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Abstract. Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of 
interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing 
through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The 
effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxy-
genation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are 
employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemo-
globin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was 
observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations 
enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, 
which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from base-
line were not observed contralateral to rTMS administration (all parameters, p > 0.29). In total, these findings pro-
vide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, 
demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects. © 2013 

Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.6.067006] 
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1 Introduction 
Transcranial magnetic stimulation (TMS) is a versatile, noninva-
sive, and potentially therapeutic technique that enables investi-
gators to modulate processing in the human brain.1 During TMS 
administration, the rapid discharge of an electric current through 
a coil of wire placed near the head surface generates a magnetic 
flux that, in turn, induces a weak current in the cortex. This weak 
current is sufficient to depolarize neuronal membranes and gen-
erate action potentials, and these effects can be localized based 
on coil configuration and placement. TMS has become an 
important investigative tool in cognitive neuroscience.2 It can 
be used to transiently create so-called “virtual lesions” that tem-
porarily and focally disrupt neural processing,3 and it can be 
used in a repetitive manner to induce more sustained effects 
on neural activity. The latter approach has been explored as a 
possible treatment modality for a wide range of neurologic 
and psychiatric conditions.4,5 While a variety of TMS intensities 
and frequencies can be employed to transiently disrupt cortical 
processing, arguably, the most common approach with patients 
in both experimental and therapeutic settings has been to 
administer low-frequency (1 Hz) repetitive TMS (rTMS) for 

relatively long durations (i.e., 10 to 20 min); this treatment 
scheme has been associated with inhibitory effects on cortical 
physiology and on behaviors that persist after discontinuation 
of stimulation.6,7 

Although TMS has long been employed as an investigational 
and therapeutic technique, the fundamental principles underly-
ing its cortical physiology effects are not fully understood. To 
date, hemodynamic and metabolic changes induced by TMS 
over the motor cortex have been studied using neuroimaging 
techniques such as positron emission computed tomography 
(PET), single-photon emission computed tomography, and func-
tional magnetic resonance imaging. The results of these inves-
tigations, however, are varied and not fully understood. For 
example, regional cerebral blood flow (CBF) and metabolic 
activity in the motor cortex during and after TMS have been 
reported to increase,8–12 to decrease,13 and to show no change.14 

These different responses might be caused by a variation in the 
intensity, frequency, number of pulses, and/or direction of 
induced current in the brain. Interestingly, some of these studies 
also suggest that stimulation of the primary motor cortex can 
produce changes in activation in homotopic regions of the con-
tralateral hemisphere.9,15,16 
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Diffuse optical methods provide a potentially valuable and 
relatively untapped technique for investigation of cerebral 
hemodynamic responses during rTMS. Diffuse optical methods 
employ near-infrared photons (650 to 900 nm) that diffuse 
through tissue and can be detected millimeters to centimeters 
away from the source.17–19 These optical techniques offer several 
advantages as tools for probing cortical physiology, including 
portability, excellent temporal resolution, and the ability to 
probe deep tissues noninvasively (e.g., through intact skull). 

Diffuse optical spectroscopy (DOS), also termed near-infra-
red spectroscopy (NIRS), is widely used in neuroscience. In 
DOS, the interaction of light with the main chromophores in 
the tissue, oxy-hemoglobin (HbO2) and deoxy-hemoglobin 
(Hb), provides information about HbO2 and Hb concentrations, 
total hemoglobin concentration (HbT), tissue blood oxygen sat-
uration (StO2), and changes thereof. DOS has previously been 
applied during rTMS using various stimulation protocols, but 
except for one recent study,13 all DOS experiments have focused 
on hemodynamic changes during short periods of rTMS admin-
istration, or after single pulses. Kozel et al., for example, 
reported a decrease in HbO2 in both ipsilateral and contralateral 
sides of the motor cortices when stimulating at 1 Hz for a short 
period of time (10 s).20 Using a similar protocol, a recent study 
by Tian et al. demonstrated that such decreases have high reli-
ability at the group level.21 Conversely, single-pulse stimulation 
over the motor cortex has been reported to cause HbO2 to 
increase at TMS intensities of 90 and 110% of the active 
motor threshold (AMT) intensity,22 though no HbO2 changes 
were observed at 140% of the AMT.23 Increases in HbO2 during 
rTMS were also reported when stimulating the frontal cortex of 
healthy subjects.24 Finally, a recent report suggested that the 
DOS signal may also include components that arise from 
local effects on the vasculature and/or global circulatory effects 
that are induced by TMS.25 Presently, the wide variety of cortical 
regions analyzed under different stimulation protocols makes 
collective interpretation of all of the DOS results difficult. 

Our study differs from previous optical work in that an 
emerging diffuse optical technique sensitive to CBF, called dif-
fuse correlation spectroscopy (DCS), is also employed. DCS 
quantifies the temporal fluctuations of light that has traveled 
through tissue.18,26–28 The fluctuation signal provides access 
to blood flow changes via a measured parameter called the 
blood flow index (BFI). Variation in the BFI readily provides 
information about changes in microvascular perfusion within 
the brain, for example, due to functional perturbations.29,30 

The technique has been successfully validated in animals 
and in humans through comparison with other techniques 
such as arterial spin-labeled magnetic resonance imaging 
(ASL-MRI),31,32 Xenon-CT,33 transcranial Doppler ultra-
sound,34,35 and a time-resolved near-infrared technique using 
indocyanine green as a flow tracer.36 

The current study combines DCS and DOS methods into a 
single instrument to characterize the effects of low-frequency 
rTMS on cerebral hemodynamics over the primary motor cortex 
of healthy adults. The study explores clinically relevant, long 
(20 min) time periods of simultaneous rTMS administration 
for the first time. Relative changes in perfusion and oxygenation 
were measured during and after rTMS administration, in both 
ipsilateral and contralateral sites with respect to stimulation. 
Further, the resultant combination of concentration and flow 
data enabled us to make inferences about the relative change 
in cerebral metabolic rate of oxygen consumption (CMRO2). 

Across all subjects, we found consistent and robust increases 
in CBF and oxygen metabolism in the ipsilateral hemisphere 
during 1 Hz rTMS, while no statistically significant increases 
were observed in the contralateral side, when compared to 
the baseline. The stimulation elicited a sustained hemodynamic 
increase in the ipsilateral motor cortex that did not return to 
baseline even 10 min after discontinuation of stimulation. 

2 Materials and Methods 

2.1 Subjects 

Eight healthy right-handed subjects (seven male; mean (stan-
dard deviation) age of 39 (11) years; age range ¼ 24 to 71 
years) were initially recruited in the study. One of the subjects 
had a substantial amount of data missing (e.g., contralateral 
data) due to technical difficulties and was excluded from data 
analysis. Therefore, we present results obtained from seven sub-
jects. None of the subjects had a prior history of neurologic con-
ditions or were taking medications known to lower seizure 
thresholds. All subjects provided written and formal consent, 
and all protocols and procedures were approved by the 
Institutional Review Board at the University of Pennsylvania, 
where the experiments were carried out. 

2.2 Experiment Procedures 

Each subject participated in a single stimulation session. 
Subjects were instructed to sit in a chair and to rest their 
head on a chin-rest. A Brainsight neuronavigational system 
(Rogue Research, Montreal) was employed to coregister data 
and TMS instrumentation with a previously obtained high-res-
olution MRI of each subject’s brain and to aid in precise place-
ment of the optical probes. Optical probes were placed 
bilaterally and symmetrically on M1 and were held in place with 
a plastic strap. For both motor threshold determination and sub-
sequent rTMS, magnetic stimulation was delivered by placing 
the TMS coil over the optical probes. The coil was manually 
held in place just above the optical probe throughout each ses-
sion. The Brainsight system was employed to ensure that the 
TMS coil location was held at an approximately constant posi-
tion throughout data collection. The coil position over the opti-
cal probe was continuously monitored, and the coil position was 
readjusted when the coil was found to move more than 5 mm 
from the target. 

The session protocol was explained to every subject prior to 
data acquisition. The session began with a 5-min baseline meas-
urement period during which the TMS coil was placed, but no 
TMS was administered. Next, rTMS was administered for 
20 min followed by a target 10-min recovery period during 
which the TMS coil was again kept in position but no stimula-
tion was administered. Optical data were collected throughout 
the whole session. Session events are summarized in Fig. 1(a). 

2.3 rTMS Methods 

Stimulation was administered with a Magstim Rapid transcra-
nial magnetic stimulator connected to a 70-mm diameter 
figure-of-eight coil (Magstim, Whitland, UK). As described 
above, the Brainsight neuronavigational system was employed 
to guide placement of the TMS coil precisely over the hand 
region of the motor cortex (M1) in the left hemisphere. Motor 
responses were assessed by visualizing movements of the right 
hand associated with single pulses of TMS.37 Any perceptible 

Journal of Biomedical Optics 067006-2 June 2013 � Vol. 18(6) 



Mesquita et al.: Blood flow and oxygenation changes due to low-frequency repetitive transcranial. . . 

Fig. 1 (a) Experiment protocol timeline summarizing the session events. (b) Drawing representing the optical measurement during the session, with the 
optical probe used in each hemisphere depicted schematically (the cross and circle symbols represent sources and detectors, respectively, and the 
dashed lines represent the source–detector pair combinations). The probe thus contains one source–detector channel for DOS and one source–detector 
channel for DCS (i.e., one DOS and one DCS channel per hemisphere). The probe thickness was approximately 1.9 mm, and the source–detector 
separation was 2.5 cm for both DCS and DOS channels. 

movement of the thumb, wrist, or finger was counted as a motor 
response. In line with prior studies using visualized motor 
responses, the resting motor threshold (RMT) was considered 
to be the lowest intensity at which movement could be detected 
at least three times in five trials.38 This RMT value was deter-
mined for each subject by starting at suprathreshold stimulation 
intensity and then decreasing the percentage of total machine 
output by steps of 1 to 2%. 

Following determination of RMT, 1200 pulses of repetitive 
stimulation were administered over the hand representation of 
the primary motor cortex on the left hemisphere with an inten-
sity of 95% of RMT and at a frequency of 1 Hz. The stimulation 
intensity of 95% RMT was chosen so that rTMS would not 
induce hand twitching but would still be very close to the sub-
ject’s RMT. At this intensity, no movement was observed in the 
intrinsic hand muscles of any of the subjects. Across the eight 
subjects, 95% RMT corresponded to a median (interquartile) 
intensity of 66 (54, 72) % of machine output. 

2.4 Diffuse Optical Methods 

Optical measurements were performed with a hybrid device of 
our own design, which contained both DCS and DOS modules. 
The DCS module consisted of two continuous-wave, long 
coherence length (>20 m), 785-nm lasers (CrystaLaser Inc., 
Reno, NV) and two arrays of four avalanche photodiodes 
(PerkinElmer, Canada). The detection system fed an eight-chan-
nel autocorrelator (Correlator.com, Bridgewater, New Jersey) 
that computed the temporal autocorrelation function of the 
detected light intensity over an integration time of 2.5 s. 

The DOS module employed three laser diodes at differing 
wavelengths (685, 785, and 830 nm; Thorlabs, Newton, New 
Jersey) that were amplitude-modulated at 70 MHz by low-
noise RF signal oscillators (13 dB; Moorpark, California). 
The laser outputs were connected to a fast optical switch (switch 
time <10 ms; Dicon Fiberoptics, Richmond, California) in order 
to illuminate tissue at different scalp positions. Optical fibers 
delivered and collected light to and from the tissue. Light col-
lected from the scalp was delivered to two photomultiplier tubes 
(PMTs; Hamamatsu Corp., Japan). The signal from each PMT 
was amplified and alternately switched into the in-phase/ 
quadrature (I/Q) demodulators using electronic switches 
(Mini-circuits, Brooklyn, New York) to decode the three modu-
lated source signals. A pair of low-pass filters with a cutoff fre-
quency of 80 Hz was connected to the output of each I/Q 
demodulator in order to filter out high-frequency signals. 

Finally, signals were digitized by a 16-channel 16-bit data 
acquisition board (National Instruments, Austin, Texas). The 
sampling rate of the DOS module was set at 400 ms. 

The DCS and DOS modules operate in toggle-switch mode, 
i.e., they operate independent of one another. The DCS module 
is off when the DOS module is on, and vice versa. Although no 
significant cross-talk between the modules has been observed, it 
is possible that large changes in the blood volume (proportional 
to the sum of HbO2 and Hb concentrations) can change the frac-
tion of photon scattering events and therefore change the blood 
flow signal. However, this effect should be small, because the 
blood volume changes measured throughout the experiment are 
small. (Note that DOS measurements were used to correct for 
scattering fraction in the DCS measurements, as explained in the 
next section.) A laptop computer controlled operation of the 
DCS and DOS modules and recorded data. The total cycle 
(DCS and DOS) of data acquisition was ∼3.0 s in duration. 

Two thin, custom-made optical probes (FiberOptic Systems 
Inc., Simi Valley, California) were employed in this study (one 
for each hemisphere). Each probe held four optical fibers that 
were polished at 45 deg on the subject end, so that they 
work like the 90 deg bend fibers usually employed in DOS/ 
DCS experiments. This approach permitted design of a thin 
probe that could be readily placed adjacent to the forehead 
[Fig. 1(b)]. With this configuration, the distance from the TMS 
coil to the scalp was approximately 5 to 7 mm. In order to 
account for the possible effects of this additional thickness, 
all motor thresholds were measured in situ with the probe in 
place. Two multimode fibers (200 μm diameter) were used 
for both DOS and DCS sources. A 400-μm diameter multimode 
fiber was used for DOS detection. The DCS detection fiber sys-
tem was composed of a bundle of four single-mode fibers, each 
with 5 μm core diameter, in order to increase DCS signal-to-
noise ratio (SNR). The numerical aperture (NA) of the multi-
mode fibers was 0.37, and the NA of the single-mode fibers 
was 0.10. The fibers were approximately 10 m long, and the 
probe pad thickness was smaller than 2 mm. The fiber length 
was chosen for convenience, since their length did not affect 
measurement of temporal resolution. (Note that physiological 
changes are slow compared to light transit time through the 
fibers, and the group velocity dispersion in the fiber is of neg-
ligible importance for our nearly monochromatic light beams.) 
The source–detector separation was fixed at 2.5 cm, and the 
source–detector map was mounted at a fixed configuration 
such that each pair, for both DCS and DOS, probed approxi-
mately the same spatial region. 
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2.5 Optical Analysis 

The phase noise of the detected light in the DOS module was 
relatively large due to instrumental characteristics, and we were 
not sufficiently confident to use it for absolute measurements of 
hemoglobin concentrations or differential path length factor 
(DPF) estimation. Therefore, we opted to analyze the amplitude 
of the light intensity within the continuous-wave analytical 
approach; in this case, changes in hemoglobin concentration 
are derived from the data. The light amplitude for each 
source–detector pair at each wavelength was thus converted 
into relative optical density changes, and these optical density 
variations were converted into chromophore concentration 
changes. The modified Beer–Lambert law, with a DPF that var-
ied between 5.8 and 7.4 for all the wavelengths, was employed 
to derive concentration changes (ΔHbO2 and ΔHb).18,19 DPF 
variation was based on the slowly varying age dependence of 
DPF,39 extrapolated for the age range of our subjects. The hemo-
globin extinction coefficients were extracted from tabulated 
values available on the web (http://omlc.ogi.edu/spectra/ 
hemoglobin/summary.html). The change in total hemoglobin 
concentration (ΔHbT) was determined as the sum of ΔHbO2 
and ΔHb. Optical data that contained apparent artifacts due 
to relative motion between the probe and the scalp, and 
which were corroborated by independent visual inspection of 
the subject during the experiment run, were discarded. These 
artifacts were never more than 10% of the total data acquired 
per subject. 

Relative changes in CBF (rCBF) were estimated from DCS 
data by extracting a BFI at each time point [rCBFðtÞ ¼  
rBFIðtÞ ¼ BFIðtÞ∕BFIðt0Þ, where t0 denotes the baseline 
period]. Changes in CBF (ΔCBF) were measured from zero 
[i.e., ΔCBFð%Þ ¼ ðrCBF − 1Þ × 100]. The BFI was estimated 
by fitting the measured intensity autocorrelation function to 
the solution of the photon correlation diffusion equation in 
the semi-infinite geometry with extrapolated zero boundary con-
ditions.18 In this work, a diffusive motion model27 was used to 
approximate the mean-square particle displacement of the mov-
ing red blood cells in tissue and thus derive the BFI. The 
changes in the absorption coefficient at 785 nm measured by 
DOS were used as input in the correlation diffusion equation. 
The goodness of fit was evaluated for each fiber at each time 
point, and the decay curves that failed to fit the model (i.e., 
curves whose fitting residuals were higher than 75% of the mean 
residual over the entire time-series) were discarded from the 
analysis. At each time point, the rCBF obtained for each 
fiber was averaged over all the four single-mode fibers. 

2.6 Estimation of rCMRO2 

From measurements of rCBF and oxygen extraction fraction 
(OEF), the relative changes of rCMRO2 can be computed 
and thus accessed (indirectly).40–43 OEF is defined as the frac-
tional conversion of oxygen concentration from arterioles to 
venules, i.e., OEF ¼ ðSaO2 –SvO2Þ∕SaO2, where SxO2 repre-
sents the oxygen saturation in the vessel (here, x can be a, c, 
or v for arterioles, capillaries, and venules, respectively). 
OEF can thus be estimated from information about tissue 
hemoglobin concentration measured with DOS, by assuming 
a steady-state balance between oxygen concentration and hemo-
globin concentration. In this case, one can think of the optical 
signal as a mixture of arterial, capillary, and venous blood, so 
that the measured tissue hemoglobin saturation can be expressed 

as a weighted sum of the three different compartment satura-
tions, which leads to the following expression:41 

SaO2 − StO2
OEF ¼ ; (1)

γSaO2 

where γ is a free parameter that indicates the percentage (frac-
tion) of blood volume contained in the venous compartment of 
the vascular system. For measurements of relative changes of 
OEF, rOEFðtÞ ¼ OEFðtÞ∕OEFðt ¼ 0Þ; the factor γ in Eq. (1) 
divides out if we assume it is constant. (Physiologically, this 
implies that the fraction of blood volume in the venous compart-
ment does not change during the perturbation.) Because we did 
not monitor SaO2 in our experiment, we also assumed that SaO2 
was fixed at 100% over time for all subjects.42 Then, by using 

41–43Eq. (1), rCMRO2 can be expressed as 

rHb 
rCMRO2 ¼ rCBF · rOEF ¼ rBFI · ; (2) 

rHbT 

where the prefix r refers to relative changes (e.g., variation 
relative to a baseline time period). In this work, we assumed 
the baseline concentrations of Hb and HbO2 to be approximately 
40 and 60 μmol, respectively, following previous reported 
findings of tissue oxygen saturation and total hemoglobin 
concentration.44,45 

2.7 Statistical Analysis 

For every subject, time courses of rCBF and the changes in 
HbO2, Hb, and HbT concentration throughout the whole session 
were calculated relative to a baseline period. In order to mini-
mize fluctuations caused by initial adjustments in the beginning 
of the experiment, the baseline was taken as the median of the 
time points obtained 3 min before beginning stimulation. The 
time-series were first “de-trended” by removing linear trends 
with a fast Fourier transformation (“detrend” function in 
Matlab). This scheme removes potential slow drifts that might 
be present in the signals. Note, however, that the coefficients 
from the de-trending operation on our data were very close 
to zero in all subjects. Then, the resulting time-series were fit 
to a cubic polynomial, whose coefficients were used to recon-
struct the global trends of each of the hemodynamic parameters 
of each subject during the TMS protocol. Examples of the data 
and the global trends are shown in Fig. 2. 

Changes during rTMS were calculated from the highest 
value during the stimulation period. Error bars for each of 
the estimated values were quantified by taking the standard 
deviation of the fluctuations of the de-trended time-series 
(i.e., the residuals after removing the global trends). From the 
temporal trends, we also averaged 1-min epochs every 4 min 
to build blocks at specific time periods. While the 1-min 
epoch was chosen arbitrarily, the interval of 4 min was chosen 
in order to maximize the number of epoch data points, since not 
all the subjects completed the target poststimulation period (i.e., 
10 min poststimulation). This approach enabled us to examine 
common patterns in the hemodynamic response, independent of 
short-term temporal variations between the subjects, and to fur-
ther characterize the hemodynamic response at specific time 
periods. 

In all the procedures, data for the whole group were summa-
rized using the median and the inter-quartile range (IQR). 
Nonparametric Wilcoxon signed rank tests were used to assess 
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Fig. 2 Hemoglobin concentration (top row) and blood flow (bottom row) changes in (a) ipsilateral and (b) contralateral sides of stimulation for a single 
subject during the whole session. The vertical dashed lines indicate the beginning and the end of rTMS administration. The thick solid lines are the 
global trends. CBF, cerebral blood flow; HbO2, oxy-hemoglobin concentration; Hb, deoxy-hemoglobin concentration; HbT, total hemoglobin 
concentration. 

statistically significant differences from the baseline. All data discard the last 5 min of data collection and analyzed data 
analysis and statistics were performed with Matlab (Math from all subjects until 4 min post stimulation. 
Works Inc., Natick, Massachusetts). Figure 2 shows an example of a time-series of measured 

hemodynamic data from a single illustrative subject. 
Summary results from all individuals for ΔHbO2, ΔHb, and 

3 Results ΔHbT, and ΔCBF are shown in Table 1. During administration 
All the subjects successfully completed the protocol. Clear of rTMS, we found a significant CBF increase on the side ipsi-
motion artifacts, however, were detectable between 5 and lateral to stimulation (p ¼ 0.016). CBF saturated after reaching 
10 min after the cessation of the stimulation in five of the the maximum change; this plateau typically occurred between 
eight participants. These artifacts were most likely due to the 10 and 20 min after the peak for all subjects. Across all subjects, 
difficulty subjects experienced maintaining a static head posi- the ΔCBF increase from baseline in the ipsilateral side was 33 
tion for a prolonged period of time. Therefore, we opted to (22, 46) % [median (IQR)]. Further, ΔHbO2 concentration in the 

Table 1 Maximum changes during rTMS for each subject, as measured by DOS and DCS, for both ipsilateral (IL) and contralateral (CL) sides of 
stimulation. The numbers in parenthesis represent the error, which was estimated by the standard deviation of the fluctuations during the rTMS period. 

ΔCBF (%) ΔHbO2 (μmol) ΔHb (μmol) ΔHbT (μmol) 

Subject ID IL CL IL CL IL CL IL CL 

01 33.1 (17.4) −10.1 (13.4) 7.9 (2.6) 0.88 (1.9) −0.41 (0.78) −0.34 (0.54) 7.6 (3.9) 0.72 (1.9) 

02 18.8 (9.7) −7.9 (10.5) 0.61 (1.8) 1.7 (2.8) 1.2 (2.1) −0.59 (0.89) 1.7 (2.1) 1.41 (2.8) 

03 40.6 (21.2) 13.9 (13.2) 6.0 (2.4) −1.7 (2.7) 0.71 (1.7) 0.99 (1.5) 6.6 (3.8) −1.2 (3.1) 

04 24.6 (13.4) −8.8 (8.3) 7.7 (2.3) 0.89 (1.4) −0.54 (1.4) 1.06 (1.6) 7.3 (4.1) 1.7 (2.1) 

05 53.1 (24.5) −11.1 (13.5) 1.0 (2.1) 0.35 (0.59) −0.62 (1.1) 0.38 (0.63) 0.68 (1.2) 0.62 (0.9) 

06 12.2 (8.2) 9.6 (8.1) 0.89 (1.9) −0.76 (1.4) 0.98 (2.3) −0.10 (0.27) 1.9 (2.3) −0.8 (1.4) 

07 52.0 (25.3) 12.6 (10.9) 5.4 (2.2) 1.05 (1.8) −0.15 (0.4) 0.58 (1.1) 5.1 (2.9) 1.39 (1.8) 

Note: CBF, cerebral blood flow; HbO2, oxy-hemoglobin concentration; Hb, deoxy-hemoglobin concentration; HbT, total hemoglobin concentration. 
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Fig. 3 Correlation between changes in cerebral blood flow (ΔCBF) and changes in (a) oxy-hemoglobin (ΔHbO2) and (b) total hemoglobin (ΔHbT) 
concentration during rTMS on the ipsilateral side of stimulation. The lines correspond to the best linear fit considering the error bars and yielded R 
values of 0.53 (ΔHbO2) and 0.47 (ΔHbT). 

ipsilateral side showed median increases of 5.4 (0.95, 6.9) μmol, 
but ΔHb concentration in the ipsilateral side did not show a sig-
nificant change, i.e., −0.15 (−0.48, 0.85) μmol. The combina-
tion resulted in a median ΔHbT in the ipsilateral side of 5.1 (1.8, 
7.0) μmol. Overall, we found that ΔCBF was moderately corre-
lated with ΔHbT∕ΔHbO2 in the ipsilateral side of stimulation, 
i.e., considering the error bars for each individual subject 
(Fig. 3). The correlation analysis between ΔCBF and ΔHbT 
(ΔHbO2) yields R ¼ 0.47 (0.53). 

Though the average ΔHbO2 and ΔHbT for the group were 
nonzero, a significant increase in ΔHbO2∕ΔHbT during rTMS 
on the ipsilateral side of stimulation was observed in only four 
of the seven subjects. For these subjects, ΔHbO2 showed an 
increase of 6.9 (5.9, 7.8) μmol, while ΔHb changes were still 
not significant, i.e., median (IQR) of −0.3 (−0.4, 0.1) μmol 
(p ¼ 0.88). The remaining three subjects did not show a signifi-
cant increase in HbO2 on the ipsilateral side of stimulation 
(p > 0.25). We explored the possibility that the separation 
between these two subgroups of subjects (i.e., HbO2 “respond-
ers” and “nonresponders”) was correlated with either RMT or 
age, but correlations were not found, i.e., R ¼ −0.12 and 
−0.07, respectively. The small number of subjects limits our 
ability to conclusively answer questions about such correlations, 
which deserve further investigation. 

In contrast to the hemodynamic changes observed on the side 
of the brain ipsilateral to stimulation, the maximum change from 
baseline during TMS was not statistically significant on the con-
tralateral hemisphere. Across all subjects, the median (IQR) 
ΔCBF from the baseline in the contralateral side was −7.9 
(−9.8, 12) % over the period of rTMS administration. On 
the contralateral side, HbO2 and Hb median concentration 
changes were 0.9 (−0.5, 1.0) μmol and 0.4 (−0.3, 0.9) μmol, 
respectively, which summed to give a median HbT change of 
0.7 (−0.4, 1.4) μmol. None of the changes observed in the con-
tralateral side were significantly different from the baseline 
(p > 0.29). 

After cessation of stimulation, changes in the measured 
parameters decreased in the ipsilateral hemisphere but did not 
return to baseline. Four minutes poststimulation, hemodynamic 
changes had decreased approximately 10% from their values 
immediately after stimulation to a median ΔCBF in the ipsilat-
eral side of 28 (18, 42) % relative to the beginning of stimula-
tion. (Note that ΔCBF 4 min poststimulation was ∼14% lower 
than the maximum ΔCBF.) Four minutes after the cessation of 

rTMS, ΔCBF remained higher than the baseline for every sub-
ject. Similarly, for the subjects who showed a significant 
increase in HbO2, ΔHbO2 and ΔHb decreased over time in 
the poststimulation period, reaching a median of 5.8 (3.5, 
6.8) and −0.1 (−0.2, 0.1) μmol, respectively. HbO2 poststimu-
lation changes were less than the maximum change observed 
during rTMS, but  HbO2 poststimulation was significantly 
higher than the baseline measured before rTMS administration 
(p < 0.008). No significant changes were observed in the con-
tralateral hemisphere for any of the measurements during 
the poststimulation period (p > 0.17 in all cases). Figure 4 
shows temporal 1-min averages at regular 4-min intervals during 
and after rTMS administration, in order to illustrate hemo-
dynamic patterns independent of short-period intersubject tem-
poral variability. 

Based on changes in oxygenation and rCBF, we also esti-
mated the changes in oxygen consumption due to rTMS 
for each subject. Figure 5 shows an example time-series of 
rCMRO2 for a single illustrative subject for both ipsilateral 
[Fig. 5(a)] and contralateral [Fig. 5(b)] sites. The magnitude 
of changes in rCMRO2 followed the magnitude of changes 
in rCBF closely for all subjects [Fig. 5(c) and 5(d)], since 
changes in the OEF were not significant during the whole ses-
sion. Across the population, the maximum rCMRO2 change 
during rTMS administration was significantly different from 
the baseline in the stimulated hemisphere (p ¼ 0.007), with a 
median change of 1.3 (1.2, 1.5). On the other hand, the contra-
lateral side of stimulation did not significantly change from the 
baseline (p ¼ 0.11), with a median change across the popula-
tion of 1.0 (0.9, 1.1). 

4 Discussion 
This study demonstrated the feasibility and capability of diffuse 
optical technologies for noninvasive measurement of cerebral 
hemodynamic changes during rTMS administration in healthy 
subjects. Previously, DOS alone was used to assess hemo-

20,21,24,46dynamic changes associated with rTMS, and DCS 
has been demonstrated to measure relative changes in CBF dur-
ing cortical activation.29 The present work is the first report 
of the use of DCS for blood perfusion measurements 
during TMS and the first report of all-optical measurements 
combining perfusion and tissue oxygenation to understand 
hemodynamic and metabolic physiological changes during 
rTMS administration. Particularly, although not entirely new, 
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Fig. 4 Temporal trends at every 4-min interval for measured changes in (a) cerebral blood flow (CBF), (b) oxy-hemoglobin concentration (HbO2), 
(c) deoxy-hemoglobin concentration (Hb), and (d) total hemoglobin concentration (HbT) before, during, and after rTMS administration. Each 
data point represents the median measurement across the whole population at each specific interval averaged 1-min epochs. Error bars are the 
interquartile range. 

Fig. 5 Relative cerebral blood flow (rCBF), oxygen extraction fraction (rOEF), and cerebral metabolic rate of oxygen consumption (rCMRO2) 
in (a) ipsilateral and (b) contralateral hemispheres of rTMS administration for a single subject during the whole session. The vertical dashed lines 
indicate the beginning and the end of rTMS administration. The thick solid lines are the global trends. At the bottom row, we show the bar plots 
summarizing the maximum rCBF, rOEF, and rCMRO2 changes for every subject in the (c) ipsilateral and (d) contralateral sides of stimulation. 
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the use of DCS for noninvasive measurement of CBF changes in 
the human motor cortex is an accomplishment due to the chal-
lenges of the small detection area required by the technique. In 
addition, TMS requirements constrain the measurement geom-
etry, since the magnetic coil must be close to the scalp and the 
probe. Besides feasibility, the pilot results indicate that the 
hybrid DCS/DOS instrumentation can glean more insight 
about brain function during rTMS than DOS/NIRS, by provid-
ing extra CBF information. As a result, the combined DCS/DOS 
technique permits experimenters to infer information about rel-
ative changes in oxygen consumption and brain metabolism. 

In this pilot investigation, a clinically relevant longer term 
low-frequency rTMS administration was employed, consisting 
of 20 min of stimulation at 1 Hz on the primary motor cortex. 
Low-frequency rTMS has been used as a means of transiently 
causing focal inhibition of regions of the cerebral cortex, in 
order to create experimentally useful “virtual lesions.”47,48 

Following the observation that low-frequency rTMS has focal 
inhibitory effects on neural activity,49 the long-term approach 
has been adopted in several investigations that sought to make 
enduring changes in cortical function in patients suffering from 
a variety of neurologic conditions, including poststroke motor, 
language, and visuospatial deficits;50,51 epilepsy;52 and psychi-
atric disorders.53 

Here we report significant increases in tissue hemodynamics 
at the site of stimulation. By contrast, we did not observe sta-
tistically significant changes in hemodynamic properties during 
or after stimulation in the motor cortex contralateral to the site of 
stimulation. This kind of pattern is typically associated with 
cortical activity due to functional activation. We found that 
20 min of stimulation at a frequency of 1 Hz produced signifi-
cant increases in ΔCBF and rCMRO2 on the side ipsilateral to 
stimulation; further, these induced changes persisted after dis-
continuation of stimulation. Significant changes in ipsilateral 
ΔHbO2 and ΔHbT during rTMS were seen for only a subgroup 
of these subjects (four of the seven subjects). This lack of 
statistically significant oxygenation response in three subjects 
is less consistent than the observations about blood flow, 
and its origin is unclear, though it should be noted that these 
data were quite noisy and a correlation between ΔCBF and 
ΔHbO2∕ΔHbT across the patient group was evident. Further, 
the “HbO2 responder” subgroup was not clearly separated by 
age or RMT; ultimately, the small number of subjects limits 
conclusive response to questions about correlations. 

Increases in HbO2 were previously reported by DOS-only 
measurements during single-pulse stimulation at low inten-
sities,22 and the increases were attributed to transient activation 
of the motor cortex above the active baseline by TMS. Blood 
flow dynamics measured in the present work showed consistent 
CBF increases on the side of stimulation, which is in overall 
agreement with previous studies using other medical modalities 
such as PET.9 A recent MRI study employing continuous arterial 
spin labeling also reported robust rCBF increases in motor and 
premotor areas due to 24 s of continuous 2 Hz rTMS at 100% of 
the RMT.54 However, a recent study by Thomson et al. found 
that 10 min of 1 Hz rTMS delivered to the motor cortex resulted 
in a significant decrease in HbO2 during stimulation.13 While 
this last result superficially appears to be in conflict with our 
DOS findings, these investigators also reported a clear differ-
ence in the TMS effect based on intensity, with no persistent 
decrease in HbO2 observed at 80% RMT. This finding is poten-
tially consistent with evidence suggesting that TMS at different 

intensities preferentially stimulates different neuronal popula-
tions, with lower intensity stimulation selectively stimulating 
inhibitory interneurons and higher intensities stimulating both 
inhibitory and excitatory neuronal populations.55 Thus one pos-
sible explanation for the discrepancy between our findings and 
those of Thomson et al. may be that different intensities of 
rTMS elicit very different patterns of hemodynamic response, 
even at the same stimulation frequency. 

The observed increase in ipsilateral CBF and metabolism 
after “inhibitory” rTMS may reflect increased activity of inhibi-
tory interneurons. During motor action, the activity of excitatory 
neurons in the motor cortex presumably exceeds that of inhibi-
tory interneurons. Therefore, the effect of increasing the activity 
of inhibitory interneurons with rTMS may decrease the overall 
metabolic consumption of the motor cortex by diminishing the 
high rate of metabolic consumption of excitatory neurons during 
action. By this account, increased oxygen consumption and 
blood flow would be expected after inhibitory rTMS at rest, 
as observed here, but decreased metabolic activity would be 
expected after inhibitory rTMS during a motor task. 

Our finding that stimulation was not associated with signifi-
cant cerebral oxygenation changes in the contralateral motor 
cortex was somewhat unexpected, since prior neurophysiologic 
studies have shown that 1 Hz rTMS of the motor cortex results 
in contralateral changes in excitability and function.56–59 It has 
been proposed that administration of inhibitory rTMS to the 
motor cortex in one hemisphere releases the contralateral motor 
cortex from interhemispheric inhibition.60 One possibility is that 
contralateral changes may have been below the detection level 
of our optical instrument (∼15% in rCBF and ∼0.6 μmol in 
oxygenation). Alternatively, while release from interhemi-
spheric inhibition may increase motor cortex excitability, 
increased cortical activity and resultant increased metabolic 
activity may only be elicited during TMS-induced motor evoked 
potentials or voluntary motor actions.59 Thus, release of hemi-
spheric inhibition alone might not affect the basal level of neural 
activity of the contralateral motor cortex at rest. 

The persistent effects of rTMS have been described as being 
similar to the neuroplastic processes of long-term potentiation or 
long-term depression, and converging evidence suggests that at 
least some of the long-term effects of rTMS are mediated by 
changes in synaptic efficacy.61–63 Our findings suggest that 
the mechanisms that underlie persistent rTMS effects also 
involve persistent modifications in the hemodynamic properties 
of the cortex. The relationship between these hemodynamic 
perturbations, mechanisms of neuroplasticity, and persistent 
physiologic or behavioral changes after rTMS remains to be 
examined. Thus the use of diffuse optical measures may provide 
new insights into the mechanisms of rTMS modulation, espe-
cially for investigations in which direct measures of motor 
physiology cannot be employed.50,51,64 

Although the rTMS-induced neural processes highlighted 
above provide a plausible explanation for our findings, one 
must be careful when analyzing intrinsic optical signals from 
the brain. If possible, noncortical contributions should be 
accounted for when interpreting the optical signal. As noted ear-
lier, it has been demonstrated that rTMS-evoked optical signals 
can include components that are not a direct result of cerebral 
activity, i.e., components that arise from systemic physiology 
stimulated by rTMS.25 Since such systemic physiology was not 
monitored in our subject cohort, it is possible that non-neuronal 
signal sources might have influenced some of the changes 
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reported in Table 1, and we have no sure method to separate 
these two classes of effects, which are ultimately due to rTMS. 
Nonetheless, previous studies with DOS and DCS were able to 
successfully investigate cortical hemodynamics at the same 
source–detector separations used in this study (i.e., 2.5 cm). 
Some of these investigations quantitatively examined the pen-
etration of DCS signals into the brain,29,65–67 and other studies 
validated DCS measurements against direct measurements of 
CBF by other techniques.31–34 On balance, previous findings 
suggest that our detected signals predominantly reflect neural 
response activated by rTMS; however, more research is war-
ranted in order to fully discern neural from systemic responses. 
The present work represents a step along these lines. 

Regarding potentially relevant differences in methodology, 
our protocol determined the RMTs by visual inspection rather 
than by using electromyographic activity (EMG).68 Although 
evidence has shown that visually determined RMTs closely 
approximate those determined using neurophysiologic 
measures,37,38 it is possible that visual inspection may be less 
sensitive for determining RMTs; in this case, the rTMS admin-
istered may have been at a higher intensity than would have been 
administered if RMTs had been determined using EMG. While 
it is possible that higher intensity stimulation could have elicited 
movement or proprioceptive stimulation that might have 
affected hemodynamic responses in the motor cortex, careful 
monitoring of subjects for movement throughout the experimen-
tal sessions suggests that this was unlikely. In addition, the TMS 
coil location was manually held constant throughout data col-
lection. We monitored the coil in real time and readjusted its 
position over the motor cortex when necessary; nevertheless, 
it is possible that slight deviations from the optimal position 
over the motor cortex might have contributed to some of the 
fluctuations in our data. Most likely, however, these translational 
fluctuation effects should be smaller than SNR. Another differ-
ence in methodology to consider is that some prior studies22–24 

employed monophasic pulses of TMS, while the current study 
was conducted using biphasic stimulation. It remains unknown, 
for example, whether and how differences in pulse waveform 
affect cerebral hemodynamic responses. Future studies with 
DOS and DCS that employ a range of rTMS intensities and 
compare different kinds of pulses will be required to clarify 
these issues. 

Finally, we comment on technical limitations of the measure-
ment scheme. First, because of the small detection area, i.e., due 
to the use of single-mode fiber detection for DCS, the SNR was 
relatively low. Generally, the presence of hair and the need for 
source–detector distances of ∼2.5 cm or more on the surface of 
the head are factors that limit SNR and that can be improved in 
the future. For a single detection fiber, a typical SNR for a head 
measurement on M1 varies from 2× to 10× (corresponding to 
photon counting rates of 4 to 50 kHz). In this study, we 
improved measurement SNR by averaging over four single-
mode fibers at each detection site; this scheme elevated SNR 
by a factor of two in most cases. In the future, more fibers 
could be employed to elevate SNR even more. The high stan-
dard deviation in Table 1 is at least in part due to our relatively 
low SNR. 

To summarize, our findings demonstrate the feasibility and 
utility of using DCS and DOS for noninvasive monitoring 
during rTMS-induced effects in human cortex. This approach 
was applied to low-frequency long-duration rTMS, which is 
used clinically to produce focal cortical inhibition. Although 

preliminary, our findings suggest that low-frequency rTMS pro-
duces a gradual increase in CBF and CMRO2 that persists after 
stimulation ceases, providing a potential biomarker for the 
effects of rTMS on cortical function. 
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