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Abstract

In this paper we study the neoclassical growth model with idiosyncratic and ag-
gregate risk in which risk sharing is endogenously constrained by one-sided limited
commitment. Households can trade a full set of contingent claims that pay off de-
pending on both idiosyncratic and aggregate risk, but limited commitment rules out
that households sell these assets short. The model results, under suitable restrictions
of the parameters of the model, in partial consumption insurance in equilibrium.
With log-utility and idiosyncratic income shocks taking two values one of which
is zero (e.g., employment and unemployment) we show that the equilibrium can
be characterized in closed form, despite the fact that it features a non-degenerate
consumption- and wealth distribution. We use the tractability of the model to study,
analytically, inequality over the business cycle and asset pricing, and derive condi-
tions under which our model has identical, as well as conditions under which it has
higher risk premia than the corresponding representative agent version of the model.
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1 Introduction

The canonical macroeconomic model with household heterogeneity developed by Bew-
ley (1986), Imrohoroğlu (1989), Huggett (1993), and Aiyagari (1994) envisions a large
population of households facing idiosyncratic income risk and incomplete asset markets.
This model has been used by a vast applied literature studying business cycles (as in
Krusell and Smith, 1998), fiscal policy (as in Aiyagari and McGrattan, 1998) and mon-
etary policy (as in Kaplan, Moll, and Violante, 2018). From a theoretical perspective,
however, imperfect consumption insurance against income risk (and the resulting non-
degenerate wealth distribution) stems from the exogenous restriction of the set of insur-
ance contracts that individuals can enter, restricting explicit insurance that individuals
would otherwise choose to trade.1 As an alternative, imperfect consumption insurance
can emerge as the consequence of limited contract enforcement or private information
that impedes the full insurance of idiosyncratic risk.

In this paper we seek to integrate a household consumption-saving problem with id-
iosyncratic income risk and limited contract enforcement into a discrete-time neoclassical
production economy, in the same way that Aiyagari (1994) and Krusell and Smith (1998)
did for the standard incomplete markets structure. Specifically, households face idiosyn-
cratic and aggregate productivity (and potentially, stochastic depreciation) risk in which
risk sharing is endogenously constrained by one-sided limited commitment. Households
can trade a full set of contingent claims that pay off depending on both idiosyncratic and
aggregate risk, but limited commitment rules out that households sell these assets short.
The model results, under suitable restrictions of the parameters of the model, in partial
consumption insurance in equilibrium. With log-utility and idiosyncratic income shocks
taking two values one of which is zero (e.g., employment and unemployment) we show
that the equilibrium can be characterized in closed form, despite the fact that it features
a non-degenerate consumption- and wealth distribution which fluctuates over the cycle.

The key to this result is that if interest rates are low and/or future wage growth
is high, then households optimally do not purchase contingent claims that pay off in
their high idiosyncratic productivity state. Households with low productivity in contrast
hold assets, but in the absence of labor income their consumption-saving problem has
a simple solution (resembling that of the classic cake-eating problem) in which all low-

1On the empirical side, Blundell, Pistaferri, and Preston (2008) document a degree of consumption in-
surance especially with respect to highly persistent or permanent shocks that is difficult to fully rationalize
in the standard incomplete markets model, see Kaplan and Violante (2010) or Krueger and Wu (2021).
More recent empirical papers confirm the need for models in which household consumption smoothing
opportunities extend beyond simple self-insurance, see, e.g., Arellano, Blundell, and Bonhomme (2017),
Eika, Mogstad, and Vestad (2020), Chatterjee, Morley, and Singh (2021), Braxton et al. (2021), Commault
(2022), and Balke and Lamadon (2022).
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productivity households exhibit the same constant saving rate out of their capital income.
The constant saving rate is independent of the current (and expectations about future)
interest rates, a consequence of logarithmic period utility. Consequently, the model eas-
ily aggregates and the aggregate law of motion for capital can be given in closed form,
both in the case of an unexpected shock to aggregate productivity as well as in the case of
recurrent aggregate productivity fluctuations. We then verify that as long as the produc-
tivity fluctuations (expected or unexpected) are not too large (with precise conditions
given in terms of exogenous parameters only), then equilibrium interest rates are in-
deed sufficiently low (and wage growth is sufficiently high) that individuals indeed find
it optimal to not purchase contingent claim for the high-productivity state.

Finally, we demonstrate the potential usefulness of our theoretical framework for
applied work by studying two applications. First, we show that consumption inequality
is procyclical in our model: in response to a positive productivity shock, consumption of
high productivity individuals (those at the top of the consumption distribution) increases
proportionally with the wage, whereas the increase in consumption of those with only
capital income (who are located at the lower end of the consumption distribution) is more
sluggish. Thus, consumption inequality increases in response to a positive productivity
shock that expands output in the economy.

Second, we investigate whether the presence of idiosyncratic and only partially in-
sured risk changes the asset pricing implication of this production economy, relative to
that of the standard complete markets model. We first show that if (and only if) both
wages and returns move proportionally with the aggregate shock (which is the case in
a version of our model in which capital fully depreciates between periods, or in an en-
dowment version of the model), then the multiplicative equity premium in our economy
coincides with that of the representative agent (RA) economy. With less than full (but
deterministic) depreciation, capital income becomes less volatile than labor income and
the limited commitment model features a lower risk premium than the RA economy.
However, once we extend the model to permit the depreciation rate to be stochastic as
well, not only does capital income turn more volatile than labor income, but now the
risk premium in the model with idiosyncratic risk exceeds that of the RA economy, and,
depending on the size of idiosyncratic risk, can display a quantitatively sizable return
premium on risky capital. It is important to note that we can demonstrate all but the last
quantitative results theoretically, owing to the analytical tractability of our model with
(only partially insurable) idiosyncratic and aggregate risk.
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1.1 Related Literature

Our paper is motivated by the large literature on general equilibrium models with id-
iosyncratic risk and incomplete markets cited in the previous section. Our limited com-
mitment alternative builds on the theoretical limited commitment literature pioneered
by Thomas and Worrall (1988), Kehoe and Levine(1993, 2001), Kocherlakota (1996),
Alvarez and Jermann (2000), Ábrahám and Laczó (2018) and, for a continuum econ-
omy, Krueger and Perri (2006), Krueger and Perri (2011) and Cole, Krueger, Mailath,
and Park (2024). The papers by Krueger, Lustig, and Perri (2008) or Broer (2013) ex-
plore the quantitative properties of this class of models.

In Krueger and Uhlig (2006) we studied theoretically and in partial equilibrium, a
version of this model with one-sided commitment in which households entered into long-
term insurance contracts with financial intermediaries and there was no exogenous pun-
ishment from default. Rather, households could sign the best available contract with a
competing intermediary, with the value of this contract being determined endogenously
in equilibrium. Crucially, for the current paper, we showed that the contract equilibrium
allocation could alternatively be decentralized in an asset market equilibrium with state-
contingent claims and state-contingent shortsale constraints (in the spirit of Alvarez and
Jermann, 2000) that are exactly at zero, i.e. ruling it borrowing altogether.

This paper embeds this structure into a general equilibrium production economy and
exhibits assumptions that allows for a characterization of equilibrium in closed form,
even in the presence of aggregate shocks.2 In Krueger and Uhlig (2024) and Krueger, Li,
and Uhlig (2024) we construct a limited commitment production economy in continuous
time and Poisson income risk to analytically characterize the steady state and transitional
dynamics of the model as the solution to a Bernoulli differential equation. The current
paper extends this analysis to aggregate shocks and casts it in a perhaps more familiar
discrete time setting, allowing for a direct connection and comparison with Alvarez and
Jermann (2000)’s analysis of state-contingent shortsale constraints in general equilib-
rium. Broer (2024) studies the degree of consumption insurance over the business cycle,
providing a quantitative comparison of the standard incomplete markets model and the
limited commitment model with aggregate shocks.

Finally, we share the focus on analytical tractability in general equilibrium models
with idiosyncratic risk and partial consumption insurance with Krueger, Ludwig, and Vil-
lalvazo (2021), Achdou, Han, Lasry, Lions, and Moll (2022), and Kocherlakota (2023)
who study the standard incomplete markets model. To provide intuition for the under-

2Related general equilibrium analyses also appear in the sovereign debt literature, see, e.g., Hellwig
and Lorenzoni (2009) and Martins-da Rocha and Santos (2019), and in general equilibrium models with
collateral constraints, such as Gottardi and Kubler (2015).
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lying reason that makes our model tractable we also relate our results to that obtained
in the two-agent economy with workers and capitalists studied by Moll (2014).

The rest of the paper unfolds as follows. The next section sets up the model and de-
fines equilibrium, and Section 3 contains a general characterization of this equilibrium.
In Section 4 we then analyze the stationary equilibrium and the transition path after a
one-time unexpected shock. We study the asset pricing implications of the model with
aggregate shocks in Section 5. Equipped with the results from our model we then relate
these results to related versions of the neoclassical growth model from the existing lit-
erature in Section 6. Section 7 concludes, and detailed derivations and proofs the are
contained in the Appendix.

2 Model

Time is discrete, infinite and indexed by t = 0, 1, ... The economy is populated by a
continuum of households of measure 1 and a representative, competitive production
firm.

2.1 Aggregate Risk

We consider an economy with idiosyncratic and potentially also aggregate productivity
shocks. Denote byAt current aggregate total factor productivity, and byAt = {A0, · · · , At}
the history of productivity, with associated probability distribution π(At+1|At). We treat
the initial productivity level A0 as fixed.3 For most of the paper no further substantive
restrictions on the productivity process {At} need to be imposed,4 but for a subset of the
results we need to make further assumptions on the productivity process.

Assumption 1. Let the productivity process {At}∞t=0 satisfy one of three assumptions:

1. Steady state: At = A0 with probability 1, for all t > 0.

2. MIT shock: at time t = 0 productivity is at its steady value A0 which households
believe to last forever. At time t = 1 they learn that instead productivity is given by
the deterministic sequence {At}.

3. Stochastic growth rates: the growth rate of aggregate productivity At+1

At
follows a finite

state Markov chain.
3We introduce stochastic depreciation rates into the model in Section 5. Until then, to keep the notation

concise, we set up the model (and its notation) only with aggregate shocks to total factor productivity.
4For convenience of notation, we assume that At takes only positive real values, At ∈ R+, and that the

number of possible states in each period is finite.
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2.2 Technology

The production side of the economy is described by a completely standard neoclassical
production function of the form

Yt = Kθ
t (AtLt)

1−θ (1)

where θ is the capital share and A denotes the (potentially time-varying) level of ag-
gregate (labor-augmenting) productivity. Capital depreciates at rate δ. This production
technology is operated by a representative and competitive firm hiring labor and capital
at rental rates wt, rt, and the standard optimality conditions read as

wt = (1− θ)At

(
Kt

AtLt

)θ
(2)

rt = θ

(
Kt

AtLt

)θ−1

− δ (3)

2.3 Idiosyncratic Risk, Household Endowments and Preferences

Individuals are indexed by i ∈ [0, 1] and in each period t have idiosyncratic stochastic
labor productivity zit ∈ Z = {0, ζ}, where ζ > 1 is a parameter. Since the identity
of individuals is irrelevant we will suppress the index i whenever there is no scope for
confusion and simply write zt for the current idiosyncratic labor productivity as well
as zt = (z0, z1, .., zt) for the history of productivity realizations. The probability of a
given productivity history is denoted by π(zt). The distribution of idiosyncratic shocks is
assumed to be independent of aggregate shocks.

The idiosyncratic labor productivity process is Markov with time-invariant transition
matrix:

π(zt+1|zt) =

[
1− ν ν

ξ 1− ξ

]
(4)

where ν is the probability of switching from productivity 0 to productivity ζ and ξ is the
probability of switching from ζ to 0. The stationary distribution over labor productivity
is then given by (ψl, ψh) =

(
ξ

ξ+ν
, ν
ξ+ν

)
, and households are assumed to draw their ini-

tial productivity from this stationary distribution (which is then also the cross-sectional
distribution of labor productivity at all future dates t > 0). We normalize average labor
productivity to one, which implies the parameter restriction

ν

ξ + ν
ζ = 1. (5)

This assumption implies that the aggregate supply of labor is Lt = 1 for all t. In addition
to labor productivity a given household is endowed with initial wealth a0, and we denote
the cross-section probability measure over wealth and labor productivity by Φ(a0, z0).
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Each household has preferences representable by a standard intertemporal utility
function u(c) defined over stochastic consumption streams c and given by

U(c) = E0

∞∑
t=0

βt log(ct) (6)

with logarithmic period utility function and time discount factor β.

2.4 Financial Markets and Household Budget Constraint

Households face idiosyncratic and aggregate risk and seek to insure against that risk
by trading a full set of contingent claims. For analytic convenience we will use con-
tingent claims that pay Rt+1(A

t+1) = 1 + rt+1(A
t+1) units of consumption in aggregate

history At+1 for an individual with history (At, zt) if and only if tomorrow’s idiosyncratic
state is zt+1, and we denote by qt(At+1, zt+1|At, zt) the price of such a claim, and by
at+1(a0, z

t+1, At+1) the position of these assets for a household with initial characteristics
(a0, z0). The budget constraint of the household then reads as5

ct(a0, z
t, At)+

∑
At+1

∑
zt+1

qt(At+1, zt+1|At, zt)at+1(a0, z
t+1, At+1) = wt(A

t)zt+Rt(A
t)at(a0, z

t, At)

(10)
Note the crucial difference to the budget constraint in the standard incomplete markets
in that we permit agents to trade assets that pay contingent on individual productivity
realizations (as in completemarket models) whereas these assets are by assumption ruled
out there.

5A perhaps more familiar way of defining Arrow securities is that households pay a price
qb(At+1, zt+1|At, zt) and receive one unit of consumption if the state (At+1, zt+1) is realized. If we de-
note such an asset by bt+1, the budget constraint (10) instead reads as:

ct(a0, z
t, At) +

∑
At+1

∑
zt+1

qb(At+1, zt+1|At, zt)bt+1(a0, z
t+1, At+1) = wt(A

t)zt + bt(a0, z
t, At) (7)

Because we define a contingent claim that yields Rt+1(A
t+1) at t+1, the relation between the prices and

asset positions of the two types of assets is given by:

qb(At+1, zt+1|At, zt) =
qa(At+1, zt+1|At, zt)

Rt+1(At+1)
, (8)

and bt+1(a0, z
t+1, At+1) = Rt+1(A

t+1)at+1(a0, z
t+1, At+1) (9)

Since the return on both contingent claims is given by:

1

qb(At+1, zt+1|At, zt)
=

Rt+1(A
t+1)

qa(At+1, zt+1|At, zt)
,

the two formulations are completely equivalent. Our formulation of contingent claims gives a simpler and
perhaps more intuitive expression for the capital market clearing condition (16) below, though.
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The key distinction between our model and the standard complete markets model
is the the limited commitment friction, the implementation of which we now turn to.
Without any cost of defaulting on incurred state-contingent debt, all household contin-
gent claim positions are required to be non-negative, that is, we impose the constraints
at+1(a0, z

t+1, At+1) ≥ 0. An alternative and (as shown in Krueger and Uhlig (2006))
equivalent formulation of the limited commitment friction without punishment from de-
fault would be to introduce financial intermediaries that offer long-term consumption
insurance contracts. These contracts would stipulate potentially fully income-history
contingent consumption payments in exchange for delivering all of labor income to the
intermediaries whenever the individual is productive. The one-sided limited commit-
ment friction implies that whereas intermediaries can fully commit to long-term con-
tracts, individuals cannot. Specifically, in every period, after having observed current
labor productivity, the individual can leave her current contract and sign up with an al-
ternative intermediary at no punishment, obtaining in equilibrium the highest lifetime
utility contract that allows an intermediary to break even. The lifetime utility from a
newly signed contract is the key (potentially time-varying) endogenous entity in this
formulation of the model. In Krueger and Uhlig (2006) we have shown that these two
formulations of the one-sided limited commitment friction are equivalent, and we there-
fore here focus on the financial market formulation, as in Alvarez and Jermann (2000),
and with the borrowing limits that are not “too tight" (in their nomenclature) being
exactly at zero, given that there is no punishment from default.6

The household optimization problem can then be stated as

max
{ct(a0,zt,At),at+1(a0,zt+1,At+1)}

∞∑
t=0

∑
At

∑
zt

βtπ(At)π(zt) log(ct(a0, z
t, At)) (11)

subject to the budget constraints (10) and subject to the shortsale constraints:

at+1(a0, z
t+1, At+1) ≥ 0 (12)

2.5 Definition of Sequential Market Equilibrium

We now define a sequential market equilibrium with aggregate shocks. Households’
consumption and savings allocations depend on both the history of individual states
zt = (z0, z1, · · · , zt) and the history of aggregate states At = (A0, A1, · · · , At). Aggregate
allocations and prices depend on the history of aggregate shocks At.

6We could also motivate our model as a hybrid alternative (or intermediate) model located right in
between the Aiyagari (1994) model with tight borrowing constraints and the complete markets model
with a full set of state-contingent claims and natural state contingent borrowing constraints.
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Definition 1. For an initial condition (A0, K0,Φ(a0, z0)), an equilibrium is sequences of
wages and interest rates {wt(At), Rt(A

t)}, prices of contingent claims {qt(At+1, zt+1|At, zt)},
aggregate consumption and capital {Ct(At), Kt+1(A

t)} and individual consumption and
asset allocations {ct(a0, zt, At), at+1(a0, z

t+1, At+1)} such that

1. Given {wt(At), Rt(A
t), qt(At+1, zt+1|At, zt)}∞t=0,At,zt,At+1,zt+1

, the household consump-
tion and asset allocation {ct(a0, zt, At), at+1(a0, z

t+1, At+1)}, for all initial conditions
(a0, z0), maximizes (11) subject to the budget constraints (10) and the shortsale con-
straints (12).

2. Factor prices equal marginal products

wt(A
t) = (1− θ)At

(
Kt(A

t−1)

At

)θ
(13)

Rt(A
t) = 1 + θ

(
Kt(A

t−1)

At

)θ−1

− δ (14)

3. The goods market and capital market clear

Ct(A
t) +Kt+1(A

t) =
(
Kt(A

t−1)
)θ

(At)
1−θ + (1− δ)Kt(A

t) (15)
Kt+1(A

t) =

∫ ∑
zt+1

at+1(a0, z
t+1, At+1)π(zt+1)dΦ(a0, z0) ∀At+1 (16)

where
Ct(A

t) =

∫ ∑
zt

ct(a0, z
t, At)π(zt)dΦ(a0, z0) (17)

3 Characterization of Equilibrium

This section characterizes a sequential equilibrium with aggregate shocks. We will first
derive the optimal household choices of consumption and savings for a given conjec-
tured stochastic process for interest rates and wages, {Rt(A

t), wt(A
t)}t≥0,At in subsection

3.1, then characterize the equilibrium asset distribution in subsection 3.2, then use both
results to confirm that the equilibrium prices of the state-contingent claims have the con-
jectured form in Section 3.3 and finally determine the aggregate law of motion of the
economy in closed form in subsection 3.4.

3.1 Optimal Household Choices

We will construct an equilibrium in which household choices take an especially simple
form. As long as the real interest rate is not too high, wages do not fall too fast and
households do not start life with too many assets, then they choose not to accumulate
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state-contingent assets for the high income state tomorrow and insure against sequences
of low idiosyncratic income realizations through contingent asset purchases such that for
these households a standard complete markets Euler equation holds. The deviation from
the complete markets full insurance allocation (which would result in the equilibrium
collapsing to that of a representative agent economy) stems from the fact that currently
low-income individuals wouldwant to borrow against the high idiosyncratic income state,
but are prevented from doing so due to limited commitment to repay their debts. Thus,
the best they can do is to set the contingent claim for the high idiosyncratic income state
to zero.

The following proposition makes this argument formal. It will require Assumptions
2 - 4 on equilibrium prices and initial conditions. In Section 3.3 below we will verify
that Assumption 2 is indeed true in equilibrium.7 Assumption 3 on wages and interest
rate will be replaced below by assumptions purely on the exogenous fundamentals of
the economy, see Assumption 5 for the stationary equilibrium, Assumptions 6 or 7 for
the transition, and Assumption G for the economy with aggregate shocks.

Assumption 2 (Contingent Claims Prices). The prices of contingent claims are given by8

qt(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At). (18)

Assumption 3 (No Savings Incentives). The equilibrium interest rate and wage rate pro-
cesses, {Rt(A

t), wt(A
t)} satisfy:

βR0(A0) < 1 (19)

βRt+1(A
t+1) <

wt+1(A
t+1)

wt(At)
for all t ≥ 0 and At+1 (20)

Assumption 4 (Initial Distribution). The initial distribution over wealth and labor produc-
tivity, Φ(a0, z0), satisfies:

(i) a0 = 0 if z0 = ζ (high-productivity households (z0 = ζ) initially have zero wealth).

(ii) 0 < a0 < ā0 :=
β

1−(1−ν−ξ)β ζ if z0 = 0 (the initial wealth of low-productivity households
is strictly positive but not too high).

7That is, we follow a guess-and-verify approach, guessing that asset prices have a specific form in
Assumption 2 and then verifying that the optimal household choices imply asset prices in equilibrium that
take indeed the form stipulated in Assumption 2.

8Recall that these contingent claims pay Rt+1(A
t+1) units of consumption in event history At+1. Under

Assumption 2, the price of a contingent claim that pays one state-contingent unit of consumption then takes
the perhaps more familiar form qbt (At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At)

Rt+1(At+1) , as, for example, in Krueger and
Perri (2006).
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We will demonstrate below that under Assumption 3 the steady state of the model
will have an associated wealth distribution that satisfies Assumption 4, although the fol-
lowing proposition characterizing optimal household choices does not require the initial
distribution to be the steady state distribution (as long as it satisfies Assumption 4).

Proposition 1 (Optimal Household Consumption and Asset Allocation). Suppose As-
sumption 2 on contingent claims prices is satisfied and suppose that the sequence of wages
and interest rates {wt(At), Rt(A

t)}∞t=0 satisfies the no-savings Assumption 3 and that the
initial wealth distribution satisfies Assumption 4. Then the optimal consumption and asset
allocation of individual households is given by

ct(a0, z
t, At) =

c0wt(At), where c0 :=
1−(1−ν)β

1−(1−ν−ξ)β ζ, if zt = ζ

[1− (1− ν)β]Rt(A
t)at(a0, z

t, At) if zt = 0
(21)

at+1(a0, z
t+1, At+1) =


0 if zt+1 = ζ

β
1−(1−ν−ξ)β ζwt(A

t) if zt = ζ and zt+1 = 0

βRt(A
t)at(a0, z

t, At) if zt = 0 and zt+1 = 0

(22)

where a0(a0, z
0, A0) = w0(A

0)a0.

Proof. See Appendix A.1.1

We now discuss the intuition and implications of Proposition 1. First, it is easy to
verify that (21) and (22) imply:9

ct+1(a0, z
t+1, At+1) = βRt+1(A

t+1)ct(a0, z
t, At) if zt+1 = 0. (23)

that is, consumption growth between t and t + 1 follows a standard complete markets
Euler equation for those households that are unproductive in period t+ 1.10 In contrast,
those that are productive in t + 1 (i.e., have zt+1 = ζ), satisfy the Euler equation with
strict inequality, as one can show by combining Assumption 3 with equation (21), see
Lemma 5 in Appendix A.1.1:

ct+1(a0, z
t+1, At+1) > βRt+1(A

t+1)ct(a0, z
t, At) if zt+1 = ζ. (25)

9The derivation of this result can be found in Appendix A.1.1.
10Another way to write this is:

1

ct(a0, zt, At)
= π(At+1, zt+1|At, zt)︸ ︷︷ ︸

prob. of (At+1,zt+1)

Rt+1(A
t+1)

qt(At+1, zt+1|At, zt)︸ ︷︷ ︸
return on a contingent claim

β
1

ct+1(a0, zt+1, At+1)︸ ︷︷ ︸
discounted marginal utility

if zt+1 = 0. (24)

Independence of At+1 and zt+1 gives π(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At), while Assumption 2
gives qt(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At). Then, equation (24) simplifies to equation (23).
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Also note that households with currently positive labor income (i.e., with z = ζ),
consume and save a constant fraction of their current labor income, independent of the
aggregate shock (history) and independent of current or (expected) future interest rates:

ct(a0, z
t, At)

ζwt(At)
=

1− (1− ν)β

1− (1− ν − ξ)β
(26)

at+1(a0, (z
t, zt+1 = 0), At+1)

ζwt(At)
=

β

1− (1− ν − ξ)β
. (27)

One aspect of the optimal household allocation that is perhaps surprising is the lack of
insurance against aggregate risk. All households are exposed to interest rate risk but
only households that will experience a high idiosyncratic productivity shock, zt+1 = ζ,
will also be exposed to wage risk. Thus, there appears scope for a better allocation of
this aggregate risk. The key to Proposition 1 is that under Assumption 3 it is optimal for
households to borrow against the future (At+1, zt+1 = ζ) state, for all At+1 realizations.
But this is precisely what is ruled out by limited commitment, and thus the best they can
do is to set the at+1(a0, (z

t, zt+1 = ζ), At+1) = 0.
Finally, it is easy to verify that the household choices satisfy the budget constraint.

One final noteworthy observation about the optimal allocation is that low-productivity
households consume a share (1−(1−ν)β) of their cum-interest wealthRtat. A household
solving the classic “cake-eating problem" (i.e., the optimal intertemporal consumption-
savings problem in the absence of risk and labor income starting with a given amount
of wealth) would consume a share (1− β) of that wealth. Here that share is higher (by
the factor βν) because of the implicit insurance nature of the allocation: upon making
a state transition to high productivity the household effectively surrenders her state-
contingent wealth, with the wealth redistributed to the low-productivity “stayers". This
is reminiscent of the actuarially fair annuity payments in the presence of mortality risk
in the classic papers by Yaari (1965) and Blanchard (1985).

As Proposition 1 indicates, optimal consumption and asset holdings are proportional
to wages (either current wages when the household has high productivity today, i.e.,
s = 0) or to the wage when she last was productive. We therefore define, for future
reference and use, wage-deflated consumption and asset choices as

ct(a0, z
t, At) =

ct(a0, z
t, At)

wt(At)
(28)

at+1(a0, z
t+1, At+1) =

at+1(a0, z
t+1, At+1)

wt+1(At)
(29)

3.2 The Cross-Sectional Distribution

The sequential market equilibrium household consumption-asset allocation has a simple
structure. Either the shortsale constraint for a given continuation history zt+1 is not
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binding, at+1(a0, z
t+1, At+1) > 0, and the standard complete-markets Euler equation

ct+1(a0, z
t+1, At+1)

ct(a0, zt, At)
= βRt+1(A

t+1) (30)

applies or the constraint is binding, at+1(a0, z
t+1, At+1) = 0 and the Euler equation turns

into an inequality.
The equilibrium consumption and asset allocation then has a simple structure in

which individual consumption and assets only depend on the length s ≥ 0 of the most
recent spell of low productivity (where s = 0 denotes an agent with currently high
productivity), and potentially calendar time t. When productivity is high, the short-
sale (limited commitment) constraint is binding and assets are zero. Denote this simple
consumption-asset allocation by {cs,t, as,t}∞s,t=0 and note that the Markov process for in-
dividual productivity implies that the cross-sectional distribution of the waiting times is
time invariant and given by

ϕs =

 ν
ξ+ν

if s = 0

ξ
ξ+ν

ν(1− ν)s−1 if s = 1, 2, 3, ...
(31)

Corollary 1. Suppose the initial asset distribution is given by {as,0}s≥0 with the probability
mass of s-agents given by (31), and suppose that Assumptions 2 - 4 are satisfied. Then, the
initial consumption allocation {cs,0}s≥0 is given by equation (21), and the consumption-
asset allocation {cs,t, as,t}s≥0 at any t ≥ 1 is determined by:

cs,t(A
t) =


1−(1−ν)β

1−(1−ν−ξ)β ζwt(A
t) if s = 0

βRt(A
t)cs−1,t−1(A

t−1) if s ≥ 1
(32)

as,t(A
t) = as,t(A

t−1) =


0 if s = 0

β
1−(1−ν−ξ)β ζwt−1(A

t−1) if s = 1

βRt−1(A
t−1)as−1,t−1(A

t−1) if s ≥ 2

(33)

The probability mass of s-households is time-invariant and given by (31).

Proof. The initial consumption distribution follows directly from equation (21) in Propo-
sition 1. Apply equations (22) and (23) to the initial allocation {cs,0, as,0}s≥0.

Note that this corollary implies that even though the cross-sectional distribution of
waiting times remains constant over time and across aggregate shocks, the levels of con-
sumption and assets at these countably many mass points given by (32) and (33) varies
with time and aggregate history At, but only through its effects on aggregate wages and
interest rates. Also note that if the consumption-asset allocation is of the simple form

12



stipulated above, aggregate consumption and assets in the goods market clearing condi-
tion and the asset market clearing condition can be written as

Ct(A
t) =

∞∑
s=0

ϕscs,t(A
t) (34)

Kt+1(A
t) =

∞∑
s=0

ϕsas,t+1(A
t) (35)

3.3 Confirming the Conjectured Prices of Contingent Claims on Cap-
ital Returns

Before we explicitly carry out the aggregation we can verify, with the optimal household
allocations in place, that the prices of the contingent claims of capital are of the form
stipulated in Assumption 2.

Fix (At, zt). For all households for which the shortsale constraint for a contingent
claim that pays off in aggregate state At+1 is not binding (the positive mass of individ-
uals with idiosyncratic state zt+1 = 0, i.e., those with s > 0 in period t + 1), the first
order conditions with respect to consumption and the state-contingent asset claim can
be combined to obtain (see Appendix A.1.1, equation (115)) the standard complete
markets Euler equation:

qt(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At)βRt+1(A
t+1)

[
ct+1(a0, z

t+1, At+1)

ct(a0, zt, At)

]−1

(36)

For each of these households (with s > 0) the optimal consumption allocation satisfies
ct+1(a0, z

t+1, At+1) = βRt+1(A
t+1)ct(a0, z

t, At) (see equation (23)). Using this result in
equation (36) immediately confirms that

qt(At+1, zt+1|At, zt) = π(zt+1|zt)π(At+1|At) (37)

That is, in Assumption 2 we have guessed the form of equilibrium asset prices, and now
we have verified that the optimal household choices under this guess lead to equilibrium
prices consistent with that guess.

Finally, note that at these prices for households with zt+1 = ζ we have (see equation
(25))

qt(At+1, zt+1|At, zt) > π(zt+1|zt)π(At+1|At)βRt+1(A
t+1)

[
ct+1(a0, z

t+1, At+1)

ct(a0, zt, At)

]−1

(38)

These households, at these equilibrium prices, would like to reduce their consumption
growth between period t and t+1 by borrowing against the contingency of high produc-
tivity tomorrow, but the limited commitment constraints precisely prevent these types of
shortsales.
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3.4 Aggregation

Now that we have characterized the cross-sectional distribution of assets, we can use
equation (35) to derive the aggregate law of motion for capital. Since the optimal house-
hold consumption and asset decisions in Proposition 1 are closed-form expressions of the
general equilibrium factor prices (wt, Rt), and these in turn are functions only of the ag-
gregate capital stock and aggregate productivity through the first-order conditions of the
firm, characterizing the law of motion for the aggregate capital stockKt is also sufficient
to fully characterize the distribution of consumption and assets over time. What is special
about this model with nontrivial household heterogeneity is that the model aggregates,
in the sense that the capital stock in period t+ 1 can be expressed exclusively as a func-
tion of the aggregate capital stock in period t, despite the fact that the model features a
non-trivial consumption and wealth distribution, and that this law of motion of capital
can be characterized in closed form. The following proposition is then a straightforward
consequence of the results in the previous subsection and proved in Appendix A.1.2.

Proposition 2 (Aggregate Law of Motion for Capital). Under the assumptions maintained
in Proposition 1 (which implies that the household consumption and saving allocations are
given by (21) and (22)), the law of motion for the aggregate capital stock is given by:

Kt+1(A
t) = ŝA1−θ

t Kt(A
t−1)θ + (1− δ̂)Kt(A

t−1) (39)

where

ŝ =
ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ (40)

δ̂ = 1− (1− ν)β(1− δ). (41)

As in the classic Solow model the aggregate saving rate ŝ is a constant in this model,
but in contrast to the Solow model here it is an explicit function of the fundamental
parameters capturing income risk at the micro level as well as time preferences and the
capital share in production, and one can derive explicit comparative statics with respect
to these deep parameters. Note that if ν = ξ = 0 and there is no idiosyncratic risk, then
ŝ = βθ. If furthermore δ = 1, then δ̂ = 1 and the model dynamics collapses to that of
the standard representative agent stochastic neoclassical growth model, which with log-
utility and full depreciation –and only then– has a closed-form solution for the aggregate
capital stock. We give this closed form in Section 4.2.1 and will return to a comparison
of our model with the neoclassical growth model and the Solow model in Section 6.

We now use the general results to analytically characterize a stationary equilibrium,
the transition path after an unexpected transitory or permanent productivity shock and
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the equilibrium with aggregate shocks, under specific assumptions on the aggregate pro-
ductivity process. This allows us to restate Assumption 3 purely in terms of fundamentals
and to verify that the steady state asset distribution satisfies Assumption 4.

4 Stationary Equilibrium and Transitional Dynamics

We derive the stationary equilibrium and then study the transitional dynamics of the
model from this steady state following an unexpected shock to productivity. The steady
state results displayed here are translations of similar findings derived in Krueger and
Uhlig (2024) who employ a continuous-time version of the model, and stated here to
make the paper self-contained, given that the steady state is the starting point for the
analysis of transitions and aggregate fluctuations.

4.1 Stationary Equilibrium

For the purpose of this section we maintain Assumption 1.1 and thus productivity is
constant at A0. In a stationary equilibrium the wage w, the gross interest rate R and the
aggregate capital stock K are constants (over time and across aggregate states).

From Proposition 1 it immediately follows that in steady state the optimal wage-
deflated consumption and asset choices, as function of the wait time s, are given as

c0
w

= c0 =
1− (1− ν)β

1− (1− ν − ξ)β
ζ (42)

cs
w

= cs = (βR)sc0 for s = 1, 2, · · · (43)
a0

w
= a0 = 0 (44)

a1

w
= a1 =

β

1− (1− ν − ξ)β
ζ (45)

as
w

= as = (βR)as−1 = (βR)s−1a1 for s = 2, 3, · · · (46)

High income agents consume a constant fraction of their labor income, and consumption
of low income agents drifts down at a constant rate, βR, until they switch to a high
income state and renew the contract. As long as βR < 1, consumption converges to zero
in the long run, lims→∞ cs = 0.

We can of course use the stationary version of the aggregate law of motion (39) in
Proposition 2

K0 = ŝ(A0)
1−θKθ

0 + (1− δ̂)K0 (47)

to determine the aggregate steady state capital stock and the associated stationary wage
and interest rate, denoted by (K0, R0, w0) (we use the “0" notation because the steady
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state will be the initial condition for the transition analysis in Section 4.2). This delivers,
in parallel with Proposition 8 in Krueger and Uhlig (2024), but for discrete time:

K0 = A0

(
ŝ/δ̂
) 1

1−θ (48)

R0 = θA1−θ
0 Kθ−1

0 + 1− δ = θ
(
δ̂/ŝ
)
+ 1− δ (49)

w0 = (1− θ)A1−θ
0 Kθ

0 = (1− θ)A0

(
ŝ/δ̂
) θ

1−θ (50)

where (ŝ, δ̂) were defined in (40) and(41).
To obtain intuition for the aggregate law of motion, and derive a graphical represen-

tation of the capital market clearing condition for our model akin to that in the Aiyagari
(1994) model, it is instructive to carry out the explicit aggregation in the stationary
equilibrium. The capital market clearing condition in the steady state reads as

K =
∞∑
s=0

ϕsasw =
∞∑
s=1

ϕsasw

=
βζ

1− (1− ν − ξ)β

νξ

ξ + ν
w +

∞∑
s=2

ϕsasw

=
βζ

1− (1− ν − ξ)β

νξ

ξ + ν
w + βR(1− ν)

∞∑
s=2

ϕs−1as−1w

=
βζ

1− (1− ν − ξ)β

νξ

ξ + ν
w + βR(1− ν)K (51)

The first row is due to the fact that saving for the high idiosyncratic state z = ζ is zero,
and thus, a0 = 0. The second row splits the demand for assets (supply of capital) into
the part coming from productive agents saving for the low income state (a1) and the
part stemming from unproductive agents rolling over parts of their assets (as) for s > 1.
The third row exploits the optimal asset allocation in equation (46) and the form of the
stationary wait-time distribution ϕs in equation (31), and the last row uses the capital
market clearing condition. Plugging in for (R,w) from the firm’s optimality conditions
and rearranging delivers back the stationary version of the aggregate law of motion in
equation (47).

As in Figure II.b of Aiyagari (1994) and Figure 3a in Krueger and Uhlig (2024), the
capital market clearing condition (51) can be used to display the determination of the
stationary equilibrium interest rate and capital stock graphically, derive its comparative
statics properties and clarify the conditions needed for the existence of a stationary equi-
libriumwith partial consumption insurance. To do so, it is instructive to divide both sides
of (51) by the wage w and use the firm’s optimality condition with respect to capital, and
the normalization of expected productivity to one, (5), to write both sides as a function
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Figure 1: Determination of Market Clearing Interest Rate and Capital Stock. Parameter
values are β = 0.6, δ = 0.1, θ = 0.33, ξ = 0.5, ν = 0.2

of the gross interest rate R. This yields

K(R)/w(R) =: κd(R) =
θ

(1− θ)(R− 1 + δ)
=

ξβ

[1− (1− ν)βR] [1− (1− ν − ξ)β]
:= κs(R)

(52)

Figure 1 plots the (wage-normalized) demand for capital κd(R) by the production
firms (the relation between the return and the capital stock determined by the first order
condition for capital). It has exactly the same form as in the original Aiyagari (1994)
paper, sloping downward, and with the capital stock diverging to ∞ as the net interest
rate approaches−δ. The supply of capital κs from the household side is finite atR = 1−δ,
strictly increasing in the interest rate (something that is typically hard to prove in the
original Aiyagari (1994) model), and also finite at R = 1/β. Equation (52) also allows to
determine unambiguous comparative statics as the parameters of the model shift either
the demand curve (in case of the production parameters (θ, δ)) or the supply curve (in
case of the idiosyncratic risk parameters (ξ, ν) and the preference parameter β). Finally
it also shows that a necessary and sufficient condition for a unique simple stationary
partial insurance equilibrium with R0 < 1/β is that κd(1/β) < κs(1/β). This leads to the
following Assumption (the counterpart of Assumption 2 in Krueger and Uhlig (2024),
but cast in discrete time):
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Assumption 5.
θ

(1− θ)
(

1
β
− 1 + δ

) < ξ

ν
(

1
β
− 1 + ξ + ν

)
This assumption is satisfied if the chance of productivity falling ξ and the risk of it

not recovering quickly (as given by 1− ν) is sufficiently large.11 The assumption insures
that κd(1/β) < κs(1/β). Equipped with this assumption, defined purely in terms of ex-
ogenous parameters of the model, we can state the following proposition, completely
characterizing the stationary equilibrium of the model. It is the discrete-time counter-
part to Proposition 8 in Krueger and Uhlig (2024), and here mainly stated because the
stationary equilibrium forms the point of departure for the transition and aggregate risk
analyses in Sections 4.2 and 5.

Proposition 3 (Stationary Equilibrium). Suppose Assumption 5 holds. Then, there exists
a stationary partial insurance equilibrium in which the capital stock K0, interest rate R0

and wage rate w0 are given in a closed form:

K0 = A0

(
ŝ/δ̂
) 1

1−θ
= A0

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


1

1−θ

(53)

R0 =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) (54)

w0 = (1− θ)A0

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


θ

1−θ

(55)

The equilibrium interest rate R0 is strictly increasing in the capital share θ, strictly de-
creasing in the depreciation rate δ, the time discount factor β as well as the risk of produc-
tivity falling ξ and remaining low 1− ν and is independent of productivity A0. The capital
stock K0 is strictly increasing in the time discount factor β as well as the risk of productiv-
ity falling ξ and remaining low 1 − ν, strictly decreasing in the depreciation rate δ, and is
proportional to the level of productivity A0. The comparative statics of w0 is the same as for
K0. The simple stationary equilibrium is unique12 in the sense that there is no other simple

11Defining the time discount rate ρ by β = 1
1+ρ , we can restate the assumption as

θ

(1− θ) (ρ+ δ)
<

ξ

ν (ρ+ ξ + ν)
.

which coincides with the assumption insuring the existence of a stationary equilibrium of the continuous-
time model in Krueger and Uhlig (2024).

12We cannot rule out stationary equilibria in which allocations are more complex functions of idiosyn-
cratic histories, although we conjecture such equilibria do not exist under Assumption 1.

18



stationary partial-insurance equilibrium in which the stationary consumption and wealth
allocation and its associated cross-sectional distribution is simply a function of wait time s.

Proof. The equations follow directly from the aggregate law of motion (39) at steady
state, see Appendix A.2.1 for the derivation. Intuitively, existence and uniqueness follows
directly from the monotonicity of κd(R) and κs(R) in Figure 1 as well Assumption 5.
The comparative statics results with respect to R0follow directly from the fact that the
curve κd(R) shifts to the right with an increase in θ and a decrease in δ whereas κs(R)
is independent of these parameters, and the fact that κs(R) shifts to the right with an
increase in ξ, 1 − ν, β and κd(R) is independent of these parameters. The comparative
statics results with respect toK0 and w0 then follow from the firm optimality conditions,
given the comparative statics with respect to R0

Assumption 5 is also a necessary condition for the existence of a simple partial in-
surance equilibrium.13 In the next subsection we use the stationary equilibrium (R0, K0)

and the associated asset distribution determined by the optimal asset allocation (46) and
the wait-time distribution ϕs in (31) as point of departure to analytically characterize the
transition path induced by an unexpected change in the productivity path.

4.2 Transitional Dynamics

Starting from a stationary partial insurance equilibrium with Assumption 5 in place we
now assume that at the beginning of period t = 1 the economy experiences an unex-
pected, zero probability shock (a so-called MIT shock) that alters productivity from A0 to
a new deterministic sequence {At}∞t=1. There are no further surprises about productivity
or any other parameters of the economy thereafter; that is, aggregate productivity now
satisfies Assumption 1, part 2. Assumption 4 on the initial distribution is now guaranteed
to be satisfied since the economy starts at the stationary equilibrium characterized in the
previous subsection. Note that we continue to impose the no-savings Assumption 3; in
Section 4.2.1 below we provide conditions on the path {At}∞t=1 sufficient to guarantee
that this assumption is indeed satisfied.

The analysis in this subsection follows the work in continuous time of Krueger, Li, and
Uhlig (2024) and translates their main results for deterministic MIT transition paths into
the discrete-time framework of this paper, but it also permits us to handle both the full-
depreciation case (which in turn yields a useful point of comparison to the representative

13A violation of Assumption 5 does not exclude the possibility for the existence of a stationary equilib-
rium with βR ≥ 1. The characterization of optimal consumption and asset allocations in Proposition 1
requires, in a stationary equilibrium, that βR < 1 and is no longer valid if βR ≥ 1, and thus the ensuing
aggregation analysis no longer applies.
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agent neoclassical growth model) and the case of permanent productivity declines which
are infeasible in continuous time.

The optimal household allocations and the aggregate law of motion for capital are
special cases of Propositions 1 and 2, respectively, and thus (recall equation (39)):

Kt+1 = ŝ(At)
1−θ(Kt)

θ + (1− δ̂)Kt (56)

where14

ŝ = (1− ν)βθ +
ξβ(1− θ)

1− (1− ν − ξ)β
≈ θ(1− ν − ρ) + (1− θ)

[
ξ

ξ + ν + ρ

]
(57)

δ̂ = 1− (1− ν)β(1− δ) ≈ ν + ρ+ δ. (58)

This law of motion for capital resembles that in the classical Solow growth model, but
with a depreciation rate δ̂ that is larger (by ν + ρ) than the physical depreciation rate δ
and a saving rate ŝ that is an explicit function of the structural parameters of the model
and depends negatively on ν + ρ and positively on the risk of income falling to zero ξ.
We discuss the relation to the Solow model and the literature more broadly in Section 6.

Studying the special case of unexpected transitions is useful for three purposes. First,
it will allow us, in Subsection 4.2.1, to derive a sufficient condition purely on the produc-
tivity process such that the no-savings condition βRt+1 <

wt+1

wt
is satisfied for all periods

along the transition. Second, we show in Subsection 4.2.2 that the original steady state
allocation, chosen under the assumption by households that wages and interest rates will
never change, remains optimal in period 1, after the MIT shock has hit and wages and
interest rates undergo the unexpected transition. Third, there we will also clarify why
the aggregate transition induced by a change in productivity is independent of whether
this change is unanticipated (as in the MIT shock thought experiment) or anticipated.
This in turn suggests that the model with aggregate shocks in Section 5 remains analyt-
ically tractable and retains the same characteristics as the model with unexpected MIT
transitions. Finally, as a first application, Subsection 4.2.3 characterizes the evolution of
consumption inequality following the MIT shock.

4.2.1 Sufficient Conditions for βRt+1 <
wt+1

wt
along the Transition Path

Thus far, we have derived the dynamics of the capital stock in equation (39) under the
maintained assumption that the limited commitment constraint of households receiving
high income is always binding along the transition path, see Assumption 3. Equivalently,
phrased in terms of state-contingent asset accumulation, it was assumed that households
have an asset position of zero when starting the period with high idiosyncratic produc-
tivity. We showed in Proposition 1 that such a contract satisfies the optimality conditions

14Recall ρ is defined by β = 1
1+ρ and the approximation assumes that ρ, ξ, ν are sufficiently small.
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when βRt+1 <
wt+1

wt
for all t ≥ 0. Intuitively, when interest rates are low and/or wages

are expected to be higher in the future than today, individuals have no incentive to save
for the contingency of high idiosyncratic labor productivity tomorrow.

In this subsection, we derive sufficient conditions insuring βRt+1 <
wt+1

wt
for all t ≥ 0

after a positive and after a negative productivity shock, respectively. Broadly speaking,
the shock to total factor productivity A cannot be too large in either direction. Further-
more, if depreciation is 100%, then no further assumptions besides those already made
to ensure the existence of partial insurance steady state from which the transition starts
are necessary, as we demonstrate next. These results differ in a significant way from the
corresponding findings in the continuous-time transition analysis of Krueger, Li, and Uh-
lig (2024). Whereas the positive permanent shock case delivers a condition that has an
identical counterpart in continuous time, the full-depreciation case cannot be analyzed
in continuous time. Perhaps more importantly, for negative permanent shocks the no-
savings condition cannot be satisfied in continuous time (since the instantaneous growth
rate in the wage is infinitely negative), whereas in discrete time we provide exactly such
a sufficient condition on the exogenous size of the productivity decline.15

Full Depreciation With full depreciation, δ = δ̂ = 1, the equilibrium law of motion for
capital is given from equation (56), with δ = 1 by

Kt+1 = ŝA1−θ
t Kθ

t (59)

as long as, along the transition βRt+1 <
wt+1

wt
< 1. Lemma 6 in Appendix A.2.2 shows that

with full depreciation Rt+1
wt

wt+1
= R0, for all t ≥ 0. But since under Assumption 5 there

exists a stationary partial insurance equilibrium (with βR0 < 1) and by assumption this
is the starting point for the unexpected transition, along this transition βRt+1 <

wt+1

wt
is

guaranteed by Assumption 5, independent of the sequence of productivity levels {At}.
Also note that in the limit, as idiosyncratic risk vanishes (ν and ξ converge to zero), the

saving rate ŝ in our model approaches that of the standard representative agent model
with log-utility and full depreciation s = βθ. Finally, with full depreciation the nonlinear
first order difference equation in (59) has a closed-form solution since it implies that the
log of the capital stock obeys a linear first order difference equation which can easily be
solved in closed form. This discussion is summarized in the following proposition.

Proposition 4. Let Assumption 5 be satisfied and suppose the economy is originally in a
partial insurance steady state (K0, R0, w0) and {(as,0, cs,0)}∞s=0 characterized in Proposition

15On the downside, the first-order difference equation characterizing the dynamics of the equilibrium
has no explicit solution whereas the corresponding differential equation in continuous time has. See
Section 6 for further discussion and Krueger, Li, and Uhlig (2024) for the continuous time solution.
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3. Then the aggregate capital stock in period t of the transition induced by an unexpected
change in productivity after period 0 to the sequence {At}∞t=1 is determined as

Kt = exp

[
(1− θ)

[
t−1∑
τ=1

θt−1−τ logAτ

]
+

1− θt−1

1− θ
log ŝ+ θt−1 logK0

]
, (60)

the factor prices (Rt, wt) are given by the firm’s optimality conditions (13) and (14), and
individual household allocations {(as,t, cs,t)} are as stated in Proposition 1, given the dy-
namics of the capital stock Kt in (60).
Proof. Follows directly from taking logs on both sides of equation (59) and solving the
linear first order difference equation for log(Kt),

logKt+1 = log ŝ+ (1− θ) logAt + θ logKt

and then exponentiating. This delivers (60).

With less than full depreciation, δ < 1, Assumption 5 is not sufficient to insure that
the no-savings condition βRt+1 <

wt+1

wt
is satisfied for t > 0. For arbitrary sequences of

productivity it is difficult to establish general conditions purely in terms of the fundamen-
tals of the economy, but in the case of fully permanent shocks this is possible since for this
case we can establish that the capital stock evolves monotonically over time. To do so it
is useful to distinguish positive technology shocks (which induce positive wage growth
along the transition and temporarily elevated interest rates) from negative technology
shocks (with negative wage growth and depressed interest rates along the transition),
since the two cases differ in the restrictiveness of the assumptions needed to ensure that
the no-savings condition is satisfied.

Permanent Shocks We first establish the monotone convergence of the capital stock
following a permanent shock to productivity.
Proposition 5 (Monotone Convergence of (Kt, Rt, wt)). Assume the economy is in a sta-
tionary equilibrium associated with aggregate productivity A0 and associated capital K0 at
time t = 0, and suppose at time t = 1, productivity unexpectedly and permanently changes
to A1 with A1 > A0. Furthermore, suppose βRt <

wt+1

wt
for all t ≥ 0 (Assumption 3). Then,

aggregate capital Kt and wages wt monotonically increase and converge to their new sta-
tionary equilibrium values, and the interest rate jumps up on impact and then converges
monotonically to the old (and new) stationary equilibrium from above:

K0 = K1 < K2 < · · · < K∗ =
A1

A0

K0, (61)

w0 < w1 < w2 < · · · < w∗ =
A1

A0

w0, (62)

R0 < R1 > R2 > · · · > R∗ = R0. (63)
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Symmetrically, following a permanent negative productivity shock At = A1 < A0 for all
t ≥ 1, the aggregate capital stock and wages monotonically decrease along the transition,
and the interest rate falls on impact before converging back to the old (and new) stationary
equilibrium from below:

K0 = K1 > K2 > · · · > K∗ =
A1

A0

K0, (64)

w0 > w1 > w2 > · · · > w∗ =
A1

A0

w0, (65)

R0 > R1 < R2 < · · · < R∗ = R0. (66)

Proof. See Appendix A.2.3

Equipped with this result we can now give sufficient conditions, purely in terms of
fundamentals, for the condition βRt <

wt+1

wt
to indeed be satisfied for all t. We first

consider the case of a positive productivity shock. In this case, the capital stock and thus
the wage wt = (1− θ)A1−θ

t Kθ
t is monotonically increasing over time, and so βRt+1 < 1 is

a sufficient condition for βRt+1 <
wt+1

wt
. Furthermore, from the previous proposition the

interest rate jumps up at t = 1 and then monotonically converges to the (old and new)
stationary equilibrium interest rate. Therefore, βR1 < 1 guarantees that βRt+1 < 1 and
thus βRt+1 <

wt+1

wt
for all t ≥ 0. The following proposition provides a sufficient condition

for this, and is the counterpart to Assumption 3 in Krueger, Li, and Uhlig (2024).

Proposition 6 (Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Positive Shock). Let

Assumption 5 be satisfied and let the economy be in a stationary equilibrium with βR0 < 1.
After a permanent positive productivity shock at t = 1 (At = A1 > A0 for all t ≥ 1),
βRt+1 <

wt+1

wt
∀t ≥ 0 is satisfied if the shock is not too large, that is, if A1 ∈ [A0, Ā1) where

the threshold Ā1 satisfies

Assumption 6.

Ā1

A0

=

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

=

(
ρ+ δ

θ

) 1
1−θ

K0 > 1.

(67)

Proof. See Appendix A.2.4.

Intuitively, if A1/A0 > 1 is sufficiently small, the initial jump in the interest rate is not
too large, and we can guarantee βRt+1 < 1 along the transition path. This, coupled with
positive wage growth induced by the positive productivity shock insures that βRt+1 <
wt+1

wt
for all t ≥ 1 along the transition path, and high-productivity households have no

incentive to save for any t, confirming the existence of a simple, no-savings equilibrium.
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A1 A0 Ā1 A1

a potential reason to save︷ ︸︸ ︷ no reason to save︷ ︸︸ ︷ a potential reason to save︷ ︸︸ ︷Negative Wage Growth High Interest Rate R2

Figure 2: Thresholds for A1

The case of a negative technology shock is more challenging because wages are de-
clining along the transition (see the previous proposition), and thus high-productivity
individuals face stronger incentives to save in anticipation of lower labor income in the
future. We can nevertheless give a sufficient condition on the size of the productivity de-
cline that guarantees the no-savings condition be satisfied. This result has no counterpart
to the analysis in continuous time.

Proposition 7 (Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Negative Shock). Let

Assumption 5 be satisfied and let the economy be in a stationary equilibrium with βR0 < 1.
After a permanent negative productivity shock at t = 1 (At = A1 < A0 for all t ≥ 1),
βRt+1 <

wt+1

wt
∀t ≥ 0 is satisfied if A1 ∈ (A1, A0] holds, where the threshold satisfies

Assumption 7.

A1/A0 =

1− ν + ν
1− (1− δ)β(1− ν)

βν(1− δ)

ξ(1− θ)− βθν(ξ + ν + 1
β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)
 1

θ−1

< 1.

(68)

Proof. See Appendix A.2.5.

Figure 2 illustrates Propositions 6 and 7 graphically. Note that the conditions stated
in these two propositions are sufficient but not necessary for the household limited com-
mitment constraint to be binding in the high income state. To summarize, Proposition 6
and 7 state that if the permanent productivity shock is not too large, A1 ∈ (A1, Ā1), the
condition on interest rate and wage growth, βRt+1 <

wt+1

wt
, is satisfied for all t ≥ 0.

In Appendix B.1.1 we generalize the results in this subsection to arbitrary monotone
deterministic and convergent sequences {At}∞t=1 with A0 < A1 ≤ A2 ≤ · · · or with
A0 > A1 ≥ A2 ≥ · · · with limt→∞At = A∗. The results are similar to the ones for
permanent shocks in that they require that the initial productivity shock A1 and the
subsequent shocks cannot be too large or too small, but the analysis requires a first-
order approximation of the capital stock dynamics.
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4.2.2 MIT Shocks, Anticipated Shocks and Consumption on Impact

In Proposition 1 we provided a general characterization of the optimal consumption al-
location under the no-savings in the high state condition. We now draw out one perhaps
unexpected implication of this general characterization in the context of MIT shocks:
despite the unexpected change in wages and interest rates starting in period t = 1,
the optimal consumption allocation of low-productivity individuals satisfies the standard
Euler equation even through the surprise period, i.e., between period t = 0 and t = 1.

Corollary 2 (Consumption at the time of a shock). Consider an unexpected shock to pro-
ductivity at t = 1 and assume that Assumptions 2, 3, and 4 hold. Then consumption of
high-income agents (ch,t) is a constant fraction of their income, and consumption of low-
income agents (cs,t for s ≥ 1) satisfies the Euler equation between periods t = 0 and t = 1:

ch,1 =
1− (1− ν)β

1− (1− ν − ξ)β
zw1

cs,1 = βR1cs−1,0 for s ≥ 1. (69)

Proof. Follows directly from the general characterization in Proposition 1. See Appendix
A.2.6 for detail.

The key to this result is that with log-utility, unconstrained households consume a
constant fraction of their assets cum interest, see equation (21):

cs,1 := w1cs,1 = [1− β(1− ν)]R1as,1 ∀s ≥ 1,∀t (70)

Two observations are crucial. First, current consumption and assets chosen for tomorrow
do not depend on future interest rates with log-utility.16 Second, the surprise change in
current (period 1) TFP does impact the marginal product of capital and thus R1 (even
though the capital stock in t = 1 is predetermined), and therefore consumption cs,1

changes in period 1 relative to what the household had planned in the initial steady state
(cs,0), as equation (70) indicates, even though as,1 is predetermined from the previous
period. But since the impact of R1 on consumption is proportional, it exactly cancels
out with the direct change in R1 in the Euler equation, and thus the scaled (by R1)
consumption level cs,1 continues to satisfy the Euler equation between periods t = 0, 1.

In this section we have analyzed the transitional dynamics after an unanticipated
productivity shock (MIT shock) at t = 1, starting from the initial steady state. Note that
the assumption that the TFP changes are completely unanticipated is irrelevant for the

16We discuss the relation to the literature also exploiting log-utility to obtain analytical tractability in
heterogeneous-agent macro models in section 6
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transition dynamics. As we saw from equation (70), low-income agents consume a con-
stant fraction of their implied asset position regardless of future interest rates, and high-
income agents also consume a constant fraction of their labor income. Individual state-
contingent savings for the low-idiosyncratic productivity state at+1(a0, z

t+1, At+1; zt+1 =

0) = at+1(a0, z
t, At; zt+1 = 0) do not depend on future productivity shocks, either.17

Therefore, aggregate consumption in the economy is independent of future interest rates
and wages, and the law of motion of aggregate capital does not depend on these future
prices either. Thus the dynamics of the economy unfolds the same, regardless of whether
future productivity shocks are anticipated or unanticipated. Note that these results do
not hold in our model if households have CRRA utility with σ ̸= 1; they also do not hold
in the standard neoclassical growth model, as Appendix B.1.2 shows.

4.2.3 Application 1: Inequality along the Transition

We now use the result characterizing the aggregate transitional dynamics to study, as a
first application of the model, how consumption (and wealth) inequality responds to un-
expected or (partially) expected aggregate productivity shocks, thereby analyzing how
inequality evolves over the business cycle in our model. Our analysis largely follows Sec-
tion 6 of Krueger, Li, and Uhlig (2024), but in discrete time we can tackle both positive
and negative permanent shocks to productivity. We demonstrate four findings: (i) the
consumption distribution in the long run is invariant to aggregate productivity At; (ii)
With full depreciation of capital (δ = 1), the consumption distribution is time-invariant
and independent of aggregate shocks; (iii) If depreciation is partial (δ < 1), consump-
tion inequality expands on impact of a positive permanent productivity shock and then
shrinks (and often undershoots) towards the new steady state; (iv) Following a negative
productivity shock, the evolution of consumption inequality is symmetric to that of a
positive productivity shock.

The basis of our inequality results is Corollary 1 which shows that the consumption
distribution follows the simple structure in equation (32) characterizing wage-deflated

17Recall from equation (22) that:

at+1(a0, z
t+1, At+1; zt+1 = 0) =


β

1−(1−ν−ξ)β ζwt(A
t) if zt = ζ

βRt(A
t)at(a0, z

t, At) if zt = 0
= at+1(a0, z

t+1, At; zt+1 = 0)

and thus is independent of (expectations of) Rt+1(A
t+1). With log utility, the effect of a higher return

on assets on savings in a state with higher TFP (the substitution effect) is completely offset by the lower
marginal utility from consumption (the income effect). Thus, households save the same amount regardless
of future aggregate productivity. The payoff tomorrow from these assets, Rt+1at+1, is dependent on Rt+1

(and thus changes, surprisingly in the case of the MIT shock, expectedly in the case of foreseen changes
in At+1), but households do not act on these foreseen changes.

26



consumption cs,t = cs,t
wt

as

cs,t(A
t) =

c0 :=
1−(1−ν)β

1−(1−ν−ξ)β ζ if s = 0

βRt(A
t)wt−1(At−1)

wt(At)
cs−1,t−1(A

t−1) if s ≥ 1
(71)

where we recall that s is the number of periods an individual has spent in a low-income
state since last receiving high income.

Consumption Distribution in the Long Run In the stationary equilibrium, the con-
sumption distribution is determined exclusively by the equilibrium βR∗, which does not
depend on productivity At. This implies that after aggregate shocks have subsided, the
consumption distribution (scaled by the now different wage) will return to the initial
stationary distribution in the long run.

Proposition 8 (Consumption Distribution in the Long Run). Suppose that Assumption 3
holds and that an economy is in a steady state at t = 0 with productivity A0. Suppose also
that after a productivity shock at t = 1, aggregate productivity settles down at limt→∞At =

A∞. Then, the deflated consumption distribution in the long run is the same as the initial
distribution:

c∗s = (βR∗)sc0 for s = 0, 1, 2, · · · ,

since the steady-state interest rate, R∗, does not depend on productivity A.

Proof. See Appendix A.2.7.

The Dynamics of the Consumption Distribution with δ = 1 In the case of full depre-
ciation of capital, δ = 1, wages and gross returns are proportional to aggregate produc-
tivity At, and so are the incomes of the high-productivity individuals with labor income
and the low-productivity individuals with capital income. As a consequence, the deflated
consumption distribution is constant along the transition path.

Proposition 9. Suppose Assumption 3 holds and suppose that an economy is in a stationary
equilibrium at t = 0 with a deflated consumption distribution {c∗s}s≥0. With full depreci-
ation of capital (δ = 1), the deflated consumption distribution is time-invariant for any
sequence of {At}t≥0:

cs,t(A
t) = c∗s, for any s ≥ 0 at all t ≥ 0 and At. (72)

Proof. See Appendix A.2.8.

Note that there is no counterpart to this result in continuous time since the full-
depreciation case cannot be analyzed there.
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Consumption Inequality after a Positive Shock when δ < 1 With full depreciation,
the differential evolution of capital- and labor income, which is the source of changing
inequality, is muted. We now study the more realistic case with partial depreciation in
which the gross return to capital moves less than one for one with aggregate productivity.
The thought experiment is again an MIT shock that hits the economy at the beginning of
period t = 1 and changes aggregate productivity to a sequence {At}t≥0, and the object
of interest is the evolution of consumption inequality associated with this shock.18

The next proposition characterizes the impact of a positive productivity shock on in-
equality on impact (when initial assets are pre-determined). Inequality widens because
wages and thus consumption of high-productivity individuals moves one for one with
productivity whereas the gross return and thus consumption of low-productivity indi-
viduals increase less than one for one. Consequently, since the latter group has initially
lower consumption, inequality widens on impact with less than full depreciation.
Proposition 10. Suppose that Assumption 3 holds, and suppose the economy is in a sta-
tionary equilibrium at t = 0 and hit by a positive productivity shock at t = 1 such that
A1 > A0. If 0 < δ < 1 and 0 < θ < 1, consumption inequality rises between t = 0 and
t = 1:

c0,t = c0 :=
1− (1− ν)β

1− (1− ν − ξ)β
ζ ∀t ≥ 0 (73)

cs,1 < cs,0 ∀s ≥ 0

and thus cs,1/c0,1 < cs,0/c0,0 for all s > 0. Furthermore cs,1/cs̃,1 = cs,0/cs̃,0 for all s, s̃ > 0.

Proof. See Appendix A.2.9.

To illustrate the results in this section, Figure 3 uses a numerical example to illus-
trate the evolution of consumption inequality in response to a positive (upper panels)
and negative (lower panels) aggregate productivity shock. The figures in the left col-
umn display the Lorenz curves of the consumption distribution for various time periods,
and the right panels show change in the Lorenz curve (in percentage point deviations)
relative to the initial steady state distribution, which is also the final steady state con-
sumption distribution (see Proposition 8). As predicted by Proposition 10, in response to
a positive technology shock consumption inequality increases and the Lorenz curve shifts
out and further away from the 45-degree line. Eventually, as predicted by Proposition 8
the Lorenz curve will return to its original shape as the economy converges to the new
steady state associated with permanently higher productivity.19

18As discussed in Section 4.2.2, it does not matter whether these productivity shocks are anticipated or
unanticipated. Therefore, the same results as in this subsection also go through in a stochastic economy
when productivity shocks take the specific sample path {At}t≥0.

19We discuss the forces determining the evolution of consumption inequality along the transition in
Appendix B.1.3.
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Figure 3: Evolution of Lorenz Curve after a positive and a negative productivity shock at
t = 1. Parameter values: β = 0.6, δ = 0.1, θ = 0.33, ξ = 0.5, ν = 0.2, A1

A0
∈ {1.5, 1/1.5}

Consumption Inequality after a Negative Shock The evolution of the deflated con-
sumption distribution for a permanent negative productivity shock is largely symmetric
to that of a positive shock. The corresponding theoretical results are stated in Corol-
laries 4–6 in Appendix B.1.4. There are two key differences between a positive shock
and a negative shock. First, the sufficient condition (derived in Subsection 4.2.1) re-
quired for insuring that βRt+1 <

wt+1

wt
for all t ≥ 1 differs across the two cases. After

a positive shock, βRt+1 < 1 is sufficient since wages are increasing along the transition
path. In contrast, after a negative shock agents may have an incentive to save even when
βRt+1 < 1 since wages are declining over time. Second, at the time of the shock, in t = 1,
low-income agents may have higher consumption than high-income agents in case of a
negative productivity shock because the decline in wages (which is relevant for high-
productivity individuals) is larger than the decline in interest rates (which is relevant for
low-productivity individuals) if 0 < δ < 1.20

20Low-income households may have higher consumption than high-income households at t = 1 only if
βR1 >

w1

w0
and Assumption 3 is violated in t = 1. However, the proposed consumption allocation (stipu-

lating zero contingent asset holdings for the high-productivity state) is still optimal as long as beginning
of the period assets of low-income households at t = 1 are not too large; recall that Assumption 3 is only a
sufficient condition. If they are indeed large, then currently low-productivity individuals would optimally
save even for the high-productivity state tomorrow.
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5 Aggregate Risk

Wenow consider stochastic aggregate productivityAt, introducing aggregate risk into the
economy. In addition, in order to introduce a mechanism for rates of return to capital
to be imperfectly correlated with, and more volatile than wages, we introduce shocks to
the deprecation rate δt of capital.21 We now define the aggregate state as Ωt = (At, δt),
with the history of the state being denoted as Ωt := (Ω0, · · · ,Ωt). To make clear that
At (respectively δt) is part of the aggregate state, we sometimes write At(Ωt) and δt(Ωt),
and we omit the dependence on Ωt or Ωt when there is no room for confusion.

In Section 3, we derived the optimal household consumption and asset allocation as
well as the law of motion of aggregate capital under the assumption that βRt+1 <

wt+1

wt
for

all t and all Ωt. We now replace this assumption with one purely on the exogenous pa-
rameters of the model. We assume (similar to Assumptions 6 and 7 in Section 4.2.1) that
the growth rate of productivity is not too large and not too small, and correspondingly,
that the stochastic depreciation rate cannot take too extreme values either. Concretely,
define the growth rate of productivity as gt+1 = At+1/At = g(Ωt+1) and assume that22

g(Ωt+1) ∈ {1− ϵ, . . . , 1 + ϵ} (74)
δt+1(Ωt+1) ∈ {δ̄ − ς, · · · , δ̄ + ς} (75)

for all Ωt+1. That is, the smallest and the largest realizations of productivity growth are
denoted by 1 − ϵ and 1 + ϵ, respectively, and the deprecation rate is bounded by δ̄ − ς

and δ̄ + ς. Otherwise, there is no change in the economic environment. The resource
constraint now reads as:

Ct(Ω
t) +Kt+1(Ω

t) = Kt(Ω
t−1)θAt(Ωt)

1−θ + (1− δt(Ωt))Kt(Ω
t). (76)

Since aggregate capital is determined one period ahead, Kt+1 depends on the history of
the aggregate state Ωt up to time t. Factor prices are still equal to marginal products:

wt(Ω
t) = (1− θ) (At(Ωt))

1−θ (Kt(Ω
t−1)

)θ (77)
Rt(Ω

t) = θ (At(Ωt))
1−θ (Kt(Ω

t−1)
)θ−1

+ 1− δt(Ωt). (78)

The key innovation is that now the return on capital Rt depends on both the realizations
of stochastic productivity and depreciation (At, δt). Appendix A.3.2 contains the com-

21For examples of papers that have used stochastic depreciation for the same reason, see, e.g, Smetters
(2003) and Krueger and Kubler (2006).

22Note that this assumption imposes restrictions on the underlying stochastic process for the level of
productivity At. Evidently, g(Ωt+1) = g(At, At+1) is only a function of the last two levels of productivity,
and thus if we treat the initial level of productivity A0 as fixed (and equal to the steady state value, say)
and assume that the growth rate follows a first order Markov chain with state space given by (74), then
the level of productivity is second-order Markov with time-varying state space.
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plete definition of equilibrium and shows that as long as βRt+1(Ω
t+1) < wt+1(Ωt+1)

wt(Ωt)
for all

t and all Ωt+1 the previous characterization of equilibrium goes through unchanged.
We now show theoretically in Section 5.1 that if ϵ and ς are not too large (as stated

precisely in Assumption 8 below), then βRt+1 <
wt+1

wt
holds for all t and all (Ωt,Ωt+1)

and the model with aggregate shocks has indeed a partial insurance equilibrium of the
form characterized in Section 3. In Section 5.2 we then deduce the asset pricing impli-
cations of the model. Specifically, there we provide theoretical conditions under which
the aggregate risk premium for capital in our model coincides with that obtained in the
standard representative agent (RA) economy, and we then show quantitatively under
what conditions the risk premium is significantly larger than that in the RA economy.

5.1 A Sufficient Condition for βRt+1 <
wt+1

wt

We introduce the following sufficient condition on the magnitude of aggregate produc-
tivity shocks and depreciation shocks.

Assumption 8.

β

[
θ

(
1− ϵ

1 + ϵ

)1−θ
δ̂max + ϵ

ŝ
+ 1− δmin

]
< 1− ϵ (79)

where we recall ŝ =
[

ξβ
1−(1−ν−ξ)β (1− θ) + (1− ν)βθ

]
and 1 − δ̂ = (1 − ν)β(1 − δ) from

equations (57) and (58), and define δ̂max := 1− (1− ν)β(1− δ̄ − ς) and δmin := δ̄ − ς.

Proposition 11. Suppose the steady state Assumption 5 holds and that the economy is in
the unique partial-insurance steady state at t = 0. Furthermore, suppose that the bounds
on productivity growth and depreciation (ϵ, ς) satisfy Assumption 8. Then the condition
βRt+1 <

wt+1

wt
is satisfied for all t ≥ 1 with probability 1. Furthermore, there exists an open

neighborhood N around (0, 0) such that Assumption 8 is satisfied for all (ϵ, ς) ∈ N .

Proof. See Appendix A.3.2.

To derive the sufficient condition (79), we proceed in four steps, stated in Lemmas
10 and 11 in the appendix. First, defining K̃t :=

Kt

At
as the productivity-adjusted capital

stock, and using the aggregate law of motion for the capital stock (39), we can write
βRt+1(Ω

t+1) and wt+1(Ωt+1)
wt(Ωt)

as functions exclusively of productivity-adjusted capital K̃t

and the growth rate of productivity At+1

At
, since (39) can be rewritten as

K̃t+1 =
At
At+1

(
ŝK̃θ

t + (1− δ̂)K̃t

)
(80)

and Rt+1 = θK̃θ−1
t+1 + 1− δ and wt+1

wt
= At+1

At

(
K̃t+1

K̃t

)θ
.
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Second, holding K̃t fixed, condition (79) is most easily violated for the smallest At+1

At

and the smallest δt+1. Third, the interest rate Rt+1(Ω
t+1) is strictly decreasing in K̃t and

wage growth is strictly decreasing in K̃t. Fourth, we establish a lower and an upper bound
(K̃min, K̃max) on the stochastic process {K̃t}. The sufficient condition then insures that

βRt+1(Ω
t+1)

∣∣∣
K̃t=K̃min,

At+1
At

=1−ϵ,δ=δ̄−ς
<
wt+1(Ω

t+1)

wt(Ωt)

∣∣∣
K̃t=K̃max,

At+1
At

=1−ϵ
(81)

Since the condition is satisfied in the “worst case scenario”, βRt+1 <
wt+1

wt
is satisfied for

all t with probability 1.
Note that the existence of an open neighborhood N in Proposition 11 insures that

the set of parameters for which Proposition 11 applies is non-empty. Furthermore, the
sufficient condition (79) can be readily be checked numerically, and in our asset pricing
application below we ensure that it is satisfied for all parameterizations we consider.

5.2 Application 2: Asset Pricing

We now examine the asset pricing implications of the limited-commitment model with
idiosyncratic and aggregate risk. Specifically, we investigate whether the model can gen-
erate a lower risk-free rate and a larger risk premium than the representative agent
model. In Section 5.2.1, we derive the risk-free rate and the risk premium of holding
capital in the two models. In Section 5.2.2, we show that if capital always fully depre-
ciates (δ̄ = 1, ς = 0), the limited-commitment model has a lower risk-free rate than the
corresponding representative-agent model, but an identical risk premium. In Section
5.2.3 we discuss why the same conclusion does not hold if one deviates from δ ≡ 1.
There we argue that in a production economy with δ ≡ 1, the available resources in the
economy as well as gross capital income and labor income are all perfectly correlated
with aggregate productivity A1−θ

t , whereas with less than perfect and deterministic de-
preciation, gross capital income (and thus the income of low-productivity households)
moves less than one for one with productivity A1−θ

t , resulting in a lower risk premium
in our model. Finally, in Section 5.2.4 we show that with stochastic capital deprecia-
tion capital income becomes more volatile than labor income, and (for sufficiently large
depreciation shocks), the risk premium in our model exceeds that in the representative
agent economy, and can account for a significant share of the empirically observed risk
premium if idiosyncratic risk is sufficiently large.

5.2.1 The Risk-Free Rate and the Capital Risk Premium

We now derive the price of risk-free bonds qB(Ωt) and the multiplicative risk premium 1+

λt(Ω
t) on capital, defined as the ratio between the expected gross return on risky capital
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and the gross risk-free rate, in the limited-commitment model (Lemma 1) and in the
representative-agent model (Lemma 2). To do so, recall that the stochastic gross return
on buying one unit of capital in node Ωt and holding it to node Ωt+1 (and then selling
it) is denoted by Rt+1(Ω

t+1). Furthermore, for future reference we denote aggregate
consumption by Ct(Ωt).

Lemma 1. In the limited commitment model, the price of risk-free bonds and the risk pre-
mium of holding capital at aggregate state Ωt is given by:

qB,LCt (Ωt) = Et
[

1

Rt+1(Ωt+1)

]
(82)

1 + λLCt (Ωt) :=
Et[Rt+1(Ω

t+1)]

Et[1/qB(Ωt)]
= Et[Rt+1(Ω

t+1)] Et
[

1

Rt+1(Ωt+1)

]
> 1. (83)

Here Et[·] denotes the expectation conditional on Ωt, that is, Et[·] := E[·|Ωt]

Proof. See Appendix A.3.3.

Lemma 2. In the representative agent model, the price of risk-free bonds and the risk pre-
mium at aggregate state Ωt is given by:

qB,RAt (Ωt) = Et
[
β

Ct(Ω
t)

Ct+1(Ωt+1)

]
(84)

1 + λRAt (Ωt) :=
Et[Rt+1(Ω

t+1)]

Et[1/qB(Ωt)]
= Et[Rt+1(Ω

t+1)] Et
[
β

Ct(Ω
t)

Ct+1(Ωt+1)

]
. (85)

Proof. See Appendix A.3.3.

5.2.2 Full Depreciation of Capital, δ = 1

In the case of full depreciation, for both the limited-commitment economy and the rep-
resentative agent economy the aggregate law of motion of capital is given in closed form,
which allows us to derive the risk-free rate and the risk premium explicitly. We show that
the limited-commitment model has a lower risk-free rate but an identical risk premium.
That is, idiosyncratic and only partially insurable risk drives down the return on all assets
but leaves the multiplicative risk premium unaffected.

Proposition 12. Consider the economy with full depreciation of capital (δ = 1 with proba-
bility 1, that is δ̄ = 1, ς = 0). Let Assumption 5 be satisfied and the economy be initially in
a partial insurance steady state. Given the same history of aggregate shocks Ωt, the risk-free
rate is lower in the limited-commitment model than in the representative-agent model:

1

qB,LCt (Ωt)
<

1

qB,RAt (Ωt)
for all Ωt. (86)
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The risk premium is positive, and is the same in the two models and is given by:

1 + λt(Ω
t) = Et[A1−θ

t+1 ]Et
[

1

A1−θ
t+1

]
> 1. (87)

If productivity growth At+1

At
is iid, then the common risk premium is constant over time and

across states, 1 + λt(Ω
t) = 1 + λ.

Proof. See Appendix A.3.4.

Table 1: Asset Pricing in the Two Economies with δ = 1

LC RA
Low of Motion KLC

t+1 = ŝLCA1−θ
t Kθ

t > KRA
t+1 = βθA1−θ

t Kθ
t

Return on Capital RLC
t+1 = θ

(
KLC

t+1

At+1

)θ−1

< RRA
t+1 = θ

(
KRA

t+1

At+1

)θ−1

Risk-Free Rate
(

1
qB(Ωt)

)
1

Et[1/RLC
t+1(Ω

t+1)]
< 1

Et[1/RRA
t+1(Ω

t+1)]

Risk Premium
(

Et[Rt+1]
1/qB(Ωt)

)
Et
[
A1−θ
t+1

]
Et
[

1

A1−θ
t+1

]
= Et

[
A1−θ
t+1

]
Et
[

1

A1−θ
t+1

]
Table 1 above summarizes the asset pricing results with full depreciation. In this

case, both models have a constant aggregate saving rate, but, crucially, the one in the
limited-commitment (LC) model is higher than the representative agent (RA) model:
ŝLC > βθ = sRA under Assumption 5. Then in steady state RLC

0 < RRA
0 = 1/β and thus

KLC
0 > KRA

0 . Since in both models, K0 = A0s
1

1−θ , we have that ŝLC > sRA, and thus the
saving rate and thus the capital stock is higher in the LC economy, driving down the risk-
free rate below that in the RA economy.23 However, since all returns move proportionally
in both models, the risk premium is the same in the models.

5.2.3 Intuition: Different Risk Premia if δ ̸= 1

We have seen that the limited commitment model has a lower interest rate but the same
risk premium as the representative agent economy if δ = 1. Proposition 15 in Appendix

23This statement is conditional on the initial capital stock and the sequence of productivity shocks being
the same in both models. Assumption 5 and δ ≡ 1 imply βRLC < 1 in steady state and βRLCt+1(Ω

t+1) <
wLC

t+1(Ω
t+1)

wLC
t (Ωt)

for all t,Ωt,Ωt+1. With a constant saving rate s ∈ {ŝLC , sRA := βθ}, the capital stock Kt(Ω
t)

after any productivity history can be characterized as

logKt = (1 + θ + · · ·+ θt−2) log s+ (1− θ)

[
t−1∑
τ=1

θτ−1 logAt−τ

]
+ θt−1 logK0. (88)

It follows directly that the limited commitment commitment economy hasmore capital after every sequence
of productivity shocks than the RA economy, depressing returns below those of the RA economy. See
Appendix B.2.1 for the details.
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A.3.5 establishes the same result for an endowment economy. Now we provide intuition
why the same result does not go through in a production economy when δ ̸= 1. Key to
both arguments is that if two economies have stochastic discount factors that only differ
by a non-stochastic (but possibly time-varying) constant, then they will have different
risk-free rates but a common multiplicative equity premium. Since in both the produc-
tion economy with full depreciation and the endowment economy consumption of those
agents relevant for the stochastic discount factor is a nonstochastic fraction of aggregate
resources in the representative agent and the limited commitment model, both models
have SDF’s that only differ by a non-random factor and the asset pricing equivalence then
follows. This is the content of Proposition 13 below.

Krueger and Lustig (2010) show that when the stochastic discount factors in two
models differ only by a non-random multiplicative term24 then they have the same (mul-
tiplicative) risk premium (but typically different risk-free rates). Recall that a stochastic
discount factor is a stochastic process that satisfies the conditionEt

[
mt,t+1(Ω

t+1)Rj
t (Ω

t+1)
]
=

1 for any asset j that is being traded in the economy and has an equilibrium one-period
return Rj

t (Ω
t+1). In our applications the two assets are a risk-free one-period bond and

risky capital (risky equity in the endowment economy). For the representative agent
economy the stochastic discount factor is given by mRA

t,t+1(Ω
t+1) = β Ct(Ωt)

Ct+1(Ωt+1)
and in

our limited commitment economy it is given by mLC
t,t+1(Ω

t+1) = β ct(zt,Ωt)
ct+1(zt+1,Ωt+1)

for those
agents whose limited commitment constraint is not binding between nodes (zt,Ωt) and
(zt+1,Ωt+1) and who all share the same consumption growth rate.

The following proposition characterizes situations in which a) the SDF’s in both mod-
els can be characterized in terms of the growth rate of aggregate resources in the econ-
omy (the sum between capital and labor income) and b) the growth rate of aggregate
resources in both models is proportional to each other. If both a) and b) are true (as
in the endowment economy and the production economy with full depreciation), then
the SDF’s are proportional and risk premia are identical. When a) or b) fails (as in the
production economy with less than full depreciation) this conclusion is no longer true.

Proposition 13. Denote total aggregate resources available at node Ωt by Υt(Ω
t)

Υt(Ω
t) = Kt(Ω

t−1)θAt(Ω
t)1−θ + (1− δ(Ωt))Kt(Ω

t−1) (89)

1. In the production economy with δ(Ωt) ≡ 1, all unconstrained agents consume a non-
random fraction of total resources. The stochastic discount factor in both the represen-

24They demonstrate that the aggregate risk premium in an endowment economy with idiosyncratic
and aggregate risk is the same with complete markets (i.e., the representative agent model) and when
insurance against idiosyncratic risk is absent by assumption, i.e., the standard incomplete markets model.
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tative agent- and the limited commitment model is proportional to Υt

Υt+1
and satisfies:

mt,t+1(Ω
t+1) = γt

Υt(Ω
t)

Υt+1(Ωt+1)
, (90)

The factor γt is potentially time-varying and differs across the two models, but does
not depend on Ωt+1.

2. In the production economy with δ = 1, aggregate resource growth Υt

Υt+1
is proportional

between the two models, i.e., there is a non-random sequence of numbers γ′t (in the
endowment economy, γ′t ≡ 1) satisfying:

ΥLC
t (Ωt)

ΥLC
t+1(Ω

t+1)
= γ′t

ΥRA
t (Ωt)

ΥRA
t+1(Ω

t+1)
, (91)

Thus, there exists another non-random sequence of factors γ′′t satisfying:

mLC
t,t+1(Ω

t+1)

mRA
t,t+1(Ω

t+1)
= γ′′t := γ′t

γLCt
γRAt

(92)

Consequently, in the production economy with δ = 1, the limited commitment model
with idiosyncratic risk has the same risk premium as the representative agent model.

Proof. See Appendix A.3.6.

In the production economy with δ ̸= 1, total resources are not proportional to ag-
gregate productivity A1−θ

t due to non-depreciated capital (1− δ(Ωt))K. Hence, equation
(91) does not hold, the stochastic discount factors in the twomodels are not proportional
and the risk premia differ.

We now explore the risk premia in both models numerically. In the left panel of Figure
4 we display the risk premium in the representative agent economy and for various cali-
brations of the limited commitment economy, plotted against the depreciation rate δ. We
observe that risk premium is higher in the RA economy than in our model, but converges
in the two models as δ → 1 (as theory predicts). In our model the individuals pricing as-
sets are the currently low-productivity households with positive capital holdings, and it
is their consumption growth that is relevant for the equity premium. In the RA economy
it is the consumption growth of the representative household. The right panel shows
that the relevant consumption growth is more volatile in the RA economy, pushing up
the equity premium above the limited commitment economy. The premium is quantita-
tively small in both models, however, as is fully expected from the huge literature on the
equity premium puzzle.

Why is consumption growth of the representative agent more volatile than that of
unconstrained agents in the limited commitment model? Consumption of the represen-
tative agent is a combination of wage income and asset income. Both are stochastic due
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Figure 4: Risk Premium and Consumption Growth as a Function of δ

to aggregate productivity shocks, but the part 1− δ in the gross capital return R is deter-
ministic, making gross capital income less volatile than labor income, unless δ = 1. In
our model consumption of those pricing the asset is financed exclusively from (the less
volatile) capital income and thus the risk premium is smaller. Thus, the equity premium
puzzle deepens in our economy, relative to a standard RA production economy.

5.2.4 Stochastic Depreciation

The analytical tractability of our model clearly shows why the risk premium is smaller
than in the RA economy. Capital income of those participating in the asset market is not
volatile enough. This is precisely the “problem” stochastic depreciation fixes. We now
demonstrate quantitatively that with this model element the risk premium can become
larger than in the RA economy, and can account for a significant share of the empirically
observed premium if idiosyncratic risk is sufficiently large.

Table 2 presents basic asset pricing statistics for the economy with stochastic depre-
ciation in two parameterizations of the limited commitment economy that differ in the
extent of idiosyncratic risk. In the first, low idiosyncratic risk case (ξ, ν) are chosen such
that ν

ξ+ν
= 60% of households are employed, i.e., have positive labor productivity. In the

high risk parameterization we choose these two parameters such that the high produc-
tivity group comprises 1% of the working population (0.06% of the total population).25

The top left panel of Figure 5 displays how the premium varies with the size of the
depreciation shocks in the limited commitment economy and in the RA economy. The
domain of the shocks is restricted such that Assumption 8 is always satisfied. The re-

25The variance of idiosyncratic shocks is ξ/ν, so higher ξ (or lower ν) implies larger idiosyncratic risk.
The largest depreciation shocks ς satisfying Assumption 8 is 0.0027 with (ξ, ν) = (0.04, 0.06) and 0.182
with (ξ, ν) = (0.497, 0.003).
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(ξ, ν) = (0.04, 0.06) (ξ, ν) = (0.497, 0.003) Data
ς = 0 ς = 0.0025 ς = 0 ς = 0.05 ς = 0.16

E [Rt+1]− 1 (%) 31.0 31.0 6.7 6.7 7.1 7%
1/qt(Ωt)− 1 (%) 31.0 31.0 6.7 6.5 4.7 1%
λt (%) 0.0004 0.0008 0.0001 0.22 2.28 6%
std (Rt+1) 0.004 0.005 0.002 0.05 0.16 0.17
std
(
Ct+1

Ct

)
0.005 0.005 0.004 0.033 0.10 0.036

corr
(
Rt+1,

Ct+1

Ct

)
0.869 0.791 0.98 0.978 0.981 0.371

corr
(
Rt+1,

wt+1

wt

)
0.781 0.652 0.748 –0.023 –0.037 –

Notes: The table summarizes the mean for the return on capital (Rt+1), the risk-free rate (1/qt),
the risk premium (λt), and aggregate consumption growth (Ct+1/Ct) in the limited-commitment
model and in the data. The data on std (Rt+1), std

(
Ct+1

Ct

)
, corr

(
Rt+1,

Ct+1

Ct

)
are based on Table

14.3.1 in Ljungqvist and Sargent (2018). Other parameters are (β, δ̄, θ, ϵ) = (0.75, 0.1, 0.33, 0.01).
Productivity growth and depreciation are independent and can take two values with probability
1/2. Model moments are based on simulations for 100,000 periods.

Table 2: Moments in the limited-commitment model and in the data

maining panels then decompose the multiplicative risk premium

λt = −Cov(Rt+1, βct/ct+1) = −β std(Rt+1) std(ct/ct+1) corr(Rt+1, ct/ct+1) (93)

into its components.26 Here ct, ct+1 refers to aggregate consumption of the representative
agent in the RA economy, and consumption of the capital owners (the unconstrained, low
labor productivity individuals) in the limited commitment economy. The figure shows
that the key for raising the risk premium in the limited commitment model (relative to
the representative agent economy, and towards an empirically plausible value) is to raise
the volatility of consumption growth of the capital owners (see the lower left panel of
Figure 5), which in turn requires the depreciation shocks (and thus the volatility of gross
capital returns) to be sizeable (see the upper right panel of Figure 5).

With large depreciation shocks and large idiosyncratic risk (second to last column of
Table 2) the model generates a risk premium of more than two percent (see the third
row of Table 2), whereas the corresponding RA economy displays a premium of only
0.75 percent. Crucially, it does so with an empirically plausible volatility of gross capital
returns (see the fourth row of the table). In the absence of stochastic depreciation the
premium in both economies is close to zero (but larger in the RA economy).

These calculations are meant to be illustrative of the potential of our model to gen-
erate sizeable risk premia for owning capital, rather than provide a full quantification,

26The decomposition is obtained in equation (316) in Appendix B.2.2.
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which in turn would require an extension to more than two idiosyncratic productivity
states (at the expense of analytical tractability of the model).

Figure 5: Decomposition of Risk Premium λ = −β std(R) std(c/c′) corr(R, c/c′). Param-
eter values are (β, ξ, ν, δ̄, θ, ϵ) = (0.75, 0.497, 0.003, 0.1, 0.33, 0.01).

5.2.5 Idiosyncratic Risk Correlated with Aggregate Shocks

An influential literature (see, e.g., Storesletten, Telmer, and Yaron (2004) and Storeslet-
ten, Telmer, and Yaron (2007)) has argued that a stronger impact of idiosyncratic income
risk on the equity premium emerges when idiosyncratic risk increases in recessions. We
have shown in the previous section that in the presence of depreciation shocks elevating
the volatility of returns above that of wages our model implies a significantly larger eq-
uity premium than the representative agent neoclassical growth model. We now explore
whether the introduction of counter-cyclical idiosyncratic earnings risk strengthens this
finding, qualitatively and quantitatively. To do so, we first discuss how our theory has to
be augmented to allow for this model feature, and then display quantitative examples
that seek to quantify the importance of this effect.

Theory An economy in which idiosyncratic and aggregate risk are correlated differs
from the baseline model in three features: (i) the fraction (ψh,t) and labor productivity
(ζt) of high-income agents depend on the aggregate state, (ii) the price of contingent

39



claims (qt) that pay out the gross return on capital Rt+1 not longer satisfies Assumption
2 (i.e., qt(Ωt+1, zt+1|Ωt, zt) ̸= π(zt+1|zt)π(Ωt+1|Ωt)), and (iii) the consumption and saving
rate of (high-income and low-income) agents depends on aggregate state. We now make
the following assumption to retain analytical tractability.
Assumption 9. (i) The aggregate growth rate gt := At

At−1
and depreciation rate δt is iid:

π(gt+1, δt+1|Ωt) = π(gt+1, δt+1) ∀Ωt. (94)
(ii) The fraction of high-income agents (ψh) depends only on the realization of the current

aggregate growth rate gt:

ψh(Ω
t) = ψh(gt(Ω

t)). (95)
With these two assumptions, the transition probability of the idiosyncratic state de-

pends only on the current and previous realizations of the aggregate growth rate:
π(zt+1|zt,Ωt+1) = π(zt+1|zt, gt+1(Ω

t+1), gt(Ω
t)). (96)

In this new environment, the optimal consumption and asset allocation is given by:27

ct(zt, gt, δt|zt−1,Ωt−1) =

c̄(gt)wt(Ωt)ζt if zt = ζ

c(gt)Rt(Ω
t)at(z

t,Ωt) if zt = 0
(97)

at+1(zt+1, gt+1, δt+1|zt,Ωt) =


0 if zt+1 = ζ

β π(gt+1|gt)
q(gt+1|gt)

c̄(gt)
c(gt+1)

wt(Ω
t)ζt if zt = ζ and zt+1 = 0

β π(gt+1|gt)
q(gt+1|gt)

c(gt)
c(gt+1)

Rt(Ω
t)at(z

t,Ωt) if zt = 0 and zt+1 = 0

,

(98)

with c̄(gt) =
1

1 +
∑

gt+1

β
c(gt+1)

π(gt+1, zt+1 = 0|gt, zt = ζt)

c(gt) =
1

1 +
∑

gt+1

β
c(gt+1)

π(gt+1, zt+1 = 0|gt, zt = 0)
.

The consumption rate (c̄(gt), c(gt)) depends on the aggregate growth rate (gt). The price
of contingent claims takes the form:

qt(Ω
t+1, zt+1|Ωt, zt) = q(gt+1|gt)π(δt+1)π(zt+1|zt, gt, gt+1). (99)

The price is determined by the capital market clearing condition. In particular, the ag-
gregate capital in the next period follows:

Kt+1(gt+1, δt+1|Ωt) = π(zt+1 = 0|gt, gt+1, zt = ζt)
π(gt+1|gt)
q(gt+1|gt)

c̄(gt)

c(gt+1)
βwt(Ω

t)

+ π(zt+1 = 0|gt, gt+1, zt = 0)
π(gt+1|gt)
q(gt+1|gt)

c(gt)

c(gt+1)
βRt(Ω

t)Kt(Ω
t).

(100)
27See Appendix B.3.2 for the derivations.
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Since the capital in the next period is pre-determined and does not depend on the ag-
gregate state in the next period, Kt+1(gt+1, δt+1|Ωt) = Kt+1(Ω

t) holds for all (gt+1, δt+1).
Combined with the no-arbitrage condition ∑gt+1,δt+1

q(gt+1, δt+1|Ωt) = 1,28 the price of
contingent claims is pinned down.

The no-savings condition that corresponds to Assumption 3 is given now by:

βRt+1(Ω
t+1) <

wt+1(Ω
t+1)

wt(Ωt)

q(gt+1|gt)
π(gt+1)

c̄(gt+1)ζ(gt+1)

c̄(gt)ζ(gt)︸ ︷︷ ︸
additional term due to the correlation

. (101)

Note that a sufficient condition cannot be obtained in closed form any longer since the
law of motion of capital is no longer in closed form. We will simulate an economy for
many periods and numerically check that the condition (101) is satisfied at all periods.

Quantitative Implications for Asset Pricing The equity premium increases with the
correlation between idiosyncratic and aggregate risk.29 The intuition is as follows. In a
state with low idiosyncratic risk (i.e., a small fraction of low-income agents), the price
of contingent claims decreases (and the return on savings increases) to offset the lower
incentive to save for the state. Also, in a state with a high productivity growth rate, the
return on capital increases. If the two are correlated, consumption of savers in a high
aggregate state increases because of both the higher return on capital and lower price of
contingent claim. More volatile consumption increases the equity premium.

The quantitative results are demonstrated in Table 3. In the first column, the same
parameters are used as in the last column of Table 2. By allowing for the correlation
between idiosyncratic and aggregate risk, the equity premium increases from 2.2848
percent to 2.2863 percent. The degree of the correlation is set to target the procyclicality
of the employment rate of 0.008 observed in the data.30 In the second column, a higher
cyclicality of employment rate is assumed.31 Although the quantitative impact on the
equity premium remains small compared to the impact of stochastic depreciation, the
economy with this correlation generates a significantly higher equity premium than the
limited commitment model without the correlation and stochastic depreciation.

28Holding one unit of capital must yield the same return as purchasing one unit of contingent
claim for all possible states in the next period. Equation (99) implies ∑gt+1,δt+1

q(gt+1, δt+1|Ωt) =∑
gt+1,δt+1

q(gt+1|gt)π(δt+1) =
∑
gt+1

q(gt+1|gt) = 1
29The mechanism is shown analytically in a case with no serial correlation of idiosyncratic risk (i.e.,

corr(zt, zt−1|Ωt) = 0). See Appendix B.3.4.
30The average employment rate is 59.4% during non-recession periods and 58.4% during recessions from

April 1948 to February 2024, implying a procyclical employment rate, measured by 0.5ψh(gt=gh)−ψh(gt=gl)
mean(ψh)

,
of 0.008. The data on the labor force participation rate, unemployment rate, and NBER recessions are
taken from the Federal Reserve Economic Data.

31A lower β = 0.55 is chosen so that the no-saving condition (101) is satisfied for all simulated periods.
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Parameters Description Ex. 1 Ex. 2 Data
β discount factor 0.75 0.55
θ capital share 0.33 0.33
ξ̄ Pr(high→low) 0.497 0.497
ν̄ Pr(low→high) 0.003 0.003
δ capital depreciation 0.1 0.1 0.1
ϵ TFP shocks 0.01 0.01
ς stochastic depreciation 0.16 0.16

cyclical employment 0.008 0.05 0.008
Implied Moments

ψ̄h :=
ν̄
ξ̄+ν̄

employment rate (SS) 0.006 0.006 0.6
(ξl/νl)/(ξh/νh) income risk over BS 1.03 1.22
corr(zt, zt−1) auto-correlation 0.5 0.5
E[RLC

t+1]− 1 return on capital 7.06% 28.9% 7%
std(RLC

t+1) volatility on capital return 16.1% 16.3% 16.6%
1/qBt − 1 risk-free rate 4.71% 27.0% 1%

Equity Premium(%)
λLC full model 2.2863 1.5726
λLC with stochastic dep. 2.2848 1.5675
λLC with correlation 0.0005 0.0064
λLC plain LC model 0.0001 0.0004
λRA RA with stoch. dep. 0.7463 0.3597
λRA plain RA model 0.0010 0.0018

Notes: The procyclicality of employment rate is measured by 0.5ψh(gt=gh)−ψh(gt=gl)
mean(ψh)

. In the data,
the employment rate is 59.4% during non-recession periods and 58.4% during recessions, im-
plying a procyclicality of 0.008. Idiosyncratic risk is countercyclical since the variance of income
shocks is given by Var(z) = ξ

ν . The model economy is simulated for 100,000 periods.

Table 3: Parameters and Asset Pricing Implications

6 Where Does the Tractability of the Model Come From?

We are now in a position to more succinctly relate the model results to the most related
contributions in the literature. Recall that we obtain a closed form for the steady state,
the transitional dynamics of aggregate capital after an MIT shock as well as the law of
motion for this capital stock even in the presence of aggregate productivity shocks, de-
spite the fact that the economy features idiosyncratic risk that is only partially insurable.
This is a surprising result given that a neoclassical growth model without a commitment
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constraint does not have a closed-form solution unless full depreciation is assumed. We
now relate our model to other well-studied versions of general equilibrium models with
neoclassical production. Recall that the equilibrium law of motion is given by

Kt+1 = ŝYt + (1− δ̂)Kt where (102)
ŝ = θ(1− ν)β +

(1− θ)ξβ

1− (1− ν − ξ)β
≈ θ(1− ν − ρ) + (1− θ)

[
ξ

ξ + ν + ρ

]
(103)

δ̂ = 1− (1− ν)β(1− δ) ≈ ν + ρ+ δ. (104)

where the aggregate saving rate ŝ is a weighted average of the saving rate (1 − ν)β

of capital owners out of their capital income (which is a share θ of total income Yt =
(Kt)

θ(At)
1−θ) and the saving rate ξβ

1−(1−ν−ξ)β of productive workers out of their labor
income (a share 1− θ of aggregate income).

In this section we first show that an economy with neoclassical production and two
types of households, hand-to-mouth workers that earn all labor income and consume it
in every period, and capitalists that own the capital stock and finance consumption from
capital income, has a law of motion similar to (102) but with a different saving rate and
effective depreciation rate. As the transition probabilities of income shocks approach
zero: ξ, ν → 0, the equilibrium law of motion in our economy converges to that of the
two-agent economy. This is the content of Section 6.1 and allows us to relate our model
to Moll (2014). In Section 6.2 we explain why the limit of our model (as ξ, ν → 0) is not
the standard neoclassical growth model (which does have a constant aggregate saving
rate), unless there is full depreciation, the case we already analyzed in Section 4.2.1.

6.1 An Economy with Capitalists and Workers

Consider a two-agent (henceforth abbreviated 2A) neoclassical growth economy with a
representative worker and a representative capital owner. A variant of such a model,
albeit in continuous time, was studied in Moll (2014), with similar structures appearing
in Hornstein and Uhlig (2000) and Danthine and Donaldson (2002) as well.32 A hand-
to-mouth worker earns labor income and consumes all of this income in each period, by
assumption. A capital owner receives only capital income, solves a dynamic consumption
saving problem, whose solution is to consume a 1−β fraction of her gross capital income,
the optimal consumption-saving rule with log-utility. Therefore, consumption of both

32The most relevant version of Moll (2014), for the purpose of this paper, is contained in
an online appendix, available here: https://benjaminmoll.com/wp-content/uploads/2019/07/

capitalists-workers.pdf.
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groups is given by:

Cworker = wt, (105)
Cowner = (1− β)RtKt. (106)

and the goods market clearing condition in this economy can be written as

Kt+1 = A1−θ
t Kθ

t + (1− δ)Kt − Cworker − Cowner

= A1−θ
t Kθ

t + (1− δ)Kt − (1− θ)A1−θ
t Kθ

t − (1− β)[θA1−θ
t Kθ

t + (1− δ)Kt]

= βθA1−θ
t Kθ

t + β(1− δ)Kt = ŝ2AYt + (1− δ̂2A)Kt (107)

This aggregate law of motion coincides qualitatively with equation (102) for our limited
commitment model, and furthermore, as can readily be verified from equations (103)
and (104), limξ,ν→0 ŝ = ŝ2A as well as limξ,ν→0 δ̂ = δ̂2A. When we take the limit, we
assume that the ratio κ := ξ/ν remains fixed so that the share of low (and high) pro-
ductivity individuals ψl = ξ

ξ+ν
= κ

κ+1
remains well-defined and constant and aggregate

labor input L = νζ
ξ+ν

= ζ
κ+ν

remains at 1. The aggregate law of motion also coincides
with the original Solow model, but in both models studied here the saving rate is not
some exogenous behavioral constant s, but rather a function of the deep technology and
preference parameters of the model.

This result also clarifies the key model elements that leads to an aggregate law of mo-
tion that can be stated in closed form, as pointed out by Moll (2014): (i) the separation
of individuals into “workers" and “capitalists", (ii) that the period utility of the savers
(the capitalists) is logarithmic and (iii) that workers cannot or do not save.33

In our limited commitment model, the equilibrium allocation has a similar structure
to the two-agent model discussed above. Workers (high-productivity individuals) do
save, but at a constant rate, and all capitalists (low-productivity individuals) also have
the same saving rate

Cworker = ϕ0c0,t = ϕ0
(1− (1− ν)β)ζ

1− (1− ν − ξ)β
wt, (108)

Cowner =
∑
s≥1

ϕscs,t = [1− (1− ν)β]Rt

∑
s≥1

ϕs as,t = [1− (1− ν)β]RtKt. (109)

and thus the same aggregation result as in the two agent model obtains, but with differ-
ent effective aggregate saving and depreciation rate (ŝ, δ̂) (which converge to the saving

33Note that if the model is cast in continuous time, then the corresponding law of motion forms a
Bernoulli differential equation which has an explicit solution (that is, the equilibrium capital path can be
given in closed form), as does the original Solow model, as pointed out by Jones (2000). His unpublished
note is available here: https://web.stanford.edu/~chadj/closedform.pdf. We exploit this result in
the continuous time limited commitment model of Krueger, Li, and Uhlig (2024). Unless δ = 1, no such
explicit solution of the first-order nonlinear difference equation (107) is available in discrete time.
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and depreciation rates in the two agent as idiosyncratic risk vanishes). The key differ-
ence to Moll (2014)’s analysis is that in our model the identity of workers and capitalists
is not fixed but evolves stochastically with the realization of idiosyncratic productivity zt.

6.2 The Standard Neoclassical Growth Model

The aggregate law of motion of capital in the standard neoclassical growthmodel without
idiosyncratic risk does not have a closed-form solution (unless δ = 1, see Section 4.2.1)
because the representative agent has two sources of income, wage income and capital
income, and typically will not save a constant fraction of that aggregate income.

The results in the previous section might thus appear puzzling, since our model with-
out idiosyncratic risk is precisely the representative agent neoclassical growth model.34
However, note that the equilibrium allocation in our model discussed in the previous
section was derived under the no-savings assumption (Assumption 3 for the general case
and Assumption 5 for the steady state), and this assumption is in general violated for the
standard neoclassical growth model (whose steady state will have βR = 1 rather than
βR < 1). But if βR were equal to 1, then also in our limited commitment economy in the
stationary equilibrium all households consume the same, the consumption distribution
is degenerate and the model collapses to the standard neoclassical growth model (see
Krueger and Uhlig (2024) for the knife-edge condition for which this case emerges).35

34Appendix B.4.2 discusses this point in greater detail. It shows that both the standard representative
agent model without any heterogeneity and a representative-agent like model with ν = ξ = 0 (but well-
defined κ = ξ/ν ∈ (0,∞)) in which there are two permanent productivity types that face no idiosyncratic
risk and can freely borrow (recall in our model they cannot) satisfy the standard representative agent
Euler equation for aggregate consumption (and the aggregate resource constraint). These two equations
do not result in a closed-form aggregate law of motion for capital of the form (102), as is the case in our
model, unless there is full depreciation, δ = 1.

35One might then question whether no-saving condition can be satisfied at all if ν, ξ are close to zero.
Focusing on steady state, rewrite Assumption 5 as:

θ

(1− θ)
(

1
β − 1 + δ

) < ξ/ν
1
β − 1 + ν (ξ/ν + 1)

=
κ

1
β − 1 + ν (κ+ 1)

As long as the relative hazard rate κ = ξ/ν remains constant and is sufficiently large (that, there is
“enough" idiosyncratic income risk) as ν, ξ → 0, then Assumption 5 remains satisfied, making the limit
studied in the previous section meaningful. The same is true along a transition path as long as it starts
from a capital stock at or above the steady state capital and the productivity shock is not too large.
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7 Conclusion

In this paper we have developed an analytically tractable macroeconomic model with
idiosyncratic risk and endogenously incomplete market cast in discrete time, and have
derived its macroeconomic, distributional and asset pricing implications. In our envi-
ronment individuals can trade a full set of state-contingent claims, as in the standard
complete markets model, but face tight shortsale constraints in that they cannot borrow,
as typically the case in the standard incomplete markets model. Thus, we have hoped
to supply a natural hybrid alternative to both these benchmark models in which, despite
featuring a nondegenerate income-, consumption- and wealth distribution, all relevant
model properties can be characterized theoretically, including the evolution of inequality
over the business cycle and the risk premium on holding capital.

Futurework using this general partial insurance general equilibrium framework needs
to establish the applied and empirical relevance of the model. On the applied policy side,
in the current framework the only asset available to be traded by the private sector is
productive physical capital. The model lends itself naturally to the analysis of govern-
ment debt policy (and fiscal policy more generally). Given the focus on partial private
insurance of idiosyncratic risk in the current paper, a natural question is whether the
provision of better public insurance, either in the direct form of progressive income tax-
ation, or indirectly, by expanding government debt, improves risk sharing or crowds out
private insurance so strongly as to potentially be counter-productive, as in the work by
Golosov and Tsyvinski (2007), Krueger and Perri (2011) or Park (2014).

On the empirical side, the model contains sharp predictions for the change of the
consumption distribution in the presence of aggregate productivity shocks, and more
generally, for the change in the joint distribution of income, consumption and wealth in
response to aggregate shocks affecting wages and rates of return to capital. Of particular
interest are shocks that impact wages (and thus workers) and interest rates (and thus
capital owners) asymmetrically. We leave evaluating these predictions to future work.
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Appendix

A Proofs of Propositions

A.1 Proofs: Section 3 (Characterization of Equilibrium)

A.1.1 Proof of Proposition 1

We prove Proposition 1 in several steps. First, we propose a candidate optimal con-
sumption and asset allocation. We then show in a sequence of steps that this proposed
allocation is indeed an optimal choice of the household. To do so, Lemma 3 derives the
Kuhn-Tucker conditions for the household optimization problem (11)–(12) for given a
sequence of prices {Rt(A

t), wt(A
t), qt(At+1, zt+1|At, zt)}t≥0,At,At+1,zt,zt+1. Then, Lemmas 4

and 5 show that the proposed allocation satisfies the household’s budget constraint and
the Kuhn-Tucker conditions. Finally, Proposition 1 shows that since the proposed alloca-
tion satisfies the Kuhn-Tucker conditions and a transversality condition, it is an optimal
choice of the maximization problem.

We conjecture that, under the maintained assumptions on prices stipulating suffi-
ciently low interest rates/sufficiently high wage growth, individuals have no incentives
to save for the high-income state tomorrow, and for the low-income state tomorrow con-
sumption and asset choices are governed by a standard complete-markets Euler equation.
That is, we conjecture that the optimal household consumption-asset choice is given by:

at+1(a0, z
t+1, At+1) =


0 if zt+1 = ζ

β
1−(1−ν−ξ)β ζwt(A

t) if zt = ζ and zt+1 = 0

βRt(A
t)at(a0, z

t, At) if zt = 0 and zt+1 = 0

(22)

ct(a0, z
t, At) =

wt(At)c0, where c0 := 1−(1−ν)β
1−(1−ν−ξ)β ζ, if zt = ζ

[1− (1− ν)β]Rt(A
t)at(a0, z

t, At) if zt = 0
(21)

where a0(a0, z
0, A0) = w0(A

0)a0 are the initial asset holdings of the household (an ex-
ogenous initial condition).

It is straightforward to verify that (22) and (21) imply that under the proposed al-
location for currently low-income individuals (zt = 0) the standard complete markets
Euler equation for consumption holds (a fact that will be useful below for some of the
derivations):

ct(a0, z
t, At) = βRt(A

t)ct−1(a0, z
t−1, At−1). (23)
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To see this consider first an individual with zt−1 = 0. Then

at(a0, z
t, At) = βRt−1(A

t−1)at−1(a0, z
t−1, At−1)

= βRt−1(A
t−1)

ct−1(a0, z
t−1, At−1)

[1− (1− ν)β]Rt−1(At−1)
,

where the first line follows from equation (22), while the second line stems from equation
(21). Therefore

ct(a0, z
t, At) = [1− (1− ν)β]Rt(A

t)at(a0, z
t, At)

= βRt(A
t)ct−1(a0, z

t, At).

Now consider an individual with zt−1 = ζ. Then

at(a0, z
t, At) =

β

1− (1− ν − ξ)β
ζwt−1(A

t−1)

=
β

1− (1− ν)β
ct−1(a0, z

t−1, At−1)

∴ ct(a0, z
t, At) = [1− (1− ν)β]Rt(A

t)at(a0, z
t, At)

= βRt(A
t)ct−1(a0, z

t, At).

We now derive the Kuhn-Tucker condition for the household maximization problem
in the following Lemma.

Lemma 3. Given a sequence of prices {Rt(A
t), wt(A

t), qt(At+1, zt+1|At, zt)}t≥0,At,At+1, FOCs
to the household’s optimization problem (11)–(12) give the following Kuhn-Tucker condi-
tion:

ct+1(a0, z
t+1, At+1)

ct(a0, zt, At)
=
π(At+1|At)π(zt+1|zt)
qt(At+1, zt+1|At, zt)

[
βRt+1(A

t+1) + λ(a0, z
t+1, At+1)ct+1(a0, z

t+1, At+1)
]

(110)
with λ(a0, zt+1, At+1)at+1(a0, z

t+1, At+1) = 0, λ(a0, z
t+1, At+1) ≥ 0, at+1(a0, z

t+1, At+1) ≥ 0,

(111)

where λ(a0, zt+1, At+1) denotes a Lagrangian multiplier for a shortsale constraint at state
(zt+1, At+1).

Proof. Households’ Lagrangian problem is given by:
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U(a0, z0) = max
{ct(a0,zt,At),at+1(a0,zt+1,At+1)}∞t=0

∞∑
t=0

∑
At

∑
zt

βtπ(At)π(zt) log(ct(a0, z
t, At))

+
∞∑
t=0

∑
At

∑
zt

µ(zt, At)

[
wt(A

t)zt +Rt(A
t)at(a0, z

t, At)

− ct(a0, z
t, At)−

∑
At+1

∑
zt+1

qt(At+1, zt+1|At, zt)at+1(a0, z
t+1, At+1)

]

+
∞∑
t=0

∑
At+1

∑
zt+1

βtπ(At+1)π(zt+1)λ(a0, z
t+1, At+1)at+1(a0, z

t+1, At+1), (112)

where µ(zt, At) and λ(a0, z
t+1, At+1) are Lagrangian multipliers for budget constraints

and shortsale constraints. FOCs with respect to ct(a0, z
t, At) and at+1(a0, z

t+1, At+1) are:

[ct(a0, z
t, At)] : βtπ(At)π(zt)

1

ct(a0, zt, At)
= µ(zt, At) (113)

[at+1(a0, z
t+1, At+1)] : µ(zt+1, At+1)Rt+1(A

t+1) + βtπ(At+1)π(zt+1)λ(a0, z
t+1, At+1)

= µ(zt, At)qt(At+1, zt+1|At, zt) (114)

By substituting µ(zt, At), we obtain the following Kuhn-Tucker condition:

1

ct(a0, zt, At)
=
π(At+1|At)π(zt+1|zt)
qt(At+1, zt+1|At, zt)

[
βRt+1(A

t+1)
1

ct+1(a0, zt+1, At+1)
+ λ(a0, z

t+1, At+1)

]
(115)

where λ(a0, zt+1, At+1)at+1(a0, z
t+1, At+1) = 0, λ(a0, z

t+1, At+1) ≥ 0, at+1(a0, z
t+1, At+1) ≥ 0.

Here we use the conditional probability: π(At+1|At) = π(At+1)
π(At)

, where At+1 = (At, At+1),
and π(zt+1|zt) = π(zt+1)

π(zt)
, where zt+1 = (zt, zt+1). Because the idiosyncratic shocks follow

Markov, only the current state zt matters for the probability of zt+1. Hence, π(zt+1|zt) =
π(zt+1|zt). Since ct+1(a0, z

t+1, At+1) takes non-zero value (otherwise the utility would be
negative infinite), (115) can be expressed as:

ct+1(a0, z
t+1, At+1)

ct(a0, zt, At)
=
π(At+1|At)π(zt+1|zt)
qt(At+1, zt+1|At, zt)

[
βRt+1(A

t+1) + λ(a0, z
t+1, At+1)ct+1(a0, z

t+1, At+1)
]

The next two lemmas show that the conjectured allocation satisfies the budget con-
straint and the Kuhn-Tucker condition for a future low-income state.

Lemma 4. Suppose Assumption 2 on contingent claim prices is satisfied. Then, the allo-
cation defined in equations (21) and (22) satisfies the household’s budget constraint (10)
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and the Euler equation between the current state and a future low-income state (and hence
the Kuhn-Tucker condition 110):

1

ct(a0, zt, At)
= βRt+1(A

t+1)
1

ct+1(a0, zt+1, At+1; zt+1 = 0)
for all At+1. (116)

Proof. We first check the budget constraint. In a high-income state (zt = ζ), substituting
the conjectured consumption and asset choice (21) and (22) into equation (10) gives:

wt(A
t)c0 +

∑
At+1

∑
zt+1

qt(At+1, zt+1|At, zt)
β

1− (1− ν − ξ)β
ζwt(A

t) = wt(A
t)ζ

∴ wt(A
t)

 1− (1− ν)β

1− (1− ν − ξ)β
ζ +

∑
At+1

π(At+1|At) π(zt+1 = 0|zt = ζ)︸ ︷︷ ︸
=ξ

β

1− (1− ν − ξ)β
ζ

 = wt(A
t)ζ

where the second line uses Assumption 2: qt(At+1, zt+1|At, zt) = π(At+1|At)π(zt+1|zt).
The equality holds since∑At+1

π(At+1|At) = 1.
In a low-income state (zt = 0), equation (10) becomes:

[1− (1− ν)β]Rt(A
t)at(z

t, At)

+
∑
At+1

∑
zt+1

π(At+1|At)π(zt+1 = 0|zt = 0)︸ ︷︷ ︸
=1−ν

βRt(A
t)at(z

t, At) = Rt(A
t)at(z

t, At)

⇔ Rt(A
t)at(z

t, At)− (1− ν)β

1−∑
At+1

π(At+1|At)

Rt(A
t)at(z

t, At) = Rt(A
t)at(z

t, At)

This holds with equality since∑At+1
π(At+1|At) = 1.

Second, we examine the Euler equation for low-income households.36 The condition
on Lagrangemultiplies (111) implies λ(a0, zt+1, At+1) = 0, since λ(a0, zt+1, At+1)at+1(a0, z

t+1, At+1) =

0 and at+1(a0, z
t+1, At+1) > 0 in the proposed allocation. Under qt(At+1, zt+1|At, zt) =

π(At+1|At)π(zt+1|zt), the Kuhn-Tucker condition (110) is given by:
1

ct(a0, zt, At)
= βRt+1(A

t+1)
1

ct+1(a0, zt+1, At+1; zt+1 = 0)
.

ct+1 at a low-income state given by (21) satisfies this Euler equation.

The claim that households make no savings for high-income states could be shown by
induction.37 Here, we instead show that under Assumption 3: βRt+1(A

t+1) < wt+1(At+1)
wt(At)

at all t ≥ 0 and At+1, the Kuhn-Tucker conditions for high-income states are satisfied if
households do not save for high-income states.

36Since households always save for a low-income state, the Euler equation holds with equality. If house-
holds enter a low-income state with zero assets, their period utility would be negative infinite.

37At t = 0, given an initial state (a0 = 0, z0 = ζ) or (a0 ≤ ā0 := β
1−(1−ν−ξ)β ζ, z0 = 0), households

cannot achieve higher utility at t = 1 by saving for a high-income state at t = 1 if βR1
w0

w1
< 1. This is

because the Euler equation implies that consumption at t = 1 would be lower than consumption c0 in the
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Lemma 5. Suppose Assumption 2 on contingent claim prices is satisfied and suppose that
the sequence of wages and interest rates {wt(At), Rt(A

t)}∞t=0 satisfies the no-savings Assump-
tion 3 and that the initial wealth distribution satisfies Assumption 4. Then, the allocation
defined in equations (21) and (22) satisfies the Kuhn-Tucker conditions for high-income
states at any time t ≥ 0. It also implies equation (25):

ct+1(a0, z
t+1, At+1) > βRt+1(A

t+1)ct(a0, z
t, At) if zt+1 = ζ.

Proof. We check the Kuhn-Tucker conditions, (110) and (111), for a high-income state
(zt+1 = ζ) under Assumption 2, qt(At+1, zt+1|At, zt) = π(At+1|At)π(zt+1|zt), and Assump-
tion 4, βRt+1(A

t+1) < wt+1(At+1)
wt(At)

. Substituting ct+1(z
t+1, At+1; zt+1 = ζ) = wt+1(A

t+1)c0

and at+1(z
t+1, At+1) = 0 into equation (110) gives:

1

wt(At)ct(a0, zt, At)
= βRt+1(A

t+1)
1

wt+1(At+1)ct+1(a0, zt+1, At+1; zt+1 = ζ)
+ λ(a0, z

t+1, At+1)

⇔ βRt+1(A
t+1)

wt(A
t)

wt+1(At+1)︸ ︷︷ ︸
<1

ct(a0, z
t, At)

c0
+ λ(a0, z

t+1, At+1)wt(A
t)ct(a0, z

t, At) = 1

As long as ct(a0, zt, At) ≤ c0 for all (a0, zt, At), which we will show below, the Lagrangian
multiplier λ(a0, zt+1, At+1) that solves equation (110) satisfies λ(a0, zt+1, At+1) > 0. Then,
the Kuhn-Tucker condition for a high-income state is satisfied. Specifically, the Kuhn-
Tucker condition for a high-income state with λ(a0, zt+1, At+1) > 0 implies:

1

ct(zt, At)
> βRt+1(A

t+1)
1

ct+1(zt+1, At+1; zt+1 = ζ)
. (117)

This gives equation (25). Because the marginal utility of consumption at time t is higher
than the discounted marginal utility of consumption at state (zt+1, At+1) with zt+1 = ζ,
households do not have incentives to save for a high-income state.

Under βRt+1(A
t+1) < wt+1(At+1)

wt(At)
for all (t, At, At+1), we will show that ct(a0, zt, At) ≤ c0

for all (a0, zt, At). We prove by induction. At t = 0, the initial wealth distribution satisfies
Assumption 4. Given the consumption rule (21) and βR0 < 1, the initial consumption
conjectured allocation if the household were to save for t = 1. From t = 1 onward, since consumption
choice ct(a0, zt; zt = ζ) cannot be larger than c0 at any t ≥ 0 (otherwise the consumption profile will
violate the Euler equation or budget constraints in future low-income states), positive savings for a high-
income state at t = 1 wouldn’t give higher utility at any time t ≥ 1, under Assumption 3. By induction,
households at any time t ≥ 1 do not save for a high-income state at t + 1, since they start a period t ≥ 1

with (at = 0, zt = ζ) or (at ≤ ā0, zt = 0).
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satisfies c0(a0, z0, A0) ≤ c0 for all (a0, z0), as we see the following:

w0c0(a0, z0 = 0, A0) =: c0(a0, z0 = 0, A0) = [1− (1− ν)β]R0(A0)a0(a0, z0, A0)

< [1− (1− ν)β]R0(A0)w0
β

1− (1− ν − ξ)β
ζ

< βR0c0w0

< c0w0

Suppose ct(a0, zt, At) ≤ c0 for all (a0, zt, At) at time t ≥ 0. ct+1(a0, z
t+1, At+1) is given

by equation (21):

ct+1(a0, z
t+1, At+1) =

c0 if zt+1 = ζ

βRt+1(A
t+1) wt(At)

wt+1(At+1)
ct(a0, z

t, At) if zt+1 = 0

Since βRt+1(A
t+1) wt(At)

wt+1(At+1)
< 1 and ct(a0, zt, At) ≤ c0, we have ct+1(a0, z

t+1, At+1) ≤ c0

for all (c0, zt+1, At+1).

Finally, given that the conjectured allocation satisfies the Kuhn-Tucker conditions, we
prove that the conjectured allocation is indeed optimal.

Proposition 1 (Optimal Household Consumption and Asset Allocation).

Proof. In Lemmas 4 and 5, we have shown that under Assumptions 3 and 4, the conjec-
tured allocation (21)–(22) satisfies the budget constraints and the Kuhn-Tucker condi-
tions. The shortsale constraints are also satisfied. Now we want to show that the con-
jectured allocation maximizes the objective (11) under the constraints (10) and (12).
We apply the standard proof (e.g., Sims (2006)38 and Krusell (2014)) to our setup. The
upshot is that since the utility function is concave and the constraint set is convex (the
constraint at+1(z

t+1, At+1) ≥ 0 is linear in at+1(z
t+1, At+1)), the Kuhn-Tucker conditions

and a transversality condition (131) are jointly sufficient for optimality.
Wewill show that the conjectured allocation (21)–(22), denoted by ({c∗t (zt, At), a∗

t+1(z
t+1, At+1)}),

gives (weakly) higher expected utility than any other feasible allocations:

lim
T→∞

T∑
t=0

βtE
[
log(c∗t (z

t, At))
]
≥ lim

T→∞

T∑
t=0

βtE
[
log(ct(z

t, At))
]
, (118)

where feasible allocations ({ct(zt, At), at+1(z
t+1, At+1)}) satisfy the budget constraints

and the shortsale constraints. Since ct(zt, At) is uniquely determined by the budget con-
38The lecture note is available on his website: http://sims.princeton.edu/yftp/Macro2010/rlg.

pdf
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straint given (at(z
t, At), {at+1(z

t+1, At+1)}zt+1,At+1), denote:

ut(at, {at+1}) := log(ct(z
t, At))

= log
(
wt(A

t)zt +Rt(A
t)at(z

t, At)

−
∑
At+1

∑
zt+1

π(At+1|At)π(zt+1|zt)at+1(z
t+1, At+1)

)
.

With this notation, the Kuhn-Tucker condition implies the following:39

D2ut(at, {at+1}) + βEt [D1ut+1(at+1, {at+2})] + Et
[
λ(zt+1, At+1)

]
= 0 (124)

39Lagrangian is given by:

L =

∞∑
t=0

βt
∑
At,zt

π(zt)π(At)ut
(
at(z

t, At), {at+1(z
t+1, At+1)}zt+1,At+1|zt,At

)
+

∞∑
t=0

βt
∑

At+1,zt+1

π(zt+1)π(At+1)λt+1(z
t+1, At+1)

=:

∞∑
t=0

βtE [ut(at, {at+1})] +
∞∑
t=0

βtE [λt+1]

From Lemma 5, we know that the Kuhn-Tucker condition is satisfied for any (zt+1, At+1):
1

ct(zt, At)
= βRt+1(A

t+1)
1

ct+1(zt+1, At+1)
+ λ(zt+1, At+1) (119)

This implies, since∑zt+1,At+1|zt,At π(zt+1|zt)π(At+1|At) = 1,

1

ct(zt, At)
=

∑
zt+1,At+1|zt,At

π(zt+1|zt)π(At+1|At)
[
βRt+1(A

t+1)
1

ct+1(zt+1, At+1)
+ λ(zt+1, At+1)

]
(120)

=: Et
[
βRt+1(A

t+1)
1

ct+1(zt+1, At+1)

]
+ Et

[
λ(zt+1, At+1)

] (121)

We define the derivative of the flow utility as:

D1ut(at, {at+1}) :=
∂

∂at
ut(at, {at+1})

= Rt(A
t)

1

ct(zt, At)
(122)

D2ut(at, {at+1}) :=
∑

zt+1,At+1

∂

∂at+1(zt+1, At+1)
ut(at(z

t, At), {at+1(z
t+1, At+1)})

= −
∑

zt+1,At+1

π(zt+1|zt)π(At+1|At) 1

ct(zt, At)

= − 1

ct(zt, At)
(123)

Therefore, by substituting them into (121), we obtain:

D2ut(at, {at+1}) + βEt [D1ut+1(at+1, {at+2})] + Et
[
λ(zt+1, At+1)

]
= 0.

57



Define the difference in the sum of expected utility up to time T:

ṼT (a) :=
T∑
t=0

βtE
[
ut(a

∗
t , {a∗

t+1})− ut(at, {at+1})
] (125)

We will show that:

lim
T→∞

ṼT (a) ≥ 0 (126)

Since log(·) is a concave function, we have:40

E

[
T∑
t=0

βtut(at, {at+1})

]
≥ E

[ T∑
t=0

βt
{
ut(a

∗
t , {a∗

t+1}) +D1ut(a
∗
t , {a∗

t+1}) · (at − a∗
t )

+D2ut(a
∗
t , {a∗

t+1}) · (at+1 − a∗
t+1)

}]
(127)

Using this, we obtain:

ṼT (a) ≥ E
[ T∑
t=0

βt
{
D1ut(a

∗
t , {a∗

t+1}) · (a∗
t − at) +D2ut(a

∗
t , {a∗

t+1}) · (a∗
t+1 − at+1)

}]
= D1u0(a

∗
0, {a∗

1}) · (a∗
0 − a0)

+ E
[ T−1∑
t=0

βt
[
D2ut(a

∗
t , {a∗

t+1}) + βEt[D1ut+1(a
∗
t+1, {a∗

t+2})]
]
· (a∗

t+1 − at+1)
]

+ βTE
[
D2uT (a

∗
T , {a∗

T+1}) · (a∗
T+1 − aT+1)

] (128)

where the first term is zero given the same initial condition a∗
0 = a0. The second term is

non-negative.41 This is because the Kuhn-Tucker condition implies (124):

D2ut(a
∗
t , {a∗

t+1}) + Et[λ∗t+1] + βEt[D1ut+1(a
∗
t+1, {a∗

t+2})] = 0

40Here we denote:

D2ut(a
∗
t , {a∗t+1}) · (at+1 − a∗t+1) :=∑
zt+1,At+1

∂

∂at+1(zt+1, At+1)
ut(at(z

t, At), {at+1(z
t+1, At+1)}) · (at+1(z

t+1, At+1)− a∗t+1(z
t+1, At+1))

41Here we have applied the law of iterated expectations:

E
[[
D2ut(a

∗
t , {a∗t+1}) + βD1ut+1(a

∗
t+1, {a∗t+2})

]
· (a∗t+1 − at+1)

]
= E

[
Et
[{
D2ut(a

∗
t , {a∗t+1}) + βD1ut+1(a

∗
t+1, {a∗t+2})

}
· (a∗t+1 − at+1)

]]
= E

[[
D2ut(a

∗
t , {a∗t+1}) + βEt[D1ut+1(a

∗
t+1, {a∗t+2})]

]
· (a∗t+1 − at+1)

]
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and thus, the second term is larger or equal to zero:42

E
[ T−1∑
t=0

βt
(
− Et[λ∗t+1]

)
· (a∗

t+1 − at+1)
]
= E

[ T−1∑
t=0

βt Et[λ∗t+1]at+1︸ ︷︷ ︸
≥0

]
− E

[ T−1∑
t=0

βt Et[λ∗t+1]a
∗
t+1︸ ︷︷ ︸

=0

]
≥ 0

Therefore, (126) is satisfied if the third term is non-negative:

lim
T→∞

βTE
[
D2uT (a

∗
T , {a∗

T+1}) · (a∗
T+1 − aT+1)

]
≥ 0. (129)

Using the Kuhn-Tucker condition again, this is equivalent to:

lim
T→∞

βTE
[{

ET [λ∗T+1] + βET [D1uT+1(a
∗
T+1, {a∗

T+2})]
}
· (aT+1 − a∗

T+1)
]
≥ 0. (130)

Since λ∗T+1(z
T+1, AT+1)aT+1(z

T+1, AT+1) ≥ 0, λ∗T+1(z
T+1, AT+1)a∗

T+1(z
T+1, AT+1) = 0 for

all (zT+1, AT+1), and βD1uT+1(a
∗
T+1, {a∗

T+2})aT+1 ≥ 0, the following is sufficient for
(126):

lim
t→∞

βtE
[
D1ut(a

∗
t , {a∗

t+1})a∗
t

]
= 0, (131)

where D1ut(a
∗
t , {a∗

t+1}) = Rt(A
t)

1

c∗t (z
t, At)

.

Equation (131) is a transversality condition. Our conjectured allocation satisfies:

Rt(A
t)
a∗
t (z

t, At)

c∗t (z
t, At)

=

0 if zt = ζ

1
1−(1−ν)β if zt = 0

(132)

Hence, (131) is satisfied in the conjectured allocation. Therefore, the conjectured al-
location gives (weakly) higher expected utility than any other feasible allocations and
maximizes the objective.

A.1.2 Proof of Proposition 2

Proposition 2 (A Law of Motion of Aggregate Capital).
42Here we denote:

Et[λ∗t+1]at+1 :=
∑

zt+1,At+1

π(zt+1|zt)π(At+1|At)λ∗(zt+1, At+1)at+1(z
t+1, At+1)
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Proof. Aggregate saving is the sum of individual savings.

Kt+1 =

∫ ∑
zt+1

ât+1(a0, z
t+1, At+1)π(zt+1)dΦ(a0, z0)

= π(zt+1; zt = ζ, zt+1 = 0)︸ ︷︷ ︸
=ξ

π(zt; zt = ζ)︸ ︷︷ ︸
= ν

ξ+ν

ât+1(a0, z
t+1, At+1; zt = ζ, zt+1 = 0)

+

∫ ∑
zt+1

π(zt+1; zt = 0, zt+1 = 0)︸ ︷︷ ︸
=1−ν

ât+1(a0, z
t+1, At+1; zt = 0, zt+1 = 0)dΦ(a0, z0)

= ξ
β

1− (1− ν − ξ)β
wt(A

t) + (1− ν)βRt(A
t)

∫ ∑
zt

ât(a0, z
t, At; zt = 0)dΦ(a0, z0)︸ ︷︷ ︸

=Kt

,

The second line decomposes the summation into four groups by current and next states:
(zt = ζ, zt+1 = 0), (zt = 0, zt+1 = 0), (zt = ζ, zt+1 = ζ), and (zt = 0, zt+1 = ζ). It sums up
only the first two groups, since households do not save for a high-income state. The third
line follows the households’ saving rule (22). To obtain Kt =

∫ ∑
zt ât(a0, z

t, At; zt =

0)dΦ(a0, z0), note that high-income households have zero savings at the initial period
(t = 0) and that households do not save for a high-income state at t ≥ 1. Hence,
aggregate savings at any time t ≥ 0 is the sum of savings by low-income households
(zt = 0).

By substituting, wt(At) = (1 − θ)(At)
1−θKθ

t and Rt(A
t) = θ(At)

1−θKθ−1
t + 1 − δ, we

obtain equation (39).

A.2 Proofs: Section 4 (Stationary Equilibrium and Transitional Dy-
namics)

A.2.1 Subsection 4.1: Stationary Equilibrium

Proposition 3 (Stationary Equilibrium).

Proof. We first show that under Assumption 5, we can always find a stationary equi-
librium with βR0 < 1, i.e., the existence of a partial insurance equilibrium. Since we
consider a stationary equilibrium, aggregate productivity A0 is constant over time and
across aggregate states.

Suppose an interest rate satisfies βR0 < 1. We will later verify that the equilibrium
interest rate indeed satisfies βR0 < 1 under Assumption 5. Under βR0 < 1, households’
consumption and asset choices are given by equations (42)–(46). Hence, aggregate cap-
ital supply is given by equation (51). In order for the capital market to clear, the interest
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rate satisfies the equation (52):

K(R)/w(R) =: κd(R) =
θ

(1− θ)(R− 1 + δ)
=

ξβ

[1− (1− ν)βR] [1− (1− ν − ξ)β]
:= κs(R).

If the equilibrium interest rate R0 that solves (52) satisfies βR0 < 1, then we show the
existence of a partial insurance equilibrium with βR0 < 1.

Note that the wage-normalized capital demand is positive infinite in the limit R →
1− δ:

lim
R→1−δ

κd(R)

(
:=

θ

(1− θ)(R− 1 + δ)

)
= + ∞,

and κd(R) is strictly decreasing in R ∈ (1 − δ, 1
β
). Also, the wage-normalized capital

supply is finite at R = 1− δ:

lim
R→1−δ

κs(R)

(
:=

ξβ

[1− (1− ν)βR] [1− (1− ν − ξ)β]

)
<∞,

since 0 < 1−(1−ν)β(1−δ) < 1 and 0 < 1−(1−ν−ξ)β < 1. κs(R) is strictly increasing in
R ∈ (1− δ, 1

β
). This means that the excess demand for capital, κd(R)− κs(R), is positive

infinite at the limit R → 1− δ and (strictly) monotonically decreasing in R ∈ (1− δ, 1
β
).

Therefore, an equilibrium interest rate with βR0 < 1 exists if:

κd(R)− κs(R) < 0 at R =
1

β
.

This condition is equivalent to Assumption 5. Hence, under Assumption 5, there exists
a partial insurance equilibrium with βR0 < 1.

From the FOCs for a representative firm (equations 13 and 14), we have:

K0 = A0

(
θ

R0 − 1 + δ

) 1
1−θ

,

w0 = (1− θ)(A0)
1−θ(K0)

θ.

By substituting the equilibrium interest rate, we obtain the equilibrium capital and the
wage.

Comparative statics are straightforward. As discussed in the main text, κd(R) is
strictly increasing in θ and strictly decreasing in δ, while κs(R) does not depend on θ

or δ. Given that κd(R)−κs(R) is strictly decreasing in R, higher θ implies higher R0, and
higher δ implies lower R0. On the other hand, since κs(R) is strictly increasing in β, ξ,
and 1 − ν,43 while κd(R) does not depend on β, ξ, or 1 − ν. Thus, higher ξ and 1 − ν

43κs(R) is strictly increasing in ξ because the derivative with respect to ξ is strictly positive:

∂

∂ξ
κs(R) =

β

[1− (1− ν)βR][1− (1− ν − ξ)β]

[
1− ξ

1
β − 1 + ν + ξ

]
> 0
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implies lower R0. Since K0 and w0 are negatively related with R0, we have the opposite
comparative statics with respect to (β, ξ, 1 − ν). To show that K0 is decreasing in δ, we
show that R0 − 1 + δ is increasing in δ:

R0 − (1− δ) =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) − (1− δ)

=
θ
(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) −

βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)(1− δ)

From the FOCs for representative firms, we see that K0 (and hence w0) is decreasing in
R0 − 1 + δ and hence increasing in δ.

Finally, given the aggregate capital supply function derived from the optimal house-
holds’ consumption and asset allocation that yields a simple equilibrium, since κd(R) −
κs(R) is strictly monotonically decreasing in R ∈ (1 − δ, 1

β
), the solution to an equation

(52) is unique if it exists.

A.2.2 Subsection 4.2.1: Full Depreciation of Capital

Lemma 6. Suppose Assumption 5 holds. Consider transitional dynamics after an aggregate
productivity shock. With full depreciation of capital (δ = 1), Rt+1

wt

wt+1
= R0 = θ

ŝ
for all

t ≥ 1. Furthermore, βRt+1 <
wt+1

wt
is satisfied for all t ≥ 1.

Proof. With δ = 1,

Rt+1 = θ

(
At+1

Kt+1

)1−θ

and wt+1 = (1− θ)A1−θ
t+1K

θ
t+1.

Thus,
Rt+1

wt+1

=
θ

1− θ

1

Kt+1

=
θ

1− θ

1

ŝA1−θ
t Kθ

t

. (133)

With wt = (1− θ)A1−θ
t Kθ

t , one obtains:

Rt+1
wt
wt+1

=
θ

ŝ
. (134)

This must be true in steady state. Thus,

Rt+1
wt
wt+1

= R0 <
1

β
. (135)
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A.2.3 Monotone Convergence

Proposition 5 (Monotone Convergence of (Kt, Rt, wt)).

Proof. Consider a positive permanent shock, At = A1 ∀t ≥ 1 with A1 > A0. Denote K∗

as the new stationary equilibrium capital associated with A1. We know from equation
(48) that K0 < K∗ since A0 < A1. We want to show that given Kt < K∗, capital in the
next period satisfies Kt < Kt+1 < K∗ at any t ≥ 1, implying a monotone convergence of
capital to the new stationary equilibrium capital.

The law of motion of capital is given by equation (39). First, we show Kt < Kt+1 at
any t ≥ 1, by using ŝ = δ̂

(
K∗

A1

)1−θ
,

Kt+1 −Kt = ŝA1−θ
1 Kθ

t + (1− δ̂)Kt −Kt

= δ̂

[(
K∗

Kt

)1−θ

− 1

]
︸ ︷︷ ︸

>0 given Kt<K∗

Kt > 0.

Because δ̂ > 0, the increment in capital (Kt+1−Kt) is strictly positive untilKt converges
to K∗. Second, we show Kt+1 < K∗ at any t ≥ 1:

Kt+1 −K∗ = ŝA1−θ
1 Kθ

t + (1− δ̂)Kt −K∗

= δ̂

(
Kt

K∗

)θ
K∗ + (1− δ̂)Kt −K∗

= δ̂

[(
Kt

K∗

)θ
− 1

]
︸ ︷︷ ︸

<0 if Kt<K∗

K∗ + (1− δ̂) (Kt −K∗)︸ ︷︷ ︸
<0 if Kt<K∗

< 0

We have shown that if Kt < K∗, Kt < Kt+1 < K∗. This holds for all t = 1, 2, ... as we
start from K1 = K0 < K∗. Therefore, we have K1 < K2 < · · · < Kt < · · · < K∗.

The wage and interest rate follows the FOCs:

wt = (1− θ)A1−θ
t Kθ

t ,

Rt = θA1−θ
t Kθ−1

t + 1− δ for all t ≥ 1.

Given K1 = K0, both wt and Rt jump up at t = 1. From t = 2 onwards, since 0 < θ < 1,
Kt < Kt+1 implies wt < wt+1 and Rt > Rt+1. Therefore, the monotone convergence of
capital implies a monotone convergence of wages and interest rates.

In case of a negative shock, the inequality holds in the opposite direction.
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A.2.4 Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Positive Shock

Proposition 6 (Sufficient Condition for βRt+1 <
wt+1

wt
after a Positive Shock).

Proof. Since wages, wt = (1 − θ)A1−θ
t Kθ

t , are monotonically increasing after a positive
productivity shock, βRt+1 < 1 is a sufficient condition for βRt+1 <

wt+1

wt
. After a positive

productivity shock at t = 1, the interest rate jumps and monotonically converges to the
one in a stationary equilibrium, see Proposition 5. Therefore, βR1 < 1 guarantees that
βRt+1 < 1 for all t ≥ 0.

A condtion for βR1 < 1 follows directly from the expression for R1 and the fact that
K1 = K0 = A0

(
θ

R0−1+δ

) 1
1−θ is predetermined from the initial stationary equilibrium

R1 = θA1−θ
1 Kθ−1

0 + 1− δ,

(136)

and therefore βR1 < 1 if

R1 =

(
A1

A0

)1−θ

(R0 − 1 + δ) + 1− δ <
1

β
(137)

A1

A0

<

(
1
β
− 1 + δ

R0 − 1 + δ

) 1
1−θ

(138)

A1

A0

<

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

. (139)

This gives the threshold stated in the proposition. SinceR0 < 1/β, equation (138) implies
that Ā1 > A0. Since K0 is given by (48), Ā1/A0 can be written as:

Ā1

A0

=

[
1− β(1− δ)

βθ

] 1
1−θ

K0 (140)

Substituting ρ = 1
β
− 1 leads to equation (67).

A.2.5 Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Negative Shock

In this subsection, we derive a sufficient condition on the magnitude of a negative pro-
ductivity shock (A1 < A0 and At = A1 for all t ≥ 1) such that βRt+1 <

wt+1

wt
is satisfied

for all t ≥ 0.
We first derive a sufficient condition for βRt+1

wt

wt+1
< 1 ∀t ≥ 1. After a negative

shock, the aggregate capital monotonically declines and converges to a new station-
ary equilibrium. Using this property, we derive a lower bound on A1 that guarantees
βRt+1

wt

wt+1
< 1 ∀t ≥ 1 (Lemma 9).
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The condition in Lemma 9 (A1 ∈ (A′
1, A0]) does not guarantee βR1 <

w1

w0
. If βR1 >

w1

w0
,

low-income households may consume more than high-income households at t = 1. This
gives rise to a possibility that low-income households at t = 1 have an inventive to save
for a high-income state at t = 2. Hence, we derive a condition for βR1 <

w1

w0
, which is

sufficient to prevent this possibility (Proposition 7).44

Condition for βRt+1 < wt+1

wt
at t ≥ 0 After a negative shock, the aggregate capital

monotonically decreases and converges to a new stationary equilibrium. Therefore,(
Kt+1

A1

)1−θ
<
(
Kt

A1

)1−θ
for all t ≥ 1. A sufficient condition for βRt+1 <

wt+1

wt
∀t ≥ 1 is

then written as:[(
Kt

A1

)1−θ

− (1− ν)

(
Kt

A1

)1−θ
]
= ν

(
Kt

A1

)1−θ

<
1

1− δ

[
ξ(1− θ)

1− (1− ν − ξ)β
− θν

]
for all t ≥ 1.

As K1

A1
> K2

A1
> · · · > K∗

A1
, it is sufficient to satisfy the condition at time t = 1. By solving

this inequality, we have:
(
A0

A1

)1−θ

<

[
1− (1− δ)β(1− ν)

βν(1− δ)

] ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

 . (141)

Lemma 7. Assumption 5 implies ξ(1− θ) > βθν(ξ+ ν+ 1
β
− 1). Hence, the right hand side

of inequality (141) is strictly positive.

Proof. We restate Assumption 5:
θ

(1− θ)
[
1
β
− 1 + δ

] < ξ

ν
[
1
β
− 1 + ξ + ν

] .
As all terms are positive under 0 < β < 1, it is equivalent to:

ξ(1− θ)[1− β(1− δ)] > βθν

[
1

β
− 1 + ξ + ν

]
.

Since 0 < β(1− δ) < 1, we have:

ξ(1− θ) > ξ(1− θ)[1− β(1− δ)] > βθν(ξ + ν +
1

β
− 1). (142)

Therefore, all terms in the right hand side of inequality (141) are strictly positive. In
the limit δ → 1, it is positive infinity: limδ→1

[
1−(1−δ)β(1−ν)

βν(1−δ)

] [
ξ(1−θ)−βθν[ξ+ν+ 1

β
−1]

ξ(1−θ)+βθ(1−ν)(ξ+ν+ 1
β
−1)

]
=

+∞.
44We claim that the fact that low-income households consume more than high-income households is

per se not a problem. Instead, we can derive a sufficient condition for low-income households at t = 1 not
to save for the next high-income state. This condition will be less tight than the condition in Proposition
7.
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Lemma 8. Under Assumption 5, the right hand side of inequality (141) is strictly larger
than 1. Hence, there exists a negative productivity shock A1 with A1 < A0 such that (141)
holds. Define A′

1 such that (141) holds with equality. Then A′
1 < A0.

Proof. Consider 0 < δ < 1. The first and second terms in the right hand side of (141)
are expressed as: [

1− (1− δ)β(1− ν)

βν(1− δ)

]
= 1 +

1
β(1−δ) − 1

ν
(143) ξ(1− θ)− βθν

[
ξ + ν + 1

β
− 1
]

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

 =
1

1 +
βθ(ξ+ν+ 1

β
−1)

ξ(1−θ)−βθν[ξ+ν+ 1
β
−1]

. (144)

Therefore, the product is larger than 1 if:

1
β(1−δ) − 1

ν
>

βθ
(
ξ + ν + 1

β
− 1
)

ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
] (145)

Since all terms are positive (remember Lemma 7), this is equivalent to:(
1

β(1− δ)
− 1

)
ξ(1− θ)− θν

(1− δ)

(
ξ + ν +

1

β
− 1

)
+ βθν

(
ξ + ν +

1

β
− 1

)
> βθν

(
ξ + ν +

1

β
− 1

)
⇔
(
1− β(1− δ)

β(1− δ)

)
ξ(1− θ) >

θν

(1− δ)

(
ξ + ν +

1

β
− 1

)
⇔ ξ

ν
(
ξ + ν + 1

β − 1
) > θ

(1− θ)( 1β − 1 + δ)

The last condition is equivalent to Assumption 5. Therefore, the right hand side of
inequality (141) is strictly greater than 1 for any 0 < δ < 1. If δ = 1, the right hand side
of (141) goes to positive infinity. Put together, this means that for any 0 < δ ≤ 1, there
exists A1 < A0 such that the condition (141) holds.

We solve for A1 such that (141) holds with equality:

A′
1 = A0

 βν(1− δ)

1− (1− δ)β(1− ν)

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

 1
1−θ

.

Because
[

βν(1−δ)
1−(1−δ)β(1−ν)

ξ(1−θ)+βθ(1−ν)(ξ+ν+ 1
β
−1)

ξ(1−θ)−βθν[ξ+ν+ 1
β
−1]

]
< 1, A′

1 < A0.

We use the two lemmas to prove a proposition.

Lemma 9 (Sufficient Condition for βRt+1 <
wt+1

wt
for t ≥ 1 after a Negative Shock). Let

Assumption 5 be satisfied and let the economy be in a stationary equilibrium with βR0 < 1.
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After a negative and permanent productivity shock at t = 1 (At = A1 < A0 for all t ≥ 1),
βRt+1 <

wt+1

wt
∀t ≥ 1 is satisfied if A1 ∈ (A′

1, A0] holds, where the threshold satisfies

A′
1/A0 =

 βν(1− δ)

1− (1− δ)β(1− ν)

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

 1
1−θ

< 1. (146)

Proof. We want to derive a sufficient condition for βRt+1
wt

wt+1
< 1 ∀t ≥ 1. We focus on

the case of 0 < δ < 1, because with full depreciation of capital (δ = 1), βRt+1
wt

wt+1
=

βR0 < 1 ∀t ≥ 1 (Lemma 6). After substituting interest rate and wages and using the law
of motion of capital (39), βRt+1

wt

wt+1
can be written as shown below. The monotonicity

of capital, Kt+1 < Kt, implies the following.

βRt+1
wt
wt+1

= β

 θ + (1− δ)
(
Kt+1

A1

)1−θ
ξβ

1−(1−ν−ξ)β (1− θ) + (1− ν)βθ + (1− ν)β(1− δ)
(
Kt

A1

)1−θ


< β

 θ + (1− δ)
(
Kt

A1

)1−θ
ξβ

1−(1−ν−ξ)β (1− θ) + (1− ν)βθ + (1− ν)β(1− δ)
(
Kt

A1

)1−θ
 for t ≥ 1

The last line is less than 1 if

βθ + β(1− δ)

(
Kt

A1

)1−θ

<
ξβ

1− (1− ν − ξ)β
(1− θ) + (1− ν)βθ + (1− ν)β(1− δ)

(
Kt

A1

)1−θ

⇔ νβ(1− δ)

(
Kt

A1

)1−θ

<
ξβ

1− (1− ν − ξ)β
(1− θ)− νβθ

Because K1 > K2 > · · · , this condition is satisfied for all t ≥ 1 if it is satisfied at time
t = 1: (

K1

A1

)1−θ

<
1

ν(1− δ)

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
. (147)

Aggregate capital at time t = 1 is predetermined at t = 0:

K1 = K0 = A0

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


1

1−θ

.

Substituting K1 into equation (147) yields:
(
A0

A1

)1−θ

<

[
1− (1− δ)β(1− ν)

βν(1− δ)

] ξ(1− θ)− βθν
[
ξ + ν + 1

β
− 1
]

ξ(1− θ) + βθ(1− ν)(ξ + ν + 1
β
− 1)

 . (148)

We obtain equation (146) by solving for A1. When A1 = A′
1, the equation holds with

equality. Lemma 8 shows that A′
1 < A0 under Assumption 5.
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Condition for βRt+1 <
wt+1

wt
at t = 0 Lemma 9 shows that after a negative and per-

manent productivity shock at t = 1, βRt+1 <
wt+1

wt
∀t ≥ 1 is satisfied if A1 ∈ (A′

1, A0]

holds. However, this condition does not guarantee βR1 < w1

w0
. If βR1 > w1

w0
, the ar-

gument in Lemma 5 breaks down, i.e., c1(a0, z1, A1) ≤ c0 may not hold for some a0.
Then, low-income households at t = 1 may have the incentive to save for the next high-
income state. In such a case, the contract stipulated in Proposition 1 may not be optimal.
Hence, we derive a sufficient condition for βR1 <

w1

w0
. It turns out that the sufficient

condition for βR1 < w1

w0
, given by A1 ∈ (A1, A0], implies the sufficient condition for

βRt+1 <
wt+1

wt
∀t ≥ 1, i.e., A1 ∈ (A′

1, A0], derived in Lemma 9. Therefore, A1 ∈ (A1, A0] is
a sufficient condition for βRt+1 <

wt+1

wt
∀t ≥ 0.

Proposition 7 (Sufficient Condition for βRt+1 <
wt+1

wt
∀t ≥ 0 after a Negative Shock).

Proof. βRt+1
wt

wt+1
can be written as:

βRt+1
wt
wt+1

= β

θ + (1− δ)
(
Kt+1

At+1

)1−θ
ŝ+ (1− δ̂)

(
Kt

At

)1−θ


At t = 0, βRt+1
wt

wt+1
< 1 is equivalent to:

βθ + β(1− δ)

(
K1

A1

)1−θ

< ŝ+ (1− δ̂)

(
K0

A0

)1−θ

,

where ŝ = ξβ(1− θ)

1− (1− ν − ξ)β
+ (1− ν)βθ and 1− δ̂ = (1− ν)β(1− δ).

The condition can be written as:

(1− δ)

(
K0

A0

)1−θ
[(

A0

A1

)1−θ

− (1− ν)

]
<

ξ(1− θ)

1− (1− ν − ξ)β
− νθ

⇔
(
A0

A1

)1−θ

< 1− ν +
1

1− δ

(
K0

A0

)θ−1 [
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
, (149)

where K0

A0

=

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

[1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)


1

1−θ

.

68



Using the following derivations:

1

1− δ

(
K0

A0

)θ−1 [
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]

=
1

1− δ

 [1− (1− δ)β(1− ν)] (ξ + ν + 1
β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)
 [ξ(1− θ)− νθβ(ξ + ν + 1

β
− 1)

β(ξ + ν + 1
β
− 1)

]

= ν
1− (1− δ)β(1− ν)

βν(1− δ)

ξ(1− θ)− νθβ(ξ + ν + 1
β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

= ν

(
A′

1

A0

)θ−1

,

the condition for βR1 <
w1

w0
is given by:(

A0

A1

)1−θ

< 1− ν + ν

(
A′

1

A0

)θ−1

∴
A1

A0

>

[
1− ν + ν

(
A′

1

A0

)θ−1
] 1

θ−1

=:
A1

A0

, (150)

where A
′
1

A0

<
A1

A0

< 1. (151)

We obtain the last inequality (151), since 0 < ν < 1 and 0 <
A′

1

A0
< 1. Hence, A1 ∈

(A1, A0] implies A1 ∈ (A′
1, A0]. By substituting A′

1

A0
using equation (146), we obtain equa-

tion (68) in the statement.

A.2.6 Subsection 4.2.2: Consumption on Impact

Corollary 2 (Consumption at the time of a shock).

Proof. At t = 1, the asset distribution is predetermined and given by {as,t}∞s=0,t=1 that
satisfies Assumption 4. In particular, we consider the case in which {as,t}∞s=0,t=1 follows
a stationary distribution given by equations (44)–(46), where w0 follows (50). Note that
households purchased contingent assets {as,t(At)}∞s=0,t=1 at t = 0, expecting the steady-
state productivity for all future periods with probability 1, At = A∗ for all t ≥ 1, but
an unanticipated aggregate state is realized at t = 1. We assume that households hold
assets at t = 1 as if the anticipated aggregate state (A∗) is realized.

At time t = 1, a deterministic sequence of productivity {At}∞t=1 is unexpectedly real-
ized. The corresponding sequence of prices {qt(At+1, zt+1|At, zt), wt(At), Rt(A

t)}At,zt,t≥1

satisfies Assumptions 2 and 3. Then, by Proposition 1, the optimal consumption at t = 1

is given by (21). Equation (23) implies that the consumption satisfies the Euler equation
between t = 0 and t = 1.
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A.2.7 Subsection 4.2.3: Consumption Distribution in the Long Run

Proposition 8 (Consumption Distribution in the Long Run).

Proof. As we see in Proposition 5, in the transitional dynamics, aggregate capital will
monotonically converge to a new steady state. The interest rate also converges to a
steady-state interest rate.

In a stationary equilibrium, the deflated consumption of low-income agents is deter-
mined by:

cs = βR∗cs−1.

Hence, the consumption distribution is characterized by:

cs = (βR∗)sc0 for s = 0, 1, 2, · · · ,

where the mass of each agent is given by equation (31):

ϕs =

 ν
ξ+ν

if s = 0

νξ
ξ+ν

(1− ν)s−1 if s ≥ 1.

Because the equilibrium interest rate does not depend on productivity A, shown in equa-
tion (54):

R∗ =
ξ(1− θ)(1− δ) + θ

(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
) ,

the deflated consumption distribution is the same across stationary equilibia with differ-
ent A.

A.2.8 Consumption Distribution with δ = 1

Proposition 9.

Proof. The stationary distribution at t = 0 is given by:

c∗s = (βR∗)sc0, where c0 :=
1− (1− ν)β

1− (1− ν − ξ)β
ζ.

Note that with δ = 1, the interest rate in the stationary equilibrium (54) is given by:

R∗ =
θ
(
ξ + ν + 1

β
− 1
)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)

=
θ

ŝ
. (152)
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From t = 1 onwards, the deflated consumption distribution evolves acccording to equa-
tion (71):

cs,t(A
t) =

c0 if s = 0

βRt(A
t)wt−1(At−1)

wt(At)
cs−1,t−1(A

t−1) if s ≥ 1

Lemma 6 shows that:

βRt(A
t)
wt−1(A

t−1)

wt(At)
=
βθ

ŝ

for any t ≥ 1 and (At−1, At). Combined with equation (152), this means that:

cs,t(A
t) =

c0 if s = 0

βR∗cs−1,t−1(A
t−1) if s ≥ 1

Hence, starting from the stationary distribution at t = 0, the deflated consumption dis-
tribution is time-invariant:

cs,t(A
t) = c∗s for all t ≥ 0 and At.

A.2.9 Inequality after a Positive Shock with δ < 1

Proposition 10.

Proof. Proposition 1 shows that in a high-income state, c0,t = c0. We derive that cs,1 < cs,0

for all s ≥ 1 if A1 > A0 and δ < 1, meaning that the deflated consumption of low-income
agents at time t = 1 is lower than the deflated consumption in a stationary equilibrium
(t = 0) for all s ≥ 1. Using equation (32) in Corollary 1,

w1cs,1 = βR1w0cs−1,0

while cs,0 = βR0cs−1,0,

we have:

cs,1 =
w0

w1

R1

R0

cs,0,

where Rt = θA1−θ
t Kθ−1

t + 1− δ,

wt = (1− θ)A1−θ
t Kθ

t .

∴ cs,1 =

(
A1−θ

0

A1−θ
1

)
θA1−θ

1 Kθ−1
0 + 1− δ

θA1−θ
0 Kθ−1

0 + 1− δ
cs,0

=
θA1−θ

0 Kθ−1
0 + (1− δ)

(
A0

A1

)1−θ
θA1−θ

0 Kθ−1
0 + 1− δ

cs,0
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We use the fact that K1 = K0 as the aggregate capital at t = 1, K1, is predetermined at
time t = 0. Given that 0 < δ < 1, 0 < θ < 1, andA1 > A0, we have (1−δ)

(
A0

A1

)1−θ
< 1−δ.

Therefore, cs,1 < cs,0 for all s ≥ 1.
Next, we show that consumption ratio between two low-income agents at t = 1 is the

same as at t = 0 (sationary equilibrium):
cs,1
cs̃,1

=
cs,0
cs̃,0

for any s ≥ 1 and s̃ ≥ 1 (153)

By equation (71),

cs,1 = βR1
w0

w1

cs−1,0 if s ≥ 1

cs̃,1 = βR1
w0

w1

cs̃−1,0 if s̃ ≥ 1

This implies that:
cs,1
cs̃,1

=
cs−1,0

cs̃−1,0

for any s ≥ 1 and s̃ ≥ 1. (154)

At time t = 0, in a stationary equilibrium, the consumption distribution follows:

cs,0 = (βR0)
sc0 for any s ≥ 0

Hence,
cs−1,0

cs̃−1,0

=
(βR0)

s−1c0
(βR0)s̃−1c0

=
(βR0)

sc0
(βR0)s̃c0

=
cs,0
cs̃,0

for any s ≥ 1 and s̃ ≥ 1 (155)

By combining (154) and (155), we obtain (153)

A.3 Proofs: Section 5 (Aggregate Shocks)

A.3.1 A Sufficient Condition in an Economy with Stochastic Productivity

Here we derive a sufficient condition for βRt+1 <
wt+1

wt
in an economy with stochastic

aggregate productivity but without stochastic depreciation. The condition is on the mag-
nitude of aggregate growth rate shocks ϵ. A sufficient condition in an economy with
stochastic depreciation is derived in Section A.3.2. We first state two Lemmas that are
useful to find a sufficient condition on ϵ.

Lemma 10. Define K̃t :=
Kt

At
. The law of motion of capital (39) is expressed as:

K̃t+1 =
At
At+1

[
ŝK̃θ

t + (1− δ̂)K̃t

]
. (156)
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Given the law of motion and the aggregate productivity process (74), assuming that K̃t

takes a positive finite value, the maximum value and the minimum value of Kt

At
is given by:

K̃max =

(
ŝ

δ̂ − ϵ

) 1
1−θ

and K̃min =

(
ŝ

δ̂ + ϵ

) 1
1−θ

(157)

Proof. Deflating the law of motion of capital (39) byAt+1 gives equation (156). Note that
the RHS of equation (156) is increasing in K̃t and decreasing in At+1. K̃min in equation
(157) solves:

K̃min =
1

1 + ϵ

[
ŝ
(
K̃min

)θ
+ (1− δ̂)K̃min

]
.

A comparison of (156) to (157) shows that K̃t ≥ K̃min and At+1 ≤ (1 + ϵ)At implies
K̃t+1 ≥ K̃min. Likewise, K̃max solves:

K̃max =
1

1− ϵ

[
ŝ
(
K̃max

)θ
+ (1− δ̂)K̃max

]
.

The symmetric argument shows that K̃t ≤ K̃max and At+1 ≥ (1 − ϵ)At implies K̃t+1 ≤
K̃max.

Lemma 11.
1. The constraint βRt+1 <

wt+1

wt
is most likely to be violated at the time of the lowest

negative shock (At+1

At
= 1− ϵ).

2. If K̃t = K̃min, K̃t+1 =
At

At+1
(1 + ϵ)K̃min. If K̃t = K̃max, K̃t+1 =

At

At+1
(1− ϵ)K̃max.

3. Suppose At+1

At
= 1− ϵ and K̃t ∈ [K̃min, K̃max]. Rt+1 is highest at K̃t = K̃min. wt+1

wt
is

lowest at K̃t = K̃max

Proof. 1. Note that

Rt+1 = θK̃θ−1
t+1 + 1− δ,

and wt+1

wt
=
At+1

At

(
K̃t+1

K̃t

)θ

=

(
At+1

At

)1−θ (
ŝK̃θ−1

t + 1− δ̂
)θ
.

Then, one could multiply βRt+1 <
wt+1

wt
with

(
At

At+1

)1−θ
to rewrite the proof as:

β

[
θ

(
Kt+1

At

)θ−1

+ (1− δ)

(
At
At+1

)1−θ
]
<
(
ŝK̃θ−1

t + 1− δ̂
)θ
. (158)

The left hand side is stricly decreasing in At+1

At
unless δ = 1. Therefore, the condition

is easier to be violated if At+1

At
= 1 − ϵ. Although the condition does not depend on At+1

At
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under δ = 1, it is still sufficient to check the condition at the time of negative shock
(At+1

At
= 1− ϵ) for any 0 < δ ≤ 1.

2. K̃t+1 is given by (156):

K̃t+1 =
At
At+1

[
ŝK̃θ

t + (1− δ̂)K̃t

]
.

If K̃t = K̃min and At+1

At
= 1 + ϵ, we know:

K̃t+1 =
1

1 + ϵ

[
ŝ(K̃min)θ + (1− δ̂)K̃min

]
= K̃min

∴
[
ŝ(K̃min)θ + (1− δ̂)K̃min

]
= (1 + ϵ)K̃min

Hence, if K̃t = K̃min, we derive:

K̃t+1 =
At
At+1

(1 + ϵ)K̃min (159)

Similarly, if K̃t = K̃max, we have

K̃t+1 =
At
At+1

(1− ϵ)K̃max. (160)

3. Rt+1 is decreasing in K̃t+1, since Rt+1 is given by:

Rt+1 = θK̃θ−1
t+1 + 1− δ.

K̃t+1 is determined by (156):

K̃t+1 =
At
At+1

[
ŝK̃θ

t + (1− δ)K̃t

]
.

Given At

At+1
= 1

1−ϵ , K̃t+1 is increasing in K̃t. Therefore, Rt+1 is decreasing in K̃t and takes
the maximum value at K̃t = K̃min.

wt+1

wt
is given by:

wt+1

wt
=
At+1

At

(
K̃t+1

K̃t

)θ

=

(
At+1

At

)1−θ [
ŝK̃θ−1

t + 1− δ̂
]θ
,

which is decreasing in K̃t. Therefore, wt+1

wt
takes the minimum value at K̃t = K̃max.

Now we introduce the following assumption. For it, recall the definitions of ŝ =[
ξβ

1−(1−ν−ξ)β (1− θ) + (1− ν)βθ
]
and 1− δ̂ = (1− ν)β(1− δ).
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Assumption G.

β

[
θ

(
1− ϵ

1 + ϵ

)1−θ
δ̂ + ϵ

ŝ
+ 1− δ

]
< 1− ϵ (161)

Proposition 14. Suppose Assumptions 5 hold (which insures the existence of a partial in-
surance steady state) and that the economy is in this steady state at t = 0 (as described
in Proposition 3). Furthermore assume that Assumption G is satisfied for the aggregate
productivity process in (74). Then the condition βRt+1 <

wt+1

wt
holds for all t ≥ 1 with

probability 1. Furthermore, there exist an ϵ̄ > 0 such that for all 0 ≤ ϵ < ϵ̄, Assumption G
is satisfied.

Proof. Since the economy is in a steady state at t = 0 and Assumption 5 is satisfied, the
initial capital K0 and the associated interest rate R0 satisfy the following:

K̃min <
K0

A0

=

(
ŝ

δ̂

) 1
1−θ

< K̃max

βR0 < 1.

Moreover, the initial wealth distribution {a0,s}∞s=0 is given by the stationary distribution
described in equations (44)–(46), which satisfies Assumption 4.

Suppose sequences of all possible prices {wt(At), Rt(A
t), qt(At+1, zt+1|At, zt)}At,At+1,zt,zt+1

satisfy Assumptions 2 and 3. Then, the household’s optimal consumption and asset al-
location is given by equation (21) and (22) in Proposition 1, and the law of motion of
capital follows equation (39) in Propisition 2. We want to verify that under Assumption
G, Assumptions 2 and 3 are indeed satisfied in an equilibrium. See Subsection 3.3 for the
claim that the prices of the contingent claims are of the form stipulated in Assumption
2. Since βR0 < 1 is satisfied in the steady state, out focus in this Proposition is to show
that:

βRt+1 <
wt+1

wt
for all t ≥ 0 and At+1.

By Lemma 10, K̃min < K̃0 < K̃max implies K̃min < K̃t < K̃max for all t ≥ 1. We saw
in Lemma 11 that the condition βRt+1 <

wt+1

wt
is most likely to be violated at the time

of the lowest negative shock. Given the negative shock, Rt+1 achieves the maximum if
K̃t = K̃min, and wt+1

wt
takes the minimum if K̃t = K̃max. If the maximum of βRt+1 is

smaller than the minimum of wt+1

wt
with At+1

At
= 1− ϵ, the condition is satisfied for all K̃t

and At+1

At
. By imposing those, we have a sufficient condition for βRt+1 <

wt+1

wt
, where

βRt+1 <
wt+1

wt

⇔ β
[
θK̃θ−1

t+1 + 1− δ
]
<

(
At+1

At

)1−θ [
ŝK̃θ−1

t + 1− δ̂
]θ
.
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K̃t+1 in the left hand side takes the minimum at K̃t+1 =
At

At+1
(1 + ϵ)K̃min. K̃t in the right

hand side takes the maximum at K̃t = K̃max. At+1

At
is given by 1−ϵ. Therefore, a sufficient

condition is given by:

β

[
θ

[
At
At+1

(1 + ϵ)K̃min

]θ−1

+ 1− δ

]
<

(
At+1

At

)1−θ [
ŝ(K̃max)θ−1 + 1− δ̂

]θ
(162)

By subsituting K̃max and K̃min given by equations (157) in Lemma 10, we obtain As-
sumption G. Under this condition, βRt+1 < wt+1

wt
for all t ≥ 0 and all states At+1

At
∈

[1− ϵ, 1 + ϵ].
Now, we prove the existence of ϵ̄. If ϵ = 0 in Assumption G, we have:

β

[
θ
δ̂

ŝ
+ 1− δ

]
< 1. (163)

In the steady state, K̃ satisfies:

K̃∗ =

(
δ̂

ŝ

) −1
1−θ

. (164)

Therefore, equation (163) is equivalent to:

β
[
θ(K̃∗)θ−1 + 1− δ

]
< 1

⇔ βR∗ < 1.

This is equivalent to Assumption 5. This means that Assumption G is satisfied in an open
neighborhood of ϵ = 0, since Assumption G is continuous in ϵ.

We show that Assumption G becomes monotonically more restrictive as ϵ increases.
Assumption G is equivalent to:[

θ

(
1 + ϵ

1− ϵ

)θ(
δ̂ + ϵ

1 + ϵ

)
1

ŝ
+

1− δ

1− ϵ

]
< 1.

(
1+ϵ
1−ϵ

) and 1−δ
1−ϵ are strictly increasing in ϵ. δ̂+ϵ

1+ϵ
is weakly increasing in ϵ for all 0 < δ̂ ≤ 1.

Therefore, the left hand side is strictly increasing in ϵ. This means that the condition
becomes tighter as ϵ increases. Hence, there exists ϵ̄ > 0 such that Assumption G is
satisfied for all 0 ≤ ϵ < ϵ̄.

The following is an alternative statement if we don’t assume that the economy is in
a steady state at t = 0.

Corollary 3. Define

K̃max =

(
ŝ

δ̂ − ϵ

) 1
1−θ

and K̃min =

(
ŝ

δ̂ + ϵ

) 1
1−θ

(165)
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Suppose Assumptions 4 and 5 hold (which insure the existence of a partial insurance steady

state), that the initial aggregate capital at t = 0 satisfies min

{
K̃min,

(
θ

1
β
−1+δ

) 1
1−θ

}
<

K̃0 < K̃max. Furthermore assume that Assumption G is satisfied for the aggregate produc-
tivity process in (74). Then the condition βRt+1 <

wt+1

wt
holds for all t with probability 1.

Furthermore, there exist an ϵ̄ > 0 such that for all 0 ≤ ϵ < ϵ̄, Assumption G is satisfied.

Proof. The same logic goes through as in Proposition 14. Since the economy may not be
in a steady state at t = 0, the initial capital K0 must satisfy that:

K̃min <
K0

A0

< K̃max

and K0

A0

>

[
θ

1
β
− 1 + δ

] 1
1−θ

.

The second condition guarantees that βR0 < 1. Assumption 4 on the intial wealth dis-
tribution is also introduced.

A.3.2 A Sufficient Condition in an Economy with Stochastic Depreciation

We define an economy with stochastic depreciation and derive a sufficient condition
on fundamental parameters ensuring that the economy is always in a partial insurance
equilibrium.

Sequential Market equilibrium In the main text we introduced the aggregate state
Ωt and its entire history Ωt := (Ω0, · · · ,Ωt) that determine aggregate productivity At(Ωt)

and depreciation rate δt(Ωt).45 Ωt follows finite state first-order Markov. Capital depreci-
ation rate δt is stochastic and is realized at the beginning of each period. The sequential
market equilibrium in the limited-commitment model is defined as follows.

Definition 2. For an initial condition Ω0 = (A0, δ0), K0,Φ(a0, z0), an equilibrium is se-
quences of wages and interest rates {wt(Ωt), Rt(Ω

t)}, prices of contingent claims {qt(Ωt+1, zt+1|Ωt, zt)},
aggregate consumption and capital {Ct(Ωt), Kt+1(Ω

t)} and individual consumption and as-
set allocations {ct(a0, zt,Ωt), at+1(a0, z

t+1,Ωt+1)} such that

1. Given {wt(Ωt), Rt(Ω
t), qt(Ωt+1, zt+1|Ωt, zt)}∞t=0,Ωt,zt,Ωt+1,zt+1

, the household consump-
tion and asset allocation {ct(a0, zt,Ωt), at+1(a0, z

t+1,Ωt+1)}, for all initial conditions
(a0, z0), maximizes the expected lifetime utility:

max
{ct(a0,zt,Ωt),at+1(a0,zt+1,Ωt+1)}

∞∑
t=0

∑
Ωt

∑
zt

βtπ(Ωt)π(zt) log(ct(a0, z
t,Ωt)) (166)

45Aggregate productivity growth rate gA,t+1 := At+1

At
and depreciation rates δt+1 depend only on Ωt+1.
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subject to the budget constraints:

ct(a0, z
t,Ωt) +

∑
Ωt+1

∑
zt+1

qt(Ωt+1, zt+1|Ωt, zt)at+1(a0, z
t+1,Ωt+1)

= wt(Ω
t)zt +Rt(Ω

t)at(a0, z
t,Ωt) (167)

and the shortsale constraints:

at+1(a0, z
t+1,Ωt+1) ≥ 0. (168)

2. Factor prices equal marginal products

wt(Ω
t) = (1− θ)At(Ω

t)

(
Kt(Ω

t−1)

At(Ωt)

)θ
(169)

Rt(Ω
t) = θ

(
Kt(Ω

t−1)

At(Ωt)

)θ−1

+ 1− δt(Ωt) (170)

3. The goods market and capital market clear

Ct(Ω
t) +Kt+1(Ω

t) =
(
Kt(Ω

t−1)
)θ
At(Ω

t)1−θ + (1− δt(Ωt))Kt(Ω
t−1) (171)

Kt+1(Ω
t) =

∫ ∑
zt+1

at+1(a0, z
t+1,Ωt+1)π(zt+1)dΦ(a0, z0) ∀Ωt+1 (172)

where
Ct(Ω

t) =

∫ ∑
zt

ct(a0, z
t,Ωt)π(zt)dΦ(a0, z0) (173)

The price of contingent claims and the no-saving condition are given by the following.
Assumption 2’ (Contingent Claims Prices).

qt(Ωt+1, zt+1|Ωt, zt) = π(Ωt+1|Ωt)π(zt+1|zt) (174)

Assumption 3’ (No Savings Incentives).

βR0(Ω0) < 1 (175)

βRt+1(Ω
t+1) <

wt+1(Ω
t+1)

wt(Ωt)
for all t ≥ 0 and Ωt+1 (176)

Optimal Allocation We conjecture that the optimal consumption and asset allocation
of individual households is given by

ct(a0, z
t,Ωt) =

c̄wt(Ωt), where c̄ := 1−(1−ν)β
1−(1−ν−ξ)β ζ, if zt = ζ

[1− (1− ν)β]Rt(Ω
t)at(a0, z

t,Ωt) if zt = 0
(177)

at+1(a0, z
t+1,Ωt+1) =


0 if zt+1 = ζ

β
1−(1−ν−ξ)β ζwt(Ω

t) if zt = ζ and zt+1 = 0

βRt(Ω
t)at(a0, z

t,Ωt) if zt = 0 and zt+1 = 0.

(178)
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Given Assumptions 2’ and 3’, the household’s problem (166)–(168) is unchanged from
the household’s problem defined in Section 2.5 in the presence of stochastic depreciation
rate. Therefore, Proposition 1 implies that the household allocation (177) and (178) is
optimal under Assumptions 2’, 3’, and 4.46

The aggregate law of motion is given by:

Kt+1(Ω
t) = ŝAt(Ω

t)1−θKt(Ω
t−1)θ + (1− δ̂t(Ωt))Kt(Ω

t−1), (181)

where δ̂(Ωt) depends on time-varying δ(Ωt):

δ̂t(Ωt) = 1− (1− ν)β(1− δt(Ωt)). (182)

Now we prove Proposition 11. The procedure closely follows that of Proposition 14.

Proposition 11 .

Proof. We want to find a sufficient condition on (ϵ, ς) such that the following holds:

βRt+1(Ω
t+1) <

wt+1(Ω
t+1)

wt(Ωt)
for any (t,Ωt,Ωt+1). (183)

First, as in Lemma 10, the minimum and maximum productivity-adjusted capital in
the economy, K̃min and K̃max, are given as follows:

K̃min :=

(
ŝ

δ̂max + ϵ

) 1
1−θ

(184)

K̃max :=

(
ŝ

δ̂min − ϵ

) 1
1−θ

(185)

where

δ̂ = 1− (1− ν)β(1− δ) (186)

with δmin = δ̄ − ς and δmax = δ̄ + ς. This is because a higher depreciation rate (i.e.,
δ̂ = δ̂max) implies lower aggregate capital, and vice versa. To guarantee K̃max > 0, the
parameters must satisfy δ̂min − ϵ > 0. This is satisfied under Assumption 8, since

1− ϵ > β

[
θ

(
1− ϵ

1 + ϵ

)1−θ
δ̂max + ϵ

ŝ
+ 1− δmin

]
> β(1− δmin)

> 1− δ̂min.

46Verifying Assumption 2’ is immediate, as the Euler equation of unconstrained agents implies:

qt(Ωt+1, zt+1|Ωt, zt) = π(Ωt+1|Ωt)π(zt+1|zt)βR(Ωt+1)
ct(a0, z

t,Ωt)

ct+1(a0, zt+1,Ωt+1)
(179)

where ct+1(a0, z
t+1,Ωt+1) = βR(Ωt+1)ct(a0, z

t,Ωt) (180)
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Notice that δmin can take a negative value, in which case capital appreciates over time.
The condition δ̂min − ϵ > 0 is equivalent to:

δmin > 1− 1− ϵ

(1− ν)β
. (187)

Since (1− ν)β < 1, δmin can be negative in equation (187).
Second, since wage growth wt+1

wt
is not impacted by δt+1 while the interest rate Rt+1

is decreasing in δt+1, the condition (183) is more likely to be violated if δt+1 is smaller.
Hence, a sufficient condition for βRt+1 <

wt+1

wt
at any (t,Ωt,Ωt+1) is given by:

βRt+1(Ω
t+1)

∣∣∣
K̃t=K̃min,

At+1
At

=1−ϵ,δt+1=δmin
<
wt+1(Ω

t+1)

wt(Ωt)

∣∣∣
K̃t=K̃max,

At+1
At

=1−ϵ
. (188)

By substituting the interest rate,Rt+1(Ω
t+1), and wage growth rate, wt+1(Ωt+1)

wt(Ωt)
, and impos-

ing K̃min and K̃max in equations (184) and (185), the sufficient condition that correponds
to equation (162) in Proposition 14 is given by:

β

[
θ

(
1 + ϵ

1− ϵ
K̃min

)θ−1

+ 1− δmin

]
< (1− ϵ)1−θ

[
ŝ(K̃max)θ−1 + 1− δ̂min

]θ
. (189)

Solving this inequality gives the sufficient condition (79).
Now we show the existance of an open neighborhood N around (ϵ, ς)=(0,0) such

that Assumption 8 is satisfied for all (ϵ, ς) ∈ N . As shown in Proposition 14, Assumption
8 is satisfied if (ϵ, ς)=(0,0), since the condition (79) is equivalent to Assumption 5 if
(ϵ, ς)=(0,0). Proposition 14 implies that condition (79) is more likely to be violated
as ϵ increases. Likewise, since the left-hand side of inequality (79) is monotonically
increasing in ς, Assumption 8 is more likely to be violated as ς increases. Since the
condition (79) is continuous in (ϵ, ς), there exists an open neighborhood N such that
condition (79) is satisfied for all (ϵ, ς) ∈ N .

Put differently, given a fixed ϵ ≥ 0 that satisfies Assumption G, there exist ς̄ > 0 such
that Assumption 8 is satisfied for all 0 ≤ ς < ς̄. In this case, (ϵ, ς̄) solves the condition
(79) with equality. Likewise, given a fixed ς ≥ 0 that satisfies Assumption 8 with ϵ = 0,
there exists ϵ̄ > 0 such that Assumption 8 is satisfied for all 0 ≤ ϵ < ϵ̄. In this case, (ϵ̄, ς)
solves the condition (79) with equality.

A.3.3 Subsection 5.2.1: The Risk-Free Rate and the Risk Premium

Lemma 1 .

Proof. We first derive a pricing kernel that allows us to compute the price of any securi-
ties, including the price of risk-free bonds qB(Ωt) and the price of risky capital qK(Ωt). A
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pricing kernel is defined as the price of one unit of non-deflated consumption goods at
time t+ 1 in a state Ωt+1 conditional on the state at t being Ωt:47

Q(Ωt+1|Ωt) = β
u′(ct+1(Ω

t+1))

u′(ct(Ωt))
π(Ωt+1|Ωt). (190)

Since we assume a logarithmic utility function, the marginal utility of consumption is
given by:

u′(ct) =
1

ct
.

In addition, in the limited commitment model, consumption of asset holders (i.e., house-
holds in a low-income state at t+ 1) follows the Euler equation:

ct+1(Ω
t+1; zt+1 = 0) = βRt+1(Ω

t+1)ct(Ω
t).

Therefore, the pricing kernel in the limited-commitment model is given by:

Q(Ωt+1|Ωt) =
1

Rt+1(Ωt+1)
π(Ωt+1|Ωt). (191)

Given this pricing kernel, we can derive the price of any securities. The price of risk-
free bonds that yield one unit of consumption at t + 1 regardless of the aggregate state
Ωt+1 is given by:

qB(Ωt) =
∑

Ωt+1|Ωt

Q(Ωt+1|Ωt) · 1

=
∑

Ωt+1|Ωt

1

Rt+1(Ωt+1)
π(Ωt+1|Ωt)

= Et
[

1

Rt+1(Ωt+1)

]
. (192)

The price of risky assets that yields Rt+1(Ω
t+1) depending on the aggregate state Ωt+1 is

given by:

qK(Ωt) =
∑

Ωt+1|Ωt

Q(Ωt+1|Ωt)Rt+1(Ω
t+1)

=
∑

Ωt+1|Ωt

1

Rt+1(Ωt+1)
π(Ωt+1|Ωt)Rt+1(Ω

t+1) = 1. (193)

Nowwe compute the expected return on these two assets. The expected rate of return
on risk-free bonds is given by:

Et
[

1

qB(Ωt)

]
=

1∑
Ωt+1|Ωt

1
Rt+1(Ωt+1)

π(Ωt+1|Ωt)
=:

1

Et[1/Rt+1(Ωt+1)]
. (194)

47See Ljungqvist and Sargent (2018) p.270
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The expected rate of return on risky assets is given by:

Et
[
Rt+1(Ω

t+1)

1

]
= Et

[
Rt+1(Ω

t+1)
]
. (195)

Hence, the risk premium is given by:

1 + λLCt :=
Et[Rt+1(Ω

t+1)]

Et[1/qB(Ωt)]
= Et[Rt+1(Ω

t+1)] Et
[

1

Rt+1(Ωt+1)

]
> 1. (196)

The risk premium is strictly larger than 1 because Rt+1(Ω
t+1) is a non-trivial random

variable and Jensen’s inequality holds with strict inequality.48

Lemma 2 .

Proof. As before, the pricing kernel is given by:

Q(Ωt+1|Ωt) = β
u′(ct+1(Ω

t+1))

u′(ct(Ωt))
π(Ωt+1|Ωt)

= β
Ct(Ω

t)

Ct+1(Ωt+1)
π(Ωt+1|Ωt). (198)

The second line holds since consumption by a unit measure of representative households
is the same as the aggregate consumption.

Then, the price of bonds is given by:

qB(Ωt) =
∑

Ωt+1|Ωt

Q(Ωt+1|Ωt) · 1

= Et
[
β

Ct(Ω
t)

Ct+1(Ωt+1)

]
(199)

The risk premium is given by:

1 + λRept :=
Et[Rt+1(Ω

t+1)]

Et[1/qB(Ωt)]
= Et[Rt+1(Ω

t+1)] Et
[
β

Ct(Ω
t)

Ct+1(Ωt+1)

]
(200)

Note that λRept can be positive or negative, depending on the covariance betweenRt+1(Ω
t+1)

and β Ct(Ωt)
Ct+1(Ωt+1)

. A sequence of aggregate consumption Ct follows the Euler equation:

1

Ct(Ωt)
= βEt

[
Rt+1(Ω

t+1)
1

Ct+1(Ωt+1)

]
(201)

48If g(·) is a convex function, E[g(X)] ≥ g(E[X]), where X is a random variable. Equality holds only if
P (g(X) = a+ bX) = 1, where a+ bX is tangent to g(·) at E[X]. The Jensen’s inequality implies:

Et
[

1

Rt+1(Ωt+1)

]
>

1

Et [Rt+1(Ωt+1)]
. (197)
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This gives:

1 = Et
[
βRt+1(Ω

t+1)
Ct(Ω

t)

Ct+1(Ωt+1)

]
= Et

[
Rt+1(Ω

t+1)
]
Et
[
β

Ct(Ω
t)

Ct+1(Ωt+1)

]
+ covt

(
Rt+1(Ω

t+1), β
Ct(Ω

t)

Ct+1(Ωt+1)

)
. (202)

If the covariance term is negative, the risk premium in the representative agent model is
positive.

A.3.4 Subsection 5.2.2: Economy with δ = 1

Proposition 12.

Proof. The economy is in a stady state at time t = 0. Since the aggregate capital in the
steady state is given by:

K0 = A0s
1

1−θ , where s ∈ {sLC, sRE}, (203)

and the saving rate, s, is higher in the limited-commitment model:

βθ =: sRE < sLC := βθ + (1− θ)ν

 ξ

ν
(

1
β
− 1 + ξ + ν

) − θ

(1− θ) 1
β


︸ ︷︷ ︸

>0 under Assumption 5 and δ=1

, (204)

the limited-commitmemnt model starts with larger initial capital. As discussed in Ap-
pendix B.2.1, the capital stock Kt(Ω

t) after any productivity history is characterized in
closed-form as

logKt = (1 + θ + · · ·+ θt−2) log s+ (1− θ)

[
t−1∑
τ=1

θτ−1 logAt−τ

]
+ θt−1 logK0. (205)

Hence, given the history of aggregate shocks, the limited-commitmemt model always has
larger capital than the representative agent model. This implies:

KRE
t (Ωt) < KLC

t (Ωt) for all Ωt (206)
and RRE

t (Ωt) > RLC
t (Ωt) for all Ωt (207)

Under full depreciation of capital, the price of risk-free bonds is given by the following
expression in both models:

qB(Ωt) = Et
[

1

Rt+1(Ωt+1)

]
. (208)
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This can be shown by substituting the closed form of aggregate consumption in the
representative-agent model, CRep

t = (1− βθ)A1−θ
t Kθ

t , into equation (84):

Et

[
β
CRep
t (Ωt)

CRep
t+1 (Ω

t+1)

]
= Et

[
β

(1− βθ)A1−θ
t Kθ

t

(1− βθ)A1−θ
t+1K

θ
t+1

]
= Et

[
βA1−θ

t Kθ
t

Kt+1A
1−θ
t+1K

θ−1
t+1

]
where Kt+1 = βθA1−θ

t Kθ
t

= Et
[

1

θA1−θ
t+1K

θ−1
t+1

]
= Et

[
1

RRep
t+1(Ω

t+1)

]
(209)

Hence, higher return on capital in the representative agent model at any state Ωt

implies lower price of risk-free bonds and higher risk-free rate.
As we derived in Section 5.2.1, the risk premium in the two economies is given by:

1 + λLCt = Et[RLC
t+1(Ω

t+1)] Et
[

1

RLC
t+1(Ω

t+1)

]
1 + λRept = Et[RRep

t+1(Ω
t+1)] Et

[
β
CRep
t (Ωt)

CRep
t+1 (Ω

t+1)

]
(210)

We explicitly derive the risk premium for each economy. In the limited-commitment
economy, the risk premium is:

1 + λLCt = Et
[
RLC
t+1(Ω

t+1)
]
Et
[

1

RLC
t+1(Ω

t+1)

]
= Et

[
θ(KLC

t+1)
θ−1(At+1)

1−θ]Et [ 1

θ(KLC
t+1)

θ−1(At+1)1−θ

]
= Et

[
θ(ŝA1−θ

t Kθ
t )
θ−1(At+1)

1−θ]Et [ 1

θ(ŝA1−θ
t Kθ

t )
θ−1(At+1)1−θ

]
= Et

[
A1−θ
t+1

]
Et
[

1

A1−θ
t+1

]
(211)

In the representative agent economy,

1 + λRept = Et
[
RRep
t+1(Ω

t+1)
]
Et

[
β
CRep
t (Ωt)

CRep
t+1 (Ω

t+1)

]

= Et
[
θ(KRep

t+1 )
θ−1(At+1)

1−θ
]
Et

[
β

(1− βθ)A1−θ
t Kθ

t

(1− βθ)A1−θ
t+1 (K

Rep
t+1 )

θ

]

= Et
[
A1−θ
t+1

]
Et
[

1

A1−θ
t+1

]
(212)

This shows that the risk premium is the same between the two models under full depre-
ciation of capital.
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Note that the risk premium can be expressed as:

1 + λt = Et

[(
At+1

At

)1−θ
]
Et

[(
At
At+1

)1−θ
]

If the aggregate growth rate follows an iid process,

Et

[(
At+1

At

)1−θ
]
:= E

[(
At+1

At

)1−θ

|Ωt

]
= E

[(
At+1

At

)1−θ
]

for any (t,Ωt).

Hence, the risk premium is constant over time and across aggregate states Ωt.

A.3.5 Subsection 5.2.3: Endowment Economy

Endowment Economy In this subsection, we examine an endowment economy in
which the exogenous aggregate endowment is equal to aggregate consumption {Ct(Ωt)}t,Ωt

and the risky asset is now a Lucas tree that pays a share α of the aggregate endowment at
all times (and whose price we denote as qt(Ωt)). The remaining fraction 1− α of the ag-
gregate endowment is “labor income" which is subject to exactly the same idiosyncratic
shocks (that wash out in the aggregate) as in the production economy studied thus far.

Households trade a state contingent Lucas tree σt+1(σ0, z
t+1,Ωt+1) that delivers div-

idends depending on aggregate states Ωt+1 at time t + 1. In the limited commitment
model, households are subject to a tight borrowing constraint. In a standard complete
market model instead, the borrowing constraint never binds. Since we obtain the same
stochastic discount factor in the standard complete market model and the representative
agent model, we call such an economy a representative agent model.

In this economy, we obtain the same asset pricing results as in the production economy
with δ = 1: idiosyncratic risk and limited commitment drives down the risk-free rate but
leaves the equity premium unchanged relative to the representative agent version of the
model. This is the content of the next proposition.

Proposition 15. In the endowment economy, assume that the parameters satisfy the as-
sumption corresponding to Assumption 5 for the production economy:

α

(1− α)
(

1
β
− 1
) < ξ

ν
(

1
β
− 1 + ξ + ν

) , (213)

so that the no-savings Assumption 3 is satisfied. Then the risk-free rate (the inverse of
the price of a risk-free bond), is lower in the limited commitment economy than in the
representative agent economy:

1

qB,LCt (Ωt)
<

1

qB,RAt (Ωt)
for all Ωt. (214)
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The risk premium on a claim to risky aggregate consumption is the same in both economies
and is given by:

1 + λt(Ω
t) = Et[Ct+1(Ω

t+1)]Et
[

1

Ct+1(Ωt+1)

]
> 1 (215)

If the growth rate of the exogenous endowment process, Ct+1

Ct
, is iid, then the risk premium

1 + λt is constant over time and across states of the world.

We now prove this result. First, a sequential market equilibrium is defined as in the
production economy.

Definition 3. Given the price of Lucas tree {qLTt (Ωt)}∞t=0,Ωt and aggregate endowment {Ct(Ωt)}∞t=0,Ωt,
the household allocation {ct(σ0, zt,Ωt), σt+1(σ0, z

t+1,Ωt+1)} solves, for all (σ0, z0),

max
{ct(σ0,zt,Ωt),σt+1(σ0,zt+1,Ωt+1)}

∞∑
t=0

∑
Ωt

∑
zt

βtπ(Ωt)π(zt) log(ct(σ0, z
t,Ωt)) (216)

subject to budget constraints and limited-commitment constraints:

ct(σ0, z
t,Ωt) +

∑
Ωt+1

∑
zt+1

π(zt+1|zt)π(Ωt+1|Ωt)qLTt (Ωt)σt+1(σ0, z
t+1,Ωt+1)

= [1− α]Ct(Ω
t)zt︸ ︷︷ ︸

labor income

+[αCt(Ω
t)︸ ︷︷ ︸

dividends

+qLTt (Ωt)]σt(σ0, z
t,Ωt) (217)

σt+1(σ0, z
t+1,Ωt+1) ≥ 0 (218)

The goods market and Lucas tree market clear∑
zt

∫
π(zt)ct(σ0, z

t,Ωt)dΦ(σ0, z0) = Ct(Ω
t) (219)

∑
zt

∫
π(zt)σt(σ0, z

t,Ωt)dΦ(σ0, z0) = 1. (220)

Factor prices are given by:

wt(Ω
t) = (1− α)Ct(Ω

t) (221)

Rt(Ω
t) =

αCt(Ω
t) + qLTt (Ωt)

qLTt−1(Ω
t−1)

(222)

In the sequential equilibrium, a conjectured optimal allocation is as follows. Recall
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that s = 0, 1, · · · denotes the length of the most recent spell of low productivity.

c0,t =

(
1− (1− ν)β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)ζ (223)

cs,t = [1− (1− ν)β] [αCt(Ω
t) + qLTt (Ωt)]σs,t for s = 1, 2, · · · (224)

= βRtcs−1,t−1 (225)
σ0,t = 0

qLTt (Ωt)σ1,t+1 =

(
β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)ζ (226)

qLTt (Ωt)σs+1,t+1 = β[αCt(Ω
t) + qLTt (Ωt)]σs,t for s = 1, 2, · · · (227)

Equation (225) is derived using equations (224) and (227).49 The following Lemma
shows that the conjectured allocation satisfies the optimality conditions. Furthermore,
the condition on the parameter values to ensure the no-saving condition (Assumption 3)
is derived.

Lemma 12. Consider the limited-commitment model with exogenous aggregate endowment
{Ct(Ωt)}t,Ωt. Lucas tree yields α fraction of aggregate endowment at all t andΩt and is priced
at qLTt (Ωt) at state Ωt. Under Assumption 3:

βRt+1(Ω
t+1) <

wt+1(Ω
t+1)

wt(Ωt)
for all t,Ωt,Ωt+1, (228)

and the initial condition on the household’s share of Lucas tree:

σ0 = 0 if z0 = ζ (229)

0 <σ0 < σ̄0 :=
(1− α)

1− (1− ν − ξ)β

1

α + q̄
ζ if z0 = 0 (230)

where q̄ is given by:

q̄ :=
ξ(1− α) + β(1− ν)α(ξ + ν + 1

β
− 1)

[1− β(1− ν)](ξ + ν + 1
β
− 1)

, (231)

49Substituting the following two equations

σs+1,t+1 = β
[αCt(Ω

t) + qLTt (Ωt)]

qLTt (Ωt)
σs,t

σs,t =
cs,t

[1− (1− ν)β] [αCt(Ωt) + qLTt (Ωt)]

into equation (224) at t+ 1:

cs+1,t+1 = [1− (1− ν)β] [αCt+1(Ω
t+1) + qLTt+1(Ω

t+1)]σs+1,t+1
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the conjectured household allocation (223)–(227) and the price of Lucas tree:

qLTt = q̄ Ct (232)

satisfy the budget constraint, Kuhn-Tucker conditions, and the market clearing condition.
The interest rate, defined as the return on Lucas tree, is given by:

Rt+1(Ω
t+1) =

α + q̄

q̄

Ct+1(Ω
t+1)

Ct(Ωt)
. (233)

Under the assumption on the parameters:

α

(1− α)
(

1
β
− 1
) < ξ

ν
(

1
β
− 1 + ξ + ν

) , (213)

equation (228) is satisfied for all (t,Ωt,Ωt+1).

Proof. First, we verify that the budget constraint is satisfied. In a high-income state, the
household earns labor income but does not hold the share of Lucas tree. She purchases
a share only for the next high-income state. Hence,

ct(σ0, z
t,Ωt) +

∑
Ωt+1

∑
zt+1

π(zt+1|zt)π(Ωt+1|Ωt)qLTt (Ωt)σt+1(σ0, z
t+1,Ωt+1)− [1− α]Ct(Ω

t)ζ

=

(
1− (1− ν)β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)ζ − ξ

(
β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)ζ − [1− α]Ct(Ω
t)ζ

= 0.

In a low-income state, the household earns zero labor income and receives dividends
from the Lucas tree. The budget constraint holds with equality:

ct(σ0, z
t,Ωt) +

∑
Ωt+1

∑
zt+1

π(zt+1|zt)π(Ωt+1|Ωt)qLTt (Ωt)σt+1(σ0, z
t+1,Ωt+1)− [αCt(Ω

t) + qLTt (Ωt)]σt(σ0, z
t,Ωt)

= [1− (1− ν)β] [αCt(Ω
t) + qLTt (Ωt)]σt(σ0, z

t,Ωt) + (1− ν)β[αCt(Ω
t) + qLTt (Ωt)]σt(σ0, z

t,Ωt)

− [αCt(Ω
t) + qLTt (Ωt)]σt(σ0, z

t,Ωt)

= 0.

Second, we verify that the conjectured allocation satisfies the Kuhn-Tucker condi-
tions:

1

ct(σ0, zt,Ωt)
= βRt+1(Ω

t)
1

ct+1(σ0, zt+1,Ωt+1)
if σt+1(σ0, z

t+1,Ωt+1) > 0 (234)
1

ct(σ0, zt,Ωt)
> βRt+1(Ω

t)
1

ct+1(σ0, zt+1,Ωt+1)
if σt+1(σ0, z

t+1,Ωt+1) = 0 (235)
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In a low-income state at t + 1, equation (225) implies that equation (234) is satisfied
with equality. If the household is in a high-income state at time t and t + 1, equation
(235) is satisfied if:

ct+1(σ0, z
t+1,Ωt+1) > βRt+1(Ω

t+1)ct(σ0, z
t,Ωt)

⇔
(

1− (1− ν)β

1− (1− ν − ξ)β

)
[1− α]Ct+1(Ω

t+1)ζ > βRt+1(Ω
t+1)

(
1− (1− ν)β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)ζ

⇔ βRt+1(Ω
t+1) <

(1− α)Ct+1(Ω
t+1)

(1− α)Ct(Ωt)
=:

wt+1(Ω
t+1)

wt(Ωt)

Therefore, under Assumption 3, this condition is satisfied. At the end of the proof, it
is shown that low-income households never have higher consumption than high-income
households. This implies that saving for a future high-income state wouldn’t increase
household consumption.

Third, we verify that the market-clearing condition (220) is satisfied. This is done by
deriving the equilibrium price of Lucas tree that clears the market. Consider that Ct is
realized at time t. A market clearing condition for the share of Lucas Tree at t+ 1 is:

1 =
∞∑
s=1

ϕsσs,t+1

=
νξ

ξ + ν
σ1,t+1 +

∞∑
s=2

νξ

ξ + ν
(1− ν)s−1σs,t+1 (236)

Equations (226)–(227) give:

σ1,t+1 =

(
β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)

qLTt (Ωt)
ζ (237)

σs,t+1 = β
αCt(Ω

t) + qLTt (Ωt)

qLTt (Ωt)
σs−1,t for s ≥ 2. (238)

By substituting them into (236), the capital market clearing condition is given by:

1 =
νξ

ξ + ν

(
β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)

qLTt (Ωt)
ζ

+ β

[
αCt(Ω

t) + qLTt (Ωt)

qLTt (Ωt)

] ∞∑
s=2

νξ

ξ + ν
(1− ν)s−1σs−1,t︸ ︷︷ ︸

=(1−ν)
∑∞

s=1
νξ
ξ+ν

(1−ν)s−1σs,t=1−ν

. (239)

By solving this, the price of Lucas tree is obtained as:

qLTt (Ωt) =
ξ(1− α) + β(1− ν)α(ξ + ν + 1

β
− 1)

[1− β(1− ν)](ξ + ν + 1
β
− 1)︸ ︷︷ ︸

denote as q̄

Ct(Ω
t), (240)
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confirming equations (231) and (232). Given qLTt (Ωt), Rt+1(Ω
t+1) is defined as:

Rt+1(Ω
t+1) :=

αCt+1(Ω
t+1) + qLTt+1(Ω

t+1)

qLTt (Ωt)

=
α + q̄

q̄

Ct+1(Ω
t+1)

Ct(Ωt)

Therefore, Assumption (228) is satisfied if:

β
α + q̄

q̄

Ct+1

Ct
<

(1− α)Ct+1

(1− α)Ct
.

Solving this inequality yields a condition in terms of parameters (213).
Finally, we want to show that βRt+1ct(σ0, z

t,Ωt; zt = 0) < ct+1(σ0, z
t+1,Ωt+1; zt+1 = ζ)

for all (σ0, zt+1,Ωt+1), meaning that a low-income household does not have an incentive
to save for a next high-income state. This is shown by claiming that under Assumption
3 and the initial condition (230), low-income households never have higher consump-
tion than high-income households. Therefore, the Kuhn-Tucker conditions are satisfied
between a low-income state at t and a high-income state at t+ 1 as well.

Remember from equation (223) and (224) that:

ct(σ0, z
t,Ωt; zt = ζ) =

(
1− (1− ν)β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)ζ

ct(σ0, z
t,Ωt; zt = 0) = [1− (1− ν)β] [αCt(Ω

t) + qLTt (Ωt)]σt(σ0, z
t,Ωt)

with qLTt (Ωt) = q̄Ct. We have ct(σ0, z
t,Ωt; zt = 0) < ct(σ0, z

t,Ωt; zt = ζ) if:

[1− (1− ν)β] [αCt(Ω
t) + qLTt (Ωt)]σt(σ0, z

t,Ωt) <

(
1− (1− ν)β

1− (1− ν − ξ)β

)
[1− α]Ct(Ω

t)ζ

⇔ σt(σ0, z
t,Ωt) <

(1− α)

1− (1− ν − ξ)β

1

α + q̄
ζ =: σ̄0

In the initial period, σt(σ0, zt,Ωt) < σ̄0 is assumed as in equation (230). At time t = 1

onwards, σs+1,t+1 for s ≥ 0 follows:

σs+1,t+1 = β
αCt + qLTt

qLTt
σs,t

= β
qLTt−1

qLTt

αCt + qLTt
qLTt−1

σs,t

= β
wt−1

wt
Rt−1︸ ︷︷ ︸

<1

σs,t.

This implies that the share of Lucas tree satisfies σs+1,t+1 < σ̄0 if σs,t < σ̄0 for all s ≥ 1

and t ≥ 0. Hence, we only need to show that σ1,t < σ̄0 at all t ≥ 1. As in equation (226):

σ1,t+1 =

(
β

1− (1− ν − ξ)β

)
[1− α]

Ct(Ω
t)

qLTt (Ωt)
ζ.
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Using qLTt (Ωt) = q̄Ct and β α+q̄q̄ < 1, we have σ1,t+1 < σ̄0 := (1−α)
1−(1−ν−ξ)β

1
α+q̄

ζ. Therefore,
σt(σ0, z

t,Ωt) < σ̄0 is satisfied for any (σ0, z
t,Ωt), showing that low-income households

never have higher consumption than high-income households.

Given the sequential equilibrium, we will show in Proposition 15 that when aggre-
gate consumption Ct(Ωt) is exogenous and follows a common stochastic process in the
two models (the limited-commmitment model and the representative-agent model), the
limited commitment model has a higher bond price:

qB,LCt (Ωt) > qB,Rept (Ωt) for all Ωt, (241)

and hence a lower risk-free rate.50 To do so, we derive the interest rate in the representative-
agent endowment economy, as is standard in the literature (e.g., Ljungqvist and Sargent,
2018).

The Interest Rate in the Representative Agent Economy In the representative agent
model, the interest rate, defined as the return on the Lucas tree as before, is given by:

RRep
t+1(Ω

t+1|Ωt) :=
αCt+1(Ω

t+1) + qLTt+1(Ω
t+1)

qLTt (Ωt)
. (242)

The price of Lucas tree, which yields α fraction of aggregate endowment, follows:

qLucast (Ωt) =
∑
Ωt+1

Q(Ωt+1|Ωt)
[
αCt+1(Ω

t+1) + qLucast+1 (Ωt+1)
]
, (243)

where Q(Ωt+1|Ωt) = β
Ct(Ω

t)

Ct+1(Ωt+1)
π(Ωt+1|Ωt).

Using recursion of the equation, the price of Lucas tree is expressed as:

qLucast (Ωt) =
1

u′(Ct(Ωt))

Et ∞∑
j=1

βju′(Ct+j(Ω
t+j))αCt+j(Ω

t+j) + Et lim
k→∞

βku′(Ct+k(Ω
t+k))qt+k(Ω

t+k)

 .
(244)

50Note that a labor share in the endowment economy, 1 − α ∈ (0, 1), is constant over time and across
states. The share of labor income in the total resources available in the economy is also constant in a
production economy with δ = 1. However, in a production economy with δ < 1, the share:

wtL

A1−θ
t Kθ

t + (1− δ)Kt

=
(1− θ)A1−θ

t Kθ
t

A1−θ
t Kθ

t + (1− δ)Kt

is not constant. Since one of the key assumptions in Krueger and Lustig (2010) is violated, the conjecture
(the same risk premium) may not be true in such an economy. We will come back to this point later.
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The last term must be zero to clear the market. Under a logarithmic utility function,
which gives u′(Ct+j)Ct+j = 1, the price of Lucas tree is proportional to the current ag-
gregate endowment:

qLucast (Ωt) =
β

1− β
αCt(Ω

t). (245)

Imposing this into equation (242) gives:

RRep
t+1(Ω

t+1|Ωt) =
1

β

Ct+1(Ω
t+1)

Ct(Ωt)
(246)

Proposition 15.

Proof. In the representative agent model (complete market model), we have seen that
under logarithmic utility, the interest rate is given by (242):

RRep
t+1(Ω

t+1) =
1

β

Ct+1(Ω
t+1)

Ct(Ωt)
.

In the limited commitment model, the interest rate is given by (233):

RLC
t+1(Ω

t+1) =
α + q̄

q̄

Ct+1(Ω
t+1)

Ct(Ωt)
. (247)

The interest rates are proportional to consumption growth Ct+1(Ωt+1)
Ct(Ωt)

in the two economies.
In a partial insurance equilibrium, parameters are assumed to satisfy (213), which is
equivalent to:

β
α + q̄

q̄
< 1. (248)

Therefore, we have:

∴ RLC
t+1(Ω

t+1) < RRep
t+1(Ω

t+1).

The limited commitment model has a lower interest rate. The price of the risk-free bond
is given by:

qLCt (Ωt) = Et
[

1

RLC
t+1(Ω

t+1)

]
= Et

[
q̄

α + q̄

Ct(Ω
t)

Ct+1(Ωt+1)

]
(249)

qRept (Ωt) = Et
[
β

Ct(Ω
t)

Ct+1(Ωt+1)

]
(250)

Since β < q̄
α+q̄

, the limited-commitment model has a higher price of risk-free bonds and
a lower risk-free rate.51

51In the limited commitment model,
1

RLCt+1(Ω
t+1)

= β
ct(Ω

t)

ct+1(Ωt+1; zt+1 = 0)
> β

CLCt (Ωt)

CLCt+1(Ω
t+1)

, (251)
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Remember from Lemmas 1 and 2 that the risk premium in the two economies is given
by:

1 + λRept = Et[RRep
t+1(Ω

t+1)] Et
[
β

Ct(Ω
t)

Ct+1(Ωt+1)

]
1 + λLCt = Et[RLC

t+1(Ω
t+1)] Et

[
1

RLC
t+1(Ω

t+1)

]
.

Given the equilibrium interest rates, the risk premium in the two economies is given
by:

1 + λRept = Et[Ct+1(Ω
t+1)]Et

[
1

Ct+1(Ωt+1)

]
> 1 (252)

1 + λLCt = Et[Ct+1(Ω
t+1)]Et

[
1

Ct+1(Ωt+1)

]
> 1 (253)

Therefore, we see that the two economies have the same risk premium. If the growth
rate of exogenous consumption Ct+1

Ct
follows an iid process, the risk premium 1 + λt is

constant over time:

1 + λt = E
[
Ct+1(Ω

t+1)

Ct(Ωt)
|Ωt

]
E
[

Ct(Ω
t)

Ct+1(Ωt+1)
|Ωt

]
= E

[
Ct+1(Ω

t+1)

Ct(Ωt)

]
E
[

Ct(Ω
t)

Ct+1(Ωt+1)

]
= 1 + λ

A.3.6 Intuition with Multiplicative Stochastic Discount Factors

Proposition 13.

Proof. First, we show that equation (90) holds in both models. Consider the represen-
tative agent model. We want to show that the stochastic discount factor satisfies:

mRep
t,t+1(Ω

t+1) := β
CRep
t (Ωt)

CRep
t+1(Ω

t+1)
= γt

Υt(Ω
t)

Υt+1(Ωt+1)
(254)

since ct+1(Ω
t+1; zt+1 = ζ) > ct+1(Ω

t+1; zt+1 = 0). Formally, CLCt+1 > βRLCt+1C
LC
t follows:

Ct+1 :=

∞∑
s=0

ϕscs,t+1

= ϕ0 c0,t+1︸ ︷︷ ︸
>βRt+1c0,t

+

∞∑
s=1

ϕs cs,t+1︸ ︷︷ ︸
=βRt+1cs−1,t

> βRt+1

ϕ0c0,t + ∞∑
s=1

ϕs cs−1,t︸ ︷︷ ︸
>cs,tunder Assumption1


> βRt+1

[
ϕ0c0,t +

∞∑
s=1

ϕscs,t

]
= βRt+1Ct.
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for some non-ramdom variable γt. In the endowment economy, since the aggregate con-
sumption is exogneous:

Υt(Ω
t) = Ct(Ω

t), (255)

Equation (254) is satisfied with γt = β. In the production economy with δ = 1, the
constant saving rate implies that:

CRep
t (Ωt) = (1− βθ)A1−θ

t Kθ
t

= (1− βθ)Υt(Ω
t). (256)

Again, equation (254) is satisfied with γt = β.
In the limited commitment model, we want to show that the SDF satisfies:

mLC
t,t+1(Ω

t+1) := β
ct(z

t,Ωt)

ct+1(zt+1,Ωt+1; zt+1 = 0)
= γt

Υt(Ω
t)

Υt+1(Ωt+1)
(257)

for some γt that does not depend onAt+1. Note that the limited-commitmment constraint
does not bind for a low-income agent at t+ 1.

From the Euler equation of low-income agents, we have:

β
ct(z

t,Ωt)

ct+1(zt+1,Ωt+1; zt+1 = 0)
=

1

RLC
t+1(Ω

t+1)
. (258)

We have seen in equation (233) that in the endowment economy,

RLC
t+1(Ω

t+1) =
α + q̄

q̄

Ct+1(Ω
t+1)

Ct(Ωt)
(259)

holds. In the production economy with δ = 1,

RLC
t+1(Ω

t+1) = θKθ−1
t+1A

1−θ
t+1

= θ
Kθ
t+1A

1−θ
t+1

ŝLCKθ
tA

1−θ
t

=
θ

ŝLC
Υt+1

Υt

(260)

Hence, equation (257) is satisfied with a non-random γt in both cases in the limited
commitment model.

Second, we prove (91). In the endowment economy, it is trivial since the total re-
sources are exogenous:

ΥRep
t (Ωt) = ΥLC

t (Ωt) = Ct(Ω
t).

In the production economy with δ = 1, given the constant saving rate in the two models,
we obtain:

Υt(Ω
t)

Υt+1(Ωt+1)
=

Kθ
tA

1−θ
t

Kθ
t+1A

1−θ
t+1

=
Kθ
tA

1−θ
t

(ŝKθ
tA

1−θ
t )θA1−θ

t+1

where ŝ ∈ {βθ, ŝLC}. (261)
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Υt(Ωt)
Υt+1(Ωt+1)

are proportional to 1

A1−θ
t+1

in the two models. Hence, there exits γ′t in equation
(91) that does not depend on Ωt+1. Equation (92) directly follows from equations (90)
and (91).

Finally, we proceed to the last statement of the proposition. In the endowment econ-
omy, the proof follows Theorem 4.2 in Krueger and Lustig (2010). The risk premium is
defined as:

1 + λt :=
Et [Rt,1[{et+k}]]

Rt,1[1]
, (262)

where Rt,1[{et+k}] is the one-period return of holding a claim {et+k}k≥1 from time t to
t+1. The Lucas tree yields α fraction of endowment in the economy, so et+k = αΥt+k for
all k ≥ 1 in both models. Their derivation shows that the risk premium can be expressed
as a weighted sum of risk premia on strips:

1 + λt =
∞∑
k=1

ωk
1/Et[mt,t+1]

Et [Rt,1[et+k]] , (263)

where ωk =
Et[mt,t+ket+k]∑∞
j=1 Et[mt,t+jet+j]

If mLC
t,t+1 = γ′′tm

Rep
t,t+1, where γ′′t is a non-random multiplicative term,

1 + λLCt :=
Et
[
RLC
t,1 [et+k]

]
1/Et[mLC

t,t+1]
=

Et
[
Et+1[mLC

t+1,t+ket+k]

Et[mLC
t,t+ket+k]

]
1/Et[mLC

t,t+1]

=

Et
[
Et+1[γ′′t+1···γ′′t+k−1m

Rep
t+1,t+ket+k]

Et[γ′′t γ
′′
t+1···γ′′t+k−1m

Rep
t,t+ket+k]

]
1/Et[γtmRep

t,t+1]
=

Et
[
RRep
t,1 [et+k]

]
1/Et[mRep

t,t+1]
=: 1 + λRept (264)

holds for all k ≥ 1, wheremt,t+k = mt,t+1mt+1,t+2 · · ·mt+k−1,t+k. Since ωk is also the same
between the two models, the two models have the same risk premium.

In the production economy, one unit of capital purchased at t yields θKθ−1
t+1A

1−θ
t+1 +1−δ

at time t + 1. By substituting et+1 = θKθ−1
t+1A

1−θ
t+1 + 1 − δ and et+k = 0 for all k ≥ 2, the

risk premium is given by:

1 + λt :=
Et [Rt,1[{et+k}]]

Rt,1[1]

=

Et
[

Et+1[θKθ−1
t+1 A

1−θ
t+1+1−δ]

Et[mt,t+1(θK
θ−1
t+1 A

1−θ
t+1+1−δ)]

]
1/Et [mt,t+1]

=
Et[θKθ−1

t+1A
1−θ
t+1 + 1− δ]Et[mt,t+1]

Et[(θKθ−1
t+1A

1−θ
t+1 + 1− δ)mt,t+1]

(265)

If δ = 1, this is simplified to:

1 + λt =
Et[A1−θ

t+1 ]Et[mt,t+1]

Et[A1−θ
t+1mt,t+1]

, (266)
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where we use the fact that Kt+1 is determined at t and is canceled out in the previous
equation. If mLC

t,t+1 = γ′′tm
Rep
t,t+1 holds, the representative agent model and the limited

commitment model have the same risk premium.

The proof illustrates that the two models have different risk premia if δ ̸= 1 in the
production economy. First, if δ ̸= 1, the risk premium depends on Kt+1, which follows a
different law of motion in the two models. Hence, even multiplicative stochastic discount
factors would not imply the same risk premium. Second, the stochastic discount factors
are not proportional in the two models if δ ̸= 1. As we saw in (260) and (261), under
full depreciation of capital, the interest rate is proportional to aggregate resources Υt+1

Υt
,

which is in turn proportional to A1−θ
t+1 . This is not generally the case if δ ̸= 1. In equa-

tions (264) and (266), we have seen that the multiplicative stochastic discount factors
(mLC

t,t+1 = γ′′tm
Rep
t,t+1) imply 1 + λLCt = 1 + λRept . If the SDFs are not proportional, the term

γ′′t does not cancel out, so the risk premia are generally different across the two models.

B Additional Discussions

B.1 Additional Discussion about Transitional Dynamics

B.1.1 Monotone Sequence of {At}∞t=1

We derive sufficient conditions on a monotone sequence of {At}∞t=1 converging to A∗

such that βRt+1 <
wt+1

wt
holds at all t ≥ 0. We first show that if {Kt

At
}∞t=1 is also monotone,

βRt+1 <
wt+1

wt
at t = 0 is sufficient for βRt+1 <

wt+1

wt
at all t ≥ 0. Since the aggregate

capital at t = 1 (K1) is pre-determined at t = 0 (in a steady state), we can derive a
condition on A1 in closed form, as we did in Section 4.2.1 for a permanent productivity
shock. We then derive a sufficient condition on {At}∞t=2 for the monotonicity of {Kt

At
}∞t=1.

The condition on {At}∞t=2 and the condition on A1 together guarantee βRt+1 <
wt+1

wt
at

all t ≥ 0.

Preparations for the Sufficient Conditions The economy is assumed to be in a steady
state at t = 0, where βR0 < 1 holds under Assumption 5. At t = 1, a new path of {At}∞t=1

is realized. We will derive conditions on {At}∞t=1 that guarantee βRt+1 <
wt+1

wt
for all

t ≥ 0. We first express βRt+1
wt

wt+1
in terms of capital:

βRt+1
wt
wt+1

= β
[
θA1−θ

t+1K
θ−1
t+1 + 1− δ

] (1− θ)A1−θ
t Kθ

t

(1− θ)A1−θ
t+1K

θ
t+1

. (267)
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By using the law of motion of capital, Kt+1 = ŝA1−θ
t Kθ

t + (1− δ̂)Kt, we derive following
expressions:

Kt+1

At+1

=
At
At+1

[
ŝ

(
Kt

At

)θ
+ (1− δ̂)

Kt

At

]
, (268)

βRt+1
wt
wt+1

= β

θ + (1− δ)
(
Kt+1

At+1

)1−θ
ŝ+ (1− δ̂)

(
Kt

At

)1−θ
 . (269)

We first show that the monotonicity of {Kt

At
} give rise to analytically tractable suffi-

cieint conditions for βRt+1 <
wt+1

wt
at all t ≥ 0.

Lemma 13 (Sufficient condition for βRt+1
wt

wt+1
< 1 at all t ≥ 0).

1. Suppose {At}∞t=1 and {Kt

At
}∞t=1 are monotonically increasing over time (i.e., At ≤ At+1

and Kt

At
< Kt+1

At+1
for all t ≥ 1). Then, A1 < Ā1 is sufficient for βRt+1

wt

wt+1
< 1 at any t ≥ 0,

where

Ā1

A0

=

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

> 1.

2. Suppose {At}∞t=1 and {Kt

At
}∞t=1 are monotonically decreasing over time (i.e., At ≥ At+1

and Kt

At
> Kt+1

At+1
for all t ≥ 1). Then, A1 > A1 is sufficient for βRt+1

wt

wt+1
< 1 at any t ≥ 0,

where

A1/A0 =

1− ν + ν
1− (1− δ)β(1− ν)

βν(1− δ)

ξ(1− θ)− βθν(ξ + ν + 1
β
− 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β
− 1
)
 1

θ−1

< 1.

Proof. 1. Since wt = (1− θ)At

(
Kt

At

)θ
, monotonicity of {At}∞t=1 and {Kt

At
}∞t=1 imply mono-

tonicity of wt. If At and Kt

At
are weakly increasing over time, wt+1

wt
≥ 1 for all t ≥ 1. Then,

βRt+1 < 1 is a sufficient condition for βRt+1 <
wt+1

wt
. Since Rt+1 = θ

(
Kt+1

At+1

)θ−1

+ 1 − δ,
monotone increase of Kt

At
implies monotone decrease of Rt. Therefore, βR2 < 1 is suffi-

cient for βRt+1 < 1 for all t ≥ 1. Furthermore, K1

A1
< K2

A2
implies R1 > R2. Thus, βR1 < 1

is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 1. βR1 < 1 also implies βR1 <

w1

w0
. Proposition 6

shows βR1 < 1 if A1 < Ā1.
2. Using equation (269), the condition βRt+1

wt

wt+1
< 1 is written as:

βRt+1
wt
wt+1

= β

θ + (1− δ)
(
Kt+1

At+1

)1−θ
ŝ+ (1− δ̂)

(
Kt

At

)1−θ
 < 1

⇔
(
Kt+1

At+1

)1−θ

− (1− ν)

(
Kt

At

)1−θ

<
1

1− δ

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
, (270)
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where we know the RHS is strictly positive under Assumption 5 (Lemma 7). The equation
(270) can be written as:(

Kt+1

At+1

)1−θ

−
(
Kt

At

)1−θ

︸ ︷︷ ︸
<0 if Kt+1

At+1
<

Kt
At

+ν

(
Kt

At

)1−θ

<
1

1− δ

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
.

Since Kt

At
is decreasing over time,

(
Kt

At

)1−θ
is largest at t = 1. Since we have:(

Kt+1

At+1

)1−θ

−
(
Kt

At

)1−θ

+ ν

(
Kt

At

)1−θ

< ν

(
Kt

At

)1−θ

≤ ν

(
K1

A1

)1−θ

for all t ≥ 1,

a sufficient condition for (270) at all t ≥ 1 is given by:(
K1

A1

)1−θ

<
1

ν(1− δ)

[
ξ(1− θ)

1− (1− ν − ξ)β
− νθ

]
.

A condition on A1 for this inequality is given in Proposition 9 (i.e., A1 > A′
1). Proposition

7 shows that A1 > A1 is sufficient for A1 > A′
1 and βR1 <

w1

w0
. Therefore, it is sufficient

for βRt+1 <
wt+1

wt
at all t ≥ 0.

Next, we we derive sufficieint conditions for the monotonicity of {Kt

At
}. Lemma 14

derives a condition on At+1 as a function of Kt. Since Kt is an endogenous variable,
we will use a first-order approximation to derive a sufficieint condition on {At+1} as a
function of exogenous parameters.

Lemma 14 (Monotonicity of Kt

At
). Consider an economywith Kt

At
at time t, where the steady-

state value of capital over productivity is given by K∗

A∗ . We have Kt+1

At+1
> Kt

At
if and only if

At+1

At
< 1 + δ̂

[(
K∗/A∗

Kt/At

)1−θ

− 1

]
. (271)

Proof. From a law of motion of capital (268), we know Kt+1

At+1
> Kt

At
if and only if

Kt+1

At+1

:=
At
At+1

[
ŝ

(
Kt

At

)θ
+ (1− δ̂)

Kt

At

]
>
Kt

At

By dividing both sides by Kt

At
(̸= 0), this is equivalent to:

ŝ

(
Kt

At

)θ−1

+ 1− δ̂ >
At+1

At
.

In the steady state (Kt+1 = Kt = K∗), we have:

ŝ = δ̂

(
K∗

A∗

)1−θ

.
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By substituing this, we derive:

1 + δ̂

[(
K∗/A∗

Kt/At

)1−θ

− 1

]
>
At+1

At
.

Lemma 14 means {Kt

At
}∞t=1 is monotonically increasing if the condition (271) holds

for all t ≥ 1. In order to derive a condition on {At+1} without an endogenous variable
Kt, we derive a first order approximation of k̃t := Kt/At

K∗/A∗ and k̂t := K∗/A∗

Kt/At
. They are used

in case of an increasing and decreasing sequence of {At}∞t=1, respectively.
Lemma 15 (First-Order Approximation).

1. A first-order approximation of k̃t := Kt/At

K∗/A∗ is given by:

k̃t < 1− A1 − A0

At

[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At−u+1 − At−u
At

[
1− δ̂(1− θ)

]u−1

. (272)

2. A first-order approximation of k̂t := K∗/A∗

Kt/At
is given by:

k̂t < 1− At
A1

(
A0 − A1

A0

)[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1

.

(273)
Proof. 1. We know the law of motion of Kt

At
by equation (268):

Kt+1

At+1

=
At
At+1

[
ŝ

(
Kt

At

)θ
+ (1− δ̂)

Kt

At

]
, where ŝ = δ̂

(
K∗

A∗

)1−θ

.

By dividing both hand sides by K∗

A∗ , we have:
Kt+1/At+1

K∗/A∗ =
At
At+1

[
δ̂

(
Kt/At
K∗/A∗

)θ
+ (1− δ̂)

(
Kt/At
K∗/A∗

)]
. (274)

Denote k̃t := Kt/At

K∗/A∗ with k̃∗ = 1. We will approximate f(k̃t) := δ̂(k̃t)
θ + (1− δ̂)k̃t by Talor

expansion:
f(k̃t) = f(k̃∗) + f ′(k̃∗)(k̃t − k̃∗) + f ′′(k̃∗)(k̃t − k̃∗)2 + o(||k̃t − k̃∗||2), (275)

where we have:
f(k̃∗) = δ̂ + 1− δ̂ = 1

f ′(k̃t) = δ̂θ(k̃t)
θ−1 + 1− δ̂

→ f ′(k̃∗) = 1− δ̂(1− θ)

f ′′(k̃t) = δ̂θ(θ − 1)(k̃t)
θ−2

→ f ′′(k̃∗) = −θ(1− θ)δ̂.
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Therefore, we approximate k̃t+1 by:

k̃t+1 =
At
At+1

[
1 + [1− δ̂(1− θ)](k̃t − k̃∗)− θ(1− θ)δ̂(k̃t − k̃∗)2 + o(||k̃t − k̃∗||2)

]
. (276)

By subtracting k̃∗ (= 1) from both sides, we have:

k̃t+1 − k̃∗ =

(
At
At+1

− 1

)
+

At
At+1

[
1− δ̂(1− θ)

]
(k̃t − k̃∗)− At

At+1

θ(1− θ)δ̂(k̃t − k̃∗)2 + o(||k̃t − k̃∗||2).

(277)

Since the third term is strictly negative, we derive the upper bound of k̃t− k̃∗ as follows:

k̃t − k̃∗ =
At−1

At
− 1 +

At−1

At

[
1− δ̂(1− θ)

]
(k̃t−1 − k̃∗)− At−1

At
θ(1− θ)δ̂(k̃t−1 − k̃∗)2 + o(||k̃t−1 − k̃∗||2)

<
At−1

At

[
1− δ̂(1− θ)

]
(k̃t−1 − k̃∗)−

(
1− At−1

At

)
<
At−2

At

[
1− δ̂(1− θ)

]2
(k̃t−2 − k̃∗)− At−1

At

[
1− δ̂(1− θ)

](
1− At−2

At−1

)
−
(
1− At−1

At

)
<
A1

At

[
1− δ̂(1− θ)

]t−1

(k̃1 − k̃∗)−
t−1∑
u=1

At−u+1 − At−u
At

[
1− δ̂(1− θ)

]u−1

. (278)

By substituting k̃1 := K1/A1

K∗/A∗ = K1/A1

K0/A0
= A0

A1
, we derive:

k̃t < 1− A1 − A0

At

[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At−u+1 − At−u
At

[
1− δ̂(1− θ)

]u−1

.

2. To prepare for a sufficient condition in case of a declining sequence of {At}, we
derive a Taylor expansion of the law of motion in terms of k̂t := K∗/A∗

Kt/At
with k̂∗ = 1.

Equation (274) is written as:

k̂t+1 =
At+1

At

1

δ̂(k̂t)−θ + (1− δ̂)k̂−1
t

. (279)

Define g(k̂t) := 1

δ̂(k̂t)−θ+(1−δ̂)k̂−1
t

and Taylor approximate this function.

g(k̂∗) = 1

g′(k̂t) =
θδ̂(k̂t)

−θ−1 + (1− δ̂)(k̂t)
−2[

δ̂(k̂t)−θ + (1− δ̂)(k̂t)−1
]2

→ g′(k̂∗) = 1− δ̂(1− θ)

g′′(k̂t) = −θ(θ + 1)δ̂(k̂t)
−θ−2 + 2(1− δ̂)(k̂t)

−3[
δ̂(k̂t)−θ + (1− δ̂)(k̂t)−1

]2 + 2

[
θδ̂(k̂t)

−θ−1 + (1− δ̂)(k̂t)
−2
]2

[
δ̂(k̂t)−θ + (1− δ̂)(k̂t)−1

]3
→ g′′(k̂∗) = −

[
θ(θ + 1)δ̂ + 2(1− δ̂)

]
+ 2

[
θδ̂ + 1− δ̂

]
= δ̂(1− θ)

[
(1− θ)(2δ̂ − 1)− 1

]
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We have g′′(k̂∗) < 0 if (1 − θ)(2δ̂ − 1) − 1 < 0 ⇔ 2δ̂ < 1
1−θ + 1. This is true since δ̂ < 1

and 1
1−θ > 1. Therefore, Taylor expansion of (279) is given by:

k̂t+1 − k̂∗ =

(
At+1

At
− 1

)
+
At+1

At

[
1− δ̂(1− θ)

]
(k̂t − k̂∗) +

At+1

At
g′′(k̂∗)(k̂t − k̂∗)2 + o(||k̂t − k̂∗||2)

(280)

Since g′′(k̂∗) < 0,

k̂t − k̂∗ =

(
At
At−1

− 1

)
+

At
At−1

[
1− δ̂(1− θ)

]
(k̂t−1 − k̂∗) +

At
At−1

g′′(k̂∗)(k̂t−1 − k̂∗)2 + o(||k̂t−1 − k̂∗||2)

<
At
At−1

[
1− δ̂(1− θ)

]
(k̂t−1 − k̂∗) +

(
At
At−1

− 1

)
<

At
At−2

[
1− δ̂(1− θ)

]2
(k̂t−2 − k̂∗) +

At
At−2

(
1− At−2

At−1

)[
1− δ̂(1− θ)

]
+

At
At−1

(
1− At−1

At

)
<
At
A1

[
1− δ̂(1− θ)

]t−1

(k̂1 − k̂∗)−
t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1

.

By using k̂1 − k̂∗ := K0/A0

K1/A1
− 1 = A1−A0

A0
, we have:

k̂t < 1− At
A1

(
A0 − A1

A0

)[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1

.

A Sufficient Condition on {At}∞t=1 First-order approximations of k̃t and k̂t allow us to
establish a sufficient condition on {At}∞t=2 for the monotonicity of {Kt

At
}∞t=1. Then, Lemma

13 gives a condition on A1 that is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 0. We state a

proposition below.

Proposition 16.
1. (Positive Shocks) Suppose Assumption 5 holds and the economy is in a steady state at

t = 0. Consider a weakly increasing path of {At}∞t=1 converging to A∗ (A0 < A1 ≤ · · · ≤ A∗

with limt→∞At = A∗) that is unexpectedly realized at t = 1. If the sequence of {At} satisfies
the condition (282), both {At} and {Kt

At
} are monotonically increasing in t. Then, A1 < Ā1

is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 0 (Lemma 13). Therefore, the conditions (281) and

(282) together guarantee βRt+1 <
wt+1

wt
at all t ≥ 0.
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A0 < A1 < Ā1, (281)

1 ≤ At+1

At

< 1 + δ̂


 1

1− A1−A0
At

[
1− δ̂(1− θ)

]t−1
−
∑t−1

u=1
At−u+1−At−u

At

[
1− δ̂(1− θ)

]u−1


1−θ

− 1

 ∀t ≥ 1,

(282)

where Ā1 := A0

[
1− β(1− δ)

θ

ξ(1− θ) + (1− ν)θ [1− (1− ν − ξ)β]

[1− (1− ν)β(1− δ)] [1− (1− ν − ξ)β]

] 1
1−θ

.

2. (Negative shocks) Suppose Assumption 5 holds and the economy is in a steady state at
t = 0. Consider a weakly decreasing path of {At}∞t=1 converging to A∗ (A0 > A1 ≥ · · · ≥ A∗

with limt→∞At = A∗) that is unexpectedly realized at t = 1. If the sequence of {At} satisfies
the condition (284), {Kt

At
} is monotonically declining in t. This implies that A1 < A1 is

sufficient to guarantee βRt+1 <
wt+1

wt
at all t ≥ 0 (Lemma 13). Therefore, the conditions

(283) and (284) together guarantee βRt+1 <
wt+1

wt
at all t ≥ 0.

A1 < A1 < A0, (283)

1− δ̂

1−(1− At
A1

(
A0 −A1

A0

)[
1− δ̂(1− θ)

]t−1
−

t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1
)1−θ

<
At+1

At
≤ 1 ∀t ≥ 1, (284)

where A1 := A0

1− ν + ν
1− (1− δ)β(1− ν)

βν(1− δ)

ξ(1− θ)− βθν(ξ + ν + 1
β − 1)

ξ(1− θ) + βθ(1− ν)
(
ξ + ν + 1

β − 1
)
 1

θ−1

.

Proof. 1. Lemma 14 states that Kt+1

At+1
> Kt

At
for all t ≥ 1 if

At+1

At
< 1 + δ̂

[(
K∗/A∗

Kt/At

)1−θ

− 1

]
at all t ≥ 1. (285)

In Lemma 15, we establish an upper bound on k̃t := Kt/At

K∗/A∗ . Therefore, we have:
(
K∗/A∗

Kt/At

)1−θ

>

[
1− A1 − A0

At

[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At−u+1 − At−u
At

[
1− δ̂(1− θ)

]u−1
]−(1−θ)

(286)
Hence, the follwing condition is sufficient for condition (285):

At+1

At
< 1 + δ̂


 1

1− A1−A0
At

[
1− δ̂(1− θ)

]t−1
−
∑t−1

u=1
At−u+1−At−u

At

[
1− δ̂(1− θ)

]u−1


1−θ

− 1

 ∀t ≥ 1.

102



Under this condition, {Kt

At
}∞t=1 is monotonically increasing. Thus, Lemma 13 states that

condition (281) is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 0.

2. Lemma 14 states that Kt+1

At+1
< Kt

At
for all t ≥ 1 if

At+1

At
> 1 + δ̂

[(
K∗/A∗

Kt/At

)1−θ

− 1

]
at all t ≥ 1. (287)

In Lemma 15, we establish an upper bound on k̂t := K∗/A∗

Kt/At
. Therefore, we have:

(
K∗/A∗

Kt/At

)1−θ
>

[
1− At

A1

(
A0 −A1

A0

)[
1− δ̂(1− θ)

]t−1
−

t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1
]1−θ

(288)

Hence, the follwing condition is sufficient for condition (287):

At+1

At
> 1 + δ̂

[1− At
A1

(
A0 −A1

A0

)[
1− δ̂(1− θ)

]t−1

−
t−1∑
u=1

At
At−u

(
At−u
At−u+1

− 1

)[
1− δ̂(1− θ)

]u−1
]1−θ

− 1

 ∀t ≥ 1.

Under this condition, {Kt

At
}∞t=1 is monotonically decreasing. Thus, Lemma 13 states that

condition (283) is sufficient for βRt+1 <
wt+1

wt
at all t ≥ 0.

B.1.2 Further Discussion on Corollary 2

As we see in Section 4.2.2, the Euler equation between t = 0 and t = 1 for low-income
agents holds at the time of MIT shock (t = 1), and households do not respond to future
anticipated productivity shocks. This is not generally the case in a limited-commitment
model with CRRA utility and in a neoclassical growth model with logarithmic utility.

CRRA utility We discuss what happens under a CRRA utility function ( c1−σ−1
1−σ with σ ̸=

1). Under the no-savings condition for high-income states (Assumption 3), households
finance their consumption in future low-income states with their state-contingent assets,
so the budget constraint is given by:

Rtas,t = cs,t +
1− ν

Rt+1

cs+1,t+1 +
1− ν

Rt+1

1− ν

Rt+2

cs+2,t+2 + · · · (289)

Suppose a deterministic sequence of future interest rates {Rτ}τ≥t+1 is given. Then, the
optimal consumption in all future low-income states is determined by the Euler equation:

cs+1,τ+1 = (βRτ+1)
1
σ cs,τ for all s ≥ 0, τ ≥ t.

The budget constraint is written as follows:

Rtas,t = cs,t

[
1 + (1− ν)β

1
σ (Rt+1)

1−σ
σ + (1− ν)2β

2
σ (Rt+1Rt+2)

1−σ
σ + · · ·

]
, (290)
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implying that today’s consumption depends on future interest rates {Rτ}τ≥t+1:

cs,t =
Rtas,t[

1 + (1− ν)β
1
σ (Rt+1)

1−σ
σ + (1− ν)2β

2
σ (Rt+1Rt+2)

1−σ
σ + · · ·

] . (291)

Note that if σ = 1 (logarithmic utility), the denominator becomes a constant, implying
that consumption is proportional to today’s interest rate. This leads to the previous result
that the Euler equation between t and t+ 1 holds despite an unexpected shock at t+ 1.
However, under σ ̸= 1, since consumption today depends on future interest rates, the
expectation about future productivity affects today’s consumption decisions.

Suppose that a future path of interest rates unexpectedly changes at time t+ 1. The
optimal consumption at t + 1 is chosen according to equation (291), which is generally
different from the consumption anticipated at time t.52 Hence, the Euler equation be-
tween t and t + 1 no longer holds. This implies that MIT shocks and anticipated shocks
have different implications for households’ consumption and the law of motion of capital
in the case of CRRA utility with σ ̸= 1.

Comparison with a Neoclassical Growth Model The two results (the Euler equation
at the time of the shock and the indifference betweenMIT shocks and anticipated shocks)
are not true in a standard neoclassical growth model unless the capital fully depreciates
(δ = 1).

Suppose the economy is in a steady state at t = −5 with aggreagte productivity A0.
Agents realize the news at t = −4 that productivity increases from A0 to A1 at t = 1

permanently:

At =

A0 if t ≤ 0

A1 if t ≥ 1

Transitional dymanics of a standard neoclassical growth model is described by an Euler
equation and a resource constraint. Then, the law of motion of capital is derived as:

Kt+2 = A1−θ
t+1K

θ
t+1 + (1− δ)Kt+1 − β

(
θA1−θ

t+1K
θ−1
t+1 + 1− δ

)︸ ︷︷ ︸
=Rt+1

[
A1−θ
t Kθ

t + (1− δ)Kt −Kt+1

]︸ ︷︷ ︸
Ct

.

(292)

Here we continue to assume the logarithmic utility. Capital in the initial steady state
(K−5) and capital in the new steady state (K∞) allow us to numerically compute the
sequence of capital. Since choice variables at time t (Ct, Kt+1) depend on future capital

52cs,t+1 is still proportional to an interest rate Rt+1 if {Rτ}τ≥t+2 does not change from the anticipated
one. However, after an unanticipated TFP shock at t+1, which affects the law of motion of capital at t+1,
a new sequence of interest rates {Rτ}τ≥t+2 generally differs from the anticipated one.
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Figure 6: Transitional Dynamics of Kt after an Anticipated Shock

(Kt+2), the agents respond to future anticipated shocks (Figure 6). Intuitively, higher
productivity from t = 1 onwards allows agents to consume more. Since agents prefer a
smooth consumption profile, they start to consume a little more when they realize the
news at t = −4.

The interest rate does not change at t = −4 as A−5 = A−4 = A0 and K−5 = K−4. The
response of C−4 to the future shock implies that the Euler equation between t = −5 and
t = −4 does not hold. An optimality condition requires that the Euler equation between
t = 0 and t = 1 holds.53

B.1.3 Consumption Inequality along the Transition

We characterize the forces determining the evolution of consumption inequality along
the transition to the new steady state. In period t = 1 capital was predetermined and thus
the impact on capital- and labor income was exclusively determined by the exogenous
shock itself, a fact that enabled us sharply characterize the consumption distribution at
that date. From period t = 2 on aggregate capital adjusts, following the law of motion
(39), and with it wages wt and rates of returns Rt. Since consumption follows a ladder
structure, consumption inequality at each date can be characterized by the gap between
consumption of high income individuals, c0,t and of low-income individuals who last had
high income s periods ago, cs,t. The evolution of this consumption gap − log(cs,t/c0,t) is
characterized in Proposition 17. We first derive the consumption gap cs,t

cs,0
in the following

Lemma.

53The Euler equation between t = 0 and t = 1 does not generally hold if an MIT shock is realized at
t = 1.
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Lemma 16. Suppose an economy is in a stationary equilibrium at t = 0, and a productivity
shock is realized at t = 1. Suppose that Assumptions 2, 3, and 4 hold. The evolution of
deflated consumption for low-income agents is characterized as:

cs,t
cs,0

=


(∏t

u=1
Ru

R0

)
w0

wt
if s ≥ t(∏t

u=t−s+1
Ru

R0

)
wt−s

wt
if 1 ≤ s < t

(293)

Notice that by denoting Ru = R0 for u ≤ 0 and wt−s = w0 for s ≥ t, the latter expression
includes the former as a special case.

Proof. The ratio of deflated consumption between time t and time 0 for agents s with
s ≥ t, cs,t

cs,0
, is derived using the Euler equation:

wtcs,t = βRtwt−1cs−1,t−1

= (βRt)(βRt−1) · · · (βR1)w0cs−t,0

cs,0 = (βR0)
tcs−t,0

∴
cs,t
cs,0

=

(
R1

R0

)
· · ·
(
Rt

R0

)
w0

wt

This equation can be expressed in a sequential way:

cs,t
cs,0

=
cs,t−1

cs,0

(
Rt

R0

)(
wt−1

wt

)
=

t∏
u=1

(
Ru

R0

)(
wu−1

wu

)
=

(
t∏

u=1

Ru

R0

)
w0

wt
.

If s < t, the low-income agents have experienced high income after the shock. Hence,
wage at the time of last high income is wt−s with wt−s > w0. The ratio of deflated
consumption between time t and time 0 is given by:

wtcs,t = βRtwt−1cs−1,t−1

= (βRt) · · · (βRt−s+1)wt−sch,t−s

cs,0 = (βR0)
sch,0

∴
cs,t
cs,0

=

(
Rt−s+1

R0

)
· · ·
(
Rt

R0

)
wt−s
wt

=

(
t∏

u=t−s+1

Ru

R0

)
wt−s
wt

Proposition 17. Suppose an economy is in a stationary equilibrium at t = 0 and is hit by
a permanent productivity shock at t = 1. Let Assumption 3 be satisfied and 0 < δ < 1. The
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evolution of the consumption gap between high-income and low-income agents relative to
the steady state is characterized by:

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
=


log
(
w1

w0

R0

R1

)
if s ≥ 1 if t = 1

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu

R0

Ru+1

)
if s ≥ t and t ≥ 2∑t−1

u=t−s log
(
wu+1

wu

R0

Ru+1

)
if s < t and t ≥ 2

(294)

The consumption gap expands at time 1 since log
(
w1

w0

R0

R1

)
> 0. From time 1 until time

s ≥ 2, the consumption gap continues to be higher than in the stationary equilibrium if
log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu

R0

Ru+1

)
> 0. From time s+ 1 onward, the consumption gap is

smaller than the stationary equilibrium if
∑t−1

u=t−s log
(
wu+1

wu

R0

Ru+1

)
< 0.

Proof. From equation (293) in Lemma 16, we know:
cs,t
cs,0

=

(
Rt−s+1

R0

)
· · ·
(
Rt

R0

)
wt−s
wt

,

cs,t−1

cs,0
=

(
Rt−s

R0

)
· · ·
(
Rt−1

R0

)
wt−1−s

wt−1

.

Dividing the former equation by the latter gives:
cs,t
cs,t−1

=

(
Rt

Rt−s

)(
wt−s
wt

)(
wt−1

wt−1−s

)
.

This allows us to express cs,t
c0,t

in a sequential way, where we use c0,t = c0,t−1 = ch:
cs,t
c0,t

=

(
Rt

Rt−s

)(
wt−s
wt

)(
wt−1

wt−1−s

)
cs,t−1

c0,t−1

=

[
t∏

u=1

Ru

Ru−s

wu−s
wu

wu−1

wu−1−s

]
cs,0
c0,0

for s ≥ 1. (295)

By taking a log:

− log

(
cs,t
c0,t

)
=

t∑
u=1

 log

(
wu
wu−1

)
︸ ︷︷ ︸

wage increase for high income

− log

(
wu−s
wu−s−1

)
︸ ︷︷ ︸

wage increase for s agent

− log

(
Ru

Ru−s

)
︸ ︷︷ ︸
higher interest rate

− log

(
cs,0
c0,0

)
︸ ︷︷ ︸

initial gap

= log

(
wt
w0

)
− log

(
wt−s
w0

)
−

t∑
u=t−s+1

log

(
Ru

R0

)
− log

(
cs,0
c0,0

)
. (296)

This equation holds for any s ≥ 1. If s ≥ t, we use the facts that:

log

(
wt−s
w0

)
= log

(
w0

w0

)
= 0

0∑
u=t−s+1

log

(
Ru

R0

)
=

0∑
u=t−s+1

log

(
R0

R0

)
= 0 for s > t.
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Then, (296) is written as follows:

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
= log

(
wt
w0

)
−

t∑
u=1

log

(
Ru

R0

)
for s ≥ t

=
t∑

u=1

log

(
wu
wu−1

R0

Ru

)

=

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu

R0

Ru+1

)
if t ≥ 2

log
(
w1

w0

R0

R1

)
if t = 1

(297)

Combined with the case of s < t, we have:

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
=


log
(
w1

w0

R0

R1

)
for all s ≥ 1 if t = 1

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu

R0

Ru+1

)
if s ≥ t and t ≥ 2∑t−1

u=t−s log
(
wu+1

wu

R0

Ru+1

)
if s < t and t ≥ 2

As we saw before,

w1

w0

R0

R1

=
θA1−θ

1 Kθ−1
0 + (1− δ)

(
A1

A0

)1−θ
θA1−θ

1 Kθ−1
0 + 1− δ

> 1 if δ < 1. (298)

This confirms that consumption gap between high-income agents and s-th low-income
agents expands at time 1 if δ < 1. Therefore, the productivity shock increases consump-
tion of high-income agents more than low-income agents at time 1.

We provide an intuition for the proposition. Since low-income agents (s ≥ 1) have
no labor income and consume a fraction of savings accumulated in the last high-income
period, their consumption gap depends on whether the last high income realization ma-
terialized before or after the time 0 productivity shock. Low-income agents with s ≥ t

have not yet experienced high income after the shock, and the wage in their last high-
income state was w0. In contrast, low-income agents with s < t already realized high
income after the shock, and wages in the last high-income period are wt−s > w0.

We plot the evolution over time of the consumption gaps in Figure 7 for the parametric
example used above. As the proposition shows, the gap is determined by three factors,
which we display separately in Figure 8: (i) a higher wage at time t compared to time
0 benefits high-income agents, which expands the consumption gap; (ii) a higher wage
at time t − s compared to time 0 benefits type s low-income agents; and (iii) a higher
interest rate from time t − s + 1 to time t benefits type s low-income agents because of
the higher return on savings.

Because wages increase monotonically after the positive productivity shock, the wage
effect log

(
wt

w0

)
−log

(
wt−s

w0

)
= log

(
wt

wt−s

)
expands the consumption gap (see the first three
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Figure 7: Evolution of the Consumption Gap. The figure plots− log(cs,t/c0,t) against time
t along the transition. We use the same parameter values as in Figure 3.

Figure 8: Decomposition of the Consumption Gap. First panel: wage effect for high
income agents. Second panel: wage effect for low-income agents. Third panel: combined
wage effect. Last panel: interest rate effect. We use the same parameter values as in
Figure 3.
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Figure 9: Evolution of the Consumption Gap (Positive & Negative Productivity Shock)

panels of Figure 8). On the other hand, because the interest rate is higher than in the
stationary equilibrium, the interest rate effect ∑t

u=t−s+1 log
(
Ru

R0

)
shrinks the gap. The

overall impact depends on the relative magnitude of the two effects, as Figure 7 shows.
Here, the consumption expands in period t = 1, then starts to shrink at time t = 2 and
undershoots the original gap before converging to the new stationary equilibrium.

B.1.4 Inequality after a Negative Shock

This subsection summarizes symmetric results for an unexpected negative productivity
shock at time 1. Figure 9 illustrates that the transition path of consumption gaps after a
negative productivity shock is symmetric with a transition path after a positive shock.

Corollary 4 (Long-Run Consumption Gap after a Negative Shock). Consider a transi-
tion path after a negative productivity shock at time 1. For sufficiently large t ≥ s + 1,
the consumption gap converges to the initial level for all s ≥ 1. This means that the de-
flated consumption distribution in the new stationary equilibrium is the same as the initial
stationary equilibrium.

Proof. It follows directly from Proposition 8

Corollary 5 (Negative Productivity Shock with Full Depreciation). Consider a transition
path after a negative productivity shock.

If δ = 1,
wt+1

wt

R0

Rt+1

= 1 for all t ≥ 0.

This implies that with full depreciation of capital (δ = 1), the deflated consumption distri-
bution is constant along the transition.
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Proof. It follows directly from Proposition 9

Corollary 6 (Transition of Consumption Gap after a Negative Shock). Consider a tran-
sition path after a negative productivity shock at time 1. The evolution of the consumption
gap between high-income agents and s-th low-income agents is given by (294):

− log

(
cs,t
c0,t

)
+ log

(
cs,0
c0,0

)
=


log
(
w1

w0

R0

R1

)
if t = 1

log
(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu

R0

Ru+1

)
if 2 ≤ t ≤ s and s ≥ 2∑t−1

u=t−s log
(
wu+1

wu

R0

Ru+1

)
if t ≥ s+ 1

Assume 0 < δ < 1. Then, the consumption gap shrinks at time 1, since log
(
w1

w0

R0

R1

)
< 0.

From time 1 until time s ≥ 2, the consumption gap continues to be lower than the stationary
equilibrium if log

(
w1

w0

R0

R1

)
+
∑t−1

u=1 log
(
wu+1

wu

R0

Ru+1

)
< 0. From time s + 1 onwards, the

consumption gap is higher than the stationary equilibrium if
∑t−1

u=t−s log
(
wu+1

wu

R0

Ru+1

)
> 0.

Proof. It follows directly from Propositions 10 and 17.

B.2 Additional Discussions about Asset Pricing

B.2.1 Comparison of (K0, {At}∞t=0) in the two models

Saving Rate and Capital Accumulation in the LC model We can rewrite ŝLC as:

ŝLC = βθ + (1− θ)ν

 ξ

ν
(

1
β
− 1 + ξ + ν

) − θ

(1− θ) 1
β

 (299)

With δ = 1, the second term is strictly positive if and only if Assumption 5 holds.
With δ = 1, we also derive Kt in closed form. Since the economy has a constant

saving rate,

Kt+1 = sA1−θ
t Kθ

t , where s ∈ {ŝLC , sRep := βθ}

This implies:

logKt = (1− θ)

[
t−1∑
τ=1

θt−1−τ logAτ

]
+

1− θt−1

1− θ
log ŝ+ θt−1 logK0 (300)

Comparison given (K0, {At}∞t=0) The expression of Kt+1 above implies that for any
given Kt and At, the limited-commitment model always accumulates more capital:

logKLC
t+1 − logKRep

t+1 = log ŝLC − log sRep︸ ︷︷ ︸
>0 under Assumption 5

+θ
(
logKLC

t − logKRep
t

)
. (301)
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Starting from the same initial capital K0, the difference in Kt is expressed as:

logKLC
t − logKRep

t = (1 + θ + θ2 + · · ·+ θt)(log ŝLC − log sRep), (302)

where (log ŝLC − log sRep) = log

[
ξ

1− (1− ν − ξ)β

1− θ

θ
+ 1− ν

]
> 0 under Assumption 5.

In the long-run, this will converge to:

lim
t→∞

(logKLC
t − logKRep

t ) =
1

1− θ
log

[
ŝ

βθ

]
, (303)

which is consistent with the capital ratio in the steady state:

K∗LC

K∗Rep =

(
ŝ

βθ

) 1
1−θ

. (304)

We make three remarks here: (i) Given (K0, {At}∞t=0), KLC
t is always larger than KRep

t ,
(ii) For any sequence of {At}t≥0, KLC

t

KRep
t

monotonically converges to the ratio in the steady
state K∗LC

K∗Rep , (iii) As ξ and ν approach zero (ξ → 0 and ν → 0), the law of motion of capital
in the limited-commitment model also approches to the one in the representative-agent
model:

lim
ξ→0,ν→0

KLC
t = KRep

t for any t ≥ 1, given K0. (305)

B.2.2 Subsection 5.2.4: Quantitative Exploration of Asset Pricing

The risk premium in the limited-commitment model and the representative-agent model
are stated in Lemmas 1 and 2. In order to quantitatively assess the risk premium, it
is expressed as a function of productivity-adjusted capital K̃t, aggregate productivity
growth rate gA,t+1 =

At+1

At
, and depreciation rate δt+1.

Asset Pricing in a Limited-Commitmemnt Model Given the law of motion of aggre-
gate capital, risk premium in the limited-commitment model is expressed as:54

1 + λLCt (Ωt) = Et
[
θ gA,t+1(Ωt+1)

1−θ
[
ŝK̃t(Ω

t)θ + (1− δ̂t(Ωt))K̃t(Ω
t)
]θ−1

+ 1− δt+1(Ωt+1)

]

× Et

 1

θ gA,t+1(Ωt+1)1−θ
[
ŝK̃t(Ωt)θ + (1− δ̂t(Ωt))K̃t(Ωt)

]θ−1

+ 1− δt+1(Ωt+1)


(308)

54The interest rate and aggregate capital are written as:

Rt+1(K̃t+1,Ω
t+1) = θK̃θ−1

t+1 + 1− δt+1(Ωt+1) (306)

K̃t+1(K̃t,Ω
t+1) :=

Kt+1

At+1
=

1

gA(Ωt+1)

[
ŝK̃θ

t + (1− δ̂t(Ωt))K̃t

]
(307)
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Stochastic Depreciation in a Representative-Agent Model In a representative-agent
model with shocks to aggregate productivity At(Ωt) and depreciation rate δt(Ωt), aggre-
gate consumption Ct(Ωt) and capital Kt+1(Ω

t) are chosen to satisfy the Euler equation
and the resource constraint:

1

Ct(Ωt)
= βEt

[
Rt+1(Ω

t+1)
1

Ct+1(Ωt+1)

]
, (309)

Kt+1 = Kθ
tA

1−θ
t + (1− δt)Kt − Ct. (310)

We rewrite the Euler equation (309) and the resource constraint (310) in terms of
K̃t :=

Kt

At
and C̃t := Ct

At
:

1

C̃t(Ωt)
= βEt

[
At
At+1

{
θK̃θ−1

t+1 + 1− δt+1

} 1

C̃t+1(Ωt+1)

]
, (311)

K̃t+1 =
At
At+1

[
K̃θ
t + (1− δt)K̃t − C̃t

]
. (312)

Assuming that both productivity growth rates (gA,t+1 := At+1

At
) and depreciation rate

(δt+1) follow iid (they do not depend on realization of past shocks), we conjecture that
C̃t is a function of K̃t and δt:

C̃t = C(K̃t, δt) (313)

Under the conjecture, the Euler equation is written as follows, after substituting K̃t+1

using equation (312):
1

C(K̃, δ)
= β

∑
gA

∑
δ′

π(gA)π(δ
′)

1

gA

{
θ

(
1

gA

[
K̃θ + (1− δ)K̃ − C(K̃, δ)

])θ−1

+ 1− δ′

}

× 1

C
(

1
gA

[
K̃θ + (1− δ)K̃ − C(K̃, δ)

]
, δ′
) . (314)

We solve for C(K̃, δ) with a policy function iteration over the Euler equation (314).
Given the consumption rule, the risk premium is:

1 + λRep(Ωt) = Et
[
Rt+1(Ω

t+1)
]
Et
[
β

Ct(Ω
t)

Ct+1(Ωt+1)

]
= Et

[
θ
(
K̃t+1(Ω

t+1)
)θ−1

+ 1− δt+1(Ωt+1)

]
Et

[
β

1

gA,t+1(Ωt+1)

C(K̃t(Ω
t), δt(Ωt))

C(K̃t+1(Ωt+1), δt+1(Ωt+1))

]
.

(315)

Equivalent Formulation of Risk Premium Figure 5 and Table 2 in Section 5.2.4 quan-
titatively explore the size of risk premium, given the formulae for the risk premium in
the limited-commitment model (308) and in the representative-agent model (315). We
describe the derivations of relevant expressions in the section.
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The risk premium in equation (93) is derived using the definition of covariance and
the Euler equation:

1 = Et
[
Rt+1 β

ct
ct+1

]
= Et [Rt+1]Et

[
β
ct
ct+1

]
+ cov

(
Rt+1, β

ct
ct+1

)
,

where ct is the consumption of unconstrained agents. This gives the following expression:

1 + λt := Et [Rt+1]Et
[
β
ct
ct+1

]
= 1− cov

(
Rt+1, β

ct
ct+1

)
(316)

Second Moments of Idiosyncratic Income Process: Our calibration targets the auto-
correlation of the idiosyncratic income process. Remember that the Markov transition
matrix is given by:

π(zt+1|zt) =

[
1− ν ν

ξ 1− ξ

]
,

where ξ is the probability of switching from high-income (zt = ζ) to low-income (zt = 0)
state. It implies the stationary income distribution:

(ψl, ψh) =

(
ξ

ξ + ν
,

ν

ξ + ν

)
. (317)

Average labor productivity is normalized to one:
ν

ξ + ν
ζ = 1.

The variance of zt is given by:

V ar(zt) = E
[
z2t
]
− (E[zt])2

=
ν

ξ + ν
ζ2 − 1

=
ξ + ν

ν
− 1 =

ξ

ν
.

The covariance is:

Cov(zt, zt+1) = E [ztzt+1]− E[zt] E[zt+1]

=
ν

ξ + ν
(1− ξ)ζ2 − 1

=
ξ

ν
(1− ξ − ν).

Threfore, the autocorrelation, corr(zt, zt+1), is given by 1− ξ − ν.
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Calibration The fraction of the working population is around 3/5. We set the autocor-
relation of income to be 0.9. This pins down (ξ, ν) as follows:

ν

ξ + ν
=

3

5
and 1− ξ − ν = 0.9

→ (ξ, ν) = (0.04, 0.06)

B.3 Correlation between Idiosyncratic and Aggregate Risk

This section discusses the construction of the optimal contract in an economy in which id-
iosyncratic risk is correlated with aggregate risk. Subsection B.3.1 describes the Markov
transition matrix of idiosyncratic risk and explains how Assumption 9 keeps the model
tractable. Subsection B.3.2 constructs the optimal contract in this environment. Sub-
section B.3.3 describes how to solve the model numerically. Subsection B.3.4 analyzes
a special case where idiosyncratic shocks are uncorrelated over time, in which case the
aggregate law of motion of capital is obtained in closed form.

B.3.1 Markov Process

A General Case: In a general case, the transition probability of idiosyncratic state
potentially depends on the entire history of aggregate state (Ωt+1):

π(zt+1|zt,Ωt+1) =

[
1− ν(Ωt+1) ν(Ωt+1)

ξ(Ωt+1) 1− ξ(Ωt+1)

]
, (318)

where ν is the probability of switching from productivity 0 to productivity ζ and ξ is the
probability of switching from ζ to 0. The fraction of high-income agents (ψ) is given by:

ψh(Ω
t+1) = π(zt+1 = ζ|zt = ζ,Ωt+1)︸ ︷︷ ︸

=1−ξ(Ωt+1)

ψh(A
t) + π(zt+1 = ζ|zt = 0,Ωt+1)︸ ︷︷ ︸

=ν(Ωt+1)

(1− ψh(A
t)).

(319)

We normalize the total labor supply to one:

ψh(Ω
t) ζ(Ωt) = 1. (320)

If the fraction of high-income agents (ψh) depends on the history of aggregate state (Ωt),
labor productivity of high-income agents ζ also depends on the history of aggregate state
(Ωt). In this case, the household’s consumption and saving rule, the price of contingent
claims, and the law of motion of capital may depend on the entire history of the aggregate
state.
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A Special Case: The general environment above makes the model intractable. We
examine an environment in which Assumption 9 holds and the transition probabilities
of idiosyncratic state, π(zt+1|zt), depend only on the current and previous realizations
of aggregate state. This aligns with Krusell and Smith (1998), in which the aggregate
unemployment rate depends only on the current aggregate state (good or bad times).55

The fraction of high-income agents depends only on gt. Equations (318) and (320)
are written as follows:

π(zt+1|zt, gt+1, gt) =

[
1− ν(gt+1, gt) ν(gt+1, gt)

ξ(gt+1, gt) 1− ξ(gt+1, gt)

]
, (322)

ψh (gt) ζ (gt) = 1. (323)

The fraction of high-income agents satisfies the following conditions:

ψh (gt+1) = [1− ξ (gt+1, gt)]ψh (gt) + ν (gt+1, gt) [1− ψh (gt)] . (324)

This condition imposes a structure on {ν(gt+1, gt), ξ(gt+1, gt)} so that the fraction of high-
income agents depends only on the current productivity growth rate.56 If the aggregate
productivity growth rate gt+1 := At+1

At
takes one of two values, the Markov transition

matrix (322) has eight parameters {ν(gt+1, gt), ξ(gt+1, gt)}gt+1,gt∈{gh,gl}. Since equation
(324) holds for four pairs of (gt+1, gt), four degrees of freedom are left in the transition
probabilities. In the following analysis, we consider a case that satisfies (322)–(324).

B.3.2 Optimal Contract

An optimal contract is derived in an environment where idiosyncratic shocks are corre-
lated with aggregate shocks and Assumption 9 holds.

55See discussions by Del Negro (2005). In Krusell and Smith, both aggregate state s ∈ {good, bad} and
idiosyncratic state ϵ ∈ {emp,unemp} can take only two values. The Markov process is summarized by
transition probabilities πss′ϵϵ′ and πss′ . Since the aggregate employment is constant within each aggregate
state, πss′ϵϵ′ satisfies the following relationships:

us
πss′00
πss′

+ (1− us)
πss′10
πss′

= us′ for all s, s′ ∈ {good, bad}. (321)

The transition probability (πss′ϵϵ′) with 8 degrees of freedom (since∑ϵ′ πss′ϵϵ′ = 1 at any (s, s′, ϵ)) has to
satisfy four equations above for each (s, s′) pair. Hence, the transition probability (πss′ϵϵ′) has 4 degrees
of freedom in calibration.

56Equivalently, the fraction of low-income agents satisfies:

[1− ψh (gt+1)] = ξ (gt+1, gt)ψh (gt) + [1− ν (gt+1, gt)] [1− ψh (gt)] . (325)
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Individual Maximization Problem: The household’s consumption and savings prob-
lem is given by the following:

max
{ct(a0,zt,Ωt),at+1(a0,zt+1,Ωt+1)}

∞∑
t=0

∑
Ωt

∑
zt

βtπ(Ωt, zt) log(ct(a0, z
t,Ωt)) (326)

s.t. ct(a0, zt,Ωt) +
∑
Ωt+1

∑
zt+1

qt(Ω
t+1, zt+1|Ωt, zt)at+1(a0, z

t+1,Ωt+1) = wt(Ω
t)zt +Rt(Ω

t)at(a0, z
t,Ωt)

at+1(a0, z
t+1,Ωt+1) ≥ 0

The price of contingent claims is not proportional to the probability of the state (i.e.,
Assumption 2 in the paper no longer holds) and takes the form:

qt(Ω
t+1, zt+1|Ωt, zt) = qt(gt+1, δt+1, zt+1|gt, zt)

= q(gt+1, δt+1|gt)π(zt+1|zt, gt, gt+1)

= q(gt+1|gt)π(δt+1)π(zt+1|zt, gt, gt+1)

The first line follows from Assumption 9. On the second line, the idiosyncratic risk can be
separated and priced at an actuarially fair rate, as financial intermediaries can perfectly
diversify it. The probability distribution of the idiosyncratic state depends on (gt, gt+1).
The price of contingent claims with regard to the aggregate shocks q(gt+1, δt+1|gt) is de-
termined to clear the capital market. It does not depend on the current depreciation rate
as it is uncorrelated with idiosyncratic shocks and independent over time. The last line
follows as the aggregate growth rate and stochastic depreciation rate are assumed to be
independent.

Construction of the Optimal Contract: In a conjectured optimal contract, agents do
not save for the next high-income state (the no-saving condition will be verified later).
Agents save for the next low-income state so that the consumption between the current
state and the next low-income state satisfies the Euler equation. Because of the log-
arithmic utility function, agents consume a constant fraction of their (labor or asset)
income. The consumption and saving rules are derived based on the Euler equation and
the budget constraint.

The history of idiosyncratic and aggregate states (zt,Ωt) determines the idiosyncratic
assets a(zt,Ωt) and the aggregate wages and interest rates (w(Ωt), R(Ωt)). Conditional on
these three variables, idiosyncratic state and aggregate state in the current and the next
period (zt, zt+1, gt, gt+1, δt+1) are sufficient to characterize the consumption and savings
rules.

In the optimal contract, the crucial property is the Euler equation between the cur-
rent state and future low-income state. Since the price of the contingent claim and the
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probability of realization of the state are not identical, the Euler equation follows:

ct+1(zt+1 = 0, gt+1, δt+1|zt,Ωt) = β
π(gt+1, δt+1, zt+1|gt, zt)
q(gt+1, δt+1, zt+1|gt, zt)

Rt+1(Ω
t+1)ct(z

t,Ωt). (327)

The price of the contingent claim relative to the probability of realization of the state is
given by q(gt+1, δt+1, zt+1|gt, zt)/π(gt+1, δt+1, zt+1|gt, zt), which may not be equal to one.
We conjecture that agents consume a constant fraction (but it potentially depends on
the current aggregate state gt) of their income:

ct(zt, gt, δt|zt−1,Ωt−1) =

c̄(gt)wtζt if zt = ζ

c(gt)Rtat(z
t,Ωt) if zt = 0

. (328)

The consumption and savings rate depends on the current growth rate gt because the
probability of a low-income state in the next period depends on the current growth rate gt
as in the Markov transition matrix (322). Conditional on (wt, Rt), the consumption rule
does not depend on the current depreciation rate, which is independent of idiosyncratic
shocks.

The consumption rule in a low-income state is derived first. Using the Euler equation
(327) and the conjecture (328) at zt = zt+1 = 0, the intertemporal relation of assets in
low-income states is given by:

at+1(zt+1 = 0, gt+1, δt+1|zt,Ωt) = βRt
c(gt)

c(gt+1)

π(gt+1, δt+1, zt+1|gt, zt)
q(gt+1, δt+1, zt+1|gt, zt)

at(zt = 0, gt, δt|zt−1,Ωt−1).

(329)
By imposing this saving rule into the budget constraint:

ct(zt = 0, gt, δt|zt−1,Ωt−1) +
∑

gt+1,δt+1

q(gt+1, δt+1, zt+1|gt, zt)at+1(zt+1 = 0, gt+1, δt+1|zt,Ωt)

= Rtat(zt = 0, gt, δt|zt−1,Ωt−1), (330)

we obtain:57

c(gt) =
1

1 +
∑

gt+1

β
c(gt+1)

π(gt+1, zt+1 = 0|gt, zt = 0)
. (331)

Second, the consumption rule in a high-income state is derived. The budget constraint
in a high-income state is given by:

ct(zt = ζt, gt, δt|zt−1,Ωt−1)

+
∑

gt+1,δt+1

q(gt+1, δt+1, zt+1 = 0|gt, zt = ζt)at+1(zt+1 = 0, gt+1, δt+1|zt,Ωt) = wtζt (332)

57In the special case with π(zt+1 = 0|gt+1, gt, zt = 0) = 1 − ν, the consumption rate is
given by c = 1 − β(1 − ν). As long as the capital depreciation rate is independent of (gt, zt),∑
gt+1,δt+1

β
c(gt+1)

π(gt+1, δt+1zt+1 = 0|gt, zt = 0) =
∑
gt+1

β
c(gt+1)

π(gt+1, zt+1 = 0|gt, zt = 0) holds. The
same derivation is applied in equation (333).
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In the next low-income state, consumption is given by ct+1 = c(gt+1)Rt+1at+1, implying
that at+1(zt+1 = 0, gt+1, δt+1|zt,Ωt) = ct+1

c(gt+1)Rt+1
= 1

c(gt+1)
β π(gt+1,δt+1,zt+1|gt,zt)
q(gt+1,δt+1,zt+1|gt,zt)ct. Imposing

it into the budget constraint implies:

ct(zt = ζt, gt, δt|zt−1,Ωt−1) =
1

1 +
∑

gt+1

β
c(gt+1)

π(gt+1, zt+1 = 0|gt, zt = ζt)︸ ︷︷ ︸
=c̄(gt)

wtζt, (333)

with a corresponding saving rule:58

at+1(zt+1 = 0, gt+1, δt+1|zt = ζt, gt) = β
π(gt+1, δt+1, zt+1|gt, zt)
q(gt+1, δt+1, zt+1|gt, zt)

c̄(gt)

c(gt+1)
wtζt. (334)

The optimal contract is summarized as follows:59

ct(zt, gt, δt|zt−1,Ωt−1) =

c̄(gt)wtζt if zt = ζ

c(gt)Rtat(z
t,Ωt) if zt = 0

at+1(zt+1, gt+1, δt+1|zt,Ωt) =


0 if zt+1 = ζ

β π(gt+1|gt)
q(gt+1|gt)

c̄(gt)
c(gt+1)

wtζt if zt = ζ and zt+1 = 0

β π(gt+1|gt)
q(gt+1|gt)

c(gt)
c(gt+1)

Rtat(z
t,Ωt) if zt = 0 and zt+1 = 0

with c̄(gt) =
1

1 +
∑

gt+1

β
c(gt+1)

π(gt+1, zt+1 = 0|gt, zt = ζt)

c(gt) =
1

1 +
∑

gt+1

β
c(gt+1)

π(gt+1, zt+1 = 0|gt, zt = 0)
.

Optimality Conditions: We verify that the optimality condition (no-saving condition
for high-income states) is satisfied. The Kuhn-Tucker condition is given by:

1

ct(zt,Ωt)
=
π(gt+1, δt+1, zt+1|gt, zt)
qt(gt+1, δt+1, zt+1|gt, zt)

[
βRt+1(Ω

t+1)
1

ct+1(zt+1,Ωt+1)
+ λ(zt+1,Ωt+1)

]
where λ(zt+1,Ωt+1)at+1(z

t+1,Ωt+1) = 0, λ(zt+1,Ωt+1) ≥ 0, at+1(z
t+1,Ωt+1) ≥ 0.

58The special case with c̄(gt)
c(gt+1)

= 1−β(1−ν)
1−β(1−ξ−ν)

1
1−β(1−ν) and

π(gt+1,zt+1|gt,zt)
q(gt+1,zt+1|gt,zt) = 1 gives at+1(zt+1 = 0, zt =

ζt) =
β

1−β(1−ξ−ν)wtζt.
59The property of conditional probabilities and the iid process of the aggregate growth rate and depreci-

ation rate imply: π(gt+1, δt+1, zt+1|gt, zt) = π(gt+1|gt)π(δt+1)π(zt+1|gt+1, gt, zt). The price of contingent
claims follows equation (99): qt(gt+1, δt+1, zt+1|gt, zt) = q(gt+1|gt)π(δt+1)π(zt+1|zt, gt, gt+1). Then, only
the ratio π(gt+1|gt)

q(gt+1|gt) remains in the saving rule.
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This implies that the following condition for high-income states must be satisfied for all
future aggregate states:

βRt+1(Ω
t+1)

π(gt+1)

q(gt+1|gt)
<

ct+1(zt+1 = ζt+1, gt+1)

ct(zt = ζt, gt)
=
c̄(gt+1)wt+1ζt+1

c̄(gt)wtζt

⇔ βRt+1(Ω
t+1) <

wt+1(Ω
t+1)

wt(Ωt)

q(gt+1|gt)
π(gt+1)

c̄(gt+1)ζ(gt+1)

c̄(gt)ζ(gt)︸ ︷︷ ︸
additional term due to the correlation

Note that a sufficient condition cannot be obtained in closed form as in Assumption 8,
since the law of motion of capital is no longer in closed form. To numerically check the
condition, we will simulate an economy for many periods and check that this condition
is satisfied at all periods.

The Law of Motion of Capital: The aggregate capital (Kt+1) is determined at time t
and does not depend on the next aggregate state (gt+1, δt+1). Combined with the no-
arbitrage condition60, the capital market clearing condition pins down the price of con-
tingent claims qt(gt+1|gt). The aggregate capital in the next period is given by:

Kt+1(gt+1, δt+1) = ψh(gt)π(zt+1 = 0|gt, gt+1, zt = ζt)︸ ︷︷ ︸
mass of agents from high to low state

at+1(zt+1 = 0, gt+1, δt+1|zt = ζt, z
t−1,Ωt)

+ π(zt+1 = 0|gt, gt+1, zt = 0)
∑
zt

at+1(zt+1 = 0, gt+1, δt+1|zt = 0, zt−1,Ωt)

= π(zt+1 = 0|gt, gt+1, zt = ζt)
π(gt+1|gt)
q(gt+1|gt)

c̄(gt)

c(gt+1)
βwt

+ π(zt+1 = 0|gt, gt+1, zt = 0)
π(gt+1|gt)
q(gt+1|gt)

c(gt)

c(gt+1)
βRtKt,

where the normalization of aggregate labor supply ψh(gt)ζ(gt) = 1 is used in the second
line.61 Then, Kt+1(gt+1, δt+1) = Kt+1 for all (gt+1, δt+1) and the no-arbitrage condition∑

gt+1
q(gt+1|gt) = 1 will pin down q(gt+1|gt).

B.3.3 Numerical Solution

Choice of Parameters: Parameters on transition probabilities determine the correla-
tion between idiosyncratic and aggregate shocks. Assume that the aggregate productivity
growth rate can take one of two values gt ∈ {gl, gh}. Markov transition matrix of idiosyn-
cratic states is then summarized by eight parameters, {ν(gt, gt+1), ξ(gt, gt+1)}gt,gt+1∈{gl,gh},

60Holding one unit of capital must yield the same return as purchasing one unit of contingent claim for
all possible states in the next period, implying∑gt+1

q(gt+1|gt) = 1.
61In the special case with π(zt+1 = 0|zt = ζt, gt+1, gt) = ξ and π(zt+1 = ζt+1|zt = 0, gt+1, gt) = ν, we

obtain Kt+1 = ŝA1−θ
t Kθ

t + (1− δ̂)Kt.
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as in equation (322). The fraction of high-income agents depends only on the current
aggregate state, which imposes four restrictions on parameters, as equation (324) is sat-
isfied for each pair of (gt, gt+1). Four degrees of freedom remain. In the quantitative
exercise, ν(gt, gt+1) = ν̄ is assumed. Then, the choice of (ν̄, ψh(gt+1)) will determine all
parameters related to the transition matrix.62

Consumption Rate and Price of Contingent Claims: Once the Markov transition
matrix and the probability of aggregate state π(gt+1) are determined, the consumption
rates, {c(gt), c̄(gt)}gt∈{gl,gh}, follow equations (331) and (333):

c(gt) =
1

1 +
∑

gt+1

β
c(gt+1)

π(gt+1)π(zt+1 = 0|gt, gt+1, zt = 0)
,

c̄(gt) =
1

1 +
∑

gt+1

β
c(gt+1)

π(gt+1)π(zt+1 = 0|gt, gt+1, zt = ζt)
.

Given the optimal consumption rates and the law of motion of capital, the price of con-
tingent claims q(gt+1|gt) satisfiesKt+1(gt+1) = Kt+1 for all gt+1 in equation (100) and the
no-arbitrage condition∑gt+1

q(gt+1|gt) = 1 .

Equity Premium: Finally, we obtain the equity premium λt as the ratio between the
return on capital and the return on risk-free bonds:

λt(Ω
t) :=

E [Rt+1(Ω
t+1)]

E [1/qB(Ωt)]

with qB(Ωt) :=
∑
gt+1

q(gt+1, δt+1|gt)
Rt+1(gt+1, δt+1; Ωt)

Note that a pricing kernel, defined as the price of one unit of consumption goods at time
t+ 1 in a state Ωt+1 conditional on the current state Ωt, is given by:

Q(Ωt+1|Ωt) = β
u′(ct+1(Ω

t+1))

u′(ct(Ωt))
π(Ωt+1|Ωt)

=
q(gt+1, δt+1, zt+1|gt, zt)
π(gt+1, δt+1, zt+1|gt, zt)

1

Rt+1(Ωt+1)
π(gt+1, δt+1|gt)

=
q(gt+1|gt)π(δt+1)

Rt+1(Ωt+1)
, (335)

where consumption of unconstrained (low-income) agents (ct, ct+1) follows the Euler
equation (327). Given aggregate capital at t (Kt), we compute the equity premium for
each state gt ∈ {gh, gl}.

62The fraction of high-income agents of {ψh(gl), ψh(gh)} should evolve around the steady-state value
ψ̄h = ν̄

ξ̄+ν̄
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No-Savings Condition: The no-savings condition (101) is numerically verified at all
simulated periods. Figure 10 shows the histogram of the condition for the quantitative
exercise in Table 3. The values of the left-hand side minus the right-hand side in equation
(101) are computed, meaning values less than zero assure that the condition is satisfied.

Ex. 1 Ex. 2

Notes: The panels show the histogram of no-saving condition (101) for 100,000 periods, where
the negative value means that the condition is satisfied.

Figure 10: No-Saving Condition in the Simulated Sample

B.3.4 A Case with No Serial Correlation of Idiosyncratic Shocks

In an economy discussed in subsection B.3.2, the household’s consumption and saving
rule, the price of contingent claims, and the law of motion of capital can be solved only
numerically. In this subsection, we assume that idiosyncratic shocks are drawn inde-
pendently over time. This means that the probability of being in a low-income state in
the next period does not depend on the current idiosyncratic state (but does depend
on the aggregate state in the next period), implying π(zt+1|zt, gt+1, gt) = π(zt+1|gt+1, gt).
Equivalently, the probability of idiosyncratic shocks satisfies ξ + ν = 1 at all aggregate
states. In addition, because aggregate shocks are assumed to be independent over time
(Assumption 9), the probability only depends on the current aggregate state:

π(zt+1|zt, gt+1, gt) = π(zt+1|gt+1) ∀zt, gt. (336)

These assumptions give analytical tractability and demonstrate the intuition of why eq-
uity premium increases with the correlation between idiosyncratic and aggregate risk.
For notational simplicity, the case with a constant depreciation rate (δt = δ) is described
in this subsection.
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Markov transition matrix and aggregate labor supply are given by:

π(zt+1|zt, gt+1, gt) =

[
ξ(gt+1) 1− ξ(gt+1)

ξ(gt+1) 1− ξ(gt+1)

]
, (337)

and the fraction of high-income agents and their productivity are given by:

ψh (gt) = 1− ξ (gt) , (338)

ζ (gt) =
1

1− ξ (gt)
. (339)

Now we impose them in the optimal contract (97) and (98) and obtain:

ct(z
t, At) =

(1− βEt [ξ (gt+1)])wtζt if zt = ζ

(1− βEt [ξ (gt+1)])Rtat(z
t, At) if zt = 0

(340)

at+1(zt+1, gt+1|zt, At) =


0 if zt+1 = ζ

β π(gt+1)
q(gt+1)

wtζt if zt = ζ and zt+1 = 0

β π(gt+1)
q(gt+1)

Rtat(z
t, At) if zt = 0 and zt+1 = 0

, (341)

where the consumption rate does not depend on the current aggregate state and has a
closed form c̄(gt) = c(gt) = 1−βEt [ξ (gt+1)] for all gt. The law of motion of capital (100),
exploiting the restriction that ν = 1− ξ, is now given by:

Kt+1 = ξ(gt+1)
π(gt+1)

q(gt+1)
βwt + ξ(gt+1)

π(gt+1)

q(gt+1)
βRtKt

= βEt [ξ (gt+1)]A
1−θ
t Kθ

t + βEt [ξ (gt+1)] (1− δ)Kt. (342)

The price of contingent claim is given by q(gt+1) = π(gt+1)
ξ(gt+1)

E[ξ(gt+1)]
since Kt+1(gt+1) does

not depend on gt+1 and
∑

gt+1
q(gt+1) = 1.63

Optimality Condition The no-savings condition needs to be verified. The Kuhn-Tucker
condition for a high-income state implies equation (101):

βRt+1(A
t+1) <

wt+1(A
t+1)

wt(At)

q(gt+1|gt)
π(gt+1)

c̄(gt+1)ζ(gt+1)

c̄(gt)ζ(gt)︸ ︷︷ ︸
additional term due to the correlation

.

In a case without a serial correlation of idiosyncratic shocks, the additional term is sim-
plified since the price of contingent claims satisfies q(gt+1|gt) = ξ(gt+1)

E[ξ(gt+1)]
π(gt+1) and the

63In the law of motion of capital, the term ξ(gt+1)
π(gt+1)
q(gt+1)

is constant across gt+1 (denoted by α for now).
Then, q(gt+1) = ξ(gt+1)

α π(gt+1). The condition q(gt+1) =
∑ ξ(gt+1)

α π(gt+1) = E
[
ξ(gt+1)
α

]
= 1 implies

α = E [ξ(gt+1)]. Hence, q(gt+1) =
ξ(gt+1)

E[ξ(gt+1)]
π(gt+1). Intuitively, the price of contingent claims is higher for

a state with a high fraction of low-income agents. The term ξ(gt+1)
π(gt+1)
q(gt+1)

is simplified to E [ξ(gt+1)].
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consumption rate c̄(gt) do not depend on the current aggregate state. The simplified
condition is given by:

βRt+1(A
t+1) <

wt+1(A
t+1)

wt(At)

ξ(gt+1)

E [ξ(gt+1)]

ζ(gt+1)

ζ(gt)
. (343)

A sufficient condition for (343) can be derived in closed form. Denote the extra term due
to the correlation between idiosyncratic and aggregate risk by χ(gt+1, gt):

χ(gt+1, gt) :=
ξ(gt+1)

E [ξ(gt+1)]

ζ(gt+1)

ζ(gt)

=
ξ(gt+1)

E [ξ(gt+1)]

1− ξ(gt)

1− ξ(gt+1)
(344)

This term takes the smallest value at χ(gt+1 = gh, gt = gl) if the employment is procyclical
and at χ(gt+1 = gl, gt = gh) if the employment rate is coutercyclical. Denote the smallest
value by χ̄. As in the case without the correlation, the sufficient condition in an economy
without the correlation is derived by checking the most extreme case:

βRt+1(A
t+1)

∣∣∣
K̃t=K̃min,

At+1
At

=1−ϵ
<
wt+1(A

t+1)

wt(At)

∣∣∣
K̃t=K̃max,

At+1
At

=1−ϵ
. (345)

The sufficient condition in an economy with the correlation is given by the following:

Assumption G′′.

β

[
θ

(
1− ϵ

1 + ϵ

)1−θ
δ̂ + ϵ

ŝ
+ 1− δ

]
< (1− ϵ)χ̄ (346)

where we recall ŝ =
[

ξβ
1−(1−ν−ξ)β (1− θ) + (1− ν)βθ

]
and 1− δ̂ = (1− ν)β(1− δ).

Implication on Asset Pricing The multiplicative risk premium satisfies:

1 + λt = E
[
Rt+1(A

t+1)
]
E
[
β

ct(z
t, At)

ct+1(zt+1 = 0, zt, At+1)

]
. (347)

This implies (due to the Euler equation):

λt = −cov
(
Rt+1, β

ct(z
t, At)

ct+1(zt+1 = 0, zt, At+1)

)
(348)

where βct(z
t, At)

ct+1(zt+1 = 0, zt, At+1)
=

1

Rt+1(At+1)

q(gt+1)

π(gt+1)

=
1

Rt+1(At+1)

ξ(gt+1)

E [ξ(gt+1)]
(349)

The last line follows because the price of contingent claims satisfies q(gt+1)
π(gt+1)

= ξ(gt+1)
E[ξ(gt+1)]

. If
Rt+1(A

t+1) and ξ(gt+1) are negatively correlated (i.e., the fraction of low-income agents is
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lower in a period with a high aggregate growth rate), the term ct(zt,At)
ct+1(zt+1=0,zt,At+1)

becomes
more volatile, and the equity premium increases.

Intuitively, in a state with low unemployment, the price of contingent claims de-
creases (and the return on savings increases) to offset the lower incentive to save for the
state. If it is correlatedwith a higher return on capital due to a higher productivity growth
rate, consumption of low-income agents in a high aggregate state (gh) increases because
of the two mechanisms. More volatile consumption increases the equity premium.

B.4 Additional Discussions about Section 6 (Literature)

B.4.1 Speed of Convergence

As mentioned in Subsection 4.2, the effective depreciation rate (δ̂ = ν + ρ) is increasing
in ν (i.e., the probability from low-income state to high-income state). In Figure 11,
aggregate capital in a limited-commitment model converges to a new stationary equi-
librium faster or slower than the neoclassical growth model, depending on parameter
values.64 The numerical result shows that ξ does not affect the speed of convergence.

Compared to a Solow growth model with a save saving rate ŝ and a depreciation rate
δ, a limited-commitment model converges faster. This is because the effective deprecia-
tion rate in a limited-commitmentmodel, δ̂, is higher (since 1−δ̂ = (1−ν)β(1−δ) < 1−δ),
and thus the capital persists less than a Solow model.

Linear approximation of the transitional dynamics gives the approximated aggregate
capital at time t. Aggregate capital at t is given by:

Kt ≈
[
1− (1− θ)δ̂

]t−1

(K1 −K∗) +K∗,

where δ̂ > δ. This equation shows that the speed of convergence is given by (1 − θ)δ̂.
That is, the aggregate capital converges to the new steady state, K∗, faster if (1− θ)δ̂ is
closer to 1. The speed of convergence depends on the share of capital in a Cobb-Douglas
production function, θ, and the effective depreciation rate, δ̂, but not on the saving rate.65
Since δ̂ > δ, a limited-commitment model converges faster than a Solow growth model.
See Barro and Sala-i Martin (2004) for a discussion about speeds of convergence in a
continuous-time model.

64We normalize the initial capital, K0, to one in order to compare the speed of convergence. The level
of capital in a stationary equilibrium depends on ν and ξ.

65The growth rate of capital depends on δ̂ and θ but not on the saving rate:

gt,t+1 :=
Kt+1 −Kt

Kt
=

[(
K∗

Kt

)1−θ

− 1

]
[1− (1− ν)β(1− δ)] .
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Figure 11: Speed of Convergence

B.4.2 An economy without idiosyncratic shocks (ξ = ν = 0)

This subsection describes the case with ξ = ν = 0. Since the transition probability of
idiosyncratic shocks is zero, idiosyncratic productivity is a permanent type. The upshot
is that if agents can freely borrow, the aggregate law of motion in this economy is the
same as the standard neoclassical growth model. If we assume that agents face a limited-
commitment constraint, high-income agents have zero initial assets, and Assumption 3
is satisfied, then the law of motion is the same as the two-agent model in Section 6.1,
which coincides with the limited-commitment model with ν → 0 and ξ → 0. In either
case, aggregate capital in the steady state is the same as the standard neoclassical growth
model (and the two-agent model).

We first briefly review the law ofmotion in the two cases: (a) the standard neoclassical
growth model and (b) a limited-commitment model with ξ → 0 and ν → 0 (but ξ > 0,
ν > 0, and Assumption 3 are satisfied). In case (b), (ν, ξ) satisfies κ := ξ/ν ∈ (0,∞).

The law of motion is given as follows. In case (a), aggregate capital follows the stan-
dard Euler equation:

1

Kθ
t + (1− δ)Kt −Kt+1

=
β[θKθ−1

t+1 + 1− δ]

Kθ
t+1 + (1− δ)Kt+1 −Kt+2

. (350)

In case (b), only low-income agents save, so the law of motion follows:

Kt+1 = β[θKθ
t+1 + (1− δ)Kt]. (351)

Note that we maintain Assumption 3 so that the economy is in a partial insurance equi-
librium. In a stationary equilibrium, βR < 1 (and limν,ξ→0 βR = 1) is satisfied with
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Assumption 5. In both cases, capital in the steady state is given by:

K =

(
θ

1
β
− 1 + δ

) 1
1−θ

(352)

and satisfies βR = 1.
Now we analyze the case with ξ = ν = 0. If agents can freely borrow, the Euler

equation is satisfied for both agents:
1

cit
= βRt+1

1

cit+1

for i ∈ {high, low} .

The fraction of each type of household is given by the “stationary distribution” of income
shocks by assuming the ratio of ξ and ν as κ := ξ/ν:

(ψl, ψh) : =

(
ξ

ξ + ν
,

ν

ξ + ν

)
=

(
κ

κ+ 1
,

1

κ+ 1

)
. (353)

Aggregation leads to the Euler equation of aggregate consumption:∑
i

ψic
i
t+1︸ ︷︷ ︸

=Ct+1

= βRt+1

∑
i

ψic
i
t︸ ︷︷ ︸

=Ct

.

Together with the resource constraint, the aggregate law of motion is described by two
equations:

Ct+1 = βRt+1Ct (354)
Ct +Kt+1 = Yt + (1− δ)Kt. (355)

The two equations give the law of motion in the neoclassical growth model in equation
(350).

Consider that agents face a limited-commitment constraint, implying at+1 ≥ 0 at any
t ≥ 0. Given that low-income agents will never switch to a high-income state and have
the logarithmic utility function, their consumption and saving rule is given by:

ct = (1− β)Rtat (356)
at+1 = βRtat. (357)

The optimal consumption and saving decision of high-income agents follows the Kuhn-
Tucker condition:

1

ct
= βRt+1

1

ct+1

if at+1 > 0 (358)
1

ct
≥ βRt+1

1

ct+1

if at+1 = 0 (359)
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Given Assumption 3 and zero initial assets, ct = ζwt and at+1 = 0 for all t ≥ 0 satisfy
the condition (359). Given those decision rules, the aggregate law of motion is the same
as the two-agent model and the limited-commitment model with ν → 0 and ξ → 0 in
equation (351). Note that Assumption 5 implies that Assumption 3 is satisfied in the
steady state. As long as the initial aggregate capital K0 satisfies K0 ≥ K∗ (equal to or
above the capital in the steady state), Assumption 3 is satisfied along the transition.
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