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Inductive Reasoning in Minds and Machines
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Induction—the ability to generalize from existing knowledge—is the cornerstone of intelligence.
Cognitive models of human induction are largely limited to toy problems and cannot make quantitative
predictions for the thousands of different induction arguments that have been studied by researchers, or to
the countless induction arguments that could be encountered in everyday life. Leading large language
models (LLMs) go beyond toy problems but fail to mimic observed patterns of human induction. In this
article, we combine rich knowledge representations obtained from LLMs with theories of human inductive
reasoning developed by cognitive psychologists. We show that this integrative approach can capture
several benchmark empirical findings on human induction and generate human-like responses to natural
language arguments with thousands of common categories and properties. These findings shed light on the
cognitive mechanisms at play in human induction and show how existing theories in psychology and
cognitive science can be integrated with new methods in artificial intelligence, to successfully model high-

level human cognition.
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Our ability to learn and reason about the world relies on successful
induction: We often have to generalize from we know, in order to
form beliefs and make predictions about new observations. Thus,
unsurprisingly, induction has been the focus of considerable
scholarly enquiry in cognitive science and psychology (Heit,
2000; Osherson et al., 1990; Sloman, 1993; see Hayes & Heit,
2018, for areview). Over the past 3 decades, this work has uncovered
a large set of systematic regularities in how people evaluate the
strength of induction arguments, particularly those in which the
properties of some concepts and categories are induced from others.
Here, researchers have found that people more easily generalize the
properties of an item to its superordinate category if it is highly
typical of the superordinate category. Thus, for example, the
argument robins have a higher potassium concentra-
tion in their blood than humans, therefore birds
have a higher potassium concentration in their
blood than humans is judged to be stronger than the argument
penguins have a higher potassium concentration in
their blood than humans therefore birds have a
higher potassium concentration in their blood
than humans (Osherson et al., 1990). Another finding involves the
diversity of the items in the premise: People find it easier to generalize
from premises that are dissimilar to each other than from premises that
are similar to each other. For example, the argument that 1ions and
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giraffesusenorepinephrine asaneurotransmitter
therefore rabbits use norepinephrine as a neuro-
transmitter is judged to be stronger than the argument 1ions
and tigers use norepinephrine as a neurotransmit-
ter therefore rabbits use norepinephrine as a
neurotransmitter (Osherson et al., 1990).

The premise typicality and diversity effects, along with several
related effects, have been used to motivate cognitive theories of human
induction (Heit, 2000; Kemp & Tenenbaum, 2009; Medin et al., 2003;
Osherson et al.,, 1990; Sloman, 1993). These theories attempt to
describe the reasoning processes that people use when generalizing
across items. For example, one prominent theory, the feature-based
model (Sloman, 1993), proposes that people judge the strength of an
induction argument by measuring the extent to which the known
properties of the premise item are shared with the known properties of
the conclusion item. The feature-based model can explain the premise
typicality effect as highly typical items (robins) have more shared
features with other members of their superordinate categories (birds)
than do atypical items (penguins). Likewise, it can explain the
premise diversity effect as the common features of dissimilar premises
(1ions and giraffes) are more likely to be shared with a
conclusion item (rabbi t s) relative to the common features of similar
premises (Lions and tigers).

Theories of inductive reasoning, like the feature-based model, are
some of the most prominent and influential accounts of high-level
cognition. Yet currently, these theories are typically applied to toy
problems involving a small number of concepts and categories and
are unable to predict human responses for the large and diverse
stimuli sets used in empirical research. Of course, these theories are
also unable to make predictions for the types of induction problems
that children and adults frequently encounter in everyday life. This is
because theories of inductive reasoning in cognitive science lack the
knowledge representations necessary to judge arguments involving
natural concepts and categories. For example, the feature-based
model specifies reasoning algorithms for judging induction
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arguments but does not specify the underlying features of items, and
thus cannot assess the actual extent of feature overlap in arguments.

This limitation has important consequences for theory develop-
ment. It is, for example, unclear whether existing theories can be
used to model the diverse types of data that have been collected over
decades of empirical work. Likewise, the precise set of assumptions
necessary to accurately predict human responses and capture
empirical regularities is obscured by the idiosyncratic ontologies
that researchers use to illustrate the properties of their models. Of
course, the development of quantitative models capable of a priori
prediction is itself one of the fundamental goals of cognitive science
(see Busemeyer & Diederich, 2010; Lewandowsky & Farrell,
2010, for discussions). In addition to their theoretical value, such
models are also necessary for translating research into real-world
applications capable of improving people’s lives. In the case of
induction, these applications involve topics in cognitive develop-
ment, social and political reasoning, decision making, as well as the
study of cognitive impairments and disfunctions.

Recently, a new class of models have been developed in statistical
natural language processing. These models encode representations
for words and sentences in the layers of deep neural networks, which
are trained on language statistics obtained from vast amounts of text
data (Brown et al., 2020; Devlin et al., 2018; He et al., 2021). Unlike
models developed in cognitive science, these large language models
(LLMs) have rich knowledge representations that can be used to
solve several many types of natural language processing tasks.
These include reasoning tasks like natural language inference (NLI),
in which LLMs attempt to predict the extent to which a premise
sentence entails or contradicts a conclusion sentence (Bowman et
al., 2015; Wang et al., 2019; Williams et al., 2018). The inductive
reasoning tasks examined in this article are a special type of NLI,
suggesting that these tasks may be within the descriptive scope of
leading LLMs. However, Han et al. (2022) have tested this and have
found that LLMs do quite poorly. For example, these models fail to
generate premise diversity effects with the stimuli used in prior
psychology experiments. They also fail at replicating many of the
other effects documented in the psychology and cognitive science
literatures. This indicates that even though LLMs may possess the
type of knowledge necessary for inductive reasoning, for example,
knowledge of category membership relations (Misra et al., 2022),
they do not possess the reasoning algorithms necessary to generate
human-like behavior.

The goal of this article is to develop computational models
capable of human-like inductive reasoning by combining the
knowledge representations of LLMs with realistic reasoning
algorithms previously proposed in psychology and cognitive
science. Specifically, we fine-tune a LLM (Devlin et al., 2018)
on a large data set of participant-generated category and feature
norms (Devereux et al., 2014; McRae et al., 2005; Van Overschelde
et al., 2004). In our prior work, we have shown that this model
predicts human judgments about the features of concepts with high
accuracy (Bhatia & Richie, 2022). We extend this model to
inductive reasoning tasks by passing its knowledge base through a
second model which calculates the degree to which the features of
the premise items overlap with those of the conclusion item in an
induction argument (building on the propositions of Sloman, 1993).
We compare our feature overlap model’s assessments of argument
strength with the judgments of human participants, and additionally
evaluate whether it is able to replicate different empirical regularities,

such as the premise typicality and the premise diversity effects
(Hampton & Cannon, 2004; Heit & Rubinstein, 1994; Medin et al.,
2003; Osherson et al., 1990; Rips, 1975; Sloman, 1993; Sloman,
1998). We also test our model against several state-of-the-art LLMs
for NLI, which judge entailment relations between premises and
conclusions without explicitly calculating feature overlap (Brown et
al., 2020; He et al., 2021; Lewis et al., 2020; Liu et al., 2020). Our
analyses use over 16,000 reasoning problems taken from prior
psychology studies, as well as new studies. These problems involve
hundreds of concepts and categories from several common domains,
including animals, fruits and vegetables, clothing items, furniture, and
vehicles. In this way, they test both the reasoning capabilities of our
models, as well as the ability of these models to apply their reasoning
algorithms to rich real-world knowledge structures.

Models
Feature Overlap Model

Overview

Our feature overlap model takes, as inputs, arguments that
generalize a property from one or more premise items to a conclusion
item. It generates, as outputs, a continuous assessment of argument
strength in range [0,1]. In order to generate these assessments, the
feature overlap model relies on a specialized Bidirectional Encoder
Representations from Transformers (BERT) network (Devlin et al.,
2018) that we refer to as Feature-BERT (Bhatia & Richie, 2022). To
query Feature-BERT, we concatenate a concept word (e.g., cats)
and a feature or property phrase (e.g., have fur) into a natural
language sentence (e.g., cat s have fur). Feature-BERT generates
aprobability assessment of the input sentence being true or false; that
is the probability that the feature in the sentence applies to the
concept in the sentence. Here, we use Feature-BERT to obtain, for an
item, a high-dimensional feature vector that specifies the probabili-
ties of thousands of different features applying to the item.

Building on the work of Sloman (1993), our feature overlap model
judges the strength of an argument by calculating the overlap of the
features of its premise and conclusion items (e.g., the overlap of
Feature-BERT’s feature vectors for robins and birds for the
premise typicality argument discussed at the start of the article). It
quantifies overlap using the cosine similarity of the feature vectors of
the items. In the case of arguments with multiple premise items (e.g.,
lions and giraffes), our model simply sums the feature vector
of the premise items to get a single feature vector for the premise,
which is compared with the feature vector of the conclusion (e.g.,
rabbits) using cosine similarity. This summation operation,
combined with the normalization inherent in cosine similarity,
implies that features that are shared by the premise items receive a
higher weight when assessing feature overlap. When the argument
involves a “nonblank” property with semantic content (e.g., have a
higher potassiumconcentration in their blood), the
model uses the simple semantic similarity between the argument
property and each of the features that make up the feature vector, in
order to modify the weight on the vector dimensions for the
calculation of cosine similarity. In this way, features that have similar
semantics to the argument property are more salient. This influences
the dimensions along which feature overlap is assessed, biasing the
assessment of argument strength in favor of premise and conclusion
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items that share those features. Figure 1A provides an overview of
the feature overlap model.

It is worth noting that our implementation of the feature overlap
model using the cosine similarity of feature vectors is different to
that proposed in Sloman (1993), who emphasized feature coverage
(i.e., the extent to which the features in the conclusion category are
also in the premise categories) in addition to feature overlap.
Coverage, crucially, explains observed asymmetries in induction,
which cannot be captured by the cosine similarity implementation
introduced above. Formally, a coverage model would take the form
of a projection of the premise item’s feature vector onto the
conclusion item’s feature vector. We have implemented the
projection variant of our model but have found that it does poorly
when the premise contains multiple items. The projection model is
also unable to capture nonmonotonicity effects (Medin et al., 2003;
Osherson et al., 1990), which we discuss in detail below. For this
reason, we have retained cosine similarity as the main metric for
comparing the features of the premise and conclusion items (this is
why we call our model Feature Overlap), but present the results of
its projection variant in the Supplemental Materials and in the
Asymmetry and Projection section below. Here, we also show that a
hybrid model that strikes a balance between projection and cosine
similarity successfully captures all effects and resolves many of the
issues of the pure projection approach. Since this hybrid model was
tested (and calibrated) post hoc, we retain the focus of the main text
on the cosine similarity implementation.

Obtaining Item Features

Feature-BERT provides our feature overlap model with the
knowledge representations necessary to solve induction problems
with natural concepts and features. This model was developed using
participant-generated category norms collected by Van Overschelde
et al. (2004) and feature norms collected by McRae et al. (2005) and
Devereux et al. (2014). In Bhatia and Richie (2022), we compiled
these norms into a training data set of 245,642 “true” sentences
(sentences that combine concepts with features that were actually
generated by participants for those concepts) and 245,642 “false”
sentences (sentences that combine concepts with features that were
not generated by participants for those concepts), with a total of
2,066 unique concepts and 29,048 unique participant-generated
features. We then trained a BERT model to classify each sentence as
true or false.

Once trained, this model can take in any sentence (composed of a
natural concept and feature) as an input, and output the probability of
that sentence being true or false, which is the probability that the
feature in the sentence applies to the concept in the sentence. In Bhatia
and Richie (2022), we have shown that these predictions are generally
accurate. For example, Feature-BERT achieves an accuracy rate of
92% on novel sentences. Simpler models that use only the GloVe
similarities of features and concepts or do not fully fine-tune the
BERT model do much worse.

We have also shown that Feature-BERT replicates many observed
patterns in human semantic verification. For example, this model is

Figure 1
Overview of Models Shown in Main Text
(A)
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lions travel in groups [SEP]
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We know that lions travel in groups. Does
this mean that rabbits travel in groups?

Please answer ‘Yes’ or ‘No’.

In this example, all models are asked to evaluate the argument 1ions travel in groups therefore

rabbits travel in groups. The feature overlap model (A) is based on a data set of human-generated features
for common concepts (top left panel). Feature-BERT is fine-tuned on this data set (top middle panel), and then used to
extract a high-dimensional feature vector for the items in the judged argument (e.g., 1ions and rabbits). The
dimensions of these vectors are weighted based on the similarity of the features to the target property (travel in
groups). Finally, cosine similarity on the resulting weighted feature vectors is used to generate an assessment of
argument strength (top right panel). The remaining two models, DeBERTa-MNLI (B) and GPT3 (C), evaluate the
argument without the explicit calculation of features or feature overlap. These models output “entailment” and
“contradiction” judgments or “yes” and “no” judgments, respectively. BERT = Bidirectional Encoder
Representations from Transformers; GPT = Generative Pretrained Transformer. See the online article for the
color version of this figure.
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able to capture the classic level-of-hierarchy effect (Collins &
Quillian, 1969) by assigning higher probabilities to sentences
composed of Level 0 features (e.g., canaries are yellow) than
Level 1 or Level 2 features (e.g., canaries have skin) as well as
reversals of these effects due to semantic relatedness (Rips et al.,
1973; Smith et al., 1974). Feature-BERT also predicts observed
response time differences as a function of sentence truth, sentence
relatedness, item category membership, feature correlation, and
feature distinctiveness (Anderson & Reder, 1974; Cree et al., 2006;
Glass et al., 1974; Hampton, 1984; McRae et al., 1997). Additionally,
its predictions for category membership judgments are proportional to
the typicality of concepts in superordinate categories (Rosch, 1975),
allowing it to capture observed inconsistencies across participants,
transitivity violations, and violations of set membership relations in
semantic judgment, previously attributed to typicality (Hampton,
1982; McCloskey & Glucksberg, 1978; Roth & Mervis, 1983).
Feature-BERT can also predict concept typicality (Rosch & Mervis,
1975), and feature correlations uncovered by BERT are similar to
those obtained in previous experimental data (Malt & Smith, 1984).
Finally, Feature-BERT is able to predict patterns in similarity
judgment that are problematic for existing distributional semantics
models, such as asymmetry, the distinction between association and
similarity, and the measurement of similarity within (rather than
across) categories (Hill et al., 2015; Richie & Bhatia, 2021; Whitten et
al., 1979). The training data set and algorithm are certainly not
developmentally or psychologically realistic, since children learning
spoken language hear far less than billions of words of language and
are not exposed to hundreds of thousands of statements with true-false
labels. Nonetheless, these results show that Feature-BERT proxies
people’s knowledge for simple concept-feature pairings thus is a
useful tool for implementing and testing cognitive theories like the
feature-based model in general populations (see Bhatia & Richie,
2022, for a detailed discussion of this point). In the Supplemental
Materials, we describe the neural network architecture, training data
set, and implementational assumptions of Feature-BERT in greater
detail.

Calculating Feature Overlap

The feature overlap model in this article compares items on the
25,797 unique features in Devereux et al. (2014). Specifically, for a
target item, we pass sentences composed of that item and each of the
25,797 features through the Feature-BERT model, to obtain a
25,797-dimensional vector of probabilities of features applying to
that item. For item i, we write this feature vector as f;. The jth
element of f;, f; , is the probability that Feature-BERT attaches to the
Jjth Devereux et al. (2014) feature being true for item i. Since they are
probabilities, the elements of f; are in range [0,1].

We also use a GloVe (Pennington et al., 2014) bag-of-word
model to calculate the simple semantic similarity between a target
property and each of the 25,797 features. For this, we first average
the 300-dimensional GloVe vector representations for each of the
words in the target property to get a 300-dimensional GloVe vector
for the target property, which we write as g,. We do the same for
each of the 25,797 Devereux et al. (2014) features. For feature j, we
write this vector as g;. We then calculate the cosine similarity of g,
and each g;, with COSSIM(g,, g;) =g, - &/ (g, | - llg;ll). result-
ing in a 25,797-dimensional similarity vector s, = [COSSIM(g,, g1),
COSSIM(g,. g2), ..., COSSIM(g,, g25797)]- The elements of s, are

inrange [—1,1]. We transform s, to obtain feature similarity weights
wp, = (1 + 5,)/2, in range [0,1].

To calculate the feature overlap between a premise item i and a
conclusion item k, for a property p, in a single-premise argument, we
first perform an element wise multiplication operation between w,
and f; to get a 25,797-dimensional weighted feature vector for the
premise wp,Qf; = [Wy1 - fi1, Wp2 * fizs -+ s Wp 25797 * fi25797]- Then,
using cosine similarity, we calculate the feature overlap between the
premise and conclusion as COSSIM(w,Qf;, fi). When the premise
has multiple items, we simply sum the feature vectors for those items
to get a single feature vector for the premise. For example, in an
argument with two-premise items, i and i’ (as well as a conclusion
item k and a property p) the model’s judged argument strength is
COSSIM(w,0(f; + fi), fi). In the general case, with a set of
premise items P, the model’s judged argument strength is
COSSIM(w,OZicrf;, fi)- Finally, when the argument involves a
blank property without semantic content, we simply set w), to a vector
of ones. Note that all vectors used in the cosine similarity calculation
are in range [0,1], which is why the cosine similarity output is also in
the range [0,1].

The above sequence of operations implicitly overweigh features
that are shared by the premise items, causing conclusion items that
share those features to generate higher judgments of argument
strength. For example, consider a simplified two-premise three-
feature setting, with premise feature vectors f; = [1,1,0] and f; =
[1,0,1], and a blank property resulting in w, = [1,1,1]. Our weighted
premise vector would thus be w,O(f; + ;) = f; + fi = [2,1,1]. This
premise structure would lead to the strongest judgment of argument
strength if the conclusion feature vector loads primarily onto the first
feature, which is the feature shared by the premises. Thus for
example, a conclusion item with f; = [1,0,0] would be given a high
judgment of argument strength of COSSIM(w,O(f; +fi), fi) =0.81.
By contrast, a conclusion item with f; = [0,1,0] or f; = [0,0,1] would
have a lower judgment of argument strength of COSSIM(w,O(f; +
Ji), fi) = 0.41.

The feature overlap model also overweighs features that are have
a high GloVe bag-of-words similarity to the target property. This
causes premise and conclusion items that overlap on those features
to be given higher judgments of argument strength. For example,
imagine a simplified single-premise and three-feature setting with a
nonblank property that results in w, = [1,0.5,0.5]. This setting
involves a target property that is semantically similar to the first of
the three features but not the second or third. In this case, premise
and conclusion items that overlap on the first feature, like f; = [1,1,0]
and f; = [1,0,1], would be given a high judgment of argument
strength of COSSIM(w,0f;, fi) = 0.63. By contrast, premise and
conclusion items that overlap on the second feature, like f; = [1,1,0]
and f; = [0,1,1], would be given a low judgment of argument
strength of COSSIM(w,Qf;, fi) = 0.31.

In the Supplemental Materials, we also provide results for a
variant of the feature overlap model which replaces Feature-BERT’s
probabilities with their associated logits, according to the formula
PROBABILITY = 1/(1 4+ ¢ =99™T). In this way, it computes feature
overlap (cosine similarity) on 25,797-dimensional vectors of logits.
Logits provide a more continuous assessment of the truth or falsehood
of sentences (probabilities, by contrast are often very close to 0 or 1) and
have been shown in our past work (Bhatia & Richie, 2022) to do slightly
better at predicting human semantic verification than the associated
probabilities. Code for applying the feature overlap model is available at
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https://osf.io/gebqv/. Here, we also provide the feature overlap models’
predictions for all induction problems tested in this article.

Natural Language Inference Models

We compare our two feature overlap models to five leading LLMs
for NLI. The first three of these are BART-MNLI (Lewis et al., 2020),
RoBERTa-MNLI (Liu et al., 2020), and DeBERTa-MNLI (He et al.,
2021). These are LLMs that were fine-tuned on a large multigenre
natural language inference (MNLI) corpus (Williams et al., 2018).
We query these models using the HuggingFace API (model names
are facebook/bart-large-mnli, roberta-large-mnli, and microsoft/
deberta-large-mnli, respectively). We provide BART-MNLI with
the premise sentence and the conclusion sentence as inputs and give it
“entailment” and ‘“contradiction” labels with which to classify the
sentence. ROBERTa-MNLI model and DeBERTa-MNLI models are
also given the premise and conclusion sentences as inputs, but since
these models were explicitly built to classify the inputs into
entailment and contradiction (as well as neutral) classes, no further
classification labels are necessary. All three models output scores for
entailment and contradiction, and we use the entailment score, a
number in range [0,1], to predict argument strength.

We also use the GPT3-DaVinci-002 and GPT3-Babbage-001
models (Generative Pretrained Transformer; Brown et al., 2020). We
query these models on the OpenAl API with the prompt: We know that
[PREMISE SENTENCE]. Does this mean that [CONCLUSION
SENTENCE]? Please answer “Yes” or “No.” This prompt was shown
to generate the most human-like performance out of all the prompts in
Han et al. (2022). We test whether the model’s first five output tokens
include “Yes,” “yes,” “YES,” “No,” “no,” and “NO” and subsequently
calculate the probability attached to “Yes,” “yes” and “YES” versus
“No,” “no” and “NO.” This is the relative probability attached to GPT’s
yes versus no outputs, ignoring the case in which GPT chooses to give
that output. In other words, it considers an output of “Yes,” “yes,” or
“YES” to be the same (i.e., a yes response), and the output of “No,”
“no,” or “NO” to be the same (i.e., a no response), and simply calculates
the relative probabilities of the yes versus the no response. This
probability, which is in range [0,1], is used to predict argument strength.

Intuitively, these NLI models take the premise and conclusion
sentences of an argument as inputs and, as outputs, provide judgments
of argument strength. Crucially, they do not explicitly assess the
features (or the extent of feature overlap) for the premise and
conclusion items. Instead, their reasoning processes are inbuilt into
the layers of the network architecture and have been developed
through training on hundreds of thousands of NLI problems (as well
other linguistic reasoning problems). In the main text, we will present
the results of only the DeBERTa-MNLI and GPT3-DaVinci models.
Results of the remaining NLI models are in the Supplemental
Materials. An illustration of the two models examined in the main text
is provided in Figure 1B and 1C. Code for querying the LLMs is
available at https://osf.io/gebqv/. Here, we also provide the LLMs’
predictions for all induction problems tested in this article.

Predictive Accuracy
Existing Data Sets

We began by evaluating the accuracy of the seven models
introduced above in predicting human assessments of argument

strength collected in the prior work. Our first data set was obtained
from Rips (1975) and involves 60 pairs of animal species. Participants
in the Rips data set were told that one animal species has a given
disease and were asked to estimate the proportion of instances in the
second species that also have the disease. Our second and third data
sets were obtained from Experiments 2 and 4 of Osherson et al.
(1990), respectively. In Experiment 2 of their article, participants
were asked to rank 45 arguments that generalized a property from
three mammal species to all mammals. In Experiment 4, participants
were asked to rank 36 arguments that generalized a property from two
mammal species to horses. We used our feature overlap and NLI
models to assess argument strength for the items in these three data
sets and evaluated them based on their correlations with participant
responses in the data sets.

These correlations are shown in Figure 2A and Supplemental
Figure S1A. Here, we can see that our two feature overlap models
achieved high correlations and consistently outperformed the NLI
models. The feature overlap models also performed similarly to each
other indicating that using logits instead of probabilities does not alter
performance. Overall, the average correlation, across data sets, of the
main feature overlap model was 0.63, whereas the best NLI model,
DeBERTA-MNLLI, achieved an average correlation of only 0.32.

New Experiments

The above data sets use a small number of induction problems
involving only animal species. For a more rigorous test of our
approach, we conducted four new experiments with 960 distinct
arguments taken from six superordinate categories (birds, fruits,
vegetables, clothing, furniture, and vehicles). Each experiment offered
participants a set of arguments and asked them to provide a continuous
rating of argument strength. In Experiment 1, there were 300
arguments that generalized a blank property from one item (e.g.,
tables) to another member of its superordinate category (e.g.,
chairs);in Experiment 2, there were 60 arguments that generalized a
blank property from one item (e.g., tables) to all members of its
superordinate category (e.g., furniture); in Experiment 3, 300
arguments generalized a blank property from two items (e.g., tables
and bookshelves) to a third item in their superordinate category
(e.g., chairs); and in Experiment 4, 300 arguments generalized a
blank property from two items (e.g., tables and bookshelves)to
all members of their superordinate category (e.g., furniture). The
experiments received approval from the University of Pennsylvania
Institutional Review Board (Title: “Everyday judgments and
decisions”; Institutional Review Board No.: 823184). Additional
details about our experiments are presented in the Supplemental
Material and the stimuli used and average ratings are stored in the
Open Science Framework repository (https://osf.io/gebqv/) for the
project.

We correlated our models’ predictions with average participant
ratings for each of the arguments in the four experiments. These
correlations are shown in Figure 2B and Supplemental Figure S1B.
Again, our feature overlap model achieved high correlations and
outperformed the NLI models. Additionally, the feature overlap
models performed similarly to each other showing that using logits
instead of probabilities does not alter performance. Overall, the
average correlation, across data sets, of the main feature overlap
model was 0.65, whereas the best NLI model, DeBERTA-MNLI,
achieved an average correlation of only 0.31.
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Figure 2

Accuracy Rates Obtained by the Feature Overlap Model, and Two Competing NLI Models

on Existing (A) and New (B) Data Sets
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In each data set, the models attempt to predict argument strength. These predictions are correlated

with participant responses. Error bars are 95% confidence interval of correlations. These bars are larger for
existing data sets due to their small sample sizes. NLI = natural language inference; Exp. = experiment;
GPT = Generative Pretrained Transformer. See the online article for the color version of this figure.

Empirical Regularities
Premise Typicality

Next, we tested whether our models generated empirical patterns
documented in the psychology and cognitive science literatures. We
began with the premise typicality effect, which was introduced in the
first paragraph of this article. We tested this effect using typicality
ratings for items in eight different superordinate categories (birds,
clothing, fruits, furniture, toys, vegetables, vehicles, and weapons),
collected by Rosch (1975). We used this data to generate 254
arguments in which a property was generalized from a premise item
(e.g., sparrows) to all members of its superordinate category (e.g.,
birds). Using a median split, we divided these arguments into two
groups: high premise typicality and low premise typicality and
offered the arguments in each group to our models. The predictions of
these models are shown in Figure 3A and Supplemental Figure S2A
(the large markers are the models’ predictions for the example
arguments used in Osherson et al., 1990, and presented in the

introduction). Here, we can see that the feature overlap model
generated higher argument strength judgments for high typicality
arguments (purple points) relative to low-typicality arguments
(orange points). A separate analysis correlating model predictions
with continuous typicality ratings also found this positive relationship
(see Table 1 and Supplemental Table S1, for all statistical tests). The
feature overlap model was able to generate this effect because the
feature vector for the superordinate category is more similar to that of
highly typical subordinate items than to that of atypical subordinate
items (Bhatia & Richie, 2022).

Most of the NLI models also captured this effect, likely because
they are able to encode typicality relations and use these relations
for generalization (Han et al., 2022; Misra et al., 2022). However,
GPT-DaVinci and BART-MNLI failed to do so. The former model
typically generated extreme predictions, that is, it generally
outputted either a yes response or a no response, and seldom
outputted both. This meant that the probability assignment for yes
versus no was 1 or O in many cases (see e.g., Figure 3A). This
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Figure 3
Models’ Predictions for Empirical Regularities Documented by Osherson et al. (1990)
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could have obscured the typicality effect, which involves a more
subtle shift in judgment as typicality is varied. Interestingly, GPT-
Babbage did not have this issue as it often gave a combination of
yes and no responses, and thus had judgments that were not at the
extreme ends of the [0,1] probability interval (Supplemental
Figure S2A). For this reason, GPT-Babbage was able to capture
the typicality effect.

It is not completely clear why BART-MNLI failed. This could be
because, unlike ROBERTa-MNLI and DeBERTa-MNLI, it was not
specifically trained for entailment/contradiction judgment. Instead, it

takes in flexible label tokens and performs classification based on the
token semantics (in our case, the label tokens offered were “entailment”
and “contradiction”), which may not be the best way to model induction.

Premise-Conclusion Similarity

A variant of the premise typicality effect involves premise-
conclusion similarity. This effect describes people’s tendency to
generalize to conclusion items that are highly similar to the premise
items. Thus, for example, the argument robins and blue jays
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Table 1
Statistical Tests of the Feature Overlap Model’s Argument Strength Predictions for Empirical Regularities
Regression Correlation

Effect name Coef. t 95% CI r 95% CI1 N
Premise typicality 0.17 8.64 [0.13, 0.21] 0.53 [0.44, 0.61] 254
Premise-conclusion similarity 0.10 12.97 [0.09, 0.12] 0.45 [0.41, 0.49] 1,662
Premise diversity (general) 0.03 2.61 [0.01, 0.04] 0.17 [0.07, 0.27] 356
Premise diversity (specific) 0.03 7.71 [0.02, 0.04] 0.18 [0.14, 0.23] 1,592
Conclusion specificity 0.16 11.39 [0.13, 0.19] NA NA 154
Inclusion fallacy 0.05 9.96 [0.03, 0.07] NA NA 1,070
Inclusion fallacy (Sloman) 0.14 4.04 [0.07, 0.21] NA NA 72
Monotonicity (general) 0.08 14.94 [0.07, 0.09] NA NA 2,356
Monotonicity (specific) 0.08 7.86 [0.07, 0.09] NA NA 2,166
Nonmonotonicity (general) 0.08 5.66 [0.05, 0.11] NA NA 508
Nonmonotonicity (specific) 0.09 17.64 [0.08, 0.10] NA NA 3,324
Conclusion typicality 0.09 10.64 [0.07, 0.10] NA NA 1,392
Property type 0.07 10.06 [0.05, 0.08] 0.37 [0.31, 0.43] 784
Property relevance 0.06 1.35 [-0.03, 0.15] 0.29 [-0.04, 0.58] 34

Note. The first three columns describe the output of a single regression of the model’s predictions on a binary variable
(corresponding to the purple vs. orange bars in Figures 2 and 3). A positive effect here shows that the model generates
higher responses for purple versus orange arguments. The next two columns show the Pearson correlation (and associated
CIs) between the model’s prediction and a continuous variable corresponding to the effect in question. Not all effects have
continuous variables. N refers to the total number of observations (arguments) in the analysis. Coef. = coefficient; CI =

confidence interval; NA = not applicable.

use serotonin as a neurotransmitter therefore
sparrows use serotonin as a neurotransmitter is
judged to be stronger than the argument robins and blue jays
use serotonin as a neurotransmitter, therefore
geese use serotonin as a neurotransmitter (Osherson
etal., 1990). We tested this effect using similarity ratings collected in
Richie and Bhatia (2021). These ratings measure the similarity of
pairs of items, with each pair taken from one of six superordinate
categories (birds, clothing, fruits, furniture, vegetables, and vehicles).
We used this data to generate 1,662 arguments in which a property
was generalized from a premise item (e.g., sparrows) to a
conclusion item that was a member of the premise’s superordinate
category (e.g., robins). Using a median split, we divided these
arguments into two groups: high and low similarity and offered the
arguments in each group to our models. The predictions of these
models are shown in Figure 3B and Supplemental Figure S2B. Here,
we can see that the feature overlap model generated higher argument
strength predictions for high similarity arguments (purple points)
relative to low similarity arguments (orange points). A separate
analysis correlating model predictions with continuous similarity
ratings further illustrates this positive relationship (Table 1 and
Supplemental Table S1 present all statistical tests). The feature
overlap model generated this effect because similar items also overlap
on their features.

By contrast, most of the NLI models failed to generate this effect.
Although most of these models are able to generalize from typical
items to their superordinate categories, as shown in the previous
section, they seem to not be sensitive to the similarity of items within
a given superordinate category. We speculate that this could be
because these models are trained largely on deduction tasks. In such
tasks, a fact being true for an item also means that it is true for the
superordinate category but does not imply that it is true for other
similar items in the superordinate category. Thus, for example, the
premise sentence a blue jay is in the forest implies the

conclusion a bird is in the forest but does not necessarily
imply the conclusion a robin is in the forest, despite blue
jay and robin being highly similar.

Premise Diversity (General and Specific)

The next two effects involve the role of premise diversity: People
find it easier to generalize from premise items that are dissimilar to
each other than from premise items that are similar to each other.
This effect has been tested both with inductions to a general
superordinate category as well as inductions to a specific member of
the superordinate category. An example of the former (general
effect) is the finding that the argument hippos and hamsters
have a higher sodium concentration in their blood
than humans, therefore mammals have a higher
sodium concentration in their blood than humans
is judged to be stronger than the argument hippos and rhinos
have a higher sodium concentration in their blood
than humans, therefore mammals have a higher
sodium concentration in their blood than humans
(Osherson et al., 1990). An example of the latter (specific effect) is in
the first paragraph of the introduction of this article.

We tested the general premise diversity effect by pooling the data
sets in Rosch (1975) and Richie and Bhatia (2021). From the latter, we
obtained similarity ratings of pairs of items, whereas from the former,
we obtained typicality ratings of these items for their superordinate
category. We excluded premise items pairs that were highly atypical
(e.g., penguins and ostriches) as those pairs were almost
always dissimilar to each other, generating a multicollinearity
problem. This resulted in a total of 356 arguments with pairs of
(largely typical) items in the premise, that vary in terms of similarity,
as well as a superordinate category in the conclusion. We also used
this approach to test the specific premise diversity effect, except
that we replaced the superordinate category in the conclusion
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(e.g., birds) with a highly typical member of that category
(e.g., sparrows). This generated a total of 1,592 arguments with
pairs of items in the premise and an item (that is typical of the premise
items’ superordinate category) in the conclusion. Using a median
split, we divided the above arguments into two groups: high and low
premise diversity (inverse of similarity) and offered the arguments in
each group to our models. There were a total of six superordinate
categories in this analysis.

The predictions of these models are shown in Figure 3C and 3D in
the main text and Supplemental Figure S2C and S2D. Here, we can
see that the feature overlap model generated higher argument strength
predictions for high diversity premises (purple points) relative to low
diversity premises (orange points). A separate analysis correlating
model predictions with the (continuous) inverse similarity rating further
demonstrated a positive effect of diversity (Table 1 and Supplemental
Table S1 present statistical tests). The feature overlap model generated
this effect because it gives a higher weight to the overlapping features
of premise items when assessing the cosine similarity of the premise
with the conclusion. These overlapping features are more likely to be
shared with the superordinate category (in the general case) and with
members of the superordinate category (in the specific case), when the
premise items are diverse, generating higher argument strength
predictions. By contrast, nondiverse premises overlap on many
idiosyncratic features (e.g., hippos and rhinos are both quite large
and both are found mainly in Africa), that may not be shared with other
members of their superordinate category.

It is interesting to note that the NLI models failed to capture this
effect. Even though these models are able to encode typicality and
category membership relations, they do not use this information in a
manner that considers the differing types of information provided by
diverse versus nondiverse premises. In this way, their reasoning
processes are limited to simplistic assessments of typicality and are
unable to mimic the richness of human induction.

Conclusion Specificity

The more specific the conclusion, the more likely people are to
generalize a premise to the conclusion. Thus, for example, people
judge the argument blue jays and falcons require
vitamin k for the liver to function therefore
birds require vitamin K for the liver to function
to be stronger than the argument blue jays and falcons
require vitamin K for the liver to function,
therefore animals require vitamin K for the liver
to function (Osherson et al., 1990). We tested this effect by
extracting animal species and their immediate superordinate
categories (birds, fishes, or invertebrates) from
Devereux et al. (2014). We then constructed 154 argument pairs
in which a property was generalized from the animal species to
either the immediate superordinate category (generating a specific
conclusion) or the distal superordinate category of animals
(generating a nonspecific or general conclusion).

The predictions of these models on these argument pairs are
shown in Figure 3E in the main text and Supplemental Figure S2E in
the Supplemental Materials. Here, we see that the feature overlap
model generated higher argument strength predictions for argu-
ments with specific conclusions (purple points) relative to
arguments with distal conclusions (orange points; Table 1 and
Supplemental Table S1 present statistical tests). This is because

items have more features in common with their proximate
superordinate categories than with distal superordinate categories
(e.g., blue jays share many of the features of birds but not
many of the features of animals, as judged by Feature-BERT).

All of the NLI models failed to capture this effect. Some even
generated statistically significant predictions in the opposite
direction. It is not clear why this is the case. It could, for example,
reflect the tendency of these models to favor nonspecific conclusions
(composed of more general categories) in NLI tasks. Such a
heuristic could lead to good performance in deduction, for example,
a conclusion sentence an animal is in the forest is more
likely to be true than a bird is in the forest. However, this
heuristic is not appropriate for the induction of properties across
concepts.

Inclusion Fallacy

The conclusion specificity effect shows that human induction is
sensitive to category hierarchy. However, people do not always
generalize information from a superordinate category to all of its
members. This is the case with the inclusion fallacy effect, according
to which atypical conclusion items can lead to the apparent neglect
of category hierarchies. For example, the argument robins have
an ulnar artery therefore birds have an ulnar
artery is judged to be stronger than robins have an ulnar
artery therefore ostriches have an ulnar artery
(Osherson et al., 1990), despite the fact that ostriches are types
of birds, and therefore the conclusion of the first argument should
(through deduction) imply the conclusion of the second. To test if
the feature overlap model explained this effect, we used the data sets
collected by Rosch (1975) and Richie and Bhatia (2021) to
algorithmically generate 1,070 arguments which generalized a
property from a premise items to either the superordinate category or
to an atypical member of the superordinate category. There were a
total of six superordinate categories in this analysis.

We also applied our models to the data sets collected by Sloman
(1998), which involve several variants of this effect, including
variants that involve manipulating the category membership relations
of the premise items instead of the conclusion items. The problems
used in this work contain pairs of arguments in which one argument
generates higher assessments of argument strength, despite being
logically entailed by the other. There are a total of 72 different
arguments, spanning several distinct superordinate categories
(including plants, tools, musical instruments, and occupations).

The predictions of our models on the algorithmically generated
argument pairs are shown in Figure 3F and Supplemental Figure
S2F, and predictions on the Sloman (1998) argument pairs are
shown in Figure 4A and Supplemental Figure S3A. Each point in
these figures corresponds to a single argument. Purple arguments are
logically entailed by orange arguments but are nonetheless given
higher ratings than the orange arguments by participants. We can see
the feature overlap model generated the inclusion fallacy on all data
sets (Table 1 and Supplemental Table S1 present statistical tests).
This is because atypical conclusion categories (like ostriches)
often share few features with the premise categories (as assessed by
Feature-BERT), leading to weaker argument strength judgments.
The competing NLI models mostly replicated the effect for the
algorithmically generated data sets, but failed to do so for the
Sloman data set. We suspect that their success for algorithmically
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generated data sets stems from the fact that these models favor
nonspecific conclusions (e.g., favoring conclusions with birds
instead of ostriches) for reasons discussed in the previous
section. They failed in the Sloman data set, as that data set also
involves argument pairs in which the conclusion is held constant
(rather, the inclusion fallacy is generated by manipulating the
category membership relations of the premise items).

Monotonicity (General and Specific)

In most settings, knowing that a property is shared by many items
makes it easier to generalize that property to new items. This effect is
known as monotonicity and persists with induction to the
superordinate category shared by the premise items (the general
case) and with induction to a specific item that is in the same
superordinate category as the premise items (the specific case). An
example of the former is the finding that the argument hawks,
sparrows, and eagles have sesamoid bones there-
fore birds have sesamoid bones is judged to be stronger
than the argument that sparrows and eagles have sesamoid
bones therefore birds have sesamoid bones (Osherson
et al., 1990). An example of the latter is the finding that foxes,
pigs, and wolves use vitamin K to produce clotting
intheirblood, thereforegorillasusevitaminKto
produce clotting agents in their blood is judged to be
stronger than the argument that pigs and wolves use vitamin
K to produce clotting in their blood, therefore
gorillas use vitamin K to produce clotting agents
in their blood (Osherson et al., 1990).

We tested this effect using the stimuli from Richie and Bhatia
(2021). Here, we generated argument pairs consisting of a one-item
premise and a two-item premise. The conclusions of the arguments
involved a superordinate category in the general case, and a
randomly chosen item from the premise superordinate category in the
specific case. There were a total of 2,356 arguments for the general
monotonicity effect and 2,166 arguments for the specific monoto-
nicity effect. These spanned six superordinate categories. We offered
these arguments to our models, whose predictions are shown in
Figure 3G and 3H and Supplemental Figure S2G and S2H. Here, we
can see that the feature overlap model generated higher argument
strength predictions for two-premise arguments (purple points)
relative to one-premise arguments (orange points) in both the general
and specific cases (Table 1 and Supplemental Table S1 present
statistical tests). The feature overlap model captured this effect
because the overlapping features of multiple items are more likely to
be shared with other members of the superordinate category. In other
words, adding additional items to the premise leads to a premise
feature vector that is, on average, closer to that of other members of
the superordinate category. This mechanism is the same mechanism
responsible for the premise diversity effect described above. Thus
unsurprisingly, as with the premise diversity effect, the NLI models
were unable to robustly generate the monotonicity effect. Again, this
reflects the fact that these models do not explicitly take into account
feature overlap relationships between premise and conclusion items.

Nonmonotonicity (General and Specific)

Although providing additional premise items increases argument
strength when premise categories share superordinate categories,

this is not necessarily the case when additional premise items are
taken from different superordinate categories. This effect is known
as nonmonotonicity and persists with induction to the superordinate
category shared by the premise items (the general case) and with
induction to a specific item that is in the same superordinate category
as the premises (the specific case). An example of the former is the
finding that the argument crows and peacocks secrete
uric acid crystals therefore birds secrete uric
acid crystals is judged to be stronger than the argument that
crows, peacocks, and rabbits secrete uric acid
crystals therefore birds secrete uric acid crys-
tals (Osherson et al., 1990). An example of the latter is the finding
that flies require trace amounts of magnesium for
reproduction therefore bees require trace
amounts of magnesium for reproduction is judged to
be stronger than the argument that flies and orangutans
require trace amounts of magnesium for reproduc-
tion therefore bees require trace amounts of
magnesium for reproduction (Osherson et al., 1990).

We tested this effect using the stimuli from Richie and Bhatia
(2021), which spanned six superordinate categories. Here, we
generated argument pairs consisting of a one-item premise and a
two-item premise. Unlike the monotonicity arguments in the prior
section, the two-item premises in this analysis involved distinct
superordinate categories, for example, sparrows (from category
birds) and rabbits (from category mammals). The conclu-
sions of the arguments involved the superordinate category of the
first premise (e.g., birds) in the general case, and a randomly
chosen item from the superordinate category of the first premise
(e.g., ducks) in the specific case. There were a total of 508
arguments for the general nonmonotonicity effect and 3,324
arguments for the specific monotonicity effect. We offered these to
our models, whose predictions are shown in Figure 31 and 3J and
Supplemental Figure S2I and S2J. Here, we can see that the feature
overlap model generated higher argument strength predictions for
one-premise arguments (purple points) relative to two-premise
arguments (orange points) in both the general and specific cases
(Table 1 and Supplemental Table S1 present statistical tests). This
effect emerges because the addition of a new premise item that is
highly dissimilar to the conclusion item leads to a premise feature
vector with much less overlap with the conclusion feature vector.
Again, the NLI models were unable to robustly generate
nonmonotonicity, as they do not reason over the properties of
categories when judging argument strength.

Conclusion Typicality

The effects discussed thus far were initially documented by
Osherson et al. (1990). However, since their seminal article,
researchers have found several other empirical regularities in human
induction. One of these pertains to the typicality of the conclusion
item: The more typical the conclusion is of its superordinate
category, the more likely people are to generalize a premise to the
conclusion. Thus, for example, people judge the argument koalas
require vitamin K for the liver to function
therefore tigers require vitamin K for the liver
to function to be stronger than the argument koalas
require vitamin K for the liver to function
therefore guinea pigs require vitamin K for the
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liver to function (Hampton & Cannon, 2004). We tested this
effect by generating pairs of arguments using stimuli from Rosch
(1975) and Richie and Bhatia (2021), which involved six
superordinate categories. All arguments used a single item premise
as well as either a high- or low-typicality conclusion item taken from
the same superordinate category as the premise. This led to 1,392
arguments, which we offered to our models.

The predictions of these models on these argument pairs are shown
in Figure 4B and Supplemental Figure S3B. Here, we see that the
feature overlap model generated higher argument strength predictions
for arguments with highly typical conclusions (purple points) relative
to arguments with atypical conclusions (orange points). A separate
analysis correlating model predictions with the conclusion’s
(continuous) typicality ratings also found a strong positive relationship
(Table 1 and Supplemental Table S1 present statistical tests). This is
because premise items have more features in common with typical
conclusions than with atypical conclusions (as assessed by Feature-
BERT). The competing NLI models did not all significantly generate
this result, though all of their predictions were in the direction of
human participants (indicating that they may be able to capture the
effect with statistical significance with additional data).

Property Type

Another effect captured by our model is the effect of property type
on induction. When generalizing properties from one item to
another, people are sensitive to the semantic content of the property
itself, and find it easier to generalize when that property is similar to
the other properties shared by the premise and conclusion items. For
example, people judge the argument bears have a liver with
two chambers that act as one therefore whales have
aliverwith two chambers that act as one to be stronger
than the argument tuna have a 1liver with two chambers
that act as one therefore whales have a liver with
two chambers that act as one. By contrast, people judge the
argument tuna usually travel in a zig-zag trajec-
tory therefore whales travel ina zig-zag trajec-
tory to be stronger than the argument bears usually travel
in a zig-zag trajectory therefore whales usually
travel in a zig-zag trajectory (Heit & Rubinstein,
1994). Overall, generalization from bears to whales is easier
than the generalization from tuna to whales when the property is
anatomical, but harder when the property is behavioral.

Unlike our prior effects, which can be tested by algorithmically
generating a large set of arguments spanning categories with varying
levels of typicality and similarity, the property type effect requires a
hand-curated data set with premise and conclusion categories that
vary systematically in terms of their anatomical versus behavioral
similarity (e.g., bear/whale vs. tuna/whale, mouse/bat
vs. sparrow/bat, lizard/snake vs. worm/snake, etc.).
Fortunately, Heit and Rubinstein (1994) have collected such a data
set. This has 784 arguments with 28 different properties (14
anatomical and 14 behavioral), and 28 pairs of items (e.g., bear/
whale) involving assessments on each of these arguments. Their
data set also has average participant ratings of the likelihood of the
conclusion given the premise for each item pair on each property
type. We performed a median split on these ratings to generate
arguments with high versus low participant ratings and offered these
arguments to our models.

The predictions of these models on these arguments are shown in
Figure 4C and Supplemental Figure S3C. Here, we see that the
feature overlap model generated higher argument strength predic-
tions for arguments given high (purple points) versus low (orange
points) ratings by Heit and Rubinstein’s (1994) participants. A
separate analysis correlating model predictions with average
participant ratings further demonstrated this positive relationship
(Table 1 and Supplemental Table S1 present statistical tests). Our
models were able to capture this effect as they place higher weights
on the dimensions of the feature vector that have similar words to the
argument property. Thus, arguments with premise and conclusion
items that overlap on features that are similar to the argument
property tend to get higher assessments. Most of the competing NLI
models did not generate this result, as they do not explicitly use
feature overlap to assess argument strength.

It is worth noting that the above tests evaluated our model’s
predictions on the responses of Heit and Rubinstein’s (1994)
participants and not on the match between the properties and the item
pairs for which Heit and Rubinstein predicted an anatomic versus
behavioral relationship. We did this because we wanted to compare
our model’s predictions to observed data and not to Heit and
Rubinstein’s predictions for this data. Indeed, participant responses to
five of the 28 item pairs used in the experiment were in the opposite
direction to that predicted by Heit and Rubinstein. After excluding
these five item pairs, we tested whether our model captured the
predicted “manipulation effect” in the data. In particular, we
calculated, for each of the remaining 23 item pairs, the difference
between our model’s average predictions for anatomical versus
behavioral properties in the case of a predicted anatomical
relationship, or the difference between our model’s average
predictions for behavioral versus anatomical properties in the case
of a predicted behavioral relationship. This gave us 23 predictions
(one for each item pair), which should be positive if our model
captures Heit and Rubinstein’s manipulation effect. Indeed we did
find that these predictions were on average positive, though not in a
statistically significant manner, likely because of the small sample
size in this analysis, average = 0.0002, #(22) = 0.825, p = .42.
Although these findings are promising, they should be interpreted
with caution, and further work is necessary to conclusively establish
whether our approach can predict the property type effect.

To better understand how our model captures the property type
effect, we calculated the GloVe bag-of-words similarity between
Heit and Rubinstein’s (1994) anatomical and behavioral features
and the 25,797 unique participant-generated features (from
Devereux et al., 2014) that are the basis of our model. We then
extracted the 200 participant-generated features that were most
similar to Heit and Rubinstein’s 14 anatomical features and the 200
participant-generated features that were most similar to Heit and
Rubinstein’s 14 behavioral features. Word clouds showing the most
frequent words in these two sets of features are shown in Figure 4E
and 4F (with word size corresponding to word frequency). As can be
seen here, participant-generated features that are most similar to Heit
and Rubinstein’s anatomical properties involve parts of the body, as
well as biologically related words like “mechanism,” “vitamin,” and
“function.” These are the dimensions of the feature vector that are
prioritized in induction with anatomical properties, making the
model more likely to induce these properties to conclusion items that
are anatomically similar to the premise items (e.g., bears and
whales). By contrast, participant-generated features that are most
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similar to Heit and Rubinstein’s behavioral properties typically
involve verbs, as well as behaviorally related words like “food” and
“fast.” These are the dimensions of the feature vector that are
prioritized in induction with behavioral properties, making the
model more likely to induce these properties to conclusion items that
are behaviorally similar to the premise items (e.g., tuna and
whales).

Property Relevance

The property type effect is one instantiation of a general tendency
to use background knowledge, rather than simple assessments of
item similarity or feature overlap, in induction. This tendency can
take on many forms and can lead to violations of the premise
diversity and monotonicity effects when the overlapping features of
the premises (which are the relevant features for induction) do not
apply to the conclusion. For example, people judge the argument
skunks and deer have a given property therefore
animals have that property to be stronger than the
argument skunks and stink bugs have agivenproperty
therefore animals have that property (Medin et al.,
2003). This violates the premise diversity effect as skunks and
stink bugs are judged to be less similar than skunks and deer.
The reason why we observe this violation is because skunks and
stink bugs have a salient overlapping property (create a
foul odor) that is relevant to the induction problem but is not
shared with other animals, making it harder to generalize when they
are the premise items.

The diversity and monotonicity violations caused by the property
relevance effect require carefully curated stimuli which cannot be
algorithmically generated as with prior findings. Medin et al. (2003)
have collected one such data set with 34 arguments. Their data set also
has average participant ratings of the strength of each argument. We
performed a median split on these ratings to generate arguments with
high versus low participant ratings and offered these arguments to our
models. The predictions of these models on these arguments are
shown in Figure 4D and Supplemental Figure S3C. Here, we see that
the feature overlap model generated higher argument strength
predictions for arguments given high (purple points) versus low
(orange points) ratings by Medin et al.’s participants, though these
differences do not cross the threshold for significance, likely due to
small sample of arguments used in this exercise. A separate analysis
correlating model predictions with continuous participant ratings
further demonstrated this positive relationship (Table 1 and
Supplemental Table S1 present statistical tests). The reason that
the Feature Overlap model generated correct directional predictions
for these effects is because overlapping features of the premise
categories play a larger role in the feature overlap assessment. Thus,
premises with overlapping features not shared with the conclusion
item are given lower assessments by our model. The competing NLI
models do not all generate this result, and the ones that do typically
have much smaller #-values.

The above tests compared our model’s predictions to observed
data and not to Medin et al.’s (2003) predictions for this data. Indeed,
participant responses to four of the 17 argument pairs used in the
experiment were in the opposite direction to that predicted by Medin
et al. After excluding these four argument pairs, we tested whether
our model replicated the predicted “manipulation effect” in the data.
In particular, we calculated, for each of the remaining 13 argument

pairs, the difference between our model’s average predictions for
arguments with relevant versus irrelevant properties. This gave us 13
predictions (one for each argument pair), which should be positive if
our model captures Medin et al.”s manipulation effect. Indeed we did
find that these predictions were on average positive, though not in a
statistically significant manner, likely because of the small sample
size, average = 0.006, #(12) = 0.300, p = .77. Although these
findings are promising, they should be interpreted with caution, and
further work is necessary to conclusively establish whether our
approach can predict the property relevance effect.

Limitations and Extensions
Asymmetry and Projection

This is one important effect that lies outside of the descriptive
scope of the feature overlap model, as formalized using the cosine
similarity operator. This has to do asymmetries in generalizing from a
premise item to a conclusion item. For example, people judge the
argument mice have a lower body temperature at
infancy than at maturity therefore bats have a
lower body temperature at infancy than at maturity
to be stronger than the argument bats have a lower body
temperature at infancy than at maturity therefore
mice have a lower body temperature at infancy than
at maturity (Oshersonetal., 1990). More generally, people find it
easier to generalize from a common item to an uncommon item than
vice versa. The feature overlap model introduced above does not
generate asymmetries since the cosine similarity metric is symmetric.
This issue can easily be remedied by replacing cosine similarity with
an asymmetric metric, for example, one in which the premise item’s
feature vector is projected onto the conclusion item’s feature vector
(as initially suggested by Sloman, 1993). As common items typically
have richer feature representations, the feature vector projection from
common to uncommon item will generate a higher overlap
measurement than vice versa. In Supplemental Figure S4A, we
show our feature overlap model’s predictions for the asymmetry
effects documented in Sloman (1993) when such a projection
mechanism is used (see Supplemental Materials, for additional
technical details). This figure shows that the feature projection model
successfully captured all observed asymmetries in Sloman (1993).

We also tested the feature projection model on the Rips and
Osherson data sets, our new experimental data sets, and the problems
used in the Empirical Regularities section above. The results of this
are shown in Supplemental Table S3. Here, we can see that the
projection model is unable to capture nonmonotonicity effects (and
associated property relevance effects): More premise items always
lead to larger premise vectors which causes higher projections onto
the conclusion vector, and thus higher assessments of argument
strength. Additionally, the normalization inherent in cosine similarity
helps regulate the effect of the premise feature vector on model
predictions; without normalization the magnitude of this vector can
greatly distort vector projection. This is why the projection model
performed poorly on the predictive accuracy tests for Experiment 2 of
Osherson et al. (1990), which had arguments with multiple premise
items (and thus very large premise feature vectors).

The failure of the projection metric is the main reason why we
chose to focus on the cosine similarity implementation in the main
text. However, thanks to a suggestion of a reviewer, we also tried out
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a hybrid model that combines the assumptions of the cosine
similarity and projection metrics. Intuitively this model uses a
flexible weight to regulate the effect of the magnitude of the premise
item’s feature vector on the resulting judgment. With a correctly
calibrated weight, we find that it is possible to avoid the problems of
cosine similarity (which, by normalizing the premise item’s feature
vector, completely ignores its magnitude, and thus does not generate
asymmetry effects) as well as the problems of projection (which, by
not normalizing the premise item’s feature vector at all, leads to an
oversensitivity to this vector’s magnitude, creating issues with
multiple premises and with nonmonotonicity effects). The
Supplemental Materials provide technical details of this model,
Supplemental Figure S4B shows its predictions for the asymmetry
effects in Sloman (1993), and Supplemental Table S3 shows its
predictions for the Rips and Osherson data sets, our new
experimental data sets, and the problems used in the empirical
regularities section above. Here, we can see that the hybrid model
captures all effects (though its asymmetry predictions are a weaker
than those of the projection model). Since we calibrated the weights
of the hybrid model post hoc, there is an additional level of
flexibility in this model that makes comparisons to cosine similarity
and projection difficult to interpret (the cosine similarity and
projection metrics do not have any flexible parameters and are not
“fit” to the empirical data in any way). Nonetheless, these results
show that better models are possible and that our modeling
framework could be improved with additional assumptions. We
provide a detailed discussion of this in the next section.

Causal and Ecological Knowledge

Asymmetry is not the only effect that lies outside the scope of the
model put forth in this article. In the past 2 decades, much of the
focus of inductive reasoning research has shifted to the study of
relational and ecological factors at play in induction. For example,
Medin et al. (2003) have shown that people use causal relationships
between premise and conclusion items to generalize properties. This
can lead to asymmetries in induction, so that people are more likely
to generalize properties from prey to predators than vice versa. For
example, gazelles have propertyX12 therefore lions
have property X12 is judged to be stronger than 1ions have
property X12 thereforegazelles have property X12
(Medin et al., 2003). Other work has found that participant beliefs
about how the items in the premise were sampled by the
experimenter influence their endorsement of the conclusion.
When people believe that premises have been sampled randomly,
effects like premise diversity tend to be diminished (Ransom et
al., 2016).

The knowledge base used in this article involves single place
predicates. This knowledge base is passed through a fairly simple
algorithm that calculates the extent of featural similarity. Thus, we
are not able to explain the effects of Medin et al. (2003), Ransom et
al. (2016), or others (e.g., Bright & Feeney, 2014; Hayes et al., 2019;
Rehder, 2006; see Hayes & Heit, 2018, for a summary). Indeed, this
may also be why we are unable to make strong predictions for
property relevance effects. Although our tests are underpowered
(there are only 34 arguments used to test for property relevance), it is
likely that human responses depend not only on biased assessments
of feature overlap (as put forth by our model) but also on more

structured computations involving complex relationships and
participant beliefs.

That said, this does not imply that our modeling framework is
fundamentally incompatible with structured theories of inductive
reasoning. For example, our model currently gives a higher weight to
anatomical features if the nonblank property is anatomical (vs.
behavioral), explaining Heit and Rubinstein’s (1994) property type
effects. It could be possible that a similar property similarity bias
could be implemented if the model detects a prey—predator
relationship between the premise and conclusion items, as with the
gazelle/lion example given above. Such a model would retain
the core assumptions of Sloman’s model (i.e., that judgments of
argument strength depend on a comparison of the premise and
conclusion’s features) while also implementing the feature relevance
insights of Medin et al. (2003; i.e., that the features that are used in
induction depend on more complex relations between the premise and
conclusion items). It would also make new predictions, for example,
that the predator/prey asymmetry would emerge for biological and
chemical properties (e.g., has a higher potassium concen-
tration in their blood than humans) but not behavioral
properties (e.g., travels in groups).

Of course, in order to do this, the current framework would need
to be supplemented with knowledge of the relations between items.
Fortunately, there have been recent advances that solve this problem
using a combination of LLM representations and psychologically
plausible reasoning rules (Lu et al., 2019; Snefjella et al., 2022).
Combining these advances with the framework advanced in the
present article is an exciting direction for future work.

The Feature-BERT knowledge base could also be integrated into
Bayesian updating rules, such as those put forth by Ransom et al.
(2016), in order to explain premise sampling effects. Here, Feature-
BERT’s outputs would specify the probabilities of hypotheses at
play in the argument. These probabilities would be integrated with
the participant’s beliefs about how the stimuli were selected using a
Bayesian reasoning module. Such a module may also be uniquely
suited to extracting latent structures (including casual structures)
that guide and constrain induction (Kemp & Tenenbaum, 2009). It
could also be used to explain individual differences in reasoning
such as the effect of expertise (Medin et al., 2003; also see Hayes &
Heit, 2018, for a discussion): Domain experts generalize based on
property inheritance relations and causal relations that are often
different to the more superficial assessments of feature overlap used
by nonexperts. We encourage researchers to explore the applicabil-
ity of such neurosymbolic models of naturalistic cognition (Mao et
al., 2019; Marcus, 2020; Nye et al., 2020), and, by doing so, extend
our approach to more complex reasoning problems.

Theory and Prediction

The past section has implicitly assumed that there is some
theoretical value to the development of quantitative models capable
of predicting naturalistic high-level cognition. But why might this be
the case? Why should psychologists care that we can predict human
responses to thousands of diverse induction problems and formally
replicate several observed empirical regularities? After all, the kind
of modeling pipeline used in this article does not involve the
discovery of radically new theories of cognitive processes: The core
reasoning algorithms at play in our model—algorithms that compare
the features of premise and conclusion items to assess the strength of
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an induction argument—are largely the same as in Sloman (1993).
Additionally, the knowledge representations that make up our model
are certainly not obtained from realistic learning processes: Feature-
BERT is not (and does not attempt to be) a cognitive theory of how
item-feature knowledge is acquired. It is more like an automated
coder, that cheaply and judges the truth values of millions of simple
sentences in a human-like manner. So, in this sense, the core
cognitive processes in our model are largely the same as those in
previous toy models and verbal theories.

Although these are legitimate points, we believe that psychologi-
cal theorizing involves more than just the discovery of new
cognitive processes. It is just as important to use existing theories to
predict behavior, as it is to formulate these theories in the first place.
After all, without prediction, we cannot rigorously assess the
descriptive scope of the theory, that is, the amount of the variation in
the data that the theory can explain. Prediction can also help
researchers determine the set of assumptions that are necessary to
best describe data, and by doing so, can lead to the refinement and
improvement of theories (see Busemeyer & Diederich, 2010;
Lewandowsky & Farrell, 2010, for discussions). Current models of
induction are unable to make a priori quantitative predictions for the
thousands of arguments that have been used in empirical induction
research. In this way, the real explanatory scope of research on
human induction remains unknown. This is a fundamentally
theoretical problem.

The present article solves this problem, and by doing so shows
that Sloman’s (1993) feature-based model provides a good account
of human data, though it needs to be altered slightly to do so. For
example, the projection metric initially proposed by Sloman
performs poorly in our quantitative tests on the Rips (1975) and
Osherson et al. (1990) data sets. This projection metric is also unable
to generate the nonmonotonicities documented by Osherson et al.
(1990) and Medin et al. (2003). By contrast, a cosine similarity
variant of this model performs much better, at the expense of
explaining asymmetry in human induction (Sloman, 1993). Our
preliminary tests also show that a hybrid between the cosine
similarity and projection metrics can explain all effects simulta-
neously. Finally, we have found that activating features based on
their similarity to the central property in the induction argument
allows us to explain property type effects (Heit & Rubinstein, 1994).
In this way, we have shown how the core insights of other leading
models can be implemented in the feature-based framework,
synthesizing multiple theoretical perspectives in induction research.

Several researchers have already highlighted the importance of
prediction for psychological research (Hofman et al., 2021; Yarkoni
& Westfall, 2017). Indeed many other areas of cognitive science,
including perception, categorization, decision making, semantic
cognition, and memory research have moved from verbal theories
and toy problems, to quantitative cognitive models (Busemeyer &
Diederich, 2010; Lewandowsky & Farrell, 2010), to powerful
computational models capable making quantitative predictions over
large naturalistic stimuli sets (Battleday et al., 2021; Bhatia, 2019;
Bhatia & Stewart, 2018; Gandhi et al., 2022; Hebart et al., 2020;
Hills et al., 2012; Richie et al., 2022; Sanders & Nosofsky, 2020;
Trueblood et al., 2021; Zou & Bhatia, 2021; see Bhatia & Aka,
2022, for a review and discussion). Typically, these new models
apply a similar pipeline to ours: Artificial intelligence tools like deep
neural networks to extract representations from language or image
data, combined with psychologically plausible theories for

manipulating and processing this information. We are also seeing
similar developments in the study of other reasoning tasks, such as
analogy (Ichien et al., 2022; Lu et al., 2019, 2022). Some of this
work has been published in this very journal, which has also
published articles on purely statistical problems in model fitting and
the evaluation of model predictions. Thus, there is no doubt that
prediction is (rightfully) a central focus of much of contemporary
theoretical psychology and cognitive science.

Why is it that so much psychological theorizing has focused on
the modeling of human information processing mechanisms rather
than the knowledge representations to which these mechanisms are
applied? We believe that this mindset stems from the computer
revolution in the 1950s and 1960s, which kickstarted the study of
human cognition. As Simon (1979) describes it in the first chapter of
Models of Thought:

The information processing revolution that has occurred during these
years has completely changed the face of cognitive psychology. It has
introduced computer programming languages as formal (‘“mathemati-
cal”) languages for expressing theories of human mental processes; and
has introduced the computers themselves to simulate these processes
and thereby make behavioral predictions for testing the theories. (p. 9)

It turns out that we are currently in the middle of a second computer
revolution, one that is enabled by the rapid growth of digital data sets
and the development of new technologies for extracting information
from these data sets. In this new era, the theorist’s tool kit has
expanded, and we can use computers not only to specify information
processing algorithms but also aspects of the world knowledge on
which these algorithms operate. Although it is currently unclear
whether new artificial intelligence (AI) models encode structured
representations (multiplace predicates organized into frames and
scripts), they can accurately mimic knowledge of simple concept-
feature pairings (one-place predicates involving basic concepts and
categories; Bhatia & Richie, 2022), which can be used to model
aspects of high-level cognition, as shown in this article.

Discussion

The study of inductive reasoning has been one of the most active
areas of research in cognitive science and psychology. Researchers
have documented several empirical regularities in human induction of
properties across concepts and categories and have developed formal
theories to account for these regularities (Hayes & Heit, 2018; Heit,
1998, 2000; Kemp & Tenenbaum, 2009; Medin et al., 2003;
Osherson et al., 1990; Sloman, 1993). Here, we show how one theory,
the feature-based model (Sloman, 1993), can be combined with
leading LLMs (Brown et al., 2020; Devlin et al., 2018; He et al,,
2021) to successfully model human induction. We have demonstrated
the power of our approach in two ways. First, we have correlated our
feature overlap model’s predictions with human assessments of
argument strength obtained in prior work (Osherson et al., 1990; Rips,
1975) as well as in four new experiments. Here, we have found that
the feature overlap model achieves consistently high correlations with
human responses, and greatly outperforms LLMs that do not use
explicit inductive reasoning algorithms. Secondly, we have tested
whether the feature overlap model replicates observed empirical
regularities using both original experimental stimuli, as well as large
sets of new algorithmically generated inductive reasoning arguments.
Here, we have found that feature overlap model behaves in a human-
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like manner; that is, it is sensitive to the typicality, similarity,
specificity, and category membership relationship of items, the
number of premises, and the semantic content of the argument
properties, in the same way that human participants are (Hampton &
Cannon, 2004; Heit & Rubinstein, 1994; Medin et al., 2003;
Osherson et al., 1990; Rips, 1975; Sloman, 1993, 1998). Again,
leading LLMs fail to mimic these behavioral patterns.

Our approach is the first computational model capable of making
accurate quantitative predictions for arbitrary natural language
induction arguments. It is successful because it combines the relative
strengths of two influential research programs. Psychological theories
describe intelligent human-like reasoning processes, whereas LLMs
possess the knowledge representations necessary to use these
reasoning processes in everyday induction. For this reason, our
integrative approach—which feeds knowledge representations from
LLMs into human-like inductive reasoning processes—is able to
generate sophisticated and realistic responses to arguments involving
arbitrary concepts and properties. In fact, the tests in this article
involve over 16,000 existing and new induction problems, spanning
several distinct domains, greatly exceeding the size and diversity of
data sets used in prior psychological research. Psychological theories,
by themselves, are not be able to make predictions for these problems
as they have been developed on hand-coded ontologies with only a
small set of concepts and properties. Additionally, even though LLMs
for NLI are able to process and respond to induction problems, we
find that they do not do so in a human-like manner. Cognitively
plausible reasoning algorithms, like the feature overlap model, are
necessary to manipulate and transform LLM representations, in order
to mimic human behavior.

We are not the first to highlight the value of combining existing
cognitive models with newer Al systems trained on large-scale data.
Previously, researchers have shown that integrative approaches, like
ours, are useful for modeling human perception, categorization,
semantic cognition, memory, decision making, and analogical
reasoning for natural concepts and categories (Battleday et al.,
2021; Bhatia, 2019; Bhatia & Stewart, 2018; Gandhi et al., 2022;
Hebart et al., 2020; Hills et al., 2012; Lu et al., 2019, 2022; Richie et
al., 2022; Sanders & Nosofsky, 2020; Trueblood et al., 2021; Zou &
Bhatia, 2021; see Bhatia & Aka, 2022, for a review and discussion). It
is clear that if psychologists wish to model naturalistic cognition and
behavior, they need to equip their theories with rich world knowledge.
The present article (along with the work summarized in this paragraph)
shows how the knowledge representations of LLMs can be used to
solve this important research problem.

LLMs trace their intellectual lineage to older models of human
linguistic and semantic cognition (Hinton, 1986; Rogers &
McClelland, 2004). Thus, unsurprisingly, researchers have shown
that LLMs are able to capture aspects of human linguistic and
semantic processing (Goldstein et al., 2022; Linzen & Baroni, 2021;
Manning et al., 2020; McClelland et al., 2020) and even mimic some
types of reasoning (Bhatia, 2017; Dasgupta et al., 2022). The
Feature-BERT model is one example of this (Bhatia & Richie,
2022). This model does not only predict the features that people
associate with different concepts; it also captures several core
patterns of human semantic verification, and by doing so shows how
these patterns are the natural byproducts of semantic processing in
deep neural networks. By using Feature-BERT in the present article,
we are illustrating one way in which cognitively plausible high-
level reasoning algorithms can interface with realistic semantic

representations obtained from deep neural networks. We speculate
that people may also be engaging in a similar set of operations. In
other words, people may use statistical patterns in language data (as
well as perhaps perceptual data) to approximate the distribution of
features across concepts. This distribution may then be fed into a
second, higher level set of reasoning processes, for induction with
new features and concepts. We have not made any concrete claims
about how these reasoning processes are implemented in the mind.
However, it is worth noting that the feature-based model was
initially proposed as a neural network (Sloman, 1993), and the types
of vector multiplication operations at play in the present article are
best interpreted as interactions between interconnected nodes in a
large parallel distributed processing system.

It may also be possible to use closely related neural network
architectures for semantic cognition, such as the model put forth by
Rogers and McClelland (2004). This model takes items as inputs
and generates, as outputs, the features that it believes the items to
possess. At its core, this model generalizes features from one item to
another based on the structure of covariance of features across items
in its training data. Although, to our knowledge, this model has not
been designed for complex premises consisting of multiple items (it
is primarily a model of realistic feature learning rather than inductive
reasoning), it is likely that some variant could be used to account for
the set of empirical regularities discussed in this article. Of course,
such a model would need to possess featural representations for
thousands of common concepts and categories in order for it to make
quantitative predictions. One way to do this is to train it on Feature-
BERT’s underlying knowledge base. If successful, the resulting
model would be able to provide a single comprehensive account of
both feature learning and inductive reasoning with learnt features.

This article has also offered us the opportunity to reflect on the
theoretical value of our modeling framework. Unlike many theory
articles in psychology, we are not proposing new cognitive
processes for solving inductive reasoning tasks. Rather our goal
is to show how existing models of reasoning can be extended to
make good predictions over large and unconstrained stimuli sets.
This is a central goal of psychological theorizing, one that we hope
will play a larger role in our field as it responds to the challenges
posed by (and opportunities generated by) increasingly powerful Al
models of high-level cognition (see Hofman et al., 2021; Yarkoni &
Westfall, 2017 for a discussion). Of course, our modeling
framework also opens up several new practical applications that
would not be possible with verbal theories or toy models of
inductive reasoning. For example, with our framework it may be
possible to formally model inductive reasoning in developmental,
social, and clinical contexts, to influence and improve human
cognition in important real-world domains.

We would like to conclude by highlighting one empirical
regularity that is outside the scope of the feature overlap model, as
specified in the main text of this article. This involves asymmetries
in generalizing from a premise item to a conclusion item. For
example, people are more likely to generalize a property frommice
to bat s than vice versa (Osherson et al., 1990; Sloman, 1993). The
feature overlap model used in this article does not generate
asymmetries since the cosine similarity metric is symmetric.
However, we have shown how an alternate metric that is based on
vector projection instead of cosine similarity (and is closer in spirit
to Sloman’s, 1993, original proposal) can provide a good account of
asymmetry effects. We have also shown that a hybrid model that
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combines the properties of the cosine similarity and projection
approaches can capture all empirical regularities simultaneously.
The success of this exercise illustrates that our general modeling
pipeline can be used to develop and test new cognitive process
theories of induction. We anticipate that future work will implement
more complex feature overlap operations, as well as other
mechanisms that reflect the use of causal or ecological beliefs,
thereby improving upon the performance in the present article.

Conclusion

How do people generalize from what they know to make
predictions in new settings, and how can we build models that
perform this type of generalization in a human-like manner? We
address these questions by integrating psychological theories of
human induction (which specify intelligent, cognitively plausible,
reasoning algorithms) with leading models from Al research (which
possess the world knowledge necessary for everyday reasoning).
We find that by combining these two approaches, we are able to
generate better predictions than by using each approach by itself. In
doing so, we show how existing cognitive theories can be combined
with knowledge representations derived from LLMs, to better
understand and predict high-level human cognition.
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