ag, (2%, 241 = (), A1) = 0.

Finally, it is easy to verify that the household choices satisfy the budget constraint.
One final noteworthy observation about the optimal allocation is that low-productivity
households consume a share (1—(1—v)p) of their cum-interest wealth R,a;. A household
solving the classic “cake-eating problem" (i.e., the optimal intertemporal consumption-
savings problem in the absence of risk and labor income starting with a given amount
of wealth) would consume a share (1 — ) of that wealth. Here that share is higher (by
the factor Sv) because of the implicit insurance nature of the allocation: upon making
a state transition to high productivity the household effectively surrenders her state-
contingent wealth, with the wealth redistributed to the low-productivity “stayers". This
is reminiscent of the actuarially fair annuity payments in the presence of mortality risk
in the classic papers by Yaari (1965) and Blanchard| (1985).

As Proposition [1]indicates, optimal consumption and asset holdings are proportional
to wages (either current wages when the household has high productivity today, i.e.,
s = 0) or to the wage when she last was productive. We therefore define, for future
reference and use, wage-deflated consumption and asset choices as

Ct(a'(]v Ztv At)

LAY = 22222 28
Ct(a’O?Z ) ) wt(At) ( )
t+1 At—i—l)
tHl At+ly at+1(a0,2 ) 9
ag1(ao, 2, ) wiy1(A?) (29)

3.2 The Cross-Sectional Distribution

The sequential market equilibrium household consumption-asset allocation has a simple
structure. Either the shortsale constraint for a given continuation history z/*! is not

11



binding, a;,1(ag, 2/, A1) > 0, and the standard complete-markets Euler equation

Cit1 (CLOa ZtJrl’ At+1)

ci(ag, 2t, A)

= R (A™) (30)

applies or the constraint is binding, a;, (ag, 21, A"™!) = 0 and the Euler equation turns
into an inequality.

The equilibrium consumption and asset allocation then has a simple structure in
which individual consumption and assets only depend on the length s > 0 of the most
recent spell of low productivity (where s = 0 denotes an agent with currently high
productivity), and potentially calendar time ¢. When productivity is high, the short-
sale (limited commitment) constraint is binding and assets are zero. Denote this simple
consumption-asset allocation by {c;,, a&t}g’jtzo and note that the Markov process for in-
dividual productivity implies that the cross-sectional distribution of the waiting times is
time invariant and given by

o ifs=0
by = & (31
Sov(l—v) Tt ifs=1,23 .

Corollary 1. Suppose the initial asset distribution is given by {a; o }s>o with the probability
mass of s-agents given by (31)), and suppose that Assumptions [2]- | are satisfied. Then, the
initial consumption allocation {cs¢}s>o is given by equation (21)), and the consumption-
asset allocation {c;+,as;}s>0 at any t > 1 is determined by:

1-(1-v)8 t Y
Csyt(At) _ 17(17,,75)5th(14 ) lfs =0 (32)
BRi(AY)cs101(ATY)  ifs>1
0 ifs=0
ag(A) = a,, (A7) = ﬁ(wt—l(fltil) fs=1 (33)

BRi (A" Na,_y 1 (A7) ifs>2
The probability mass of s-households is time-invariant and given by (31).

Proof. The initial consumption distribution follows directly from equation (21]) in Propo-
sition [I} Apply equations (22) and (23) to the initial allocation {c,, a0} s>o. O

Note that this corollary implies that even though the cross-sectional distribution of
waiting times remains constant over time and across aggregate shocks, the levels of
consumption and assets at these countably many mass points given by and
varies with time and aggregate history A’, but only through its effects on aggregate
wages and interest rates. Also note that if the consumption-asset allocation is of the
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simple form stipulated above, aggregate consumption and assets in the goods market

clearing condition and the asset market clearing condition can be written as

Ci(AY) = ) decau(A) (34)
s=0

Kia(A) = ) deagu(A) (35)
s=0

3.3 Confirming the Conjectured Prices of Contingent Claims on Cap-
ital Returns

Before we explicitly carry out the aggregation we can verify, with the optimal household
allocations in place, that the prices of the contingent claims of capital are of the form
stipulated in Assumption

Fix (A%, 2"). For all households for which the shortsale constraint for a contingent
claim that pays off in aggregate state A**! is not binding (the positive mass of indi-
viduals with idiosyncratic state z;,; = 0, i.e., those with s > 0 in period ¢ + 1), the
first order conditions with respect to consumption and the state-contingent asset claim
can be combined to obtain (see Appendix[A.1.1] equation (I10)) the standard complete
markets Euler equation:

ct+1(a0,zt+1,AtH) -1
ci(ag, 2t, A?)

qt (At+1 ) Zt+1 ’At; Zt) = W(Ztﬂ |Zt)7T(At+1 |At)ﬁRt+1 (AtH) (36)

For each of these households (with s > 0) the optimal consumption allocation satisfies
ce1(ag, 2T AT = BRi (AT )cy(ag, 24, A) (see equation (23). Using this result in
equation immediately confirms that

Gt (Avy1, Zt+1|Ata Zt) = 7T(zt+1|2t)7T(At+1|At) (37)

That is, in Assumption [2) we have guessed the form of equilibrium asset prices, and now
we have verified that the optimal household choices under this guess lead to equilibrium
prices consistent with that guess.

Finally, note that at these prices for households with z;,; = ( we have (see equation

(25))

cori(ag, 2111, A1)

G (Aryr, 21| A 2Y) > 7wz |20)m (A |AY) BR 1 (AT ci(ag, 2t, A)

(38)

These households, at these equilibrium prices, would like to reduce their consumption
growth between period ¢ and ¢ + 1 by borrowing against the contingency of high produc-
tivity tomorrow, but the limited commitment constraints precisely prevent these types of
shortsales.

13



3.4 Aggregation

Now that we have characterized the cross-sectional distribution of assets, we can use
equation to derive the aggregate law of motion for capital. Since the optimal house-
hold consumption and asset decisions in Proposition|[1]are closed-form expressions of the
general equilibrium factor prices (w;, R;), and these in turn are functions only of the ag-
gregate capital stock and aggregate productivity through the first-order conditions of the
firm, characterizing the law of motion for the aggregate capital stock K is also sufficient
to fully characterize the distribution of consumption and assets over time. What is special
about this model with nontrivial household heterogeneity is that the model aggregates,
in the sense that the capital stock in period ¢ + 1 can be expressed exclusively as a func-
tion of the aggregate capital stock in period ¢, despite the fact that the model features a
non-trivial consumption and wealth distribution, and that this law of motion of capital
can be characterized in closed form. The following proposition is then a straightforward
consequence of the results in the previous subsection and proved in Appendix

Proposition 2 (Aggregate Law of Motion for Capital). Under the assumptions maintained
in Proposition [I| (which implies that the household consumption and saving allocations are
given by and (22)), the law of motion for the aggregate capital stock is given by:

K1 (AY = AP K, (A7YY + (1 — 6) K, (A7) (39)
where
. B -0)
8_1—(1—V—§)5+(1_V)60 (40)
d=1—(1—0v)B(1—4). (41)

As in the classic Solow model the aggregate saving rate s is a constant in this model,
but in contrast to the Solow model here it is an explicit function of the fundamental
parameters capturing income risk at the micro level as well as time preferences and the
capital share in production, and one can derive explicit comparative statics with respect
to these deep parameters. Note that if » = £ = 0 and there is no idiosyncratic risk, then
§ = 6. If furthermore § = 1, then § = 1 and the model dynamics collapses to that of
the standard representative agent stochastic neoclassical growth model, which with log-
utility and full depreciation —and only then— has a closed-form solution for the aggregate
capital stock. We give this closed form in Section and will return to a comparison
of our model with the neoclassical growth model and the Solow model in Section [6]

We now use the general results to analytically characterize a stationary equilibrium,
the transition path after an unexpected transitory or permanent productivity shock and

14



the equilibrium with aggregate shocks, under specific assumptions on the aggregate pro-
ductivity process. This allows us to restate Assumption[3|purely in terms of fundamentals
and to verify that the steady state asset distribution satisfies Assumption

4 Stationary Equilibrium and Transitional Dynamics

We derive the stationary equilibrium and then study the transitional dynamics of the
model from this steady state following an unexpected shock to productivity. The steady
state results displayed here are translations of similar findings derived in Krueger and
Uhlig (2022) who employ a continuous-time version of the model, and stated here to
make the paper self-contained, given that the steady state is the starting point for the
analysis of transitions and aggregate fluctuations.

4.1 Stationary Equilibrium

For the purpose of this section we maintain Assumption [I}1 and thus productivity is
constant at A. In a stationary equilibrium the wage w, the gross interest rate R and the
aggregate capital stock K are constants (over time and across aggregate states).

From Proposition [1] it immediately follows that in steady state the optimal wage-
deflated consumption and asset choices, as function of the wait time s, are given as

Co . . 1-— (]_ — V)/B

w T a-v-8 “
% = ¢ = (BR)°cy fors=1,2,--- (43)
B =0 (44)
w

a _ p

w =TT a8 )
% = as= (BR)a,_1 = (BR)* 'ay fors =23, (46)

High income agents consume a constant fraction of their labor income, and consumption
of low income agents drifts down at a constant rate, SR, until they switch to a high
income state and renew the contract. As long as SR < 1, consumption converges to zero
in the long run, lim,_,,, ¢; = 0.
We can of course use the stationary version of the aggregate law of motion (39) in
Proposition
Ko = 8(A0) K + (1 — ) K, 47)

to determine the aggregate steady state capital stock and the associated stationary wage
and interest rate, denoted by (Ko, Ry, wy) (we use the “0" notation because the steady
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state will be the initial condition for the transition analysis in Section 4.2)). This delivers,
in parallel with Proposition 8 in Krueger and Uhlig (2022), but for discrete time:

Ko = A (3/5) e (48)

Ry = GAVPKO 1 11 -5=4¢ (S/g) +1-45 (49)
_0

wo = (1—0)APKS = (1 0)A, (g/é) (50)

where (3, 6) were defined in and(41)).

To obtain intuition for the aggregate law of motion, and derive a graphical represen-
tation of the capital market clearing condition for our model akin to that in the |Aiyagari
(1994) model, it is instructive to carry out the explicit aggregation in the stationary
equilibrium. The capital market clearing condition in the steady state reads as

K = i ¢sasw = i gbsasw
s=0 s=1

_ p¢ vE =

- 1_(1_V_§)Bé.+yw+;¢sasw

_ 5¢ vE =

- 1—(1—y—f)ﬂ§+yw+BR(1_V);¢S_1a5_1w

= B v w+ SR(1 —v)K (51)

1-(1-v=¢pE+v

The first row is due to the fact that saving for the high idiosyncratic state z = ( is zero,
and thus, ay = 0. The second row splits the demand for assets (supply of capital) into
the part coming from productive agents saving for the low income state (a;) and the
part stemming from unproductive agents rolling over parts of their assets (a;) for s > 1.
The third row exploits the optimal asset allocation in equation and the form of the
stationary wait-time distribution ¢, in equation (31]), and the last row uses the capital
market clearing condition. Plugging in for (R, w) from the firm’s optimality conditions
and rearranging delivers back the stationary version of the aggregate law of motion in
equation (47).

As in Figure ILb of Aiyagari| (1994) and Figure 3a in Krueger and Uhlig (2022), the
capital market clearing condition can be used to display the determination of the
stationary equilibrium interest rate and capital stock graphically, derive its comparative
statics properties and clarify the conditions needed for the existence of a stationary equi-
librium with partial consumption insurance. To do so, it is instructive to divide both sides
of by the wage w and use the firm’s optimality condition with respect to capital, and
the normalization of expected productivity to one, (5]), to write both sides as a function
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Stationary Equilibrium (Partial Insurance)

1.75 KG{RI
K=(R) |---
1.50
oo
1.25
1.00
0.75 I 1 1 I 1
1 2 3 a 3

K (i=K/w)

Figure 1: Determination of Market Clearing Interest Rate and Capital Stock. Parameter
values are § = 0.6,0 = 0.1,0 = 0.33,£ = 0.5, = 0.2

of the gross interest rate R. This yields

L odipy 0 _ £6 s
KU = = g —170) " -0 -v-o8 "

(52)

Figure (1| plots the (wage-normalized) demand for capital x%(R) by the production
firms (the relation between the return and the capital stock determined by the first order
condition for capital). It has exactly the same form as in the original Aiyagari (1994)
paper, sloping downward, and with the capital stock diverging to oo as the net interest
rate approaches —4. The supply of capital «* from the household side is finite at R = 1—9,
strictly increasing in the interest rate (something that is typically hard to prove in the
original Aiyagari (1994) model), and also finite at R = 1/3. Equation also allows to
determine unambiguous comparative statics as the parameters of the model shift either
the demand curve (in case of the production parameters (6,¢)) or the supply curve (in
case of the idiosyncratic risk parameters (£, ) and the preference parameter /). Finally
it also shows that a necessary and sufficient condition for a unique simple stationary
partial insurance equilibrium with R, < 1/ is that k%(1/3) < x*(1/#). This leads to the
following Assumption (the counterpart of Assumption 2 in Krueger and Uhlig (2022),
but cast in discrete time):
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Assumption 5.

4 §

(1—9)(%—1+5) <I/<%—1+£+I/)

This assumption is satisfied if the chance of productivity falling ¢ and the risk of it

not recovering quickly (as given by 1 — v) is sufficiently large[']| The assumption insures
that k%(1/83) < x*(1/83). Equipped with this assumption, defined purely in terms of ex-
ogenous parameters of the model, we can state the following proposition, completely
characterizing the stationary equilibrium of the model. It is the discrete-time counter-
part to Proposition 8 in Krueger and Uhlig (2022), and here mainly stated because the
stationary equilibrium forms the point of departure for the transition and aggregate risk
analyses in Sections [4.2|and

Proposition 3 (Stationary Equilibrium). Suppose Assumption [5| holds. Then, there exists
a stationary partial insurance equilibrium in which the capital stock K, interest rate Ry
and wage rate wy are given in a closed form:

1
1-6

N 5(1—9)—1—50(1—1/)(5—1—1/—1-%—1)
Ko = 4 (5)" =4 | T aa T e T =)
5(1—9)(1—5)+9<§+1/+%—1>

Ry = (54)
ay—m+ﬁW1—m(§+u+%—1>

(53)

_0
-0

ﬂr—®+ﬁW1—m<§+u+%—1>
1-(1-0)Bl-v)](E+r+5-1)

wy = (1—=0)Ag (55)

The equilibrium interest rate Ry is strictly increasing in the capital share 6, strictly de-
creasing in the depreciation rate o, the time discount factor 3 as well as the risk of produc-
tivity falling ¢ and remaining low 1 — v and is independent of productivity A,. The capital
stock K is strictly increasing in the time discount factor [3 as well as the risk of productiv-
ity falling ¢ and remaining low 1 — v, strictly decreasing in the depreciation rate ¢, and is
proportional to the level of productivity Ay. The comparative statics of wy is the same as for

K. The simple stationary equilibrium is uniqud™|in the sense that there is no other simple

1
1+p°

0 - ¢
(1-0)(p+0) vi(p+&+v)
which coincides with the assumption insuring the existence of a stationary equilibrium of the continuous-

time model in Krueger and Uhlig| (2022).
12We cannot rule out stationary equilibria in which allocations are more complex functions of idiosyn-

1Defining the time discount rate p by 8 = we can restate the assumption as

cratic histories, although we conjecture such equilibria do not exist under Assumption 1.
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stationary partial-insurance equilibrium in which the stationary consumption and wealth
allocation and its associated cross-sectional distribution is simply a function of wait time s.

Proof. The equations follow directly from the aggregate law of motion (39) at steady
state, see Appendix[A.2.T|for the derivation. Intuitively, existence and uniqueness follows
directly from the monotonicity of x?(R) and x*(R) in Figure [1| as well Assumption
The comparative statics results with respect to Ryfollow directly from the fact that the
curve x%(R) shifts to the right with an increase in ¢ and a decrease in § whereas x*(R)
is independent of these parameters, and the fact that x*(R) shifts to the right with an
increase in ¢,1 — v, 3 and x%(R) is independent of these parameters. The comparative
statics results with respect to K and w, then follow from the firm optimality conditions,
given the comparative statics with respect to Ry O

Assumption [5|is also a necessary condition for the existence of a simple partial in-
surance equilibrium [ In the next subsection we use the stationary equilibrium (R, Ky)
and the associated asset distribution determined by the optimal asset allocation and
the wait-time distribution ¢, in as point of departure to analytically characterize the
transition path induced by an unexpected change in the productivity path.

4.2 Transitional Dynamics

Starting from a stationary partial insurance equilibrium with Assumption |5in place we
now assume that at the beginning of period ¢ = 1 the economy experiences an unex-
pected, zero probability shock (a so-called MIT shock) that alters productivity from A, to
a new deterministic sequence { A;}:°,. There are no further surprises about productivity
or any other parameters of the economy thereafter; that is, aggregate productivity now
satisfies Assumption (I} part 2. Assumption[4on the initial distribution is now guaranteed
to be satisfied since the economy starts at the stationary equilibrium characterized in the
previous subsection. Note that we continue to impose the no-savings Assumption (3 in
Section below we provide conditions on the path {A4;}°, sufficient to guarantee
that this assumption is indeed satisfied.

The analysis in this subsection follows the work in continuous time of Krueger, Li, and
Uhlig (2023) and translates their main results for deterministic MIT transition paths into
the discrete-time framework of this paper, but it also permits us to handle both the full-

depreciation case (which in turn yields a useful point of comparison to the representative

13A violation of Assumption [5{does not exclude the possibility for the existence of a stationary equilib-
rium with SR > 1. The characterization of optimal consumption and asset allocations in Proposition
requires, in a stationary equilibrium, that SR < 1 and is no longer valid if SR > 1, and thus the ensuing
aggregation analysis no longer applies.
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agent neoclassical growth model) and the case of permanent productivity declines which
are infeasible in continuous time.

The optimal household allocations and the aggregate law of motion for capital are
special cases of Propositions 1| and [2] respectively, and thus (recall equation (39)):

Ko = §(A) (K + (1 — 0)K, (56)
wherd!

$=(1-v)B0+—

BA=0) iy _ ¢
(1—’/—5)5N9(1 p) (1 9){§+l/+p] (57)

b=1—-(1—-v)B(1 =08 ~v+p+0. (58)

This law of motion for capital resembles that in the classical Solow growth model, but
with a depreciation rate § that is larger (by v + p) than the physical depreciation rate §
and a saving rate s that is an explicit function of the structural parameters of the model
and depends negatively on v + p and positively on the risk of income falling to zero &.
We discuss the relation to the Solow model and the literature more broadly in Section [6]

Studying the special case of unexpected transitions is useful for three purposes. First,
it will allow us, in Subsection[4.2.1], to derive a sufficient condition purely on the produc-
tivity process such that the no-savings condition SR, 1 < w;f is satisfied for all periods
along the transition. Second, we show in Subsection that the original steady state
allocation, chosen under the assumption by households that wages and interest rates will

never change, remains optimal in period 1, after the MIT shock has hit and wages and
interest rates undergo the unexpected transition. Third, there we will also clarify why
the aggregate transition induced by a change in productivity is independent of whether
this change is unanticipated (as in the MIT shock thought experiment) or anticipated.
This in turn suggests that the model with aggregate shocks in Section |5/remains analyt-
ically tractable and retains the same characteristics as the model with unexpected MIT
transitions. Finally, as a first application, Subsection [4.2.3|characterizes the evolution of
consumption inequality following the MIT shock.

4.2.1 Sufficient Conditions for SR;,; < ““ along the Transition Path

wt

Thus far, we have derived the dynamics of the capital stock in equation under the
maintained assumption that the limited commitment constraint of households receiving
high income is always binding along the transition path, see Assumption (3| Equivalently,
phrased in terms of state-contingent asset accumulation, it was assumed that households
have an asset position of zero when starting the period with high idiosyncratic produc-
tivity. We showed in Proposition [I] that such a contract satisfies the optimality conditions

14Recall p is defined by 5 = ﬁlp and the approximation assumes that p, £, v are sufficiently small.
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when SR, < “ for all ¢ > 0. Intuitively, when interest rates are low and/or wages

wt

are expected to be higher in the future than today, individuals have no incentive to save

for the contingency of high idiosyncratic labor productivity tomorrow.
In this subsection, we derive sufficient conditions insuring SR, < < forall ¢ > 0

we

after a positive and after a negative productivity shock, respectively. Broadly speaking,

the shock to total factor productivity A cannot be too large in either direction. Further-
more, if depreciation is 100%, then no further assumptions besides those already made
to ensure the existence of partial insurance steady state from which the transition starts
are necessary, as we demonstrate next. These results differ in a significant way from the
corresponding findings in the continuous-time transition analysis of Krueger, Li, and Uh-
lig (2023)). Whereas the positive permanent shock case delivers a condition that has an
identical counterpart in continuous time, the full-depreciation case cannot be analyzed
in continuous time. Perhaps more importantly, for negative permanent shocks the no-
savings condition cannot be satisfied in continuous time (since the instantaneous growth
rate in the wage is infinitely negative), whereas in discrete time we provide exactly such
a sufficient condition on the exogenous size of the productivity decline["|

Full Depreciation With full depreciation, § = § = 1, the equilibrium law of motion for
capital is given from equation (56]), with § = 1 by

Ky = 8A K7 (59)

as long as, along the transition SR, ; < “=L < 1. Lemma@in Appendixshows that

we

with full depreciation Ripigrs = Ro, for all ¢ > 0. But since under Assumption |5|there
exists a stationary partial insurance equilibrium (with SRy < 1) and by assumption this

is the starting point for the unexpected transition, along this transition SR, < = is
guaranteed by Assumption |5, independent of the sequence of productivity levels { A, }.
Also note that in the limit, as idiosyncratic risk vanishes (v and £ converge to zero), the
saving rate $ in our model approaches that of the standard representative agent model
with log-utility and full depreciation s = 6. Finally, with full depreciation the nonlinear
first order difference equation in has a closed-form solution since it implies that the
log of the capital stock obeys a linear first order difference equation which can easily be

solved in closed form. This discussion is summarized in the following proposition.

Proposition 4. Let Assumption [5] be satisfied and suppose the economy is originally in a
partial insurance steady state (K, Ry, wo) and {(as o, ¢s0) }2°, characterized in Proposition

150n the downside, the first-order difference equation characterizing the dynamics of the equilibrium
has no explicit solution whereas the corresponding differential equation in continuous time has. See
Section@for further discussion and Krueger, Li, and Uhlig| (2023)) for the continuous time solution.
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Bl Then the aggregate capital stock in period t of the transition induced by an unexpected
change in productivity after period O to the sequence {A;}:°, is determined as

t—1

(1-6) [Z 01" log A,
T=1

the factor prices (R, w;) are given by the firm’s optimality conditions and (14), and
individual household allocations {(as:,cs+)} are as stated in Proposition |1} given the dy-

_ pt—1

+ ———logé+0""log Ko/, (60)

K, =exp 14

namics of the capital stock K, in (60)).

Proof. Follows directly from taking logs on both sides of equation and solving the
linear first order difference equation for log(X),

log Kt+1 = 10g§ =+ (1 — 9) log At —+ Qlog Kt
and then exponentiating. This delivers (60). N

With less than full depreciation, § < 1, Assumption |5|is not sufficient to insure that

the no-savings condition SR, < wjﬂ:l is satisfied for ¢ > 0. For arbitrary sequences of
productivity it is difficult to establish general conditions purely in terms of the fundamen-
tals of the economy, but in the case of fully permanent shocks this is possible since for this
case we can establish that the capital stock evolves monotonically over time. To do so it
is useful to distinguish positive technology shocks (which induce positive wage growth
along the transition and temporarily elevated interest rates) from negative technology
shocks (with negative wage growth and depressed interest rates along the transition),
since the two cases differ in the restrictiveness of the assumptions needed to ensure that

the no-savings condition is satisfied.

Permanent Shocks We first establish the monotone convergence of the capital stock
following a permanent shock to productivity.

Proposition 5 (Monotone Convergence of (K;, Ry, w;)). Assume the economy is in a sta-
tionary equilibrium associated with aggregate productivity A, and associated capital K at
time t = 0, and suppose at time t = 1, productivity unexpectedly and permanently changes
to A; with A; > A,. Furthermore, suppose SR; < w;—f for all t > 0 (Assumption @) Then,
aggregate capital K; and wages w; monotonically increase and converge to their new sta-
tionary equilibrium values, and the interest rate jumps up on impact and then converges

monotonically to the old (and new) stationary equilibrium from above:

A
K0=K1<K2<---<K*=A—1KO, (61)
0

. A

Wy < wy < wy < -+ < W= —wy, (62)
Ay

Ry< Ry >Ry>--->R'=R,. (63)
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Symmetrically, following a permanent negative productivity shock A, = A; < Ag for all
t > 1, the aggregate capital stock and wages monotonically decrease along the transition,
and the interest rate falls on impact before converging back to the old (and new) stationary

equilibrium from below:

K0:K1>K2>"'>K*:A—K0, (64)
0
* Al

Wy > W1 > Wy >+ > W = —UWp, (65)
Ao

R0>R1<R2<"'<R*:R0. (66)

Proof. See Appendix[A.2.3] O

Equipped with this result we can now give sufficient conditions, purely in terms of
fundamentals, for the condition SR; < “’;}—tl to indeed be satisfied for all t. We first
consider the case of a positive productivity shock. In this case, the capital stock and thus
the wage w, = (1 — 0)A; ? K? is monotonically increasing over time, and so SR,,; < 1is

a sufficient condition for SR, < “=. Furthermore, from the previous proposition the

we

interest rate jumps up at ¢t = 1 and then monotonically converges to the (old and new)
stationary equilibrium interest rate. Therefore, R, < 1 guarantees that SR;,; < 1 and

thus SR, 1 < =2 for all t > 0. The following proposition provides a sufficient condition

wi

for this, and is the counterpart to Assumption 3 in Krueger, Li, and Uhlig| (2023)).

Proposition 6 (Sufficient Condition for SR, < “: Vit > 0 after a Positive Shock). Let

we

Assumption [5]be satisfied and let the economy be in a stationary equilibrium with SR, < 1.

After a permanent positive productivity shock att = 1 (A, = Ay > Ag forallt > 1),

BRi1 < “EL Wt > 0 is satisfied if the shock is not too large, that is, if A; € [Ag, A1) where

wt

the threshold A, satisfies

Assumption 6.

A _[1-B01-0) (1-6)+1-vl-(1-v-0F }50: (P_”)”GKOM.

4 0 1-0=»s =01 -(1—-v=Ef 0
(67)
Proof. See Appendix[A.2.4 O

Intuitively, if A; /Ay > 1 is sufficiently small, the initial jump in the interest rate is not
too large, and we can guarantee SR;,; < 1 along the transition path. This, coupled with
positive wage growth induced by the positive productivity shock insures that SR, <
St for all t > 1 along the transition path, and high-productivity households have no

incentive to save for any ¢, confirming the existence of a simple, no-savings equilibrium.
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Figure 2: Thresholds for A,

The case of a negative technology shock is more challenging because wages are de-
clining along the transition (see the previous proposition), and thus high-productivity
individuals face stronger incentives to save in anticipation of lower labor income in the
future. We can nevertheless give a sufficient condition on the size of the productivity de-
cline that guarantees the no-savings condition be satisfied. This result has no counterpart

to the analysis in continuous time.

Proposition 7 (Sufficient Condition for SR;,; < L V¢ > 0 after a Negative Shock). Let

wt

Assumption 5] be satisfied and let the economy be in a stationary equilibrium with SR, < 1.

After a permanent negative productivity shock att = 1 (A; = A} < Ag forall t > 1),
bR < “’;: LVt > 0 is satisfied if A; € (A,, Ao] holds, where the threshold satisfies

Assumption 7.

B
| [~
[un

1—(1-0)p1—-v) &0-0)=pov(E+v+5-1)

AfAg= |1-v+ <L
/Ao ST B =) §(1—9)+69(1—y)<§+u+%—1)

(68)
Proof. See Appendix[A.2.5] O

Figure 2] illustrates Propositions [6] and [7] graphically. Note that the conditions stated
in these two propositions are sufficient but not necessary for the household limited com-
mitment constraint to be binding in the high income state. To summarize, Proposition [f]
and [7] state that if the permanent productivity shock is not too large, A, € (A, A,), the
condition on interest rate and wage growth, SR;,; < ==, is satisfied for all ¢ > 0.

we

In Appendix we generalize the results in this subsection to arbitrary monotone

deterministic and convergent sequences {A;}°, with 45 < A; < Ay, < --- or with
Ag > Ay > Ay > --- with lim;_,. A; = A*. The results are similar to the ones for
permanent shocks in that they require that the initial productivity shock A; and the
subsequent shocks cannot be too large or too small, but the analysis requires a first-
order approximation of the capital stock dynamics.
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4.2.2 MIT Shocks, Anticipated Shocks and Consumption on Impact

In Proposition [1) we provided a general characterization of the optimal consumption al-
location under the no-savings in the high state condition. We now draw out one perhaps
unexpected implication of this general characterization in the context of MIT shocks:
despite the unexpected change in wages and interest rates starting in period ¢t = 1,
the optimal consumption allocation of low-productivity individuals satisfies the standard
Euler equation even through the surprise period, i.e., between period ¢t = 0 and ¢ = 1.

Corollary 2 (Consumption at the time of a shock). Consider an unexpected shock to pro-
ductivity at t = 1 and assume that Assumptions [2| 3] and [4] hold. Then consumption of
high-income agents (cy ) is a constant fraction of their income, and consumption of low-
income agents (cs, for s > 1) satisfies the Euler equation between periods t = 0 and t = 1:
1-(1-v)B
RS T A
Cs1 = BRics_1p for s > 1. (69)

Proof. Follows directly from the general characterization in Proposition[I} See Appendix
[A.2.6] for detail. O

The key to this result is that with log-utility, unconstrained households consume a
constant fraction of their assets cum interest, see equation (21)):

Cs1 = wWiCs1 = [1 — ﬁ(l — l/)] Rla&l Vs Z 1,‘v’t (70)

Two observations are crucial. First, current consumption and assets chosen for tomorrow
do not depend on future interest rates with log-utility['| Second, the surprise change in
current (period 1) TFP does impact the marginal product of capital and thus R; (even
though the capital stock in ¢ = 1 is predetermined), and therefore consumption c,
changes in period 1 relative to what the household had planned in the initial steady state
(cs,0), as equation (70) indicates, even though a, ; is predetermined from the previous
period. But since the impact of R; on consumption is proportional, it exactly cancels
out with the direct change in R; in the Euler equation, and thus the scaled (by R;)
consumption level c, ; continues to satisfy the Euler equation between periods ¢ = 0, 1.
In this section we have analyzed the transitional dynamics after an unanticipated
productivity shock (MIT shock) at ¢t = 1, starting from the initial steady state. Note that
the assumption that the TFP changes are completely unanticipated is irrelevant for the

16We discuss the relation to the literature also exploiting log-utility to obtain analytical tractability in
heterogeneous-agent macro models in section @
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transition dynamics. As we saw from equation (70), low-income agents consume a con-
stant fraction of their implied asset position regardless of future interest rates, and high-
income agents also consume a constant fraction of their labor income. Individual state-
contingent savings for the low-idiosyncratic productivity state a1 (ag, 2/, A 2z, =
0) = ay1(ag, 2%, A 241 = 0) do not depend on future productivity shocks, either["|
Therefore, aggregate consumption in the economy is independent of future interest rates
and wages, and the law of motion of aggregate capital does not depend on these future
prices either. Thus the dynamics of the economy unfolds the same, regardless of whether
future productivity shocks are anticipated or unanticipated. Note that these results do
not hold in our model if households have CRRA utility with o # 1; they also do not hold
in the standard neoclassical growth model, as Appendix B.1.2] shows.

4.2.3 Application 1: Inequality along the Transition

We now use the result characterizing the aggregate transitional dynamics to study, as a
first application of the model, how consumption (and wealth) inequality responds to un-
expected or (partially) expected aggregate productivity shocks, thereby analyzing how
inequality evolves over the business cycle in our model. Our analysis largely follows Sec-
tion 6 of Krueger, Li, and Uhlig (2023), but in discrete time we can tackle both positive
and negative permanent shocks to productivity. We demonstrate four findings: (i) the
consumption distribution in the long run is invariant to aggregate productivity A;; (ii)
With full depreciation of capital (6 = 1), the consumption distribution is time-invariant
and independent of aggregate shocks; (iii) If depreciation is partial (6 < 1), consump-
tion inequality expands on impact of a positive permanent productivity shock and then
shrinks (and often undershoots) towards the new steady state; (iv) Following a negative
productivity shock, the evolution of consumption inequality is symmetric to that of a
positive productivity shock.

The basis of our inequality results is Corollary [I| which shows that the consumption
distribution follows the simple structure in equation characterizing wage-deflated

17Recall from equation that:

masmealw(AY) ifz =

. = ap1(ag, 2", A% 240 = 0)
BRi(A%ai(ag, 2, AY)  if 2z, =0

41 gt41, o)
aii1(ag, 2" AT 24 = 0) = {

and thus is independent of (expectations of) R;.;(A**!). With log utility, the effect of a higher return
on assets on savings in a state with higher TFP (the substitution effect) is completely offset by the lower
marginal utility from consumption (the income effect). Thus, households save the same amount regardless
of future aggregate productivity. The payoff tomorrow from these assets, R;ja;11, is dependent on R;, 4
(and thus changes, surprisingly in the case of the MIT shock, expectedly in the case of foreseen changes
in A; 1), but households do not act on these foreseen changes.
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Cs,t

consumption ¢, ; = 7+ as
. _1-(-v)8 ——
coy(Ay = 0T T8 if s =0 1)
5 t—1
ﬁRt(At)%Csttfl(At_l) if s > 1

where we recall that s is the number of periods an individual has spent in a low-income

state since last receiving high income.

Consumption Distribution in the Long Run In the stationary equilibrium, the con-
sumption distribution is determined exclusively by the equilibrium 5 R*, which does not
depend on productivity A;. This implies that after aggregate shocks have subsided, the
consumption distribution (scaled by the now different wage) will return to the initial
stationary distribution in the long run.

Proposition 8 (Consumption Distribution in the Long Run). Suppose that Assumption [3]
holds and that an economy is in a steady state at t = 0 with productivity A,. Suppose also
that after a productivity shock at t = 1, aggregate productivity settles down at lim; .., A; =
Aso. Then, the deflated consumption distribution in the long run is the same as the initial
distribution:

ci=(BR")°cy for s =0,1,2,--- |
since the steady-state interest rate, R*, does not depend on productivity A.

Proof. See Appendix O

The Dynamics of the Consumption Distribution with 6 = 1 In the case of full depre-
ciation of capital, 6 = 1, wages and gross returns are proportional to aggregate produc-
tivity A;, and so are the incomes of the high-productivity individuals with labor income
and the low-productivity individuals with capital income. As a consequence, the deflated
consumption distribution is constant along the transition path.

Proposition 9. Suppose Assumption[3|holds and suppose that an economy is in a stationary
equilibrium at t = 0 with a deflated consumption distribution {ct}s>¢. With full depreci-
ation of capital (6 = 1), the deflated consumption distribution is time-invariant for any

sequence of { A }i>o:

csi(A) =ct, forany s> 0atalt>0and A" (72)
Proof. See Appendix[A.2.8] O

Note that there is no counterpart to this result in continuous time since the full-
depreciation case cannot be analyzed there.
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Consumption Inequality after a Positive Shock when § < 1 With full depreciation,
the differential evolution of capital- and labor income, which is the source of changing
inequality, is muted. We now study the more realistic case with partial depreciation in
which the gross return to capital moves less than one for one with aggregate productivity.
The thought experiment is again an MIT shock that hits the economy at the beginning of
period ¢ = 1 and changes aggregate productivity to a sequence {A,};>o, and the object
of interest is the evolution of consumption inequality associated with this shock@]

The next proposition characterizes the impact of a positive productivity shock on
inequality on impact (when assets coming into the period are pre-determined). Inequal-
ity widens because wages and thus consumption of high-productivity individuals moves
one for one with productivity whereas the gross return and thus consumption of low-
productivity individuals increase less than one for one. Consequently, since the latter
group has lower consumption to start with, inequality widens on impact with less than
full depreciation.

Proposition 10. Suppose that Assumption [3| holds, and suppose the economy is in a sta-
tionary equilibrium at t = 0 and hit by a positive productivity shock at t = 1 such that
A > Ag. If0 < 6 < 1and 0 < 0 < 1, consumption inequality rises between t = 0 and
t=1:

o 1-(1-v)B
T (23

Cs,1 < Cs,0 Vs ZO

¢ vt >0 (73)

and thus ¢, 1/co1 < cso/cop for all s > 0. Furthermore cs1/cs1 = ¢s0/cs0 forall s, > 0.

Proof. See Appendix O

To illustrate the results in this section, Figure |3| uses a numerical example to illus-
trate the evolution of consumption inequality in response to a positive (upper panels)
and negative (lower panels) aggregate productivity shock. The figures in the left col-
umn display the Lorenz curves of the consumption distribution for various time periods,
and the right panels show change in the Lorenz curve (in percentage point deviations)
relative to the initial steady state distribution, which is also the final steady state con-
sumption distribution (see Proposition[8)). As predicted by Proposition[10] in response to
a positive technology shock consumption inequality increases and the Lorenz curve shifts
out and further away from the 45-degree line. Eventually, as predicted by Proposition
the Lorenz curve will return to its original shape as the economy converges to the new

steady state associated with permanently higher productivityE;]

18As discussed in Section |4.2.2} it does not matter whether these productivity shocks are anticipated or
unanticipated. Therefore, the same results as in this subsection also go through in a stochastic economy
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Lorenz Curve after a Positive Shock Deviation from the SS (positive shock)
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Figure 3: Evolution of the Lorenz Curve after a positive and after a negative productivity
shock at ¢ = 1. Parameter values are § = 0.6,6 = 0.1,6 = 0.33,¢ = 0.5,v = 0.2, f‘—é €
{1.5,1/1.5}

Consumption Inequality after a Negative Shock The evolution of the deflated con-
sumption distribution for a permanent negative productivity shock is largely symmetric
to that of a positive shock. The corresponding theoretical results are stated in Corol-
laries [4H6] in Appendix There are two key differences between a positive shock
and a negative shock. First, the sufficient condition (derived in Subsection re-
quired for insuring that SR;,; < ““=2 for all ¢ > 1 differs across the two cases. After

we

a positive shock, SR;,1 < 1 is sufficient since wages are increasing along the transition
path. In contrast, after a negative shock agents may have an incentive to save even when
BR;,1 < 1since wages are declining over time. Second, at the time of the shock, in¢ = 1,
low-income agents may have higher consumption than high-income agents in case of a
negative productivity shock because the decline in wages (which is relevant for high-
productivity individuals) is larger than the decline in interest rates (which is relevant for
low-productivity individuals) if 0 < § < 1]

when productivity shocks take the specific sample path {4;};>¢.

We discuss the forces determining the evolution of consumption inequality along the transition in
Appendix

201, ow-income households may have higher consumption than high-income households at ¢ = 1 only if
BRy > 3t and Assumption 3|is violated in ¢ = 1. However, the proposed consumption allocation (stipu-
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5 Aggregate Shocks to Productivity and Depreciation

We now consider the economy with stochastic productivity growth, introducing aggre-
gate risk into the economy. In addition, in order to introduce a mechanism by which rates
of return to capital are imperfectly correlated with, and more volatile than wages, we
introduce shocks to the deprecation rate of capital as well ] Both productivity growth
and the depreciation rate now depend on an aggregate state ¢);, with the history of the
state being denoted as ' := (Q,--- , ). The aggregate state €, follows a finite state
first-order Markov process.

In Section (3, we showed that under the assumption of 3R, < < for all ¢ and for
all possible aggregate states we derived the optimal household consumption and asset
allocation as well as the aggregate law of motion of aggregate capital. We now verify
that under an assumption purely on exogenous parameters of the model this condition is
satisfied in the constructed equilibrium, for all ¢ and all Q! in the economy with aggregate

risk. To establish this result we assume that

A

—;1“ (i) e{l—e....1+¢} (74)
t

61 () €{0—¢, -+ ,0+¢} (75)

That is, the smallest and the largest realizations of productivity growth are denoted by
1 — e and 1 + ¢, respectively, and the deprecation rate is bounded by § — ¢ and 6 + <.
Otherwise, there is no change in the rest of the economic environment. The resource

constraint continues to be given by:
Co() 4+ K1 (Q1) = K (7P A(QD 0+ (1 — 8,()) K (Q). (76)

Since aggregate capital is determined one period ahead, K;,; depends on the history
of aggregate state (' up to time ¢. Factor prices continue to be equal to their marginal
product:

wi () = (1 =) (A(2)) ™ (K1)’ 77)
Ry(92) = 0 (A(2) 7 (K, (1) 1= 6,(). (78)

The key innovation is that now the return on capital R; depends on both on the realiza-
tions of stochastic productivity and depreciation (A, §;). Appendix contains the

lating zero contingent asset holdings for the high-productivity state) is still optimal as long as beginning
of the period assets of low-income households at ¢ = 1 are not too large; recall that Assumption [3]is only a
sufficient condition. If they are indeed large, then currently low-productivity individuals would optimally

save even for the high-productivity state tomorrow.
21For examples of papers that have used stochastic depreciation for the same reason, see, e.g, Smetters

(2003) and Krueger and Kubler| (2006).
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complete definition of equilibrium and shows that as long as SR, (Q) < %
for all ¢, Q! the previous characterization of equilibrium goes through completely un-
changed. We now show theoretically in Section that if ¢ and ¢ are not too large
(as stated precisely in Assumption (8| below), then SR, < w;—:l holds for all ¢ and all
(Q', ;1) and the model with aggregate shocks has indeed a partial insurance equilib-
rium of the form characterized in Section 3l In Section we then deduce the asset
pricing implications of the model. Specifically, there we provide theoretical conditions
under which the aggregate risk premium for capital in our model coincides with that
obtained in the standard representative agent (RA) economy, and we then show quan-
titatively under what conditions the risk premium is significantly larger than that in the

RA economy.

5.1 A Sufficient Condition for SR, < <*

We introduce the following sufficient condition on the magnitude of aggregate produc-
tivity shocks and depreciation shocks.

Assumption 8.

B

1_ 1—05max
9( 6) A+€—|—1—5min]<1—e (79)
1+e€ S

where we recall § = [ﬁ(l —0)+ (1 - 1/)69} and 1 — 6 = (1 — v)3(1 — §) from
equations and (58), and define dpmex =1 — (1 — )B(1 — 6 — <) and G = 0 — <.

Proposition 11. Suppose Assumption [5] holds and that the economy is in the partial-
insurance steady state at t = 0. Furthermore, suppose that the bounds on productivity
growth and depreciation (¢, <) satisfy Assumption 8| Then the condition SR < < is
satisfied for all t > 1 with probability 1. Furthermore, there exists an open neighborhood
N around (e, s)=(0,0) such that Assumption [8|is satisfied for all (¢,s) € N.

Proof. See Appendix O

To derive the sufficient condition (79), we proceed in four steps, stated in the forms
of Lemmas in the appendix. First, defining K, := K’f as the productivity-adjusted capital
stock, and using the aggregate law of motion for the capital stock (39), we can write
both 6Rt+1(Qt+1) and th—Qt)
K, and the growth rate of productivity Ajftl , since the aggregate law of motion (39) can

as functions exclusively of productivity-adjusted capital

be rewritten as 4
R = = <§Kf (1 6)Kt> (80)

t+1

. 9
: W41 A +1 K, +1
and noting that R, = 9K b ' +1—¢and ;t = th ( IEQ ) .
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Second, holding K, fixed, the condition is most easily violated for the smallest Ajﬁl—f
and the smallest d;, ;. Third, the interest rate SR, (Q!!) is strictly decreasing in K, and
wage growth is strictly decreasing in K,. Fourth, we can establish a lower and an upper

bound on the stochastic process { K, }. The sufficient condition then insures that

th(AtH)

[{t:RminyAZitlzlfe,(S:S*C wt(At)

BR 1 (AT (81

% % At41
Kt:KW“C,—AJ; =1—¢

which implies that the condition SR, < “; is satisfied for all ¢ with probability 1.

w

Note that the existence of an open neighborhood N in Proposition [11] insures that
the set of parameters for which the proposition applies is non-empty. Furthermore, the
sufficient condition (79) can be readily be checked numerically, and in our asset pricing
application below we ensure that it is satisfied for all parameterizations of the model we

consider.

5.2 Application 2: Asset Pricing

We now examine the asset pricing implications of the limited-commitment model with
idiosyncratic and aggregate risk. Specifically, we contrast the risk-free rate and the risk
premium in our model with those in the representative agent model.

In Section [5.2.1} we derive the risk-free rate and the risk premium of holding capital
in the two models. In Section we show that if capital always fully depreciates
(6 = 1,¢ = 0), the limited-commitment model has a lower risk-free rate than the cor-
responding representative-agent model, but an identical risk premium. In Section[5.2.3]
we discuss why the same conclusion does not hold if one deviates from § = 1. There we
argue that in an endowment economy and the production economy with § = 1, the avail-
able resources in the economy as well as gross capital income and labor income are all
perfectly correlated with aggregate productivity Al %, whereas with less than perfect de-
preciation and deterministic depreciation, gross capital income (and thus the income of
low-productivity households) moves less than one for one with productivity A=Y, result-
ing in a lower equity premium in our model. Finally, in Section we show that with
stochastic capital depreciation capital income becomes more volatile than labor income,
and (for sufficiently large depreciation shocks), the risk premium in our model exceeds
that in the representative agent economy, and can account for a significant share of the
empirically observed risk premium if idiosyncratic risk is sufficiently large.

5.2.1 The Risk-Free Rate and the Risk Premium in the Two Models

We now derive the price of risk-free bonds ¢ (') and the multiplicative risk premium 1+
A:(Q') on capital, defined as the ratio between the expected gross return on risky capital
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and the gross risk-free rate, in the limited-commitment model (Lemma [1) and in the
representative-agent model (Lemma [2)). To do so, recall that the stochastic gross return
on buying one unit of capital in node Q' and holding it to node Q! (and then selling
it) is denoted by R;,,(Q'"1). Furthermore, for future reference we denote aggregate
consumption by C;(QF).

Lemma 1. In the limited commitment model, the price of risk-free bonds and the risk pre-

mium of holding capital at aggregate state Q' is given by:

1
¢ () = E, {m} (82)

Ey[Rey1(QF1)] 1
L+ A9Q) = = = E R (U By | ———=—| >1. (83
)= R gy B @B R o ®
Here EE,[-] denotes the expectation conditional on €', that is, E,[-] := E[|Q']
Proof. See Appendix[A.3.3] O

Lemma 2. In the representative agent model, the price of risk-free bonds and the risk pre-

mium at aggregate state Q' is given by:

Bran g, | g &)
g () =E, [ﬁcﬂrl(ﬂtﬂ)] (84)

RA(Ot) . Et[RtJrl(QtH)] _ t+1 Ot(Qt)
Proof. See Appendix[A.3.3] O

5.2.2 Economy with Full Depreciation of Capital

In the case of full depreciation, for both the limited-commitment economy and the rep-
resentative agent economy the aggregate law of motion of capital is given in closed form,
which allows us to derive the risk-free rate and the risk premium explicitly. We show that
the limited-commitment model has a lower risk-free rate but an identical risk premium
compared to the representative agent model. That is, idiosyncratic and only partially
insurable risk drives down the return on all assets but leaves the multiplicative risk pre-
mium unaffected.

Proposition 12. Consider the economy with full depreciation of capital (6 = 1 with proba-
bility 1, thatis § = 1,¢ = (). Let Assumption @be satisfied and the economy be initially in
a partial insurance steady state. Given the same history of aggregate shocks §)', the risk-free

rate is lower in the limited-commitment model than in the representative-agent model:

1 1
< or all . 86
2@~ P (89
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Table 1: Asset Pricing in the Two Economies with § = 1

LC RA
Low of Motion KL =3 CAPKY > KFA =poA P K?
Return on Capital REG =0 (%)01 < REA=0 (2—?)91
Risk-Free Rate (@) W < W
Risk Premium (f;gﬁt(;lﬂ)) E, [Al] B, [A%g} = E [ALY)E, [A%g

The risk premium is positive, and is the same in the two models and is given by:

1
1+ M (Q) = EJALYE, [ﬂ] > 1. (87)
Ay
If productivity growth AA—T follows an iid process, then the common risk premium is constant
over time and across states, 1 + \,(Q) = 1+ A\

Proof. See Appendix O

Table [1| summarizes the asset pricing results with full depreciation. In this case, both
models have a constant aggregate saving rate, but the key is that the one in the limited-
commitment (LC) model is higher than the representative agent (RA) model: 3¢ > 30 =
s* under Assumption 5| Under that assumption, in steady state R5¢ < R4 =1/ and
thus K¢ > K. Since in both models, K, = AysT7, we have that §°C > sRA and
thus the saving rate and thus the capital stock is higher in the LC economy, driving
down the risk-free rate below that in the RA economy{*?l However, since all returns move
proportionally in both models, the risk premium is the same in the models.

5.2.3 Intuition: Different Risk Premia if 6 # 1

We have seen that the limited commitment model has a lower interest rate but the same

risk premium as the representative agent economy if 6 = 1. Here we provide intuition

22This statement is conditional on the initial capital stock and the sequence of productivity shocks being

the same when comparing both models. Assumptionand § = 1 thenimply BRFCY < 1and BREC (@) <
thC Qt+l
constant saving rate s € {3/¢ s® := g}, the capital stock K;(Q!) after any productivity history can be

for any (¢,Q!, Q. 1), and thus the no-savings condition is satisfied with probability one. With a

characterized in closed-form as

t—1
logK; = (1+60+---+6"2)logs+ (1 —6) [Z 0" 'log Ay, | + 0" log K. (88)

T=1

It follows directly that the limited commitment commitment economy has more capital after every sequence
of productivity shocks than the RA economy, further depressing returns below those of the RA economy.
See Appendix for the details.
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(using the analogy with an endowment economy, See Proposition for why this is
the case and why the same result does not go through in a production economy unless
0 = 1. Key to this result is that if two economies have stochastic discount factors that
only differ by a non-stochastic (but possibly time-varying) constant, then they will have
different risk-free rates but a common multiplicative equity premium. This is the content
of Proposition [14] below.

Endowment Economy To build intuition, we first derive this result in an endowment
economy in which the exogenous aggregate endowment is equal to aggregate consump-
tion {C;(Q")}. o and the risky asset is now a Lucas tree that pays a share « of the ag-
gregate endowment at all times (and whose price we denote as ¢,(€2')). The remaining
fraction 1 — a of the aggregate endowment is “labor income" which is subject to ex-
actly the same idiosyncratic shocks (that wash out in the aggregate) as in the production
economy studied thus far.

In this economy we obtain the same asset pricing results as in the production economy
with § = 1: idiosyncratic risk and limited commitment drives down the risk-free rate but
leaves the equity premium unchanged relative to the representative agent version of the
model. This is the content of the next proposition which is proved in Appendix

Proposition 13. In the endowment economy, assume that the parameters satisfy the as-

sumption corresponding to Assumption |5|for the production economy:

a < 3 (89)

(1—@)(%—1) V(%—1+f+l/)7

so that the no-savings Assumption 3] is satisfied. Then the risk-free rate (the inverse of

the price of a risk-free bond), is lower in the limited commitment economy than in the
representative agent economy:

1
<
e (VD (9

for all . (90)

The risk premium on a claim to risky aggregate consumption is the same in both economies
and is given by:

1

— 1 1
Crn ()] 7 eV

1 M) = ECr (8E, [

Cig1 s z: ] .
If the growth rate of the exogenous endowment process, =5+, is iid, then the risk premium

1 + )\ is constant over time and across states of the world.

Krueger and Lustig| (2010) show that when the stochastic discount factors in two
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models differ only by a non-random multiplicative term| then they have the same (mul-
tiplicative) risk premium (but typically different risk-free rates). Recall that a stochastic
discount factor is a stochastic process that satisfies the condition E; [my .1 (Q) R} ()]
1 for any asset j that is being traded in the economy and has an equilibrium one-period
return R (Q1). In our applications the two assets are a risk-free one-period bond and
risky capital (risky equity in the endowment economy). For the representative agent
economy the stochastic discount factor is given by m/%},(Q!) = fﬁgll) and in
cr(24,Q

o G LT for those

agents whose limited commitment constraint is not binding between nodes (z*, Q") and

our limited commitment economy it is given by m{5, (") = 3

(21 Q1) and who all share the same consumption growth rate. The following propo-
sition characterizes situations in which a) the SDF’s in both models can be characterized
in terms of the growth rate of aggregate resources in the economy (the sum between
capital and labor income) and b) the growth rate of aggregate resources in both models
is proportional to each other. If both a) and b) are true (as in the endowment economy
and the production economy with full depreciation), this is sufficient for the SDF’s to be
proportional and the risk premia to be identical. When a) or b) fails (as in the production

economy with less than full depreciation) this conclusion is no longer true.

Proposition 14. Denote total resources available in the economy at aggregate node €)' by
T,(Q), given by

() Ci(QY) in the endowment economy
t pum—
K QNP A, ()0 + (1 — 6()) K(QFY)  in the production economy
(92)

1. In both the endowment economy and the production economy with 6(€);) = 1, all un-
constrained agents consume a non-random fraction of total resources. The stochastic
discount factor in both the representative agent- and the limited commitment model

. . Tt . . .
is proportional to oy and satisfies:

T, ()

mt,t+1<Qt+l) = ’th;

(93)

The factor ~; is potentially time-varying and differs across the two models, but does

not depend on €2 1.

2. In the endowment economy and the production economy with § = 1, aggregate re-

T
Tet1

source growth is proportional between the two models, i.e., there is a non-random

23They demonstrate that the aggregate risk premium in an endowment economy with idiosyncratic
and aggregate risk is the same with complete markets (i.e., the representative agent model) and when
insurance against idiosyncratic risk is absent by assumption, i.e., the standard incomplete markets model.
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sequence of numbers ~y; (in the endowment economy, v, = 1) satisfying:

TLC Qt TRA Qt
LCt ( t+)1 =% RAt ( t+)1 ’ o4)
Ty () P ()
Thus, there exists another non-random sequence of factors v, satisfying:
m%,§+1(Qt+l) — A= V/LLC (95)
m§?+1<9t+1) ! tVfA

Consequently, in both the endowment and the production economy with 6 = 1, the
limited commitment model with idiosyncratic risk has the same risk premium as the

representative agent model.

Proof. See Appendix O

If the two models do not have multiplicative stochastic discount factors, i.e., if +}
in equation depends on Q! then the risk premia are typically different. In the
production economy with § # 1, total resources are not proportional to the aggregate
productivity shock A}’ due to the non-depreciated capital term (1 — §(€),))K. Hence,
equation does not hold, the stochastic discount factors in the two models are not
proportional and the risk premia will typically differ.

In the left panel of Figure |4 we display the risk premium in the representative agent
economy and for various calibrations of the limited commitment economy, plotted against
the depreciation rate ¢, which we take as deterministic for the time being, since the ar-
gument we make in this section does not depend on depreciation being stochastic. We
observe that risk premium is higher in the RA economy than in our model, but converges
in the two models as 6 — 1 (as theory predicts). As argued above, in our model the in-
dividuals pricing the assets are the currently low-productivity households with positive
capital holdings, and it is their consumption growth that is relevant for the equity pre-
mium. In the RA economy it is the consumption growth of the representative household.
The right panel shows that the relevant consumption growth is more volatile in the RA
economy, pushing up the equity premium above the limited commitment economy. In
both models, the premium is quantitatively small, however, as is expected from the huge
literature on the equity premium puzzle.

Why is consumption growth of the representative agent more volatile than that of
unconstrained agents in the limited commitment model? Consumption of the represen-
tative agent is a combination of wage income and and asset income. Both are stochastic
due to aggregate productivity shocks, but the part 1 — ¢ in the gross capital return R is
deterministic, making gross capital income less volatile than labor income, unless § = 1.
In our model consumption of those pricing the asset is financed exclusively from (the
less volatile) capital income and thus the risk premium is smaller. That is, the equity
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Figure 4: Risk Premium and Consumption Growth as a Function of o

premium puzzle deepens in our economy, relative to the standard representative agent
production economies studied in the literature.

5.2.4 Stochastic Depreciation

The analytical tractability of our model also gives a clear indication of why risk premium
is smaller in our model. Capital income of those participating in the capital market is
not volatile enough. This is precisely the “problem" stochastic depreciation is meant to
fix. We now demonstrate quantitatively that with this model element the risk premium
not only can become larger than in the RA economy, but that for sufficiently large id-
iosyncratic risk the model can account for a significant share of the empirically observed
premium.

To do so, we calibrate the idiosyncratic shocks such that the fraction of the working
population (i.e., high-income agents) is 2/3 and the auto-correlation of idiosyncratic
productivity shocks is 0.9. This gives (£, v) = (0.066, 0.033). Table [2| presents basic asset
pricing statistics for the economy with stochastic depreciation, and the top left panel of
Figure 5| displays how the premium varies with the size of the depreciation shocks, in
two parameterizations of the limited commitment economy that differ in the extent of
idiosyncratic risk>] as well as in the RA economy. The domain of the shocks is restricted
such that Assumption |8|is always satisfied.

The remaining panels then decompose the multiplicative risk premium

At = _OOU(Rt+17 5Ct/0t+1) =0 Std(Rt—H) Std(ct/ct+l) corr(Rt+1, Ct/Ct+1) (96)

into its components. Here ¢, ¢;, 1 refers to consumption of the representative agent (i.e.,
aggregate consumption) in the RA economy, and consumption of the capital owners (the

24The baseline calibration gives (&,) = (0.066,0.033). The variance of idiosyncratic shocks is ¢ /v, so
higher ¢ (e.g., £ = 0.99) implies larger idiosyncratic risk. The largest depreciation shocks ¢ satisfying
Assumptionis 0.042 with (¢, v) = (0.066,0.033) and 0.155 with (¢, v) = (0.99,0.033).
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& =0.066 £=10.99 Data
¢=0 ¢=10.04 ¢=0 ¢=0.045 ¢=0.15

E(R]—1(%) | 162 16.2 2.9 2.9 2.9 7%
Va(Q) -1 ) | 162 16.1 2.9 2.7 0.7 1%
Ar (%) 0.00023 0119  0.00007 0191 217 6%
std (Ry.1) 0.002 004 0001 0045 015  0.17
std (%) 0.005 0014 0002 0035 0117  0.036
corr (R, St 1.0 0.954 1.0 0.999 1.0 0371
corr | Riyq, “’El 1.0 0.044 1.0 0.019 0.006 -

Table 2: Moments of the return on risky capital (R;.;), risk-free rate (1/¢;), aggregate
consumption growth (Cy;/C}) in the limited-commitment model and in the data. The
data on std (R;;1), std (C(@f) , COIT (Rtﬂ, %> are computed based on Table 14.3.1 in
Ljungqvist and Sargent (2018)). Parameters are (3, v, 9,0, ¢) = (0.8,0.033,0.1,0.33,0.01).
The productivity growth rate and depreciation rate are independent and can take two

values with probability 1/2. The economy is in steady state at .

unconstrained, low labor productivity individuals) in the limited commitment economy.
The figure shows that the key for raising the risk premium in the limited commitment
model (relative to the representative agent economy, and towards an empirically plausi-
ble value) is to raise the volatility of consumption growth of the capital owners (see the
lower left panel of Figure [5), which in turn requires the depreciation shocks (and thus
the volatility of gross capital returns) to be sizeable (see the upper right panel of Figure
[B). With large depreciation shocks and large idiosyncratic risk (second to last column
of Table [2)) the model generates a risk premium of more than two percent (see the third
row of Table [2), whereas the corresponding RA economy displays a premium of only
0.7 percent. Crucially, it does so with an empirically plausible volatility of gross capital
returns (see the fourth row of the table). In the absence of stochastic depreciation the
premium in both economies is close to zero (but larger in the RA economy, as discussed
in the previous section). These calculations are meant to be illustrative of the potential of
our model to generate sizeable risk premia for owning capital, rather than provide a full
quantification, which in turn would require an extension to more than two idiosyncratic
productivity states (at the expense of analytical tractability of the model).
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Figure 5: Decomposition of Risk Premium A\ = —f std(R) std(c/c’) corr(R,c/c). Param-
eter values are (3,v,4,0,¢) = (0.8,0.033,0.1,0.33,0.01).

6 Where Does the Tractability of the Model Come From?

Equipped with the theoretical results from our model we are now in a position to more
succinctly relate the model results to the most related contributions in the literature.
Recall that we obtain a closed form for the steady state, the transitional dynamics of
aggregate capital after an MIT shock as well as the law of motion for this capital stock
even in the presence of aggregate productivity shocks, despite the fact that the econ-
omy features idiosyncratic risk that is only partially insurable. This is a surprising result
given that a neoclassical growth model without a commitment constraint does not have
a closed-form solution unless full depreciation is assumed. We now relate our model to
other well-studied versions of general equilibrium models with neoclassical production.
To do so, recall that the equilibrium law of motion in our model is given by

A~

Kiyw = sY,+(1-90)K, where 97)
1—6

i = 9(1—1/)5—{-1_((1_1/)5_55)ﬁ%9(1—1/—,0)—!—(1—9) {ﬁ} 98)

6 = 1-(1-v)B(1—=06)~v+p+6. (99)
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where the aggregate saving rate s is a weighted average of the saving rate (1 — v)f
of capital owners out of their capital income (which is a share 6 of total income Y; =
(K;)?(A)'~%) and the saving rate ﬁ of productive workers out of their labor
income (a share 1 — 6 of aggregate income).

In this section we demonstrate three results. First, we show that an economy with
neoclassical production and two types of households, hand-to-mouth workers that earn
all labor income and consume it all in every period, and capitalists that own the capital
stock and finance all consumption from capital income, has a law of motion similar to
but a different (still constant) saving rate and effective depreciation rate. Second,
as the transition probabilities of income shocks approach zero: ¢ — 0 and v — 0, the
equilibrium law of motion in our economy converges to that of the two-agent economy.
This is the content of Section and allows us to relate our model to that of Moll
(2014). Third, in Section we explain why the limit of our model (as £, — 0) is
not the standard neoclassical growth model (which does not in general have a constant
aggregate saving rate), unless there is full depreciation (the case we already analyzed in

Section 4.2.1)).

6.1 An Economy with Capitalists and Workers

Consider a two-agent (henceforth abbreviated 2A) neoclassical growth economy with a
representative worker and a representative capital owner. A variant of such a model,
albeit in continuous time, was studied in |Moll| (2014)), with similar structures appearing
in |[Hornstein and Uhlig (2000) and |Danthine and Donaldson (2002) as well A hand-
to-mouth worker earns labor income and consumes all of this income in each period, by
assumption. A capital owner receives only capital income, solves a dynamic consumption
saving problem, whose solution is to consume a 1— 3 fraction of her gross capital income,
the optimal consumption-saving rule with log-utility. Therefore, consumption of both
groups is given by:

(Crworker _ Wy, (100)
Coer — (1 — B)R, K. (101)
and the goods market clearing condition in this economy can be written as
Ko = AFOKY + (1 0)K, — Cwerker — gowner
= AR (1 - 0K, — (1 - 0) A K? — (1 - B)[0A P K? + (1 - 6) Ky
= BOAITKY 4+ B(1 — 0K, = Y, + (1 — 0*Y)K, (102)

25The most relevant version of Moll (2014), for the purpose of this paper, is contained in
an online appendix, available here: https://benjaminmoll.com/wp-content/uploads/2019/07/

capitalists-workers.pdf.

41


https://benjaminmoll.com/wp-content/uploads/2019/07/capitalists-workers.pdf.
https://benjaminmoll.com/wp-content/uploads/2019/07/capitalists-workers.pdf.

This aggregate law of motion coincides qualitatively with equation for our limited
commitment model, and furthermore, as can readily be verified from equations and
©9), lime,, 05 = 5> as well as lime, 00 = 6. When we take the limit, we assume
that the ratio x := ¢/v remains fixed so that the share of low (and high) productivity

individuals ¢, = 54%1 = 5 remains well-defined and constant and aggregate labor in-
put L = ;—C — X remains at 1. The aggregate law of motion also coincides with the
+v KtV

original Solow model, but in both models studied here the saving rate is not some exoge-
nous behavioral constant s, but rather a function of the deep technology and preference
parameters of the model.

This result also clarifies the key model elements that leads to an aggregate law of
motion that can be stated in closed form, as pointed out by Moll (2014): (i) the sep-
aration of individuals into “workers" and “capitalists", (ii) that the period utility of the
savers (the capitalists) is logarithmic and (iii) that workers cannot or do not save

In our limited commitment model, the equilibrium allocation has a similar structure
to the two-agent model discussed above. Workers (high-productivity individuals) do
save, but at a constant rate, and all capitalists (low-productivity individuals) also have
the same saving rate

worker __ - (1 - (1 - V)ﬂ)c
C = QpCot = ¢01 Y - 5)5%, (103)
Cmr =N "dicse =[1-(1-v)B| R Y doage=[1—(1-v)fIREK,. (104
s>1 s>1

and thus the same aggregation result as in the two agent model obtains, but with differ-
ent effective aggregate saving and depreciation rate (3,4) (which converge to the saving
and depreciation rates in the two agent as idiosyncratic risk vanishes). The key differ-
ence to Moll| (2014)’s analysis is that in our model the identity of workers and capitalists
is not fixed but evolves stochastically with the realization of idiosyncratic productivity z;.

6.2 The Standard Neoclassical Growth Model

In general, the aggregate law of motion of capital in the standard neoclassical growth
model without idiosyncratic risk does not have a closed-form solution (unless 6 = 1, see
Section |4.2.1)) because the representative agent has two sources of income, both wage

26Note that if the model is cast in continuous time, then the corresponding law of motion forms a
Bernoulli differential equation which has an explicit solution (that is, the equilibrium capital path can be
given in closed form), as does the original Solow model, as pointed out by Jones (2000). His unpublished
note is available here: https://web.stanford.edu/"chadj/closedform.pdf. We exploit this result in
the continuous time limited commitment model of [Krueger, Li, and Uhlig (2023). Unless § = 1, no such
explicit solution of the first-order nonlinear difference equation is available in discrete time.
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income and capital income, and typically will not consume (and save) a constant fraction
of that aggregate income.

The results in the previous section might thus appear puzzling, since our model with-
out idiosyncratic risk is precisely the representative agent neoclassical growth model *’|
However, it is important to note that the equilibrium allocation in our model discussed
in the previous section was derived under the no-savings assumption (Assumption 3| for
the general case and Assumption [5|for the steady state), and this assumption is in gen-
eral violated for the standard neoclassical growth model (whose steady state will have
SR = 1 rather than SR < 1). But if §R were equal to 1, then also in our limited com-
mitment economy in the stationary equilibrium all households consume the same, the
consumption distribution is degenerate and the model indeed collapses to the standard
neoclassical growth model (see Krueger and Uhlig (2022) for the knife-edge conditions
under which this case emerges) P¥|

7 Conclusion

In this paper we have developed an analytically tractable macroeconomic model with
idiosyncratic risk and endogenously incomplete market cast in discrete time, and have
derived its macroeconomic, distributional and asset pricing implications. In our envi-
ronment individuals can trade a full set of state-contingent claims, as in the standard
complete markets model, but face tight shortsale constraints in that they cannot borrow,
as typically the case in the standard incomplete markets model. Thus, we have hoped
to supply a natural hybrid alternative to both these benchmark models in which, despite

featuring a nondegenerate income-, consumption- and wealth distribution, all relevant

27Appendix discusses this point in greater detail. It shows that both the standard representative
agent model without any heterogeneity and a representative-agent like model with v = £ = 0 (but well-
defined k = £/v € (0,00)) in which there are two permanent productivity types that face no idiosyncratic
risk and can freely borrow (recall in our model they cannot) satisfy the standard representative agent
Euler equation for aggregate consumption (and the aggregate resource constraint). These two equations
do not result in a closed-form aggregate law of motion for capital of the form (97)), as is the case in our

model, unless there is full depreciation, § = 1.
280ne might then question whether no-saving condition can be satisfied at all if v, £ are close to zero.

Focusing on steady state, rewrite Assumption [5|as:

0 4% K

(1_9)(%_14_5)<%—1+u(§/u+1) 5—1+v(k+1)

As long as the relative hazard rate x = £/v remains constant and is sufficiently large (that, there is
“enough" idiosyncratic income risk) as v, — 0, then Assumption [5| remains satisfied, making the limit
studied in the previous section meaningful. The same is true along a transition path as long as it starts
from a capital stock at or above the steady state capital and the productivity shock is not too large.
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model properties can be characterized theoretically, including the evolution of inequality
over the business cycle and the risk premium on holding capital.

Future work using this general partial insurance general equilibrium framework needs
to establish the applied and empirical relevance of the model. On the applied policy side,
in the current framework the only asset available to be traded by the private sector is
productive physical capital. The model lends itself naturally to the analysis of govern-
ment debt policy (and fiscal policy more generally). Given the focus on partial private
insurance of idiosyncratic risk in the current paper, a natural question is whether the
provision of better public insurance, either in the direct form of progressive income tax-
ation, or indirectly, by expanding government debt, improves risk sharing or crowds out
private insurance so strongly as to potentially be counter-productive, as in the work by
Golosov and Tsyvinski (2007), Krueger and Perri| (2011) or |Park| (2014).

On the empirical side, the model contains sharp predictions for the change of the
consumption distribution in the presence of aggregate productivity shocks, and more
generally, for the change in the joint distribution of income, consumption and wealth in
response to aggregate shocks affecting wages and rates of return to capital. Of particular
interest are shocks that impact wages (and thus workers) and interest rates (and thus
capital owners) asymmetrically. We leave evaluating these predictions to future work.
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Appendix

A Proofs of Propositions

A.1 Proofs: Section 3| (Characterization of Equilibrium)
A.1.1 Proof of Proposition

We prove Proposition 1] in several steps. First, we propose a candidate optimal con-
sumption and asset allocation. We then show in a sequence of steps that this proposed
allocation is indeed an optimal choice of the household. To do so, Lemma [3| derives the
Kuhn-Tucker conditions for the household optimization problem (11)-(12) for given a
sequence of prices { R;(A"), w(A"), ¢:(Apr1, 21| AL, 28) His0,4t, 4,44 2t Then, Lemmas
and [5show that the proposed allocation satisfies the household’s budget constraint and

s2t41°

the Kuhn-Tucker conditions. Finally, Proposition [1|shows that since the proposed alloca-
tion satisfies the Kuhn-Tucker conditions and a transversality condition, it is an optimal
choice of the maximization problem.

We conjecture that, under the maintained assumptions on prices stipulating suffi-
ciently low interest rates/sufficiently high wage growth, individuals have no incentives
to save for the high-income state tomorrow, and for the low-income state tomorrow con-
sumption and asset choices are governed by a standard complete-markets Euler equation.
That is, we conjecture that the optimal household consumption-asset choice is given by:

0 if 241 =¢
ﬁ(wt(}lt) if 2y = C and Zty1 — 0 "
ﬁRt(At)at(ag, Zt, At) if Zr = 0 and Zt41 = 0

t—‘rl’ At+1) —

Aiq (CL07 <

At)co, where ¢ i= =18 ¢ if 5, =
colag, 24, AY) = wlA)eo O mmgrs HA=C o)
[1— (1 —v)B]R(AYay(ag, 24, A) ifz,=0

where ag(ag, 2°, A%) = wy(A%)aq are the initial asset holdings of the household (an ex-
ogenous initial condition).

It is straightforward to verify that and imply that under the proposed al-
location for currently low-income individuals (z; = 0) the standard complete markets

Euler equation for consumption holds (a fact that will be useful below for some of the
derivations):

ci(ag, 2, AY) = BR(AY)ci_1(ag, 2171, A1), (23)
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To see this consider first an individual with z,_; = 0. Then

at(@m Zta At) = 5Rt_1(At_1)at_1(a0, Zt_17 At_l)
Ct—l(CLOa Ztil: Atil)

1= (1 =v)BRia (A1)

= BR_1 (A1)

where the first line follows from equation ([22), while the second line stems from equation
(21). Therefore
ci(ag, 2", AY) = [1 — (1 — v)BIR; (AN ay(ay, 2, AY)
= BRt(At)Ct_l(ao, Zt, At)

Now consider an individual with z;_; = (. Then

p

at(a’07 Zta At) = 1 _ (1 - 5)6th71(14t71)
= ﬁct_l(ao,zt_l,/lt_l)

cociag, 25 AY) = [1 — (1 — v)BIR:(ANay(a, 2, AY)
= BR(A")c;_1(ag, 2", A").

We now derive the Kuhn-Tucker condition for the household maximization problem

in the following Lemma.

Lemma 3. Given a sequence of prices { R;(A"), wi(A"), ¢t(Ass1, 21| A", 2%) }is0,4t, 4,1, FOCs
to the household’s optimization problem (I1)-(12) give the following Kuhn-Tucker condi-
tion:

crrr(ag, 2 A (A [ AN (241 2)

[5Rt+1(At+1) + )\(aoa Zt+17 At+1)ct+1(a07 Zt+1> At+1)]

ci(ao, 2, AY)  q(Apgr, 21| A 2Y)
(105)
with Mag, 2, A Nay 1 (ag, 2T, AT =0, Mag, 2T, A1) >0, agy1(ag, 21, AT >0,
(106)

where \(ag, 21, A1) denotes a Lagrangian multiplier for a shortsale constraint at state

(Zﬁ_l, At-i-l).

Proof. Households’ Lagrangian problem is given by:

50



Ulag, z0) = ma; ZZZﬂt (A" (2") log(ci(a, 2, A"))

{ct(ao,zt,A?), at+1(ao 2t A1) 00 vl

15 9) ) SITES Az + Ry(Aay(ag, 2, A

t=0 At zt
- Ct(QOa Zt, At) - Z Z Qt(At—i-la Zt+1|At> Zt)at+1(a0, ZtH, AtH)
Apt1 2e41
+ Z Z Z /Bt At+1 t+1)>\( 05 t+17 At+1)at+1 (Go, Zt+17 AH_I)? (107)

t=0 At+1 yt+1

where (2%, A%) and A(ag, 2/, A™!) are Lagrangian multipliers for budget constraints
and shortsale constraints. FOCs with respect to c;(aq, 2, A) and a;,;(ao, 2/, A1) are:

[ci(ag, 2", AM)] ﬁtW(At)ﬂ'(zt)m = u(z', A" (108)

[at“(ao,zt“,AtH)] . M(zt+17At+1)Rt+1(At+1> +ﬁtW(At+1>7T(Zt+1)>\(a07ZH_I,AH_I)
= (2", AN (Arrr, 2] A% 1) (109)

By substituting p(z?, A"), we obtain the following Kuhn-Tucker condition:

1 _ (A | AT (2] 21)
Ct<a07 2t At) Qt(At+1: 241 \At, Zt)

1
o (ag, 21, AHT)

ﬁRtH(AtH) + )\(aov Zt+1> AHl)

(110)

where \(ag, 2™, A" a1 (ag, 2771, AT =0, Mag, 2771, AT >0, ag(ag, 2T, AT > 0.

Here we use the conditional probability: (A, |A") = (?;t) where A" = (A" Ayyy),
“ff(z)l ) where 2+! = (2", z441). Because the idiosyncratic shocks follow

Markov, only the current state z; matters for the probability of z;,;. Hence, m(z;,1|2") =

and 7(z4q2Y) =

7(2t41]2:). Since c;q1(ag, 211, A1) takes non-zero value (otherwise the utility would be
negative infinite), (110) can be expressed as:

cip1(ag, 21, AT _ T(Ape1|[A)7 (2041 ]20)
Ct(@m 2t At) Qt(At+1> Zt+1 ‘Ata Zt)

[5Rt+1(At+1) + )\(CLQ,Zt—H,At+1)Ct+1(a0,2t+1,At+l)]

]

The next two lemmas show that the conjectured allocation satisfies the budget con-

straint and the Kuhn-Tucker condition for a future low-income state.

Lemma 4. Suppose Assumption [2] on contingent claim prices is satisfied. Then, the allo-
cation defined in equations (21)) and (22) satisfies the household’s budget constraint
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and the Euler equation between the current state and a future low-income state (and hence
the Kuhn-Tucker condition :

1
ci(ag, 2, A?)

1
Cip1(ag, 21, AL 24 = 0)

= BRy 1 (AT forall A;yq. (111)

Proof. We first check the budget constraint. In a high-income state (z; = (), substituting
the conjectured consumption and asset choice (21) and (22) into equation (10) gives:

wt(At)CO + Z ZQt(At—i-la Zt+1|At> Zt) 1 (1 _BV _ f)ﬁgwt(At) = wt(At)C
A1 2e41
1—(1-—
< wy(AY) 1 (1(_ » i)gﬁC + Y (A A 7 (240 = 0]z = 1 a _ﬁy — f)ﬂc = w,(A")¢

At =¢

where the second line uses Assumption 2} ¢,(Aii1, 21| A% 2Y) = T( A |[AD T (204120)-
The equality holds since >°, | m(Ay1|A") = 1.
In a low-income state (z; = 0), equation (10) becomes:

[1—(1- V)/B]Rt(At)at<Zt» At)
+ Z ZW(At+1|At) (2441 :£|zt =0) 6Rt(At)at(zt, At) = Rt(At)at(zt, At)

Apy1 zt41

=1-v

& Ri(ADa (2 A — (1 —v)B |1 — Z (A1 |AY) | Ri(AYay (2, AY) = Ry(AYa, (2", A")
Aty

This holds with equality since >, 7(A;41]AY) = 1.

Second, we examine the Euler equation for low-income householdsf’| The condition
on Lagrange multiplies implies \(ag, 2'1, A1) = 0, since A(ag, 21, A a1 (ag, 278, AMFL) =
0 and a4 (ag, 2!, A1) > 0 in the proposed allocation. Under ¢;(A;,1,2e41|A%, 2Y) =
(A1) A7 (2441]2), the Kuhn-Tucker condition is given by:

1 1

——— = 0GR Attt .
Ct(a()aztuAt) b tH( )Ct+1(a072t“714t+1;2t+1 IO)

ct+1 at a low-income state given by (21)) satisfies this Euler equation. O

The claim that households make no savings for high-income states could be shown by
induction Here, we instead show that under Assumption : BRi1 (AT < %
atall t > 0 and A", the Kuhn-Tucker conditions for high-income states are satisfied if

households do not save for high-income states.

29Since households always save for a low-income state, the Euler equation holds with equality. If house-
holds enter a low-income state with zero assets, their period utility would be negative infinite.

30At ¢ = 0, given an initial state (ap = 0,29 = ¢) or (ap < ag := ﬁ( ,20 = 0), households
cannot achieve higher utility at ¢ = 1 by saving for a high-income state at ¢t = 1 if ﬁRl%‘f < 1. This is

because the Euler equation implies that consumption at ¢ = 1 would be lower than consumption ¢ in the
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Lemma 5. Suppose Assumption [2]on contingent claim prices is satisfied and suppose that
the sequence of wages and interest rates {w;(A"), R,(A")}2, satisfies the no-savings Assump-
tion [3and that the initial wealth distribution satisfies Assumption 4} Then, the allocation
defined in equations and satisfies the Kuhn-Tucker conditions for high-income
states at any time t > 0. It also implies equation (25):

ci11(ao, ZHl» At“) > 5Rt+1(At+1)Ct(a07 Ztv At) if ze41 = C.

Proof. We check the Kuhn-Tucker conditions, (105) and (106), for a high-income state
(z¢41 = Q) under Assumption @ (Ar1, 2e41]AY 2Y) = (A | A7 (2441 2), and Assump-
tion BRi (A1) < %ﬁ:;l). Substituting c,.; (21", A 20 = €) = wiq (A )6
and a;, (2T, A1) = 0 into equation (105)) gives:

1
wi(AY)ci(ag, 2¢, At)

1
wt+1(AtH)Ct+1(@07 AL AL 2 = C)
wi(AY)  elag, 2, AY)
wt+1(At+1) Co

-

<1

— BRt—Q—l(AH_l) + /\(&0,Zt+1,At+1)

< ﬁRtH(AtH)

N

+ Mag, 2", A D w, (AN e(ag, 24, AY) =1

As long as ¢;(ay, 2*, A*) < ¢, for all (ay, 2", A"), which we will show below, the Lagrangian
multiplier \(ao, 21, A1) that solves equation satisfies \(ag, 271, A1) > 0. Then,
the Kuhn-Tucker condition for a high-income state is satisfied. Specifically, the Kuhn-
Tucker condition for a high-income state with A(ag, 2!, A™) > 0 implies:

b
ci(2t, AY)

1
t+1
~ BRHI(A ' >Ct+1(2t+17 ALz = C)' (112)

This gives equation (25]). Because the marginal utility of consumption at time ¢ is higher
than the discounted marginal utility of consumption at state (21, A™™) with 2, = ¢,
households do not have incentives to save for a high-income state.

Under SR, 1 (A1) < %ﬁ:;l) forall (¢, A*, A;11), we will show that ¢;(ao, 2%, A*) < ¢
for all (ag, 2%, A*). We prove by induction. At ¢ = 0, the initial wealth distribution satisfies

Assumption (4. Given the consumption rule (21I)) and SR, < 1, the initial consumption

conjectured allocation if the household were to save for ¢t = 1. From ¢ = 1 onward, since consumption
choice ¢;(ag, 2%; 2z = () cannot be larger than ¢y at any ¢t > 0 (otherwise the consumption profile will
violate the Euler equation or budget constraints in future low-income states), positive savings for a high-
income state at ¢ = 1 wouldn’t give higher utility at any time ¢ > 1, under Assumption 3} By induction,
households at any time ¢ > 1 do not save for a high-income state at ¢ + 1, since they start a period ¢ > 1
with (a; = 0, 2z = {) or (a; < ag, 2 = 0).
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satisfies cy(ao, 20, Ao) < ¢ for all (ag, 20), as we see the following:

woco(ao, 20 = 0, Ag) =: co(ap, 20 = 0, Ag) = [1 — (1 — v)B]Ro(Ap)ao(ao, 20, Ao)
B
1-(1-v-=§)pB

< [1 = (1 = v)B]Ro(Ag)wo ¢

< BRycowy

< CoWy

Suppose c;(ag, 2, AY) < ¢ for all (ag, 2¢, A?) at time ¢ > 0. ¢;1q(ag, 2T, A1) is given
by equation (21)):

Co if 241 =¢

BRt+1(AtH)LAt) (ag, 2, A") if 241 =0

wt+1(At+1)ct

Ct+1 (a0> Zt—H? AH_l) =

. At
Since ﬁRtH(At“)% < 1 and ¢(ayg, 2%, A") < ¢, we have ¢y, 1(ag, 2/, A1) < ¢

for all (cg, 211, AT, O

Finally, given that the conjectured allocation satisfies the Kuhn-Tucker conditions, we
prove that the conjectured allocation is indeed optimal.

Proposition (1) (Optimal Household Consumption and Asset Allocation).

Proof. In Lemmas [4]and [5, we have shown that under Assumptions[3|and [4] the conjec-

tured allocation (21)-(22) satisfies the budget constraints and the Kuhn-Tucker condi-

tions. The shortsale constraints are also satisfied. Now we want to show that the con-

jectured allocation maximizes the objective (11)) under the constraints and (12).

We apply the standard proof (e.g., Sims (2006)@ and Krusell| (2014)) to our setup. The

upshot is that since the utility function is concave and the constraint set is convex (the

constraint a, (2!, A1) > 0 is linear in a;, (2!, A'™')), the Kuhn-Tucker conditions

and a transversality condition (126 are jointly sufficient for optimality.

We will show that the conjectured allocation (21)-(22), denoted by ({c; (2!, A), aj,, ('™, A1)},

gives (weakly) higher expected utility than any other feasible allocations:

T—o0 T—o0

T T
lim ZﬁtE [log(c; (2", A"))] > lim ZﬂtE [log(c.(2F, AY))] (113)
=0 =0

where feasible allocations ({c;(z!, A"),a;1(2!™!, A**1)}) satisfy the budget constraints
and the shortsale constraints. Since c¢;(2*, A') is uniquely determined by the budget con-

31The lecture note is available on his website: http://sims.princeton.edu/yftp/Macro2010/rlg.
pdf
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straint given (a;(z', A"), {a;+1 (2", A1)} 41 aei), denote:
uy(ag, {ai1}) :=log(ci(2', A))
—log (wi(A")z + Ry(A')ay(+', A")
- Z Z T( A AT (2] 20) @ (2 At“))-

At zt41

With this notation, the Kuhn-Tucker condition implies the following{*?]

D2Ut(at; {at—l—l}) + BE, [Dlut—l—l(at—l-l; {at—l—Z})] + [, P\(Ztﬂ, AHI)} =0 (119)

32Lagrangian is given by:

L= ﬁt Z W(Zt)W(At)ut (at(zta At)v {at+1(zt+lv At+1)}zt+1,A"+1\zt,At)
0

t= At 2t

+ Zﬁt Z 7T<Zt+1)7T(At+1))\t+1(Zt+1, At+1)

t=0 At+1 pt+1

=Y B'E[uia, {1 D]+ Y BE[Nir]

t=0

From Lemma [5, we know that the Kuhn-Tucker condition is satisfied for any (2*+1, A*+1):

1 t+1 1 t+1 t+1
e Ay~ e TG g e FAETAT .
This implies, since .11 geraoe g0 (2" 20w (ATHAY) = 1,

1 t4+1) t+1| gt t+1 1 t+1 t+1
—_— = ATHA A _ A
(AN T A;Zt Atﬂ'(z |2")m( |A") | BRi11( )ct+1(zt+1,At+1) + A" )

(115)
1
= E, [ﬁRtH(At“)WW} +E¢ [T, AT (116)
We define the derivative of the flow utility as:
0
Dyuy(ay, {at+1}) = Tut(atv {at+1})
at
1
_ t
= Ri(A )W (117)
0
Doui(ag, {a = ug(ag (2t AY), {ag 1 (211 AT
2 t( t { t"rl}) Zt+§t+l 3at+1(zt+17At+1) t( t( ) { t"rl( )})
1
=— a(Z (AT AN ————
L2 T AT S
1
Ry e

Therefore, by substituting them into (116)), we obtain:

Doug(ay, {az41}) + BE¢ [Diuegr (ars, {agsa})] + Be [A(ZTH, A7) = 0.
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Define the difference in the sum of expected utility up to time T:

T

‘N/T(a) = ZBtE [ut(aj{, {aj}) —w(ay, {at+1})] (120)

t=0

We will show that:

lim Vp(a) >0 (121)

T—o00

Since log(+) is a concave function, we have{~|

T

Z am {at+1}>

t=0

> E[Zﬁt{ut a;, {aj}) + Diw(a;, {a;,,}) - (a; — ay)

t=0

+ Dowla {af ) - (@ — i)} (122)

Using this, we obtain:

[iﬁt{Dlut (ar, {at“}) (a; —ay) + Dauy(ay, {aZ‘H}) : (a:+1 - at+1)}]

t=0

= Dyuo(ag, {aj}) - (ag — ao)

+E [ Z B [DQut(a:7 {ai1}) + BE[Diusyi(af,y, {aZJrQ})H (aj,, — at+1)}
=0
+ ﬁT]E [D2uT(a*T> {a*TH}) : (a*T+1 - aT+1)} (123)

where the first term is zero given the same initial condition aj = a,. The second term is
non-negative 4] This is because the Kuhn-Tucker condition implies (119):

Dyuy(ay, {at+1}) + Ei[A t+1] + ﬁEt[DIUtH(atHa {at+2})]

33Here we denote:

Dyui(ag, {aii1}) - (A — agiq) =
0

Oagiq (21, At+1) ug(a (2, A, {ag 1 (2 ATHY) - (g (2, AT —af+1(zt+lvf4t+1))

Zt+1 ,At+1
34Here we have applied the law of iterated expectations:

E[[Dawi(a;, {a} 1)) + BD1ues (a1, {aiyo})] - (@fy — acs)]
= E|E,[{ Dau(a;, {ai11}) + BDrws (a1, {af,0})} - (a0 — ais1)] |

— E|[Daui(a; {ais1}) + BEDruesa (a1, faiyo ] - (a1 — ai)]
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and thus, the second term is larger or equal to zero:E]

T-1 T—1 T—1
E[; ﬁt< - Et[/\:—f—l]) . (3:4-1 — at+1)} = E[; ﬁt ]Et[)\Z+1]at+1] _ E[; ﬁt Et[AZH]aZ‘H] >0

>0 = =0

Therefore, (121) is satisfied if the third term is non-negative:
Jim B'E [Dour(a}, {al1}) - (a7, — ars)] > 0. (124)
Using the Kuhn-Tucker condition again, this is equivalent to:

lim 5'E [{ET[/\*T+1] + BEr[Diuryi(ar,y, {a?r’+2})]} (ary1 — a?—i—l)} > 0. (125)

T—o00

Since Ny, (27T, AT agp (271, ATHY) > 0, A5, (271, AT Dag (27 AT = 0 for
all (27, AT, and BDyurii (2%, {ah ,})ars > 0, the following is sufficient for
(121):

lim 8'E [Dyu,(ay, {aj,,})a;] =0, (126)

t—o00
1

where Dyui(a;, {aj,,}) = Rt(At)C*(Zt Aty
¢ s

Equation (126) is a transversality condition. Our conjectured allocation satisfies:

£t At 0 if 2, =
R0 At) = e (127)
il A) | ik ifa=0

Hence, (126) is satisfied in the conjectured allocation. Therefore, the conjectured al-
location gives (weakly) higher expected utility than any other feasible allocations and
maximizes the objective. O

A.1.2 Proof of Proposition

Proposition [2| (A Law of Motion of Aggregate Capital).

35Here we denote:

Ei [\ q]a == Z T (AT AN (2, A a o (21, AT

ZtH1 At+1
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Proof. Aggregate saving is the sum of individual savings.

Ki = /Zétﬂ(ag,ztﬂ,At+1)7r(zt+1)d<1>(ao,zo)

St+1

= ZT(ZtH; 2t =C, 241 = O) W(ZtQ 2y = C) ét+1(@07 ZtHa At“; 2 =(, 241 = 0)

7\ J

Vv Vv
=¢ v

TEtv

+ / ZW@tH; 2 =0, 241 = 0) &11(ao, ZtHy Atﬂ; 2z =0, 241 = 0)d®(ag, 20)
St+1 v

p
- (1-v-&p

=1-v

w(AY) + (1 —v)BR(AY) / Zét(ao, 2t A% 2 = 0)d®(ap, 20),

2t

=¢

(.

~~

=K

The second line decomposes the summation into four groups by current and next states:
(2t =C 2041 =0), (2 = 0,201 =0), (2: = (, 2001 = (), and (z; = 0, 2,1 = (). It sums up
only the first two groups, since households do not save for a high-income state. The third
line follows the households’ saving rule . To obtain K, = [ Y. &(ao, 2", ALz =
0)d®(ay, z0), note that high-income households have zero savings at the initial period
(t = 0) and that households do not save for a high-income state at ¢ > 1. Hence,
aggregate savings at any time ¢ > 0 is the sum of savings by low-income households
(z: = 0).
By substituting, w;(A') = (1 — 0)(A)'""?K? and R,(A") = 0(A)" 'K!™' +1 -5, we
obtain equation ([39).
O

A.2 Proofs: Section 4| (Stationary Equilibrium and Transitional Dy-
namics)

A.2.1 Subsection 4.1} Stationary Equilibrium
Proposition |3| (Stationary Equilibrium).

Proof. We first show that under Assumption |5, we can always find a stationary equi-
librium with SR, < 1, i.e., the existence of a partial insurance equilibrium. Since we
consider a stationary equilibrium, aggregate productivity A, is constant over time and
across aggregate states.

Suppose an interest rate satisfies SRy < 1. We will later verify that the equilibrium
interest rate indeed satisfies SR, < 1 under Assumption[5| Under SR, < 1, households’
consumption and asset choices are given by equations (42)-(46). Hence, aggregate cap-
ital supply is given by equation (51)). In order for the capital market to clear, the interest
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rate satisfies the equation ((52)):

L.d o 9 o 56 . .8
Bl =m0 = a0 - T-0 - wpRn—a—v—ag " "

If the equilibrium interest rate R, that solves (52)) satisfies SRy < 1, then we show the

existence of a partial insurance equilibrium with SR, < 1.

Note that the wage-normalized capital demand is positive infinite in the limit R —
1—o0:
lim k%(R) (:: 0 ) =+ 09,
R—1-6 (1-0)(R—-149)

1
B

and k?(R) is strictly decreasing in R € (1 — 6, +). Also, the wage-normalized capital

supply is finite at R = 1 — §:

o B £p 00
R (B ('_ 1-(-v)BRIL-(1-v- 05]) o

since0 < 1—(1—v)f(1-0) <land0 < 1—(1—v—¢)B < 1. k*(R) is strictly increasing in

R € (1 -4, 3). This means that the excess demand for capital, x*(R) — x°(R), is positive
infinite at the limit R — 1 — ¢ and (strictly) monotonically decreasing in R € (1 — 4, %)
Therefore, an equilibrium interest rate with SRy < 1 exists if:

(R) — k*(R) < 0 at R — %.

This condition is equivalent to Assumption [5. Hence, under Assumption |5} there exists
a partial insurance equilibrium with SRy < 1.
From the FOCs for a representative firm (equations|13|and [14), we have:

I -0
KO_AO(R0—1+5) )

wo = (1= 6)(A0)"*(Ko)".

By substituting the equilibrium interest rate, we obtain the equilibrium capital and the
wage.

Comparative statics are straightforward. As discussed in the main text, x%(R) is
strictly increasing in 6 and strictly decreasing in §, while x*(R) does not depend on ¢
or §. Given that k%(R) — x*(R) is strictly decreasing in R, higher § implies higher Ry, and
higher ¢ implies lower R,. On the other hand, since «*(R) is strictly increasing in £, &,
and 1 — y while x%(R) does not depend on 3, &, or 1 — v. Thus, higher ¢ and 1 — v

36:%(R) is strictly increasing in ¢ because the derivative with respect to ¢ is strictly positive:

o 8 ll_ ¢

e T (R 7 (R (7t R ey e
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implies lower R,. Since K, and wy are negatively related with Ry, we have the opposite
comparative statics with respect to (5,£,1 — v). To show that K is decreasing in ¢, we
show that Ry — 1 4 ¢ is increasing in 4:

Roo (18— 5(1—9)(1—5)+6<§+u+%—1) I

f(l—&)—i—ﬁﬁ(l—y)(f—l—u—l—%—l)
9(§+u+}3—1> 5«9(1—u)(§+u+%—1)

E1—6)+p0(1 —v) (5—1—1/—1—%—1) E(1—-60)+p0(1 —v) <§+u+%—1>

From the FOCs for representative firms, we see that K, (and hence wy) is decreasing in
Ry — 1 + ¢ and hence increasing in 9.

Finally, given the aggregate capital supply function derived from the optimal house-
holds’ consumption and asset allocation that yields a simple equilibrium, since x%(R) —
k*(R) is strictly monotonically decreasing in R € (1 — ¢, %), the solution to an equation
(52) is unique if it exists. O

A.2.2 Subsection [4.2.1; Full Depreciation of Capital

Lemma 6. Suppose Assumption [5|holds. Consider transitional dynamics after an aggregate
productivity shock. With full depreciation of capital (§ = 1), Ripigts = Ro = g for all
t > 1. Furthermore, SRy < <. is satisfied for all t > 1.

w

Proof. Withd =1,

Rt+1 =40 ( H—l) and Wiyl = (1 — Q)AtlJ:foJrl

Ky
Thus,
Ry 0 1
Wit1 1—-0Ki
0 1
= ) 128
1-03A°K? (128)
With w, = (1 — §)Al""K?, one obtains:
0
Ry W = = (129)
W1 S
This must be true in steady state. Thus,
1
R — — Ry < ~. (130)
Wi+1 B
[

60



A.2.3 Monotone Convergence
Proposition |5 (Monotone Convergence of (K, R;, w;)).

Proof. Consider a positive permanent shock, A; = A; Vt > 1 with A; > Ay. Denote K*
as the new stationary equilibrium capital associated with A;. We know from equation
that Ky < K* since Ay < A;. We want to show that given K, < K*, capital in the
next period satisfies K; < K;.; < K* at any ¢ > 1, implying a monotone convergence of
capital to the new stationary equilibrium capital.

The law of motion of capital is given by equation (39). First, we show K; < K;,, at
anyt > 1, by using § = ¢ (ﬁ—f)l_ ,

Ky — K, = 3A7°K) + (1 - §)K, — K,

K 1-6
(K) —1] K, > 0.
t

N /
-

>0 given K;<K*

=4

Because 4 > 0, the increment in capital (K, — K,) is strictly positive until K, converges
to K*. Second, we show K;,; < K*atanyt > 1:

Ky — K" =3A7°K? + (1 - 0)K, — K*

0
:5<Kt) K*4+(1-0)K,— K*

K*
N Kt ’ * N *
_5 1 K (1= 8) (K, = K*) <0
K+ N—_——
—_— <0if Ki<K*
<0if Ki<K*

We have shown that if K; < K*, K; < K;,; < K*. This holds for all t = 1,2, ... as we
start from K; = K, < K*. Therefore, we have K| < Ky < --- < K; < --- < K*.
The wage and interest rate follows the FOCs:

wy = (1 —-0)AKY,

R, =0A K" +1—¢forallt > 1.
Given K, = Ky, both w; and R; jump up at ¢t = 1. From ¢ = 2 onwards, since 0 < § < 1,
K; < K;,, implies w; < w1 and R; > R;;;. Therefore, the monotone convergence of

capital implies a monotone convergence of wages and interest rates.
In case of a negative shock, the inequality holds in the opposite direction.

61



A.2.4 Sufficient Condition for SR, | < w;—:l Vt > 0 after a Positive Shock

Proposition @ (Sufficient Condition for SR, | < wtf after a Positive Shock).

w

Proof. Since wages, w, = (1 — 0)A} " K?, are monotonically increasing after a positive
productivity shock, SR;,; < 1 is a sufficient condition for SR, ; < “:t. After a positive

we

productivity shock at ¢ = 1, the interest rate jumps and monotonically converges to the

one in a stationary equilibrium, see Proposition |5| Therefore, 5R; < 1 guarantees that
BR; 1 < 1forallt > 0.
A condtion for SRy < 1 follows directly from the expression for R; and the fact that

K, =K,= A (ﬁ) """ is predetermined from the initial stationary equilibrium

Ry =0A 'K 41 -6,

(131)

and therefore SR, < 1 if
Rlz(j—;)l_e(zzo—1+a)+1—5<% (132)
b (e
el e e e e [ et RRC

This gives the threshold stated in the proposition. Since Ry < 1/, equation ((133)) implies
that A; > Ay. Since K is given by (@8), A,/A, can be written as:

A [1-B(1-08)]Te

— = K 135

1 [ 50 0 (135)
Substituting p = 5 — 1 leads to equation (67). O

A.2.5 Sufficient Condition for SR, | < w;—f vVt > 0 after a Negative Shock

In this subsection, we derive a sufficient condition on the magnitude of a negative pro-
ductivity shock (A; < Ag and A; = A, for all ¢ > 1) such that SR, < w;j L is satisfied
for all ¢t > 0.

We first derive a sufficient condition for SR, -2~ < 1Vt > 1. After a negative

We+41

shock, the aggregate capital monotonically declines and converges to a new station-

ary equilibrium. Using this property, we derive a lower bound on A; that guarantees
LRy 7;”;1 <1Vvt>1 (Lemma@.

w-
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The condition in Lemma@ (A, € (A_’1 , Ap]) does not guarantee SRy < . If 6R; > o,
low-income households may consume more than high-income households at ¢ = 1. This
gives rise to a possibility that low-income households at ¢ = 1 have an inventive to save
for a high-income state at ¢t = 2. Hence, we derive a condition for fR; < g—;, which is
sufficient to prevent this possibility (Proposition [7]) /|

Condition for SR, ;; < = att > 0 After a negative shock, the aggregate capital

wy

monotonically decreases and converges to a new stationary equilibrium. Therefore,
1-0 1-0
(@> < (ﬁ> for all ¢ > 1. A sufficient condition for SR;,, < wtt LVt > 1is

Aq Aq w
then written as:

(&) —nn (f_)el () <l g o] e

K K K* . . . . o . . .
As 3t > 32 > .- > I, it is sufficient to satisfy the condition at time ¢ = 1. By solving

this inequality, we have:

(136)

AN T1—(1-8)8(1—v) 5(1—9)—/3(91/[§+V+%—1]
(A_l) <[ Ar(l = 9) ] E1=0)+p80(1-v)(E+v+5-1)

Lemma 7. Assumption @implies E(1—0) > pov(E+v+ % — 1). Hence, the right hand side
of inequality is strictly positive.

Proof. We restate Assumption [}
0 §

(1-0) [%—1—{—5] <I/[%—1+€+l/]'

As all terms are positive under 0 < 3 < 1, it is equivalent to:

E1—-0)[1—p(1—0)]>pov [%—1+§+u].
Since 0 < 3(1 — 9) < 1, we have:

1
E1—-0)>¢1—-0)1—p(1-9) >59V(5+V+E—1)- (137)
Therefore, all terms in the right hand side of inequality (136) are strictly positive. In

1—(1—5)6(1—11)} £(1-0)—Bov[g+v+5—1]
Br(1-9) €(1-0)+B0(1—v)(E+v+E—1)

the limit 6 — 1, it is positive infinity: lims_.; [
+00.

37We claim that the fact that low-income households consume more than high-income households is

per se not a problem. Instead, we can derive a sufficient condition for low-income households at ¢ = 1 not
to save for the next high-income state. This condition will be less tight than the condition in Proposition

4
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Lemma 8. Under Assumption [5| the right hand side of inequality (136)) is strictly larger
than 1. Hence, there exists a negative productivity shock A, with A; < Ay such that (I136))
holds. Define A} such that holds with equality. Then A} < Aq.

Proof. Consider 0 < § < 1. The first and second terms in the right hand side of (136)
are expressed as:

1-(1-0p1-n] _, 5!
5(1—9)—59y[5+u+%—1] T )
- = - : (139)
E1—-0)+p0(1—v)(E+v+5-1) 14 Bo(&+v+5-1)
g ¢(1-0)—Bov[¢+v+5—1]
Therefore, the product is larger than 1 if:
1
G R (v i) (140)
v §1—0) - Bov ¢ +v+ 5 —1]

Since all terms are positive (remember Lemma 7)), this is equivalent to:

(5(11<5)_1>5(1_9)_ (19”5) <g+u+;—1>+5au(§+y+;—1> >59y<§+y+;—1>

< (Wzmeb =) (:”*é”)

V(ﬁ-l—u—l-%—l) g (1-0)(5—1+9)

=

The last condition is equivalent to Assumption Therefore, the right hand side of
inequality is strictly greater than 1 for any 0 < § < 1. If § = 1, the right hand side
of goes to positive infinity. Put together, this means that for any 0 < § < 1, there
exists A; < Ay such that the condition holds.

We solve for A; such that holds with equality:

1

1-6

Bu(1 — §) EL—0)+po(1—v)(E+v+5—1)

Al =4
Br(1—s)  E1-0)+BO(1—v)(E+v+5—1) ,
Because | =550 £0-0)—A0u e+t 1—1] <1, A1 < Ay. =

We use the two lemmas to prove a proposition.

Lemma 9 (Sufficient Condition for SR;;; < <= for ¢t > 1 after a Negative Shock). Let

we

Assumption [5]be satisfied and let the economy be in a stationary equilibrium with SR, < 1.
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After a negative and permanent productivity shock att =1 (A; = A; < Ag forall t > 1),
BRiy1 < 555Vt > 1is satisfied if Ay € (A}, Ao] holds, where the threshold satisfies

wt

1

pra—8)  E1-0)+ 501 -nErr+s -]

Al Ay =
4 1=(1=0)B0=v)  ¢1-9) - pow f—i—u—l—%—l]

<1. (141)

Proof. We want to derive a sufficient condition for ﬁRtH#L < 1Vt > 1. We focus on
the case of 0 < § < 1, because with full depreciation of capital (0 = 1), 5Rt+1w1:i1 =

BRy < 1Vt >1 (Lemmal6)). After substituting interest rate and wages and using the law
of motion of capital (39), SR;, -2~ can be written as shown below. The monotonicity

We41

of capital, K;,; < K, implies the following.

[ 1-6
w, 0+ (1) (%)
ﬁRtHth:B o5 p —
-m<1_9)+(1_V)59+(1_”)5<1_5)(ﬁ) _
0+ (1-0) (f_;)l‘e
~0
ﬁ(l_0)+(1_V)59+(1—y)/3(1—5)(%)1 |

The last line is less than 1 if

<p

fort>1

1-6 1-6
59+5(1—5)(§—I) <1 B (-0 + (1= 1)+ (1—)B(1—0) (Kt)

1—V—§)/B Al
KN\ &8

Because K; > K, > ---, this condition is satisfied for all ¢ > 1 if it is satisfied at time

t=1:
(%)19 = V(ll— 5) L - (51(1_;92 98 VQ} : (142)

Aggregate capital at time ¢ = 1 is predetermined at ¢ = 0:

1

5(1—9)+59(1—y)(§+y+%_1>]19

KlK°A°[[1<16>5<1v>]<s+v+§1>

Substituting K into equation (142)) yields:

R

Ay Bu(1—90) 1—0)+ 801 —v)(E+v+1—1)

. (143)
B

We obtain equation (141) by solving for A;. When A; = A}, the equation holds with

equality. Lemma [8|shows that A} < A, under Assumption O
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Condition for SR, < <+ att = 0 Lemma @ shows that after a negative and per-
manent productivity shock at ¢t = 1, SR, < wfu—f vt > 1 is satisfied if A; € (A3, A
holds. However, this condition does not guarantee SR; < oL If BR, > -, the ar-
gument in Lemma [5| breaks down, i.e., ¢;(ag, 2!, A') < ¢y may not hold for some ay.
Then, low-income households at ¢ = 1 may have the incentive to save for the next high-
income state. In such a case, the contract stipulated in Proposition [I|may not be optimal.
Hence, we derive a sufficient condition for SR, < wL. It turns out that the sufficient
condition for SR, < z—é, given by A; € (A,, Ao, implies the sufficient condition for
BRi 1 < wfu—:l Vt>1,i.e., A € (A_’l, Ay, derived in Lemma@ Therefore, A; € (4, Ao] is
a sufficient condition for SR, < w;;l vt > 0.

Proposition |7| (Sufficient Condition for SR, | < wttl vt > 0 after a Negative Shock).

w

Proof. SRy can be written as:

0+ (1-0) (M)H

w A
BRi—— =5 —
41 S+ (1-39) (g_)
Att =0, BRleqﬁl < 1is equivalent to:
o\ 1 IR\
5«9+ﬁ(1—6)(A—I> <§+(1—5)<A—2> :
R £B(1—10) :
where s = +(1—-v)pfand1—6=(1—-v)3(1—-9).

The condition can be written as:

o0 (8) () - 0-v] < it

Ao 1-6 1 K, 6—1 )
<:><A_1> <1—V+m(z4—0) {1_“_”_5)6—1/9}7 (144)
Ky 5(1—9)+ﬁ9(1—y)<5+y+%_1> e
where — =
A 1-(1=0s1-v)](E+v+3z-1)
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Using the following derivations:

1 (KN -0
1—5(A0) [1_“_’/—5)5 9}
1 o090 -viErreton
1-9 5(1—9)+59(1—u)<5+u+%—1)

1-(1-0)B1—-v) &Q-0)—viBE+v+5-1)
pr(1=9) 5(1—9)+59(1—y)(5+y+%—1>

5(1—9)—V€5(5—i—1j+%—1)
BE+v+35—1)

=V

the condition for SR; < wL is given by:

AO 1-6 A/ 0—1
0 _ =1
<A1) <l—-v+v (Ao)

A AN A
.o 1 _ _ = — 1 5
..A0> u—i—y(AO A, (145)

A A

here =% < =L < 1. 146
where 1, < 4 ( )
We obtain the last inequality (146)), since 0 < v < 1 and 0 < f—i < 1. Hence, A; €
(A, Ao] implies A; € (A], Ag]. By substituting % using equation (141)), we obtain equa-
tion in the statement. O

A.2.6 Subsection [4.2.2} Consumption on Impact

Corollary 2| (Consumption at the time of a shock).

Proof. Att = 1, the asset distribution is predetermined and given by {a,}°,,_, that
satisfies Assumption |4, In particular, we consider the case in which {a,;}32,,_, follows
a stationary distribution given by equations (44)-(46), where w, follows (50)). Note that
households purchased contingent assets {a,(A")}32,,; at t = 0, expecting the steady-
state productivity for all future periods with probability 1, A, = A* for all ¢ > 1, but
an unanticipated aggregate state is realized at ¢ = 1. We assume that households hold
assets at t = 1 as if the anticipated aggregate state (A*) is realized.

At time ¢ = 1, a deterministic sequence of productivity { A,}°, is unexpectedly real-
ized. The corresponding sequence of prices {q:( A1, ze11]A% 2%), wi(AY), Ri(A) }ar ot 41
satisfies Assumptions|2|and 3. Then, by Proposition 1, the optimal consumption at ¢ = 1
is given by (21I)). Equation implies that the consumption satisfies the Euler equation
betweent =0 and ¢ = 1. N
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A.2.7 Subsection [4.2.3; Consumption Distribution in the Long Run
Proposition [8| (Consumption Distribution in the Long Run).

Proof. As we see in Proposition |5, in the transitional dynamics, aggregate capital will
monotonically converge to a new steady state. The interest rate also converges to a
steady-state interest rate.

In a stationary equilibrium, the deflated consumption of low-income agents is deter-
mined by:

cs = PR ce_q.
Hence, the consumption distribution is characterized by:
cs = (BR")°cy for s =0,1,2,---,

where the mass of each agent is given by equation (31):

ol if =0
&y s>

Because the equilibrium interest rate does not depend on productivity A, shown in equa-

tion (54):
5(1—6)(1—5)+9(§+V—l—%—1)

R*:5(1—9)+66(1—y)(§+y+%—1)’

the deflated consumption distribution is the same across stationary equilibia with differ-
ent A.

0
A.2.8 Consumption Distribution with § = 1
Proposition [9}
Proof. The stationary distribution at ¢ = 0 is given by:
1-(1-v)B
T = *)* h = :
c: = (BR")%cy, where ¢ 1—(1—V—§)5<
Note that with § = 1, the interest rate in the stationary equilibrium (54) is given by:
9 (g trv+d - 1)
R =
£(1—0)+ BO(1 - v) <£+1/—|—%—1>
7
=, (147)
S

68



From ¢t = 1 onwards, the deflated consumption distribution evolves acccording to equa-
tion (71)):

o ifs=0

C57t(At) =
Csfl’tfl(At_l) lfS Z 1

We_ Atfl
BRy(A")Hti)

Lemma [6] shows that:

w1 (A1) po
w, (A 3

forany ¢t > 1 and (A"!, A;). Combined with equation (147)), this means that:

BRi(A")

o ifs=0

Csyt(At) = .
ﬁR*Cs_Lt_l(Atil) if s >1

Hence, starting from the stationary distribution at ¢ = 0, the deflated consumption dis-
tribution is time-invariant:

csi(A") = ¢t forallt > 0 and A

A.2.9 Inequality after a Positive Shock with § < 1
Proposition

Proof. Propositionshows thatin a high-income state, ¢y, = ¢o. We derive that ¢, ; < ¢
forall s > 1if A} > Apand § < 1, meaning that the deflated consumption of low-income
agents at time ¢ = 1 is lower than the deflated consumption in a stationary equilibrium
(t = 0) for all s > 1. Using equation ([32]) in Corollary

wicsy = BRiwocs—1

while Cs0 = /BROCS—I,OJ

we have:

Wo Rl
Cs1 = — 756505
& wy Ry .
where R, = 0A; K/ +1 -6,
Wy = (1 — Q)A%_eKte

o (AH) AR 1 -6
A ) gAI KT 1=
1-60

0AL OIS + (1 - 6) (42)

Aq

= CS
GATKIT 41— 0

Cs,0
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We use the fact that K; = K as the aggregate capital at ¢t = 1, K7, is predetermined at
0

time¢ = 0. Giventhat0 < § < 1,0 < 0 < 1,and A; > Aj, we have (1-9) (ﬁ—?) < 1-6.

Therefore, ¢;; < ¢y for all s > 1.

Next, we show that consumption ratio between two low-income agents at ¢t = 1 is the
same as at ¢t = 0 (sationary equilibrium):

ol _ %0 forany s> 1and 5 > 1 (148)

Cs1 Cs,0

By equation (71,

Wo .
Cs1 = BR1—cs1p ifs>1
wn

Wo o~
Cs1 = /BRl—Cg_LO if 5 Z 1
w1y

This implies that:

Sl _ 5710 forany s > 1and § > 1. (149)

Cs1 C5—-1,0

At time ¢ = 0, in a stationary equilibrium, the consumption distribution follows:

¢s0 = (BRy)%co for any s > 0

Hence,
cs—10  (BRo)*'co  (BRo)*co  csp _
== - = — =~ foranys>1land s >1 (150)
cs—10  (BRo)* ey (BRo)’co  csp Y
By combining (149) and (150]), we obtain (148) O

A.3 Proofs: Section |5/ (Aggregate Shocks)

A.3.1 A Sufficient Condition in an Economy with Stochastic Productivity

w

=+ in an economy with stochas-

Here we derive a sufficient condition for SR, <
tic aggregate productivity but without stochastic depreciation. The condition is on the
magnitude of aggregate growth rate shocks e. A sufficient condition in an economy with
stochastic depreciation is derived in Section We first state two Lemmas that are
useful to find a sufficient condition on e.

Lemma 10. Define K, := f—:. The law of motion of capital @) is expressed as:

N A, - -
Ko = - [st +(1- 5)}@] . (151)
t+1
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Given the law of motion and the aggregate productivity process (74), assuming that K,
takes a positive finite value, the maximum value and the minimum value of % is given by:

K™ = (A > and K™" = (A ) (152)
d—¢ 0+ e

Proof. Deflating the law of motion of capital by A1 gives equation (I51)). Note that
the RHS of equation (I51)) is increasing in &, and decreasing in 4,,;. K" in equation

(152) solves:

o 1 RN .
szn — [§ (szn) + (1 _ 6)szn:| .
1+e

A comparison of (I51) to (I52) shows that K, > K™ and A,,; < (1 + €)A, implies
Kt+1 > Kmin_ 1ikewise, K™ solves:

Kmax _

— €

{g (i) + 1 - 8)[(“@“} |

The symmetric argument shows that K, < K™= and Ay, > (1 — €)A; implies K1 <
Kmam‘
O

Lemma 11.

1. The constraint SRy < = is most likely to be violated at the time of the lowest
negative shock ( A;x—f =1- e)

20 R = K, Ry = (14 OR™ I Ry = K705, Ry = (1 - Ko,

3. Suppose Ajl—jl =1—c¢ and K, € [K™" K™ R, ., is highest at K; = K™, St is
lowest at K, = K™

Proof. 1. Note that

Rt+1_‘9K+1+1 9,
0 1-0
Wy Ay K, Ay

Then, one could multiply SR, < “’t* L with (

1-0
i > to rewrite the proof as:
t+1

Ko -1 A, 1-6 o N
9( T ) H=0) (5 < (sKt +1—5) . (153)

The left hand side is stricly decreasing in A}’;—tl unless § = 1. Therefore, the condition

p

is easier to be violated if A;l—tl = 1 — e. Although the condition does not depend on Azl
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under § = 1, it is still sufficient to check the condition at the time of negative shock

(Ajl—:lzl—e)forany0<6§1.

2. K4, is given by (151):

. Vi S .
Kt+1—m|:SKt +(1—5)Kt]

If K, = K™" and Ajl—tl =1+ ¢, we know:

=~ 1

[é(ff’”i")@ +(1-9) Km"] — fmin

Hence, if K, = K™", we derive:

. A -
Kiyy = ——(14 ¢ K™ (154)
Api

Similarly, if K, = K™= we have

. A 3
Kig = ——(1—¢) K™=, (155)
3. Ry, is decreasing in K+, since R, is given by:
Riyy = 0K/ +1 0.

Ky, is determined by (151)):

A [y 3
Rin=1- [sKt +(1- (5)Kt] .

Aﬁl = ﬁ, K., is increasing in K;. Therefore, R, is decreasing in K; and takes

the maximum value at K, = K™,

- 0
W41 _ At+1 Kt+1
Wy At Kt

A 1-60 o 10
:(Zl) [3K51+1—5,

Given

We41 = o .
“ot is given by:

which is decreasing in K,. Therefore, w;—tl takes the minimum value at K; = K™, []
Now we introduce the following assumption. For it, recall the definitions of § =

[ﬁ(l —0)+(1— y)ﬁ@} and1— 6 = (1—v)B(1 — 9).
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Assumption G.

p 1+4+€

1-60 ¢
9(1_6) 5T6+1—5]<1—e (156)
S

Proposition 15. Suppose Assumptions |5| hold (which insures the existence of a partial in-
surance steady state) and that the economy is in this steady state at t = 0 (as described
in Proposition [3). Furthermore assume that Assumption |G| is satisfied for the aggregate
productivity process in (74). Then the condition SR; < “’;—f holds for all t > 1 with
probability 1. Furthermore, there exist an € > 0 such that for all 0 < e < € Assumption
is satisfied.

Proof. Since the economy is in a steady state at ¢ = 0 and Assumption [5]is satisfied, the
initial capital K, and the associated interest rate R, satisfy the following:

o K, ( §) 0 .
Kmln < P — < Kmax
Ay )

bRy < 1.

Moreover, the initial wealth distribution {ag }3°, is given by the stationary distribution
described in equations (44)—-(46]), which satisfies Assumption

Suppose sequences of all possible prices {w;(A"), R¢(A"), q:(Avs1, ze41| A" 25) Far Ay ot 2s
satisfy Assumptions 2| and (3| Then, the household’s optimal consumption and asset al-
location is given by equation and in Proposition |1, and the law of motion of
capital follows equation in Propisition |2 We want to verify that under Assumption
Assumptions[2]and [3are indeed satisfied in an equilibrium. See Subsection 3.3|for the
claim that the prices of the contingent claims are of the form stipulated in Assumption
Since SR, < 1 is satisfied in the steady state, out focus in this Proposition is to show

that:

Wit1

BRi1 < forall t > 0 and A™!.

Wy
By Lemma 10, K™ < K, < K™ implies K™ < K, < K™ for all ¢ > 1. We saw
in Lemma (11| that the condition R < =5 is most likely to be violated at the time

of the lowest negative shock. Given the negative shock, R;,; achieves the maximum if
K, = K™" and w;_:l takes the minimum if X, = K™, If the maximum of SR, is

smaller than the minimum of w;—tl with A;‘—tl = 1 — ¢, the condition is satisfied for all K,
and Ajg—jl. By imposing those, we have a sufficient condition for SR, ; < =, where

Wt

Wi41
Wy

BRH—I <

- A 1-6 . 10
s B 9Kf;11+1—5] < ( ;1“) [§Kf’1+1—6

t
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K, in the left hand side takes the minimum at K., = Ajiil (14 e)f( min [, in the right

hand side takes the maximum at K, = K™, A;‘—f is given by 1 —e. Therefore, a sufficient

condition is given by:

p

A Ay

6-1 1-6
9{ As (1+e)f<mm] +1—5] < (At“) [g(z%m“m)9—1+1—8]9 (157)

By subsituting K™ and K™" given by equations (I52) in Lemma |10, we obtain As-
sumption Under this condition, SR;y1 < “:j; L for all ¢ > 0 and all states Ajg—jl €
[1—¢1+¢.

Now, we prove the existence of €. If e = 0 in Assumption |G}, we have:

~

3 9%+1—5 <1. (158)

In the steady state, & satisfies:

> 7 . (159)

Therefore, equation is equivalent to:
3 [9([”(*)9—1 vl 5} <1
& R < 1.
This is equivalent to Assumption[5] This means that Assumption[Glis satisfied in an open
neighborhood of € = 0, since Assumption |G|is continuous in e.

We show that Assumption |G| becomes monotonically more restrictive as e increases.
Assumption |G|is equivalent to:

g(Lte (5 +e 1+1—5 o
1—c¢ 14+€e¢)] 5 1—c¢ '

(%) and i=2 are strictly increasing in e. 9=< is weakly increasing in e for all 0 < ¢ < 1.

Therefore, the left hand side is strictly increasing in e. This means that the condition

becomes tighter as e increases. Hence, there exists € > 0 such that Assumption |Gl is
satisfied for all 0 < e < e. O

The following is an alternative statement if we don’t assume that the economy is in
a steady state at ¢t = 0.

Corollary 3. Define

fmar — (5 5 ) and K™ — ( 5 ) (160)



Suppose Assumptions 4 and 5| hold (which insure the existence of a partial insurance steady

—1+6

|

1
~ . 1-6
state), that the initial aggregate capital at t = 0 satisfies min {K men. <1 g ) } <

Ky < K™, Furthermore assume that Assumption |G|is satisfied for the aggregate produc-
tivity process in (74). Then the condition SR;.; < ““2 holds for all t with probability 1.

we

Furthermore, there exist an € > 0 such that for all 0 < e < & Assumption [G|is satisfied.

Proof. The same logic goes through as in Proposition Since the economy may not be
in a steady state at t = 0, the initial capital K, must satisfy that:

Kmin < ﬁ < Kmax
Ao
Ko

d —
an A, >

0
v
T-1+3

The second condition guarantees that 5Ry < 1. Assumption {4 on the intial wealth dis-
tribution is also introduced. O

A.3.2 A Sufficient Condition in an Economy with Stochastic Depreciation

We define an economy with stochastic depreciation and derive a sufficient condition
on fundamental parameters ensuring that the economy is always in a partial insurance
equilibrium.

Sequential Market equilibrium We introduce aggregate state €); and its entire history
QF = (Qo, - -+, Q) that determine aggregate productivity A,(Q') and depreciation rate
5,5((2,5)@ (), follows finite state first-order Markov. Capital depreciation rate J, is stochas-
tic and is realized at the beginning of each period. The sequential market equilibrium in
the limited-commitment model is defined as follows.

Definition 2. For an initial condition (Ay(£2), 60(€2), Ko, ®(ao, 20)), an equilibrium is se-
quences of wages and interest rates {w;(2"), R;(Q")}, prices of contingent claims {q,(Q1, ze+1|Q, 2%},
aggregate consumption and capital {Cy(Q"), K;,1(Q")} and individual consumption and as-

set allocations {c;(ag, 2%, Q'), asy1(ag, 2, Q1) } such that

1. Given {wy(2'), Re(2'), e (Qpy1, 241 |2, Zt)}fio,ﬂf

tion and asset allocation {c;(ag, 2*, ), asy1(ag, 2!, Q1) }, for all initial conditions

Qi1 e0sys e household consump-

(ap, 20), maximizes the expected lifetime utility:

max Z Z Z B () m(2") log(c(ag, 2°, QF)) (161)

c t Q). a t+1 Ot+1
{ee(ao,2",02%) ar 41 (ag,2" T )} 4= <

38 Aggregate productivity growth rate g4 ;41 1= Att1 and depreciation rates 0;+1 depend only on Q..
ggregate p yg JAt+ A, P + P y +
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subject to the budget constraints:

Ct(a/(), Zt? Qt) + Z Z qt(Qt+17 Zt+1 |Qt7 Zt)at—l-l(a(]a Zt+17 Qt+1)

Qt+1 2449

= wy(Q")z + R(Q)ay(ag, 2, Q) (162)
and the shortsale constraints:

a; 1 (ag, 2T Q) > 0. (163)

2. Factor prices equal marginal products

N - o (K1) ’
n o g (K@)
R(Q) = 6 (W 1= 6,() (165)
3. The goods market and capital market clear
Cr(QY) + K1 (1) = (K (271) A(29)1 7 + (1 = 6,(0)) K, () (166)
Koy () = / S ar (a0, 2, Q) r(2 ) dD(ag, ) YO (167)
where

Q) = / S culag, 21, Q)n(2")db(an, 20) (168)

The price of contingent claims and the no-saving condition are given by the following.

Assumption 2’ (Contingent Claims Prices).
e (Qu1s 2601 |, 2") = T( Qe | Q2) 7 (2041127) (169)
Assumption 3’ (No Savings Incentives).

wt+1(Qt+1>

BR () w ()

forall t > 0 and Q'+ (171)

Optimal Allocation We conjecture that the optimal consumption and asset allocation
of individual households is given by

cw, (), where ¢ := =008 ¢ jf 5, =
culag. #4,2) = { 1) “ Egre Ta (172)
1—(1—v)B]R(2May(ag, 2, Q")  ifz =0
0 if 211 =¢
Al (CL(), Zt+17 Qt+1) - ﬁfwt(ﬂt) if Zy = C and 241 — 0 (173)

ﬁRt(Qt)at(ao, Zt, Qt) if 2z =10 and Zt41 = 0.
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Given Assumptions 2] and [3], the household’s problem (I6I)-(163) is unchanged from
the household’s problem defined in Section[2.5]in the presence of stochastic depreciation
rate. Therefore, Proposition 1 implies that the household allocation (172) and (173) is

optimal under Assumptions and
The aggregate law of motion is given by:

K () = 8A, ()R, (1Y 4 (1 = 04(Q)) K (1), (176)

where §($,) depends on time-varying §(£2,):

~

0() =1—(1—v)B(1 = 6()). (177)
Now we prove Proposition The procedure closely follows that of Proposition
Proposition [11].
Proof. We want to find a sufficient condition on (e, ¢) such that the following holds:

Wiyt (Qt+1)

wy ()

First, as in Lemma the minimum and maximum productivity-adjusted capital in

BRi1 () < for any (t, ', Qiy1). (178)

the economy, K™" and K™, are given as follows:

-~ . § 1—-0

Kmn .= < ) (179)
5max + €

~ 5 =

Kmax . ( 5 ) (180)
5min — €

where
b=1—(1—v)B(1—29) (181)

with dpin = 6 — ¢ and Jmax = 0 + <. This is because a higher depreciation rate (i.e.,
6 = Omax) implies lower aggregate capital, and vice versa. To guarantee K™ > (), the
parameters must satisfy o, — € > 0. This is satisfied under Assumption|8] since

1—e\"6
0 ( 6) maXA—’— : +1- 6min

l—e>5 1+e€ S

> 5(1 — 5min)

A

>1-— 5rnin~

3%Verifying Assumption [2|is immediate, as the Euler equation of unconstrained agents implies:

ci(ag, 2, Q)
Cort(a, 2141, Q)

where c;41(ao, P Qt+1) = ﬁR(QtH)ct(ao, 21, Q) (175)

@ (1, 241, 28) = T(Qega [ 7 (2041 |2") BR(OTTT) (174)
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Notice that o, can take a negative value, in which case capital appreciates over time.
The condition &y, — € > 0 is equivalent to:

1—c¢
(1-v)p

Since (1 — v)B < 1, dmin can be negative in equation (182).

Omin > 1 — (182)

Second, since wage growth w;—tl is not impacted by d,,; while the interest rate R,
is decreasing in 4, , the condition (178)) is more likely to be violated if ;. is smaller.

w

o atany (¢, Q, Q1) is given by:

Hence, a sufficient condition for SR, 1 <

1
w1 ()
Ry (QFL _— ) (183)
5 t+1( ) f(t:[(mmy%zlffﬁtﬁ—l:amin wt(Qt) f{t:f'(max’AZthrl:liE
N . . t+1 .
By substituting the interest rate, R, (Q'"!), and wage growth rate, %, and impos-

ing Kmin apd Kmax i equations (179) and (180)), the sufficient condition that correponds
to equation (157)) in Proposition [15|is given by:

ldte~ . 0—1 ~ 10
0 (—Kmm> +1— 5mm] < (1=l |(Kmax)o-1 41 6mm} : (184)

b 1—c¢

Solving this inequality gives the sufficient condition (79).

Now we show the existance of an open neighborhood N around (e,<)=(0,0) such
that Assumption [8]is satisfied for all (¢,<) € N. As shown in Proposition 15}, Assumption
is satisfied if (¢,<)=(0,0), since the condition is equivalent to Assumption |5| if
(¢,6)=(0,0). Proposition [15| implies that condition is more likely to be violated
as e increases. Likewise, since the left-hand side of inequality is monotonically
increasing in ¢, Assumption |8| is more likely to be violated as ¢ increases. Since the
condition is continuous in (¢, <), there exists an open neighborhood AN such that
condition is satisfied for all (¢,¢) € N.

Put differently, given a fixed ¢ > 0 that satisfies Assumption G} there exist ¢ > 0 such
that Assumption (8| is satisfied for all 0 < ¢ < <. In this case, (¢, <) solves the condition
(79) with equality. Likewise, given a fixed ¢ > 0 that satisfies Assumption [8| with e = 0,
there exists € > 0 such that Assumption [§|is satisfied for all 0 < ¢ < €. In this case, (€,¢)
solves the condition (79) with equality.

O

A.3.3 Subsection|[5.2.1: The Risk-Free Rate and the Risk Premium
Lemmal(dl.

Proof. We first derive a pricing kernel that allows us to compute the price of any securi-
ties, including the price of risk-free bonds ¢? (') and the price of risky capital ¢ (Qf). A
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pricing kernel is defined as the price of one unit of non-deflated consumption goods at
time ¢ + 1 in a state Q**! conditional on the state at ¢ being Q*{")

110t u/(CtH(QtH)) t+1 10t

Since we assume a logarithmic utility function, the marginal utility of consumption is
given by:
!/
u'(cy) = —.
(e) =

In addition, in the limited commitment model, consumption of asset holders (i.e., house-
holds in a low-income state at ¢ 4+ 1) follows the Euler equation:

i1 (7 201 = 0) = R (27 )er(Q).
Therefore, the pricing kernel in the limited-commitment model is given by:

Q(Qt+1|Qt) _ 1

_ Qt—i-l Qt ) 186
Rt-ﬁ-l(Qt—H)ﬂ-( | ) ( ° )

Given this pricing kernel, we can derive the price of any securities. The price of risk-
free bonds that yield one unit of consumption at ¢ + 1 regardless of the aggregate state
Q! is given by:

(@)= ) QE@*eh -1
QU1

1
= — (T
Q;Qt RHl(QtH) ( | )

1
- | e

The price of risky assets that yields R, (Q2"") depending on the aggregate state Q! is
given by:

¢ () = Z QQTHQ) Ry ()

Qi+t
1
= (O Ry () = 1. 188
QHZ”:Qt Rt+1(Qt+1)7T( | ) H—l( ) ( )

Now we compute the expected return on these two assets. The expected rate of return
on risk-free bonds is given by:

1 1 1
E = =: : (189)
' [QB(Qt)] ZQH—I\Qt mﬂg}tﬂmt) Ei[1/Repr (41

40See Ljungqvist and Sargent (2018) p.270
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The expected rate of return on risky assets is given by:

Ry (21
Et {%} — Et |:Rt+1(Qt+1):| . (190)
Hence, the risk premium is given by:

Ee[Repr ()]
Ei[1/¢5 ()]

The risk premium is strictly larger than 1 because R;, (') is a non-trivial random

1+ A=

:Et[RtH(Qt“)]IEt[ ! )}>1. (191)

Ry (QH1

variable and Jensen’s inequality holds with strict inequality O
Lemma [2].

Proof. As before, the pricing kernel is given by:

ul<ct+1(Qt+1))7T 411t
(e ) ")

CL (O
%w(gmmt). (193)

Q) =8
=

The second line holds since consumption by a unit measure of representative households
is the same as the aggregate consumption.
Then, the price of bonds is given by:

()= > QTR -1

QU1
B C ()
= [E; {BOtH(QtH) (194)
The risk premium is given by:
Ey[Ryi1 (271)] { Ci () 1
1+ M\ = =R (A By | Bt 195
R V) B R e )

Note that A\;*” can be positive or negative, depending on the covariance between R, 1 (Q'*?)

and 8 % A sequence of aggregate consumption C; follows the Euler equation:

1
Cy(92)

1
= ﬂEt |:Rt+1(Qt+l)m:| (196)

4f g(-) is a convex function, E[g(X)] > ¢g(E[X]), where X is a random variable. Equality holds only if
P(g(X)=a+bX) =1, where a + bX is tangent to ¢g(-) at E[X]. The Jensen’s inequality implies:

1

1
B [Rt+1(9t“)] ” B Rep (@D (192)
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This gives:

1=E, [BRtH(Qt“) G &) 1

Cra (241)

Cy () )]_+Covt<}a+1alml)’5__§£§zg__) . (97)

R @) 95 Conn( )

If the covariance term is negative, the risk premium in the representative agent model is
positive. O
A.3.4 Subsection [5.2.2; Economy with §j =1

Proposition

Proof. The economy is in a stady state at time ¢ = (. Since the aggregate capital in the
steady state is given by:

Ky = Aosflﬁ, where s € {s'¢, s®1, (198)

and the saving rate, s, is higher in the limited-commitment model:

B0 =: sFE < §1€ .= 5O + (1 — O)v S - | (199)

y(%—1+5+y> (1-0)3

P
>0 under Assumption[5|and §=1

the limited-commitmemnt model starts with larger initial capital. As discussed in Ap-
pendix [B.2.1] the capital stock K;(Q") after any productivity history is characterized in
closed-form as

t—1
log Ky =(14+0+---+0"%)logs+ (1—0) [Z 0" log A;_,

T=1

+ 607 og Ky (200)

Hence, given the history of aggregate shocks, the limited-commitmemt model always has
larger capital than the representative agent model. This implies:

KFEQY) < KF(Q) for all O (201)
and R{E(QY) > RIC(Q) for all O (202)

Under full depreciation of capital, the price of risk-free bonds is given by the following
expression in both models:

1
qB(Qt> =E; [m] . (203)
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This can be shown by substituting the closed form of aggregate consumption in the
representative-agent model, C*” = (1 — ) A~ K?, into equation (84):

[o o] g [ =i ont
CLp () (1 - B8O ALK,
Al*@K@
=F, b - t91] where K, = BAK!
| K Ay Ko
I 1 1
=E, f} =E | = —— (204)
AT Rfif(ﬂt“)]

Hence, higher return on capital in the representative agent model at any state (2°
implies lower price of risk-free bonds and higher risk-free rate.
As we derived in Section [5.2.1] the risk premium in the two economies is given by:

1
LN = B[R (Q)) Ey [W}
t+1

cler )

1+ )\f@p = ]Et[Rﬁ_ef(Qt-f-l)] Et W (205)
t+1

B

We explicitly derive the risk premium for each economy. In the limited-commitment
economy, the risk premium is:

1
L+ X =B [R5 ()] B lW]

B O ) B e

1
—F eAA179K0 971A 1-0 E |: 1
AT e gy
1
=E; [A 7] E, {F] (206)
t4+1

In the representative agent economy,

cler ()

1 + /\fep = Et [Rfff(gt—’—l)} Et BW
t+1

1-6 176
—FE |6 KREP 0—1 A 1-6 E (1 - BQ)At Kt
t[ ( t+1) ( t+1) ] t 6(1 —BQ)A%;f(Kﬁelp)e
=E, [A ] E, {%} (207)
Ay

This shows that the risk premium is the same between the two models under full depre-
ciation of capital.
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Note that the risk premium can be expressed as:

A\
A,

( lt )19
At+1
If the aggregate grOWth rate fOHOWS an lld proceSS,

At+1 1= At+1 =0 t At+1 0 t
( A, ) A, |2 A, for any (t,").

Hence, the risk premium is constant over time and across aggregate states 2’.

]-—’_At:Et

E

Et ::E :E

A.3.5 Subsection [5.2.3; Endowment Economy

In an endowment economy, aggregate consumption {C;(Q2")}; o« is exogenous and de-
pends only on the aggregate state €);. Households face idiosyncratic income shocks
and draw z; € {0,(} each period that follows a Markov transition probability as be-
fore. Households trade a state contingent Lucas tree o, (0, 2/, Q') that delivers
dividends depending on aggregate states Q"1 at time ¢ + 1. In the limited commitment
model, households are subject to a tight borrowing constraint. In a standard complete
market model, the borrowing constraint never binds. Since we obtain the same stochas-
tic discount factor in the standard complete market model and the representative agent
model, we call such an economy a representative agent model.
A sequential market equilibrium is defined as in the production economy.

Definition 3. Given the price of Lucas tree {q/"" (")}, o and aggregate endowment {C;(Q") }22 .,
the household allocation {c;(c¢, 2, ), 0411 (00, 2111, Q) ) solves, for all (o, 20),

2, Qt), O't+1 Uo 2t Qt+1)} Z Z Z Bt Qt log(ct(ao, Z Q )) (208)

{ct(o0, t 0 ot

subject to budget constraints and limited-commitment constraints:

UO,Z Qt +ZZ (ze41]2)m Qt+1|Qt) (Qt)0t+1(00, t+179t+1)

Qiq1 2t41

= [1 — a]CL(Q) 2, +[aCL () +¢FT (D))o (00, 2, Q) (209)

N ~ S SR

labor income dividends
o1 (09, 277 QN >0 (210)

The goods market and Lucas tree market clear

Z/ )i (00, 21, Q) dD (00, z9) = C,(Q) (211)
Z/ O't 0o, Z Q )dq)(O'Q,Zo) 1. (212)
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Factor prices are given by:

w () = (1-0a)Cy(Q)
aCy (') + ¢ ()
G (1)

R:(Q)

In the sequential equilibrium, a conjectured optimal allocation is:

_ 1-(1-v)B — t
o = (1o ) 1 - alcu@e

Cst = [1 - (1 - V)B] [act(Qt) + QtLT(Qt)]U&t for s = 17 27 T

= 5RtCs—1,t—1
oot =0
@i = (=g ) 1L el
1-(1-v—=¢)p
G () ogy1 1 = BlaC Q) + ¢F ()]0, fors=1,2,---

Equation (217) is derived using equations and @219) /7

(213)
(214)

(215)

(216)
(217)

(218)

(219)

Lemma 12. Consider the limited-commitment model with exogenous aggregate endowment

{C(Q") }1.qt. Lucas tree yields « fraction of aggregate endowment at all t and Q' and is priced

at gFT(Q) at state Q. Under Assumption

wt+1(Qt+1)

AR () < we ()

forall t,Q,

and the initial condition on the household’s share of Lucas tree:

O'O:O leO:C

_ (1—a) 1 ) B
T 0-v-9farq =0

where q is given by:

_ f(l_a)+ﬁ(1—u)a(§+y+/l3_1)
S T T R (R e o S VR

42Substituting the following two equations

[aCy () + ¢FT ()]
Ostl,i+1 =B mEaTT Os,t

Cst

[1— (1 —v)B][aCy(Q") + g T (2")]

Os,t =

into equation att+ 1:

Corrapr = [1— (1= )8 [aCrr () + ¢ L (" D)ows101
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the conjectured household allocation (215)-(219) and the price of Lucas tree:
" =qC (224)

satisfy the budget constraint, Kuhn-Tucker conditions, and the market clearing condition.
The interest rate, defined as the return on Lucas tree, is given by:

+ g Crn ()
Ri () =2 225
e () q  C(S) (225)
Under the assumption on the parameters:
- < : (89)

(1—&)(%—1) V(%—1+5+V>7
equation is satisfied for all (t, 2", Qy11).

Proof. First, we verify that the budget constraint is satisfied. In a high-income state, the
household earns labor income but does not hold the share of Lucas tree. She purchases
a share only for a next high-income state. Hence,

ci(ao, 2, Q) + Z ZW(Zt+1|Zt)7T(Qt+1|Qt)QtLT(Qt)Ut+1(UO> 2O — 1= ]G ()¢

Qt41 2t+1

(s e

=0.

B
(1-v=¢)p

) [1—a]COQNC — [1 — a]C(QF)C

In a low-income state, the household earns zero labor income and receives dividends
from the Lucas tree. The budget constraint holds with equality:

ci(0, 25,90 + Y 3wzl z) m( Q| Q)G (Q)or i1 (00, 217 Q) — [aCy () + ¢FT(Q1)]ou (00, 2", )

Qi1 Ze41
=[1— (1 —v)p][aCy(Q") + thT(Qt)]Ut(ao, 20N + (1 — ) BlaCy () + thT(Qt)]Ut(ao, 21, QY
— [aCi(Q2) + ¢/ (2)]ou(00, 2", Q)
= 0.

Second, we verify that the conjectured allocation satisfies the Kuhn-Tucker condi-
tions:

1 1
— BRL (O
Ct(an Ztv Qt) 5 t+1( )Ct+1 (007 ZtJrlv Qt+1)
1

Cii1 (007 2+l , Qt+1)

if Ot+1 (O'(), Zt+1, Qt+1) >0 (226)

> ,8Rt+1 (Qt) lf Ot+1 (O'()7 Zt+1, Qt+1) =0 (227)

ci(og, 24, Q)
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In a low-income state at ¢ + 1, equation (217) implies that equation (226)) is satisfied
with equality. If the household is in a high-income state at time ¢ and ¢ + 1, equation

(227)) is satisfied if:
ct+1(007 ZtJrlJ Qt+1) > BRt-i-l(QtJrl)ct(O-O? Zt7 Qt)

o (1 :1(: ?gﬁ) 1= a]Crit () > BRsn () (1 :ﬁ; i)f)ﬁ) 1 - ]G ()¢
(1 —a)Ca (7)) wea ()

& SR () < (1 —a)Cy(Q2Y) - wy ()

Therefore, under Assumption |3, this condition is satisfied. We now want to show that
BRiy1¢i(00, 28, Q20 = 0) < cp1(0g, 28T QL 2 = () for all (o9, 21, QFF1), meaning
that a low-income household does not have an incentive to save for a next high-income
state. This is shown by claiming that under Assumption [3]and the initial condition (222),
low-income households never have higher consumption than high-income households.
Therefore, the Kuhn-Tucker conditions are satisfied between a low-income state at ¢ and
a high-income state at ¢ 4 1 as well.
Remember that:
1-(1-v)B

cilon 4,912 = O = (T g e ) 1= alCu@)¢

ci(00, 25, Q% 2, = 0) = [1 — (1 —v)B] [aCy(QY) + ¢F1 ()] oy (00, 2*, Q)

with ¢/7(Q!) = gC;. We have c;(0, 2¢, Q5 2, = 0) < ci(09, 28, QF; 2, = ) if:

1= (1= V)81 [aCu®) + @t . 0) < (2 oy gy ) L= el
t Ot (1-0a) 1 .
& o9, 25, ) < = U—v—0)3 Oz—l—(jC_' 0o

In the initial period, o;(09, 2%, Q) < Gy is assumed as in equation (222). At time ¢t = 1

onwards, 0,41 ++1 for s > 0 follows:

aCy + QtLT
Ost1,t+1 = 5T03,t
q;
LT LT
@5 aCrt gy
- LT LT
q; ]
= 5 R4 Ost-
Wy

——
<1

s,t

Wi—1

This implies that the share of Lucas tree satisfies o,41+1 < 09 if 054 < 6o forall s > 1
and ¢ > 0. Hence, we only need to show that o, ; < ¢y atall ¢ > 1. As in equation (218):
s Ci(€Y)
= 1— .
e (1 —a-v-g8) @
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LT (1-a)

Using ¢/7(Q') = ¢C; and 5‘%"7 < 1, we have 01,41 < g =

U8 atd

(. There-

fore, 0y(09, 2%, Q) < Gy is satisfied for any (oo, 2%, Q"). We have shown that low-income

households never have higher consumption than high-income households. Assumption

implies that (227) holds with strict inequality.

Third, we verify that the market-clearning condition (212) is satisfied. This is done

by deriving the equilibrium price of Lucas tree that clears the market. Consider that C,

is realized at time ¢. A market clearning condition for the share of Lucas tree at ¢ + 1 is:

(%)
1= E ¢so_s,t+1
s=1

From equations (218)—-(219), we know:
. _ B [1— a]C(O)
PN -v-98) 6T

aCy() + ¢/ ()
Ost+1 = 5 thT(Qt) Os—1,t

N

for s > 2

By substituing into (228), we have:

S ( B ) [1—a]Ct(Qt)C
E+v \1-(1-v=8B) ¢" ()
aCy(Q) + /" ()] < ¥ .
+B[ thT(Qt> } 22§+V(1_y) Os—1,t
=(1-v) 32", g'fp‘(,l_’/)silo's,tzl_l/

By soliving this, we obtain:
f(l—a)+ﬁ(1—u)(x(£+u+%—1)
1-BA—-v)]E+r+5-1)

~
denote as q

¢ () = Ci(QY)

Given ¢FT(Q), Ry (21) is defined as:
aCu1 (V) + g5 (1)

Rt+1(Qt+1) = qLT<Qt)
t
a4 qC ()
7  G()

Therefore, Assumption (220) is satisfied if:

52 +qC1 _ (1 -0a)Ci
q Ct (1 — Oé)Ot '

Solving this inequality yields a condition in terms of parameters (89)).
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Given the sequential equilibrium, we will show in Proposition [13| that when aggre-
gate consumption C;(£2) is exogneous and follows a common stochastic process in the
two models (the limited-commmitment model and the representative-agent model), the
limited commitment model has a higher bond price:

g”" Q) > ¢ (@) for all O, (233)

and hence a lower risk-free rate | To do so, we derive the interest rate in the endowment
economy, as is standard in the literature (e.g., Ljungqvist and Sargent, 2018)).

The Interest Rate in the Representative Agent Economy In the representative agent
model, the interest rate, defined as the return on Lucas tree as before, is given by:

OéCtH(QtH) +q +1(Qt+1)

Ry (QHQ) = 23
t+1 ( ’ ) q%‘T(Qt) ( 4)
The price of Lucas tree, which yields « fraction of aggregate endowment, follows:
qllgucas Qt Z Q Qt+1|Qt) [OzC' (Q?ﬁ-&-l) + %—ﬁas(gt—i_l)] (235)
Qt+1
C(Q2)
t+110t\ _ t t+110t
Using recursion of the equation, the price of Lucas tree is expressed as:
1 >
o) = Sy (B2 P Cona @ 0oy () + B fim B (Coral 27 ()
(236)

The last term must be zero to clear the market. Under a logarithmic utility function,
which gives «/(Cyy,;)Ciy; = 1, the price of Lucas tree is proportional to the current ag-

gregate endowment:

p

—5aG(), (237)

q%.ucaS(Qt> — .

Imposing this into equation (234) gives:
lCtJrl (Qt+1)
g C(Y)

“3Note that a labor share in the endowment economy, 1 — a € (0, 1), is constant over time and across

RR€P<Qt+l‘Qt) _

fer (238)

states. The share of labor income in the total resources available in the economy is also constant in a
production economy with § = 1. However, in a production economy with § < 1, the share:

wy L  (1-0)AKY
AR+ (1-0)K,  AFK? + (1 -90)K,

is not constant. Since one of the key assumptions in [Krueger and Lustig| (2010) is violated, the conjecture
(the same risk premium) may not be true in such an economy. We will come back to this point later.
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Proposition

Proof. In the representative agent model (complete market model), we have seen that
under logarithmic utility, the interest rate is given by (234):

_ L G (@)

RRep Qt+1 —
t+1 ( ) B Ct (Qt)
In the limited commitment model, the interest rate is given by (225):
+qCrpa ()
REG Q) = & (239)
il ) q C ()

. . . t+1y . .
The interest rates are proportional to consumption growth %&)) in the two economies.

In a partial insurance equilibrium, parameters are assumed to satisfy (89), which is
equivalent to:

a+q

gL . (240)

Therefore, we have:
S REG Q) < REP(QM).

The limited commitment model has a lower interest rate. The price of risk-free bond is

given by:
LC (Ot _ 1 _ q C ()
e Ci()
QtR p(Qt) =K, {ﬁm} (242)

Since 5 < a%q, the limited-commitment model has a higher price of risk-free bonds and
a lower risk-free rate 4

41n the limited commitment model,

1 _ ﬁ Ct(Qt) > ﬂ

REG (QiHY) Cr1 (U 241 = 0)

cEC (@)

, (243)
CEG @)

since ¢;41 (L 2001 = Q) > 41 (L 241 = 0). Formally, CLG > BREC CLC follows:

o0
Ct+1 = E ¢sCs,t+1

s=0

oo
=d¢o cCot41 + Z @s  Coiy1
SN—~— S~

s=1

>BRit1co,t =BRit1Cs-1¢
o0
> BRi11 |¢oco, + Z o5 Co—1,t
s=1 v

>c,,under Assumptionl

> BRi41 |doco + Z ¢sCot | = BRi41Cy.

s=1
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Remember that the risk premium in the two economies is given by:

G (62) ]

Re Re t+1
L4+ A = B[R (Q)] Ey {5m

1
1+ AC = EJREG (] E, {W} .
t+1

Given the equilibrium interest rates, the risk premium in the two economies is given

by:

1
14+ \Fer O™NE, | ——— | > 1 2
£ AR B (G (O] t[%mm) 5 (244)
1
14+ MC = EJ[C. 1 (QHIE,; | ———— 1 245
+ A t[Coa (7)) t|:Ct+1(Qt+1) > (245)

Therefore, we see that the two economies have the same risk premium. If the growth

rate of exogenous consumption Cal follows an iid process, the risk premium 1 + ); is

constant over time:

o= Pt ]2 o e
=ty |2 [ -

A.3.6 Intuition with Multiplicative Stochastic Discount Factors
Proposition

Proof. First, we show that equation (93) holds in both models. Consider the represen-
tative agent model. We want to show that the stochastic discount factor satisfies:

CPP(Q) T ()

Rep t+1y .
My (7)== R () _%TtH(QtH) (246)

for some non-ramdom variable +,. In the endowment economy;, since the aggregate con-

sumption is exogneous:
Tt<Qt) - Ct(Qt), (247)

Equation is satisfied with v, = (. In the production economy with § = 1, the
constant saving rate implies that:

CIP(Q) = (1 - BO)A; K]
= (1= BO)T, (). (248)
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Again, equation is satisfied with ~, = .
In the limited commitment model, we want to show that the SDF satisfies:
Ct(Zt, Qt) B Tt(Qt)

LC t+1y . —_—
Q = -
My ( ) Bct+1(zt+1’ Q1 24 = 0) T ()

(249)

for some ~; that does not depend on A, . Note that the limited-commitmment constraint
does not bind for a low-income agent at ¢ + 1.
From the Euler equation of low-income agents, we have:

Ct(Zt, Qt) B 1

= . 250
60t+1(2’t+1» QL 240 = 0) Rfﬁ(QtH) (250)
We have seen in equation (225) that in the endowment economy,
+q Crpa ()
REG (1) = 2 (251)
t—‘rl( ) (_7 Ct(Qt)
holds. In the production economy with § = 1,
REG(Q) = 0K7 ALY
o KA
- LOKPA
0 Yo
= — 252
sLC Tt ( )

Hence, equation (249) is satisfied with a non-random ~, in both cases in the limited
commitment model.

Second, we prove (94). In the endowment economy, it is trivial since the total re-
sources are €xogenous:

TRV = TH(@) = CU).

In the production economy with § = 1, given the constant saving rate in the two models,
we obtain:
T.(Q) KA KIA

Topr (1) K?G A a (SKPA; %) AT

where 5 € {36, 3¢}, (253)
% are proportional to ﬁ in the two models. Hence, there exits v; in equation
that does not depend on 2, ;. Equation directly follows from equations
and (94).

Finally, we proceed to the last statement of the proposition. In the endowment econ-
omy, the proof follows Theorem 4.2 in Krueger and Lustig (2010). The risk premium is
defined as:

E; [Real{etsr}]]

14+ X\ =
+ t Rt’l[l} )

(254)

91



where R, ;[{e;1}] is the one-period return of holding a claim {e;.};>1 from time ¢ to
t + 1. The Lucas tree yields « fraction of endowment in the economy, so e, = oY, for
all £ > 1 in both models. Their derivation shows that the risk premium can be expressed
as a weighted sum of risk premia on strips:

o VBl 255
+ At ; 1/Et[mt,t+1] t [ t»l[et+k” ’ ( )

E, [mt,t+k €t+k]

where wy, =
Z?L Ei[my iy j€i45]

If myg, =~ mfffl, where ~/ is a non-random multiplicative term,

Brialmi8 oy pee+n]
LC E +1,t+

1+ M\C = =
t 1/Emifial 1/E[mifial

Re
Et+1[’Yélﬂ"‘7£Q—k—1mt+f,t+ket+k] Rep
t B[y 'y mEer o ] ]Et Rtl [et+k]
- Ve Vi1 Vet k-1 11k Ct+E . ) -1 )\Rep (256)
N 1/E im0 YRS i
t ’tht,t—&—l t mt,t—i—l

holds for all k£ > 1, where my ¢+ = My 1M1 442 - - - Mygr—1,¢+k- Since wy is also the same
between the two models, the two models have the same risk premium.

In the production economy, one unit of capital purchased at ¢ yields 0 K/ ' A f +1—0
at time ¢ + 1. By substituting e;1; = 0K}, A;;{ +1— 6 and e,y = 0 for all k > 2, the

risk premium is given by:

B¢ [Rea[{err}]]
Ry 1[1]
Eep1 |07 A T)+1-0]
i [ o1 (0K) A +1-0)]
1/Et [mt,t+1]
CEOKT AT 41— O]Ey[me g4

C EJOK] ALY 1= 0)my ]

1+)\t =

E¢

(257)

If § = 1, this is simplified to:

Ei[Af B[y g44]

]- + At - _ )
E, [Atl+16 M p11]

(258)

where we use the fact that K, is determined at ¢ and is canceled out in the previous
equation. If mf/{,, = vg’mfffl holds, the representative agent model and the limited

commitment model have the same risk premium.
O

The proof illustrates that the two models have different risk premia if 6 # 1 in the
production economy. First, if § # 1, the risk premium depends on K, which follows a
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different law of motion in the two models. Hence, even multiplicative stochastic discount
factors would not imply the same risk premium. Second, the stochastic discount factors
are not proportional in the two models if § # 1. As we saw in (252]) and (253)), under
full depreciation of capital, the interest rate is proportional to aggregate resources t“

which is in turn proportional to A;,{. This is not generally the case if § # 1. In equa-
tions (256) and (258)), we have seen that the multiplicative stochastic discount factors
(mfGy = ~/m{5?)) imply 1+ AF¢ = 1 + A{*. If the SDFs are not proportional, the term

v/ does not cancel out, so the risk premia are generally different across the two models.

B Additional Discussions

B.1 Additional Discussion about Transitional Dynamics
B.1.1 Monotone Sequence of {A4,},

We derive sufficient conditions on a monotone sequence of {A,;};°, converging to A*

such that 3R, < “+L holds at all ¢ > 0. We first show that if {££}2 is also monotone,
+ " A, Ji=1

BRiy1 < =7 att = 0 is sufficient for SRy, < =% atallz > 0. Since the aggregate

capital at ¢ = 1 (k) is pre-determined at ¢ = 0 (in a steady state), we can derive a
condition on A; in closed form, as we did in Section for a permanent productivity
shock. We then derive a sufficient condition on {A,}{°, for the monotonicity of {ﬁ};’ol.
The condition on {A;}{2, and the condition on A, together guarantee SR, < =-** at
allt > 0.

Preparations for the Sufficient Conditions The economy is assumed to be in a steady
state at ¢ = 0, where SR, < 1 holds under Assumption[5] At¢ = 1, a new path of {A;}°;
is realized. We will derive conditions on {A,};2, that guarantee SRy, < =;* for all
t > 0. We first express PR in terms of capital:

w —AK?
SR = g lOAI e 1 —0) AL

: (259)
e (L= 0)ALTR?,

By using the law of motion of capital, K,,; = $4} °K? + (1 — §)K,, we derive following

expressions:
Kpn _ A |, (m)" < Ko
= Sl— ) +(1—=90)—], (260
At+1 Ay Ay ( >At )
1-0
" 6+ (1—0) (fj—i)
ﬁRtHw =f - - (261)
b1 s+(1-9) (%)
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We first show that the monotonicity of {%} give rise to analytically tractable suffi-

cieint conditions for SR < wtf atall t > 0.

w

Lemma 13 (Sufficient condition for SR,

t”t < latallt > 0).

W41
1. Suppose {A;}{2, and {]Af—z};ﬁl are monotonically increasing over time (i.e., A; < A;q

and ﬁ—: < f:—;lfor all t > 1). Then, A; < A, is sufficient for fR,41-%~ < 1 atany t > 0,

W41

where

A _[1-80-0) §0-0+0-vl-(0-v=§ ]~

Ao 0 1-(0=v)pd=9I1-010-v=-8h
2. Suppose {A;}2, and {f—:}fﬁl are monotonically decreasing over time (i.e., Ay > A1
and f—: > K:—Llfor all t > 1). Then, A, > A, is sufficient for R, 1%~ < latany t > 0,

A W41

where

1-(1-8)p1-v) &EQ—=0)=povE+v+5-1)
Br(1—0) g(1-9)+59(1—y)(g+u+}3—1)

< 1.

9
Proof. 1. Since w; = (1 — 0) A, (f—:) , monotonicity of {A,;}72, and {4*};2, imply mono-
tonicity of w;. If A; and % are weakly increasing over time, w;—:l > 1 for all ¢ > 1. Then,

0—1
BR;;1 < 1is a sufficient condition for SR, < “’;Utl. Since R;,, = 60 (fﬁ—ﬁ) +1-9,

monotone increase of % implies monotone decrease of R;. Therefore, SRy < 1 is suffi-

cient for SR;,, < 1 for all ¢ > 1. Furthermore, % < % implies R; > R,. Thus, fR; < 1

is sufficient for SR, ; < =L atall¢ > 1. SR; < 1 also implies SR, < “L. Proposition
we p wo p

shows 6R1 < 1if Al < Al.
2. Using equation (261)), the condition SR, -2~ < 1 is written as:

1-6
0+ (1—0) (5=
Wit §+(1_5)<%>
K =0 K, =0 1 £(1-0)
o (K)o (B [ ) e

where we know the RHS is strictly positive under Assumption[5|(Lemma[7). The equation
(262) can be written as:

K\ (KN, (KN 1 §(1-9)
) -(G) ~(5) <Sl=aste ]

-~

L K K
0if St <2t
< Atg1 <A

1-6
Since % is decreasing over time, (f—;) is largest at t = 1. Since we have:

Kt+1)1_0 (Kt)1—9 (Kt)l—e <Kt)1—9 (K1>1—9
(2t +uv|— <v|— <v|— forallt > 1,
(At+1 At At At Al
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a sufficient condition for (262) at all ¢ > 1 is given by:

(9)" < iy [ ]

A condition on 4, for this inequality is given in Proposition[9] (i.e., A; > A}). Proposition
shows that A, > A, is sufficient for A; > A} and SR, < z—; Therefore, it is sufficient
for SR, < “’tjl atall ¢t > 0. O

w

Next, we we derive sufficieint conditions for the monotonicity of { f—:}. Lemma
derives a condition on A,,; as a function of K;. Since K, is an endogenous variable,
we will use a first-order approximation to derive a sufficieint condition on {4} as a
function of exogenous parameters.

Lemma 14 (Monotonicity of f—:). Consider an economy with IZ—: at time t, where the steady-
state value of capital over productivity is given by Ij— We have f:—ﬁ > f—: if and only if

* x\ 1—0
()]

A

146
At<+

Proof. From a law of motion of capital (260)), we know iﬁ—ﬁ > 5; if and only if

A Kt o N Kt
By dividing both sides by f—: (# 0), this is equivalent to:

(KN A
— 1-— .
5 <At) + o> A,

Kt+1 At

At+1 At+1

>_

In the steady state (K;,; = K; = K*), we have:

R\
5_5(14*) .

(o)

By substituing this, we derive:

A
A

~

1+0

]

Lemma (14 means {£:}?°, is monotonically increasing if the condition (263) holds
for all t > 1. In order to derive a condition on {A,,} without an endogenous variable

K, we derive a first order approximation of l~ct = gﬁéii and /%t = II{Q@ They are used

in case of an increasing and decreasing sequence of {A;}?°,, respectively.
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Lemma 15 (First-Order Approximation).

1. A first-order approximation of k, := l[({i;ﬁi

is given by:

t—1
Fe<1— Al; Ao [1 — 51— e)r1 -3 Atmun = A [1 — 51— e)r1 . (264

t u—=1 At
2. A first-order approximation of k; := f(t;:}t is given by:
; A (Ao — Ay . -1 N A Ay . u—1
ky <1—— 1-6(1—19 - —1)|1=6(1-6 :
CS T < A > 1-d-0) ; Ao \Aus 1800
(265)
Proof. 1. We know the law of motion of fi—: by equation (260):
K A A(Kt)e - K, ) A<K*)1‘9
= S— | +(1—=96)—| ,wheres=9¢
Ay A Ay ( >At Ax
By dividing both hand sides by £, we have:
Kef/Amr A | o KJA o [ KA,
K*JA A ave a) " SRRV JA* (266)
Kt/At

Denote k, := weras with k* = 1. We will approximate f(k;) := 6(k;)? + (1 — §)k; by Talor
expansion:

Flke) = FOR) + (R (ke = k) + f" (k) (ke = K7 + o([[ke — K7]]%), (267)

where we have:

Therefore, we approximate k., by:

A

A

Fopr = {1 P = 61— 0)] (ke — E*) — (1 — 0)8(ky — E*)% + ol||ke — B*[])] . (268)

By subtracting k* (= 1) from both sides, we have:

Fopr — kBt = ( A 1) LA {1—5(1 —9)} (oo — ) — 2001 — 0)d (e — B2 + oo — [ 2).

At—H At—l—l At+ 1

(269)
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Since the third term is strictly negative, we derive the upper bound of k, — k* as follows:

A A . Al o -
Ro— k= S0 =1 S 180 0)] Gy = B) = 22200 = 0)5(hr — B9 + o[ — F1?)
t t t
A ) - A
< ilh—dﬂ—ﬂhhl—kﬂ—(k—il)
t t
o 2 . ~ ~
<A f-sa-o - o o] (1-52) - (1-%)
Ay A =1 . — Apmugr — Ay A -
<T [1 ~ 51— 9)} (ky — k) — ; " [1 ~ 51— 0)} . (270)

Ki/A1 _ Ki/A

By substituting &, := oA = Koras

_ Ay P
=42, we derive:

- A — A ) _ tilAfu A, ) -
b < 1— 1At 0[1_5(1—9)]t1—z t +i4t t [1_5(1_0)] 1‘

u=1

2. To prepare for a sufficient condition in case of a declining sequence of {A;}, we
derive a Taylor expansion of the law of motion in terms of k, := ;A with k* =
Equation is written as:

> A 1

k = — —
A Skt + (1= )y

(271)

Define g(k,) := W and Taylor approximate this function.
t

(k)

= g (k) = [w9+n5+21— +2p5+1—ﬂ
:80—@[( —0)(26 — 1) — ]

We have gk <0if(1—0)(20—1)-1<0< 25 < 155 + 1. This is true since o<1
and —; > 1. Therefore, Taylor expansion of is given by:

> o (A A : s e A e 2 S 2
hH—k__<At—1)+4$ P—&1—®Mm—k) i 9" () oy — )2 + o[ — B])?)

(272)
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Since ¢"(k*) <

. Ay s . . .
k k= 0| (ks — k* MY (key — K92+ o[k — E*|I?
- <AH AH =60 = 0)] (heoa = k) = () (b = K - ol s = I1)
A o A
< li-da mh@l—k>+(&1—ﬂ)
A 2 . . At( &4> - At( Apv
1—51—0 ki o — k™) + 1— 1—6(1—-0)| + 1—
AtQ[ ( >}(t2 ) Ay Ay [ ( )} Ay A,

Ao sa-0] " §:Atu(Atu'*Q[1—&1—mrl.

1 At—u-‘rl
By using ky — k* = % —1= AlAAO we have:
A (Ao — Ay . -1 N A Ay . u—1
kt<1—A—1< I ) [1—5(1—9)] —;AH i [1—5(1—0)} .

]

A Sufficient Condition on {4,}°, First-order approximations of k; and %, allow us to
establish a sufficient condition on { A4, }{°, for the monotonicity of {f—:}g’il. Then, Lemma
gives a condition on A; that is sufficient for fR;,; < wfvt Lat all ¢ > 0. We state a

proposition below.

Proposition 16.
1. (Positive Shocks) Suppose Assumption [5|holds and the economy is in a steady state at
t = 0. Consider a weakly increasing path of { A;}?°, converging to A* (A < A; < --- < A*
with lim;_,., Ay = A*) that is unexpectedly realized at t = 1. If the sequence of { A, } satisfies
the condition , both {A;} and {f—:} are monotonically increasing in t. Then, A; < A,
is sufficient for fR; 1 < ““ atall t > 0 (Lemma . Therefore, the conditions and
together guarantee SR < <. atall t > 0.

Ao < A1 < Al, (273)
1< A1
Ay

1-6
. 1
<149 = - — —1| Vt>1,
1 - Ao [1—5(1—0)} Z“M[l—a(l—m}
(274)

1 - B(1 - 4) a1—m+a—uwu—a—u—@m]ﬁe
6 —(1-v)B1—0)[1-(1-v-9F

2. (Negative shocks) Suppose Assumption|5|holds and the economy is in a steady state at

where A; := Ay [

t = 0. Consider a weakly decreasing path of {A,};°, converging to A* (A4y > A; > --- > A*
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with lim;_,., Ay = A*) that is unexpectedly realized at t = 1. If the sequence of { A} satisfies
the condition , {ﬁ—:} is monotonically declining in t. This implies that A, < A; is
sufficient to guarantee SRy, < “Ht atallt > 0 (Lemma . Therefore, the conditions
and together guarantee SR, < = atall t > 0.

A < Ay < Ao, (275)
1-6

& Ay (Ao — Ax Ap—u s u-1
15{1(11411( o )[1—51— } ZAt - <Atu+1_1> [1—5(1—«9)} ) ]

o A <1 Wvt>1, (276)

Ay
_1
where Ay == Ag |1 —v+v

1-(1-0p(1—v) E1—-0)—pov(E+v+4-1) 71
Br(l —4) 6(1_9)+59<1_V><5+V+3—1> .

Proof. 1. Lemmastates that Kt* L > ft forall t > 1 if

A | (KA
;1“<1+5[(K?A) —1]atallt21. (277)
t t t
In Lemma we establish an upper bound on l;;t = f{(ﬁx“i. Therefore, we have:

I<*/*’4>!< 0 Al - AO I =1 — At—u+1 - At—u N u=l Y
(Kt/At> 1 [1_5(1_9)} -y [1—5(1—9)}

Ay — Ay
(278)
Hence, the follwing condition is sufficient for condition (277)):
1-6
A1 . 1
4 <1+ — 1| vt >1

1 - Aido [1—3(1—0)}'5 —Z“M[l—é(l—ﬁ)}

Under this condition, {Z—I};ﬁl is monotonically increasing. Thus, Lemma states that
condition (273)) is sufficient for SR, < wﬁ: Latall ¢t > 0.
2. Lemma [14]states that % < & forallt > 1if
t+1 t

A | (KA
t t 4
In Lemma ! we establish an upper bound on k, := ;A Therefore, we have:
—0
<K*/A*>19 Ae <A° - Al) 1-sa-0]" - ti A ( A 1) 1-sa-0]" 1
K /A, A Ay = A \At—ut1

(280)
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Hence, the follwing condition is sufficient for condition (279):

A1

t

5{

Under this condition, {f—:}ﬁl is monotonically decreasing. Thus, Lemma |13|states that
condition Ii is sufficient for SR, < “’;; Latallt > 0. O

B.1.2 Further Discussion on Corollary 2|

As we see in Section the Euler equation between ¢ = 0 and ¢ = 1 for low-income
agents holds at the time of MIT shock (¢ = 1), and households do not respond to future
anticipated productivity shocks. This is not generally the case in a limited-commitment
model with CRRA utility and in a neoclassical growth model with logarithmic utility.

CRRA utility We discuss what happens under a CRRA utility function (Cll__% with o #
1). Under the no-savings condition for high-income states (Assumption [3), households
finance their consumption in future low-income states with their state-contingent assets,
so the budget constraint is given by:

1—v l1—vl1—v
Riasy = Csp + ———Cgy141 +
Ry Rip1 Ripo

5 Cst2,t42 T ° (281)

Suppose a deterministic sequence of future interest rates { R, } > is given. Then, the
optimal consumption in all future low-income states is determined by the Euler equation:

Cotlrtl = (ﬂRTH)%cS,T forall s > 0,7 > t.
The budget constraint is written as follows:
Rias = cgy [1 +(1- y)ﬁi(RtH)l%’ +(1— V)25§(Rt+1}{t+2)1%” 4. } ’ (282)

implying that today’s consumption depends on future interest rates { R, },>;1:

Rtas t

-0 (283)
[1 + (1 — ’/)6 (Rt+1) s+ (1-— y)Qﬁ (Rij1Riyo) = + - }

Cst =

Note that if 0 = 1 (logarithmic utility), the denominator becomes a constant, implying
that consumption is proportional to today’s interest rate. This leads to the previous result
that the Euler equation between ¢ and ¢ + 1 holds despite an unexpected shock at ¢ + 1.
However, under o # 1, since consumption today depends on future interest rates, the
expectation about future productivity affects today’s consumption decisions.

Suppose that a future path of interest rates unexpectedly changes at time ¢ + 1. The
optimal consumption at ¢ + 1 is chosen according to equation (283]), which is generally
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different from the consumption anticipated at time ¢{®| Hence, the Euler equation be-
tween ¢t and ¢ + 1 no longer holds. This implies that MIT shocks and anticipated shocks
have different implications for households’ consumption and the law of motion of capital
in the case of CRRA utility with o # 1.

Comparison with a Neoclassical Growth Model The two results (the Euler equation
at the time of the shock and the indifference between MIT shocks and anticipated shocks)
are not true in a standard neoclassical growth model unless the capital fully depreciates
0 =1).

Suppose the economy is in a steady state at t = —5 with aggreagte productivity Ap.
Agents realize the news at ¢ = —4 that productivity increases from A, to A; att = 1
permanently:

Apift <0
t =
Apift >1

Transitional dymanics of a standard neoclassical growth model is described by an Euler

equation and a resource constraint. Then, the law of motion of capital is derived as:

Ko = ALK 4+ (1= 0) Koy — B(0A VKL +1—6) [Ag-er + (1= 0)K; — K1) -

. J/ ~/

'

~—
=Ri41 Ct

(284)

Here we continue to assume the logarithmic utility. Capital in the initial steady state
(K_5) and capital in the new steady state (K,,) allow us to numerically compute the
sequence of capital. Since choice variables at time ¢ (C;, K;,;) depend on future capital
(K12), the agents respond to future anticipated shocks (Figure [6). Intuitively, higher
productivity from ¢ = 1 onwards allows agents to consume more. Since agents prefer a
smooth consumption profile, they start to consume a little more when they realize the
news at ¢t = —4.

The interest rate does not change att = —4as A s = A_4, = Apand K_5 = K_4. The
response of C'_, to the future shock implies that the Euler equation between ¢t = —5 and
t = —4 does not hold. An optimality condition requires that the Euler equation between

=0 and ¢ = 1 holds[

45¢g 441 s still proportional to an interest rate Ry if { R, },>¢+2 does not change from the anticipated

one. However, after an unanticipated TFP shock at ¢ + 1, which affects the law of motion of capital at ¢+ 1,

a new sequence of interest rates { R, },>¢12 generally differs from the anticipated one.
46The Euler equation between ¢t = 0 and ¢t = 1 does not generally hold if an MIT shock is realized at

t=1.
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Transitional Dynamics with the news at t=-4
(B=0.8,6=0.33,A0=1A1=1.1)

110

=1)

105 |

Kt (normalize K(-4)
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Figure 6: Transitional Dynamics of K, after an Anticipated Shock

B.1.3 Consumption Inequality along the Transition

We characterize the forces determining the evolution of consumption inequality along
the transition to the new steady state. In period ¢ = 1 capital was predetermined and thus
the impact on capital- and labor income was exclusively determined by the exogenous
shock itself, a fact that enabled us sharply characterize the consumption distribution at
that date. From period ¢ = 2 on aggregate capital adjusts, following the law of motion
(39), and with it wages w; and rates of returns R;. Since consumption follows a ladder
structure, consumption inequality at each date can be characterized by the gap between
consumption of high income individuals, ¢,; and of low-income individuals who last had
high income s periods ago, ¢,;. The evolution of this consumption gap — log(cs/co.) is
characterized in Proposition We first derive the consumption gap =% in the following

Cs,0

Lemma.

Lemma 16. Suppose an economy is in a stationary equilibrium at t = 0, and a productivity
shock is realized at t = 1. Suppose that Assumptions [2] [3) and 4] hold. The evolution of
deflated consumption for low-income agents is characterized as:

t W\ w .
Cot _ (Hu:l %) o fs=t (285)

C t Ry, Wt—s .
0 | (M ) 2 1< <

Notice that by denoting R, = Ry for u < 0 and w;_, = wy for s > t, the latter expression
includes the former as a special case.

Proof. The ratio of deflated consumption between time ¢ and time 0 for agents s with
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s > t, =L is derived using the Euler equation:

WiCs t = 5Rtwtflcsfl,t71
= (5&)(53#1) T (531)100054,0

Cs,0 = (5Ro)tcs—t,0
Gt (B (R wo
’ Cs,0 B Ry Ry ) wy
This equation can be expressed in a sequential way:
Csit _ Csit—1 & Wg—1
Cs,0 Cs,0 Ry Wy
ST (B () - ()
B Ry Wy B 1 Ry | wy

u=1

If s < t, the low-income agents have experienced high income after the shock. Hence,
wage at the time of last high income is w;_ with w;_, > wy. The ratio of deflated
consumption between time ¢ and time 0 is given by:

WiCst = BRtwt—lcs—l,t—l
= (BRt) e (ﬁRt—s-l-l)wt—sch,t—s
Cs,0 = (ﬁRO)SCh,o

. Cs,t _ (Rt—s—i-l) <&) wt—s . f[ Ru Wi—g
' Cs,0 Ry Ry Wy u—t—s4+1 Ry

Proposition 17. Suppose an economy is in a stationary equilibrium at t = 0 and is hit by
a permanent productivity shock at t = 1. Let Assumption [3|be satisfied and 0 < § < 1. The
evolution of the consumption gap between high-income and low-income agents relative to

O]

the steady state is characterized by:

log<w1R°> ifs>1lift=1

wo Ry

- 20 ) = wy Ry -1 Wut1 Ro i
log (Co,t) + log (Coo> = { log (wé R?) + > . log ( w: RuL) ifs>tandt > 2
S slog(”;:1Rfil> ifs<tandt>2
(286)

The consumption gap expands at time 1 since log (“’1 g;) > (0. From time 1 until time
s > 2, the consumption gap continues to be higher than in the stationary equilibrium if
log (ﬂ@> + Zt__l log (M i) > 0. From time s + 1 onward, the consumption gap is

wo Ry Wy  Ru+t1

Wy R,
smaller than the stationary equilibrium if Zu s log ( o RuL) < 0.
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Proof. From equation (285]) in Lemma [16] we know:
Cst o Rt—s+1 . & W—s
Cs,0 Ry Ry wy
Cst—1 (Rts) (Rt1> Wi—1—s
Cs,0 Ry Ry Wi—1
Dividing the former equation by the latter gives:
Cst ( Ry > <wt—s> ( Wi—1 )
Cst—1 Ry Wy Wi—1—s
This allows us to express EO—Z in a sequential way, where we use co; = ¢p1—1 = cpt
Csit ( R, ) (wts) ( Wg—1 > Cst—1
Co,t R Wy Wt—1-5 /) Co,t—1

t
Ru Wy—s Wy-1 ] Cs,0

Ru—s Wy Wy—1-s

for s > 1. (287)

C
u=1 0,0

By taking a log:

t
Cst Wy, Wy—s Ru Cs.0
—lo =) = lo — lo — lo —lo :
& <Co,t> Z & <wu—1> & (wu—s—l) . & (Ru—s)J . & <Co,0

u=1
hﬁ Vv - Vv Vv
wage increase for high income  wage increase for s agent  higher interest rate initial gap
t

Wy Wy_ R Cs0

= log (—) — log ( S) - E log (—“ —log | == ). (288)
wWo wo K Ry 0,0

u=t—s+1

This equation holds for any s > 1. If s > ¢, we use the facts that:
() m(2)
Wo Wo

0 0
Z log<%z): Z log(%>20f0r5>t.

u=t—s+1 0

Then, (288) is written as follows:

¢
Cst Cs0 Wy Ru
—log| = | +1lo (—) =lo (—) — lo <—> fors >t
& (Co,t> & €0,0 & Wo uz; & Ry

B {log gw_éﬁg + > log <%RR_31> it =2 (289)

ift=1
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Combined with the case of s < t, we have:

log (m@) forall s > 1ift =1

wo Ry

Cs Cs N ,
_log< ut)—i-log( ’0) =« log <%%>+Z log< ;:1R§31> ifs>tandt > 2
Zutslog<w“+1 R°> ifs<tandt>2

Wy Ru+1

As we saw before,

-0
PATRY 4 (1-0) (4)

w1 RQ 1 0 Ag .

—— = >1if§ < 1. 290

wo Iy G ) : (290)

This confirms that consumption gap between high-income agents and s-th low-income
agents expands at time 1 if 6 < 1. Therefore, the productivity shock increases consump-
tion of high-income agents more than low-income agents at time 1. O

We provide an intuition for the proposition. Since low-income agents (s > 1) have
no labor income and consume a fraction of savings accumulated in the last high-income
period, their consumption gap depends on whether the last high income realization ma-
terialized before or after the time 0 productivity shock. Low-income agents with s > ¢
have not yet experienced high income after the shock, and the wage in their last high-
income state was wy. In contrast, low-income agents with s < ¢ already realized high
income after the shock, and wages in the last high-income period are w;_, > wy.

We plot the evolution over time of the consumption gaps in Figure[7for the parametric
example used above. As the proposition shows, the gap is determined by three factors,
which we display separately in Figure [8} (i) a higher wage at time ¢ compared to time
0 benefits high-income agents, which expands the consumption gap; (ii) a higher wage
at time ¢ — s compared to time 0 benefits type s low-income agents; and (iii) a higher
interest rate from time ¢ — s + 1 to time ¢ benefits type s low-income agents because of
the higher return on savings.

Because wages increase monotonically after the positive productivity shock, the wage

effect log <;”;> —log < ) log (
panels of Figure [8). On the other hand, because the interest rate is higher than in the

) expands the consumption gap (see the first three

stationary equilibrium, the interest rate effect >\, ..,

overall impact depends on the relative magnitude of the two effects, as Figure |7| shows.

log( ”) shrinks the gap. The

Here, the consumption expands in period ¢ = 1, then starts to shrink at time ¢ = 2 and
undershoots the original gap before converging to the new stationary equilibrium.

B.1.4 Inequality after a Negative Shock

This subsection summarizes symmetric results for an unexpected negative productivity
shock at time 1. Figure [9]illustrates that the transition path of consumption gaps after a
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Figure 9: Evolution of the Consumption Gap (Positive & Negative Productivity Shock)
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negative productivity shock is symmetric with a transition path after a positive shock.

Corollary 4 (Long-Run Consumption Gap after a Negative Shock). Consider a transi-
tion path after a negative productivity shock at time 1. For sufficiently large t > s + 1,
the consumption gap converges to the initial level for all s > 1. This means that the de-
flated consumption distribution in the new stationary equilibrium is the same as the initial

stationary equilibrium.
Proof. It follows directly from Proposition O

Corollary 5 (Negative Productivity Shock with Full Depreciation). Consider a transition
path after a negative productivity shock.

W41 Ro

Ifé=1, =1forallt > 0.

Wy Ly
This implies that with full depreciation of capital (6 = 1), the deflated consumption distri-
bution is constant along the transition.

Proof. It follows directly from Proposition [9] O

Corollary 6 (Transition of Consumption Gap after a Negative Shock). Consider a tran-
sition path after a negative productivity shock at time 1. The evolution of the consumption
gap between high-income agents and s-th low-income agents is given by (286)):

log <w14> ift=1

wo Ry

CS Cs w .
Zu .. log (w;jjzl RfL) ft>s+1
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Assume 0 < § < 1. Then, the consumption gap shrinks at time 1, since log (ﬂ@) < 0.

wo Ry
From time 1 until time s > 2, the consumption gap continues to be lower than the stationary

equilibrium if log (ﬂ&> + 22;11 log <M&> < 0. From time s + 1 onwards, the

wo R1 Wy, Ru+1

u=t—s Wy Ry+1

consumption gap is higher than the stationary equilibrium if >>'_"_ log (“’“* ! i) > 0.

Proof. It follows directly from Propositions[10] and O

B.2 Additional Discussions about Asset Pricing
B.2.1 Comparison of (K, {A;};2,) in the two models

Saving Rate and Capital Accumulation in the LC model We can rewrite $-¢ as:

=80+ (1 -0 ¢ 0

— (291)
1/<%—1—|—§+1/> (1-0)5

With § = 1, the second term is strictly positive if and only if Assumption [5|holds.
With § = 1, we also derive K; in closed form. Since the economy has a constant
saving rate,

Kt+1 = SAtl_eKtO, where s € {§LC, SREP = ﬁ@}

This implies:

t—1

log Ky = (1—10) [Z 0" log A,

=1

t—1

1-0

+ log 5 + 60" log K, (292)

Comparison given (K, {A4;};°,) The expression of K, ; above implies that for any
given K, and A;, the limited-commitment model always accumulates more capital:

log K6 — log K% = log 5 — log s +6 (1og KEC _log Kﬁep) . (293)

>0 under Assumption

Starting from the same initial capital K, the difference in K; is expressed as:

log K¢ —log K" = (140 4 6% + - - - + 6")(log §*¢ — log s7P), (294)
13 1-46
—(l—v—0pF 8

In the long-run, this will converge to:

where (log §*¢ — log s"") = log

+1- V:| > 0 under Assumption [5

. A
lim (log KO —log K[') = —log {—} : (295)
—»00
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which is consistent with the capital ratio in the steady state:

1

K*LC H =0
K *Rep - <@> : (296)

We make three remarks here: (i) Given (K, {4,}:°,), K}C is always larger than K/*?,
(ii) For any sequence of { A;}:>0, %Cp monotonically converges to the ratio in the steady
state g—,icp, (iii) As ¢ and v approach zero (¢ — 0 and v — 0), the law of motion of capital

in the limited-commitment model also approches to the one in the representative-agent
model:

lim K¢ = K for any ¢t > 1, given K. (297)

£€—0,0—0

B.2.2 Subsection [5.2.4: Quantitative Exploration of Asset Pricing

The risk premium in the limited-commitment model and the representative-agent model
are stated in Lemmas [1| and |2, In order to quantitatively assess the risk premium, it
is expressed as a function of productivity-adjusted capital K,, aggregate productivity

growth rate g4 .11 = AZI , and depreciation rate ¢; ;.

Asset Pricing in a Limited-Commitmemnt Model Given the law of motion of aggre-
gate capital, risk premium in the limited-commitment model is expressed as:

~ ~ ~ 0—-1
Lo NE(Q1) = B |0 gan ()™ [SR(Q1 + (1= 3@ K@) +1 = 81 ()

1
~ N - 0—1
0 gaer1(Qe1)' =0 [SEUQ) + (1= 3(QEUQ)| +1 = 01 ()
(300)

XEt

Stochastic Depreciation in a Representative-Agent Model In a representative-agent
model with shocks to aggregate productivity A;(Q2") and depreciation rate §;(2), aggre-
gate consumption C;(2") and capital K;,(Q") are chosen to satisfy the Euler equation
and the resource constraint:

I - 1
Ct(Qt) - BEt |:Rt+1<Q )Ct+]_(Qt+l):| 9 (30]—)
Ky = KA + (1 - 6,)K, — C,. (302)

47The interest rate and aggregate capital are written as:
Rypy (K, Q) = 0K 41— 6,41 (1) (298)

_ K 1 - . .
Rop1 (K, Q) = A:; - o {st (- Mm))m} (299)
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We rewrite the Euler equation (301 and the resource constraint (302) in terms of

Ky := 5t and ¢, := Gt

= 4"
. = BE; | —— 0K} 41—y b — | | 303
(&) - {Atﬂ { . tH} Cir () ( )
. A T - _
Kt+1 - A L |:Kt€ + (1 - 5t)Kt - Oti| . (304)
t+1
At

Assuming that both productivity growth rates (ga;+1 := ) and depreciation rate

At
(6¢41) follow iid (they do not depend on realization of past shocks), we conjecture that

C, is a function of K, and 4;:
Cy = C(Ky, &) (305)

Under the conjecture, the Euler equation is written as follows, after substituting K4
using equation (304):

C(f;é) = 52277(9A)7r(5/)i {9 (1 [f(e +(1-0)K — C(f(,a)Dg_l +1- 5’}

NS ga ga

“ 1 . (306)

C (g% [K@ +(1-0K - C(K, 5)} ,5/)

We solve for C(K,§) with a policy function iteration over the Euler equation (306).

Given the consumption rule, the risk premium is:

H(Q
L4 () = By [ ()] B [ )
_ > o 1 C(KL(2), 61(%))
= {0 <Kt+1(Q >) ! 5t+1(QtH)} = 59A,t+1(Qt+1>C(f(tH(QtH)aétH(QtH)) .
(307)

Equivalent Formulation of Risk Premium Figure[5|and Table[2]in Section quan-
titatively explore the size of risk premium, given the formulae for the risk premium in
the limited-commitment model and in the representative-agent model (307). We
describe the derivations of relevant expressions in the section.

The risk premium in equation is derived using the definition of covariance and
the Euler equation:

c
1 =E, |:Rt+1 ﬂ—t}

Ct+1
Cy

= ]Et [Rt+1] ]Et |:ﬁ_:| + cov (Rt-‘rla /Bi> )

Ct+1 Ct+1
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where ¢, is the consumption of unconstrained agents. This gives the following expression:

C
1+ )‘t = Et [Rt+1] ]Et lﬁc—t:| (308)
t+1
—1— cov (Rm, 55—1) (309)
t+

Second Moments of Idiosyncratic Income Process: Our calibration targets the auto-
correlation of the idiosyncratic income process. Remember that the Markov transition
matrix is given by:

T(2e41|2t) = [1 g Y 1i£] )

where ¢ is the probability of switching from high-income (z; = ¢) to low-income (z; = 0)
state. It implies the stationary income distribution:

§ v )
, = , . 310
(Y1, ¥n) (E—l—v £t o (310)
Average labor productivity is normalized to one:
v
=1
e

The variance of z; is given by:

Var(z) =E[#] - (E[2])”

14

_ 2

_£+1/C L
_f+1/_1_§
v U

The covariance is:

COU(’ZtJ Zt+1) =K [Zt2t+1] - E[Zt] E[Zt+1]

__V ey
- - 9¢ -1
zg(l—é—y).

Threfore, the autocorrelation, corr(z, z441), is given by 1 — & — v.

Calibration The fraction of the working population is around 2/3. We set the autocor-
relation of income to be 0.9. This pins down (£, v) as follows:

1%
E+v 3
— (¢, ) = (0.066,0.033)

2
=—and1-¢—-—v =09
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B.3 Additional Discussions about Section [ (Literature)
B.3.1 Speed of Convergence

As mentioned in Subsection the effective depreciation rate (§ = v + p) is increasing
in v (i.e., the probability from low-income state to high-income state). In Figure
aggregate capital in a limited-commitment model converges to a new stationary equi-
librium faster or slower than the neoclassical growth model, depending on parameter
ValuesEg] The numerical result shows that £ does not affect the speed of convergence.

Compared to a Solow growth model with a save saving rate s and a depreciation rate
0, a limited-commitment model converges faster. This is because the effective deprecia-
tion rate in a limited-commitment model, 4, is higher (since 1—0 = (1—v)3(1—4) < 1-0),
and thus the capital persists less than a Solow model.

Linear approximation of the transitional dynamics gives the approximated aggregate
capital at time ¢t. Aggregate capital at ¢ is given by:

~

t—1
K, ~ [1 . 9)5} (K, — K*) + K*,

where § > §. This equation shows that the speed of convergence is given by (1 — 6)4.
That is, the aggregate capital converges to the new steady state, K*, faster if (1 — 9)5 is
closer to 1. The speed of convergence depends on the share of capital in a Cobb-Douglas
production function, , and the effective depreciation rate, 4, but not on the saving rate
Since § > 4, a limited-commitment model converges faster than a Solow growth model.
See Barro and Sala-i Martin/ (2004) for a discussion about speeds of convergence in a

continuous-time model.

B.3.2 An economy without idiosyncratic shocks (( = v = 0)

This subsection describes the case with ¢ = v = 0. Since the transition probability of
idiosyncratic shocks is zero, idiosyncratic productivity is a permanent type. The upshot
is that if agents can freely borrow, the aggregate law of motion in this economy is the
same as the standard neoclassical growth model. If we assume that agents face a limited-
commitment constraint, high-income agents have zero initial assets, and Assumption
is satisfied, then the law of motion is the same as the two-agent model in Section

48We normalize the initial capital, Ky, to one in order to compare the speed of convergence. The level
of capital in a stationary equilibrium depends on v and &.
49The growth rate of capital depends on 4 and 6 but not on the saving rate:

w\ 1-0
g = L R KK ) —1] - (1— 1)1 0)].

K, K
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Figure 10: Speed of Convergence

which coincides with the limited-commitment model with » — 0 and £ — 0. In either
case, aggregate capital in the steady state is the same as the standard neoclassical growth
model (and the two-agent model).

We first briefly review the law of motion in the two cases: (a) the standard neoclassical
growth model and (b) a limited-commitment model with ¢ — 0 and » — 0 (but £ > 0,
v > 0, and Assumption [3] are satisfied). In case (b), (v, ) satisfies x := /v € (0, c0).

The law of motion is given as follows. In case (a), aggregate capital follows the stan-
dard Euler equation:

1 B ﬁ[@Kf;ll +1—4] (311)

K4+ (1=0)K, = Kipn Kl + (1= 0) Ky — Koo

In case (b), only low-income agents save, so the law of motion follows:
Ky = BIOKL, + (1 — 8)Ky). (312)

Note that we maintain Assumption [3|so that the economy is in a partial insurance equi-
librium. In a stationary equilibrium, SR < 1 (and lim, ¢ ,c SR = 1) is satisfied with
Assumption |5, In both cases, capital in the steady state is given by:

0 =
K=|-—— 313
(% —1+ 5) (313)
and satisfies SR = 1.

Now we analyze the case with £ = v = 0. If agents can freely borrow, the Euler
equation is satisfied for both agents:

é = 6Rt+1% for i € {high, low} .

t Ci1
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The fraction of each type of household is given by the “stationary distribution” of income
shocks by assuming the ratio of ¢ and v as k := /v:

o= (5 )

K 1
= ) 1
(/i—i-l’/ﬁ—i-l) (314)

Aggregation leads to the Euler equation of aggregate consumption:

Z wiCiJrl = BRi1 Z %‘Ci .

—_—— ——
:Ct+1 =C4

Together with the resource constraint, the aggregate law of motion is described by two
equations:

Ct+1 = BRtHCt (315)
Ci+ K=Y, +(1-90)K,. (316)

The two equations give the law of motion in the neoclassical growth model in equation
(B11).

Consider that agents face a limited-commitment constraint, implying a;,; > 0 at any
t > 0. Given that low-income agents will never switch to a high-income state and have

the logarithmic utility function, their consumption and saving rule is given by:

C; = (1 — 5)Rtat (317)
a1 = BRay. (318)

The optimal consumption and saving decision of high-income agents follows the Kuhn-

Tucker condition:

1 1

— =Ry 1— ifa 1 >0 (319)
Ct Cit1

1 1 .

— > BRH-I_ if Aryr] = 0 (320)
Ct Ct+1

Given Assumption |3| and zero initial assets, ¢, = (w, and a,;; = 0 for all ¢ > 0 satisfy
the condition ([320). Given those decision rules, the aggregate law of motion is the same
as the two-agent model and the limited-commitment model with » — 0 and £ — 0 in
equation (312). Note that Assumption [5| implies that Assumption [3] is satisfied in the
steady state. As long as the initial aggregate capital K satisfies Ky > K* (equal to or
above the capital in the steady state), Assumption [3|is satisfied along the transition.
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