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1. Introduction 

Diffuse optical tomography (DOT) is emerging as a 
means of deep-tissue optical imaging.1,2 DOT has a 
broad range of applications in optical breast 
imaging,3–10 functional brain spectroscopy and 
imaging,2,11–14 exercise medicine,15–18 and photody-
namic therapy monitoring.19,20 

In a typical DOT system, light is injected into tis-
sue and is then detected at other points on the tissue 
surface. Three measurement schemes are used for 
these measurements: time domain, frequency do-
main, and continuous wave (cw). Measurements are 
made in transmission, refection, or both. Of these 
three measurement types, the cw method is the sim-
plest, least expensive, and provides the fastest data 
collection. Nevertheless, widespread application of 
the cw method for DOT has been controversial. For 
example, it has been theoretically demonstrated that 
cw measurements lack the capability for separating 
absorption from scattering in the DOT image recon-
struction.21 On the other hand, some researchers 
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have shown that this nonuniqueness problem of cw 
imaging can be minimized through preconditioning 
and regularization techniques.22–25 

In this paper we show that measurements at mul-
tiple wavelengths are the key for obtaining physio-
logically relevant tissue parameters with cw light. 
Until recently, commonly employed inverse methods 
calculated light absorption and scattering coeffcients 
sequentially at each measurement wavelength and 
then decomposed the absorption data into contribu-
tions from various tissue chromophores and scatter-
ing components. 

We present a new approach for extracting these 
tissue components. The multispectral method di-
rectly reconstructs tissue chromophore concentra-
tions and Mie scattering factors by exploiting their a 
priori spectral properties.5,26–28 This new set of re-
constructed variables is wavelength independent; 
hence data from all measurement wavelengths may 
be used simultaneously for reconstruction. Our ap-
proach effectively reduces the number of unknowns 
and produces a better-constrained inverse problem. 
We recently showed that this a priori spectral tech-
nique helps to overcome the nonuniqueness problem 
associated with cw imaging.27 

The remainder of this paper is structured as fol-
lows. In Sections 2 and 3 we provide details of the 
multispectral model for both the forward and inverse 
problems. We show explicitly how uniqueness can be 
achieved within the multispectral model and provide 
a criteria for choosing optimum wavelengths. In this 
paper we provide many more details compared with 
our previous short letter,27 which largely summa-
rized the theoretical results. In Section 4 we use this 
analysis to discover optimum wavelength distribu-
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tions, and we investigate how different tissue chro-
mophore and wavelength combinations affect these 
optimum wavelength sets. In Section 5 we discuss the 
feasibility of reconstructing scattering power with 
scattering prefactor and tissue chromophores. In Sec-
tion 6 we discuss the generalization of our approach 
to frequency- and time-domain measurements. Fi-
nally, in Section 7 we apply the approach for three-
dimensional (3D) reconstruction in vivo. 

2. Multispectral Method 

In this section we describe the multispectral model in 
detail. First, we defne the forward problem in terms 
of multispectral parameters. We then formulate the 
inverse problem and provide two different frame-
works for its solution. 

A. Forward Problem 

Light transport in tissue is well approximated as a 
diffusion process under certain conditions.2 In the 
forward problem we are interested in calculating the 
light fuence rate, �, given some set of tissue optical 
properties. We use the photon diffusion equation in 
the frequency domain for this purpose, i.e., 

i� 
��  · D(�) ��(�, �) �   (�) � �(�, �) q0(�, �).� �a � 

(1) 

Here � is the measurement wavelength, � is the 
source-modulation frequency, � is the speed of light in 
the medium (assumed to be known),  a��� is the ab-
sorption coeffcient, D��� is the diffusion coeffcient 
given approximately in terms of reduced scattering 

29,30 and q0��, �� is thecoeffcient  s���� as 1��3 s��, 
source term. For the solution of Eq. (1), we employ the 
Robin-type boundary condition 

Dd� 
��  0, (2)dn̂ 

where n̂ is the vector normal to the measurement 
boundary and � is related to the refractive-index mis-
match at the boundary.31 Tissue optical properties 
 a��� and  s���� must be known to solve the forward 
problem [Eq. (1)]. The multispectral model is based 
on the known wavelength dependence of tissue pa-
rameters such as chromophore concentrations C, 
scattering prefactor A, and scattering power b; A and 
b are related to the size, index of refraction, and 
concentration of scatterers in tissue as well as to the 
index of refraction of the surrounding medium.32,33 

The mapping from concentrations of the lth chro-
mophore Cl to  a��� is made by use of the known 
absorption extinction coeffcient, l���, of the  lth chro-
mophore, i.e. 

L 

 a(�) � l(�)Cl. (3) 
l 1 

Here we assume L total chromophores contribute to 
the absorption at wavelength �. The relation for scat-
tering is based on a simplifed Mie scattering theo-
ry,32,33 i.e., 

 s�(�) A��b . (4) 

Given some initial distribution of Cl, A, and b in 
tissue, Eq. (3) and (4) can be used to obtain  a��� and 
 s����. Once the mapping to optical parameters is 
done, the diffusion equation can be solved for the 
calculated fuence rate, �, by use of analytical or 
numerical methods. Tissue images are reconstructed 
by comparison of calculated fuence with the experi-
mentally measured fuence, as discussed in Subsec-
tion 2.B. 

B. Generalized Inverse Problem 

We next reformulate the inverse problem that is ap-
propriate to the multispectral model, focusing on non-
linear methods. We start with the Jacobian 
formulation. The Jacobian approach is common 
within the DOT community, since the same Jacobian 
matrix can be used in a single-step inversion scheme 
(i.e., the linear method). 

In the Subsection 2.B.2 we outline a gradient-based 
framework that does not require a Jacobian matrix. 
This method is especially useful for systems with 
large numbers of source–detector pairs and large re-
construction domains wherein building and inverting 
the Jacobian matrix can be computationally diffcult 
and even impossible owing to memory limitations. 
Although the computer simulations and in vivo re-
sults (Section 7) utilize this latter inversion frame-
work, we still describe the Jacobian method to 
provide a better understanding of the concepts. 

As discussed in Section 1, the traditional DOT in-
verse problem deals with reconstructing  a��� and 
 s���� images for each measurement wavelength �. 
These images are then converted to Cl, A, and b im-
ages by use of Eqs. (3) and (4). In the multispectral 
imaging approach, the goal is to obtain Cl, A, and b 
images directly. This requires some modifcations to 
the image reconstruction formalism. 

1. Jacobian Solver 
Tissue chromophore concentrations Cl and scattering 
parameters A and b are wavelength independent. 
Therefore data acquired from all measurement wave-
lengths can be used simultaneously for inversion. 
Specifcally, the inverse problem is defned as mini-
mizing the objective function, 2, a sum of “data mis-
match” at each measurement wavelength, i.e., 

1 N S Mj
2

2 � � � [Fj, i(�n) �Pj, i(�n)]
2, (5) 

n 1 j 1 i 1 

1
2 Ty. (6)2y 

Here S is the total number of sources and Mj is the 
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number of detectors linked to source j, resulting in a submatrix of size MTOT � B and has the following 
total number of measurements MTOT �j

S 
1 Mj. Mea- structure: 

sured and calculated fuence rates [log (fuence rate) 
in Rytov approximation35] on the tissue boundary at 
wavelength �n are denoted by Fj,i��n� and Pj,i��n�, re-

P1,1(�n) P1,1(�n) · · ·  
P1,1(�n) 

x1 x2 xB 

� � · · ·  � 
P1,M1

(�n) P1,M1
(�n) · · ·  

P1,M1
(�n) 

x1 x2 xB 

� � · · ·  � 
Pj,i(�n) Pj,i(�n) · · ·  

Pj,i(�n) 
x1 x2 xB 

� � · · ·  � 
PS,MS

(�n) PS,MS
(�n) · · ·  

PS,MS
(�n) 

x1 x2 xB 

spectively. y is the residual data vector with yj,i��n� 
 Fj,i��n� � Pj,i��n��. 





 





 

Letting x represent either Cl�r�, A�r�, or  b�r�, we  
start with the Taylor expansion of 2�x� around some 
x0 up to second order in x: J�n

(x) , 

2(x) 2(x0) � (�� 2(x0))T(x �x0) 
1 

(x �x0)TH(x0)(x �x0) � . . . ,  (7)  � 2 

where Hij 
2 2� xi xj is the Hessian matrix. 

Following Newton’s method, we set the derivative 
2�x�� xk 0 for each kth component of vector x and 

(11) 

where xk is the kth component of vector x sampled at obtain the equality 
a basis of size B. The derivatives given in Eq. (11) can 
be related to derivatives with respect to absorption1 
and scattering via the chain rule for variants of xk:� yTJ � T(HT �H) � 2Diag(H)�x]. (8)[�x2 

 a(�) Pj,i(�) Pj,i(�) 
l(�) if xk Cl,k (lth tissue chromophore) 

Cl,k  a(k)(�)  a(k)(�) 

 s�(�) Pj,i(�) Pj,i(�) 


 
 
 
 

Pj,i(�) 
xk 

� �bk if xk Ak (scattering prefactor) , (12)Ak  s(k)�(�)  s(k)�(�) 

 s�(�) Pj,i(�) Pj,i(�) 
� Ak�

�bkln(�) if xk bk (scattering power) 
bk  s(k)�(�)  s(k)�(�) 

For cases in which no high spatial frequency infor-
mation is expected to be recovered, the second-order 
terms can be omitted and the Hessian can be approx-
imated as H JTJ. Hence, from Eq. (8), the following 
solution for the update vector ��x� is obtained: 

�x (JTJ)�1JTy, (9) 

where �x �x � x0� and J is the Jacobian matrix 
with J P� x. The structure of y and J are as 
follows: 

where 

Pj,i 

 a(k) 

1 
�

�(rj, ri)
G(rk, ri)�(rj, rk), (13) 

Pj,i 

 s(k)� 

1 
3D2 

�(rj, ri) 
�G(rk, ri) ·  ��(rj, rk), (14) 

are given by the Rytov approximation, with G�rk, ri� 

y�1 
J�1

(C1) J�1
(C2) . . .  J�1

(CL) J�1
(A) J�1

(b) 

y 
y�2 
· · 

, J 
J�2

(C1) 
· · 

J�2
(C2) 
· · 

. . .  
· · 

J�2
(CL) 
· · 

J�2
(A) 
· · 

J�2
(b) 
· · 

. (10) 
· · · · · · · 

y�N 
J�N

(C1) J�N
(C2) . . .  J�N

(CL) J�N
(A) J�N

(b) 

Here y�n 
is the residual data vector of length MTOT being the adjoint solution at basis point rk for detector 

34,35at the measurement wavelength �n. Each J�n 
�x� is a location ri. 
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The update vector �x found at the end of the lin-
earization step [Eq. (9)] is added to the initial guess x0 

to reconstruct an updated image. This process can be 
t�1 trepeated iteratively, giving a solution x x � 

�xt at the �t � 1�th iteration, where �xt is obtained 
from Eq. (9) with J J�xt�. 

2. Gradient-Based Scheme 
This approach uses the gradient of the objective func-
tion to generate a minimum search direction. Calcu-
lation of the gradient vector �� 2�x� is 
straightforward. The kth component is 

2 N S Mj )Pj, i(�n� � � [Fj,i(�n) �Pj,i(�n)]�� �, (15)xk n 1 j 1 i 1 xk 

where Pj, i��n�� xk is given in Eq. (12). The key rea-
son to employ this method is that the adjoint solution 
G in Eqs. (13) and (14) is replaced by the solution for 
the weighted sum of all detectors, where the weight-
ing is the residual (y), which can be computed directly 
by the forward solver, without the computational and 
memory overhead of computing J. 

Once the gradient vector is computed, any 
gradient-based generic algorithm can be applied to 
fnd the minimum of the objective function. In this 
study we consider nonlinear conjugate gradients with 
the Polak–Ribière method. The details of the algo-
rithm can be found elsewhere.36,37 

3. Nonuniqueness in cw and Multispectral Method 

In the case of cw measurements, it has been shown 
that different sets of absorption and scattering pa-
rameters can yield identical data.21 cw DOT inver-
sions have cross talk between absorption and 
scattering. In this section we show how this non-
uniqueness problem inherent in cw DOT can be over-
come, provided the multispectral approach is used 
with the correct measurement wavelengths.27 The 
choice of wavelengths is based on two considerations, 
i.e., the separation of absorption from scattering 
(nonuniqueness) and the separation of absorption 
chromophores from one another. 

We start with the nonuniqueness concept as dem-
onstrated by Arridge et al.21 The diffusion Eq. (1) is 
frst simplifed to a Helmholtz-type equation with the 
change of variables �2 D and �	 �� and takes the 
form 

q0(�) 
��2�(�) ��(�)�(�) 

� 
, (16) 

where � 	 �0 � i��, with 

�2�   1 
�0 �

�2 

a 
, �	 (17)

� v�2. 

Two conditions must be met to have two sets of 
˜samples �D,  a� and �D,  ̃a� that produce the same 

solution �. First, �̃ ��� must be equal to ���� every-
˜where in the solution domain. Second, D D every-

where within the source layer.21 

Any different set D̃ has a different �2 D̃ , and 
hence a different �	 1���2. In general this violates 
the frst condition given above, i.e., �̃ ��� � ���. How-
ever, for �	 0 (cw case),   reduces to �0. In this case 
it becomes possible21 to fnd some � a, given an ar-
bitrary function �D such that 

D̃ D ��D,  ̃a  a �� a. (18) 

˜The resulting set �D,  ̃a� satisfes the two conditions 
and produces an identical data set, as explicitly 
shown in Ref. 21. Since infnitely many arbitrary 
choices for �D exist, this result states that the in-
verse solver is likely to introduce cross talk between 
absorption and scattering when the measurement 
type is cw. 

We now look into the nonuniqueness problem in 
the multispectral method framework. We frst derive 
analogous conditions where the parameters D,  a are 
replaced by Cl, A, b. We next extend these conditions 
to multiple wavelengths. 

˜ ˜ ˜ ˜Assume there exists another set b, A, Cl with b 
˜ ˜b, A A � �A, Cl Cl � �Cl. Here for practical 

reasons we do not regard b as an unknown. Instead, 
we assume it is spatially constant and known, i.e., 
b�r� b. These two sets yield identical data provided 
the conditions given earlier are fulflled. Given the 
arbitrary function �A (zero within 1� s� of the bound-
ary), the frst condition ��̃ 0 � 0� can be rewritten in 
terms of the new multispectral parameters as 

1 l(�) �A
� ˜ Cl ��Cl 1, (19)

�bh(�b , Ã ) l A 

where 

1 �2��b�3A �2��b�3Ã 
h(�b , Ã ) � . (20)

3Ã ��b�3A ��b�3Ã 

Since b�r� is assumed to be constant, h��b , Ã � re-
duces to 

1 �2�1�3A �2�1�3Ã 
h(Ã ) � . (21)

3Ã �1�3A �1�3Ã 

Equation (19) simply restates the nonuniqueness cri-
terion in terms of the wavelength-independent vari-
ables Cl, A, and b. 

So far we have limited our analysis to a single 
wavelength. The dramatic improvement of the mul-
tispectral method comes from using all measurement 
wavelengths simultaneously. 

We now investigate the unlikeliness that two dif-
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ferent parameter sets are capable of producing iden-
tical data simultaneously at all the measurement 
wavelengths. Suppose there are N measurement 
wavelengths and L chromophores �Cl�, then the non-
uniqueness condition becomes a matrix equality in 
which each row represents Eq. (19) for the wave-
length ��n�: 

1(�1) 2(�1) L(�1) 
· · ·  b b b�1 �1 �1 

· · · · · · · · · · · · 
1(�N) 2(�N) L(�N) 

· · ·  b b b�N �N �N 

C1 �C1 1 
�A 1· · · 

� · � · · , (22)� � � � � �· · ·Ã h(Ã ) CL 
h(Ã ) �CL 1 

Ew 1. (23) 

Here E denotes the wavelength-dependent matrix. 
The inverse problem has nonunique solutions if 

Ew is equal or very close to 1. Therefore the choice of 
E, and ergo the wavelengths used, affects the recon-
struction. The desired wavelengths form a matrix E 
such that the distance between the closest solution to 
Eq. (22) and the vector 1 is maximized. The closest 
solution is given in a least-squares sense as wo 

38�ETE��1ET1, and the residual norm R �1 
� Ewo� can be interpreted as the distinguishability 
parameter. The closer R is to zero, the closer wo will 
be to fulflling the conditions for nonuniqueness. 
Wavelength choices that maximize R defne our frst 
criterion for selecting optimal wavelengths. 

We next consider distinguishing chromophore con-
centrations among themselves. Equation (3) can be 
written in a matrix form for N wavelengths; �a��� 

C, i.e., 

 a(�1) 1(�1)  · · ·  L(�1) · · · · · · · · · · . (24)·� � � ��C1�· · · · 
 a(�N) 1(�N)  · · ·  L(�N) CL 

When the matrix given in Eq. (24) has smooth 
singular-value distribution, we expect each chro-
mophore to make similar contributions to absorption. 
The condition number ���� can be used as a measure 
of the smoothness of �. It is the ratio of the maximum 
to the minimum singular value. When � is small, 
measurements have equal sensitivity to each chro-
mophore; hence the cross talk within the absorption 
chromophores is minimized. Wavelength choices that 
minimize � defne our second criterion for selecting 
optimal wavelengths. 

We have previously shown27 how certain wave-
length choices would affect the results with computer 
simulations by using three chromophores oxyhemo-
globin, deoxyhemoglobin, and water as the main ab-
sorbers. Here we present similar simulations with 

Fig. 1. Each point represents a set of fve wavelengths. Residual 
norm, R, and condition number, �, of each set are calculated for 
four chromophores HbO2, HbR, H2O, and lipid as described in 
Section 3. Points 1, 2, and 3 are selected as extreme points with 
high and low R and � values. 

the important additional tissue chromophore: lipid. 
Lipid is an important absorber in tissue, which has, 
for example, been shown to be correlated with breast 
physiology.4 

For a medium with L 4 absorption chromophores 
taken as oxyhemoglobin �HbO2�, deoxyhemoglobin 
�HbR�, water �H2O�, and lipid, at least N 5 wave-
lengths are required when the scattering prefactor A 
is also allowed to vary. Each set of fve wavelengths 
has some value for residual norm R and condition 
number �, given the extinction coeffcients39 and the 
scattering power b. Figure 1 shows the scatter plot of 
R and � values computed with four chromophores and 
fve wavelengths with the scattering power b 1.3.5 

The wavelengths were chosen from the 650 
� 930�nm range (based on signal-to-noise calcula-
tions for 6�cm optode separations in a transmission 
geometry), spaced in 6�nm intervals. We consider 
three sets from different regions of Fig. 1: The frst set 
is from low values of R and �, the second set from high 
values of R and �, and the third set from high values 
of R and low values of �. These wavelength sets are 
tabulated in Table 1 with their corresponding R and 
� values. Based on our analysis in Section 3, we ex-
pect the third set to be the optimal set. 

To clearly see the effects of R and � on our choice of 
wavelengths, we have simulated two different circu-
lar two-dimensional (2D) media with similar geome-
try, but one with an extra scattering inhomogeneity. 
Figure 2 shows the geometries of target media used 
in our simulations. Both media are 7 cm in diameter 
with 1.6�cm objects embedded in a homogeneous 
background. The frst medium [Fig. 2(a)] is composed 
of four objects with different absorption perturba-

Table 1. Wavelength Sets Chosen from Fig. 1 and the Corresponding 
Condition Numbers (�) and Residual Norms (R) 

Set Wavelengths (nm) � R 

1 740, 788, 866, 902, 926 36.5 4.5 � 10�6 

2 650, 700, 716, 860, 890 634.0 5.4 � 10�1 

3 650, 716, 866, 914, 930 36.4 4.3 � 10�1 
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Fig. 2. Geometry of the circular media used in the simulations. 
Thirty-two source–detector pairs are equally spaced along the cir-
cumference. The frst medium (a) has four absorbing objects, and 
the second medium (b) includes an additional scattering object. 
Both media are 7 cm in diameter with objects of 1.6 cm in diame-
ter. 

tions owing to different chromophores. The second 
medium [Fig. 2(b)] has an additional ffth object with 
a scattering inhomogeneity owing to scattering pref-
actor A. Table 2 lists the concentrations and the scat-
tering prefactor values with corresponding object 
locations. Background values correspond to  a 

0.06 cm�1 and  s� 7.6 cm�1 at �	 800 nm.5 

A fnite-element40 mesh with 4159 nodes was used 
to generate forward cw data at 32 source and detector 
positions equally spaced along the circumference. To 
imitate real data acquisition, 1% random Gaussian 
noise was added to the data. Images of absorption 
chromophores and scattering prefactor A were recon-
structed with the method discussed in Subsection 
2.B.2. 

Figure 3 shows the reconstructed chromophore im-
ages simulated in the frst medium. Each row corre-
sponds to a different chromophore with the target 
locations shown in the frst column, and the subse-
quent columns display the reconstructed images for 
wavelength sets 1, 2, and 3. Sets 1 and 3 give similar 
images, however set 2, due to its high � value, fails to 
distinguish between H2O and lipid. 

Reconstruction results for the second medium 
wherein a scattering (ffth) object was embedded are 
shown in Fig. 4. The frst set with the addition of a 
scattering object yields a low contrast (15� M peak) 
for the HbR image and shows some cross talk be-
tween absorption chromophores (not present in ab-
sence of scattering; see Fig. 3). The second set has 
reduced scattering cross talk with respect to frst set 

Table 2. Chromophore Concentration and Scattering Coefficient 
Prefactor Values of the Background and the Test Objects 

HbO2 HbR H2O Lipid A 
Location ( M) ( M) (%) (%) b�1��10�6b mm

Background 20 10 27 25 4500 
Object 1 40 10 27 25 4500 
Object 2 20 20 27 25 4500 
Object 3 20 10 54 25 4500 
Object 4 20 10 27 50 4500 
Object 5 20 10 27 25 9000 

Fig. 3. Image reconstruction results of the frst medium. Images 
of chromophores HbO2, HbR, H2O, and lipid are shown in consec-
utive rows. The leftmost column shows the expected target object 
locations, and the rest of the columns display the reconstructed 
images of chromophores for sets 1, 2, and 3. 

but still exhibits very low contrast for the H2O image. 
The third set yields the best contrast and localization 
for all fve target objects, which is consistent with our 
expectation of the optimum wavelength set to have 
high R and low � values. The wavelengths in the third 
set were also used with the conventional DOT image 
reconstruction scheme, wherein absorption and scat-
tering at each wavelength are obtained frst and are 
then decomposed into chromophore concentrations 
images as shown in the last column of Fig. 4. The 
scattering cross talk in the chromophore images 
clearly demonstrates the superiority of the multispec-
tral method over the traditional DOT method. (Note 
that no regularization or matrix scaling techniques 
were employed in any of the image reconstructions.) 

Fig. 4. Reconstructed images for the second target medium. Tar-
get images of HbO2, HbR, H2O, lipid, and A are shown in the frst, 
second, third, fourth, and ffth rows of the leftmost column, respec-
tively. The images shown in the second to fourth columns are 
reconstructed with the multispectral method for sets 1, 2, and 3. 
The images in the rightmost column are obtained with conven-
tional DOT image reconstruction with the wavelengths used in set 
3. 

10 April 2005 � Vol. 44, No. 11 � APPLIED OPTICS 2087 

Source . 

2 l~1 I 
1.6cm 2 t 1 1.6cm 5 

3 4 3 4 

7 cm 7 cm 
(a) (b) 

Hb02u 
HbRO " 
H20 0 ~ 

LipidQ 

Targets 

Hbo2U 
HbRU 
HzOG 

LipidQ 

A C, 
Targets (1) 

(1) 

(2) 

(2) (3) 

(3) Conventional 

40 
30µM 
20 
25 
20 µM 
15 
10 
54 
45 
36 % 
27 
45 
35 % 
25 

40 
30 µM 
20 

20 
15 µM 
10 

54 
36 % 

50 
40 % 
30 

10000 -6b b-1 
10 mm 

5000 



Fig. 5. Histogram of optimum wavelength distributions with fve 
wavelengths and four chromophores (HbO2, HbR, H2O, lipid). Each 
wavelength count (distinguished by different patterns) in a set is 
normalized for ease of demonstration. 

4. Optimum Wavelength Distributions 

In this section we examine wavelength distributions 
in Fig. 1 more closely by using histograms. We frst 
consider optimum sets for the case with four absorp-
tion chromophores (HbO2, HbR, H2O, lipid) and fve 
measurement wavelengths. Notice that scattering 
is implicitly included; i.e., the R and � values are 
calculated based on absorption chromophores to be 
extracted and the number of measurement wave-
lengths. We defne the optimum wavelength sets as 
the sets (points) in the neighborhood of set 3 in Fig. 
1. We choose the neighborhood of set 3 as the points 
falling in a somewhat arbitrary range defned to be 
R � 0.415 and � ˘ 40.0. Note that each point is a set 
of fve wavelengths. The histogram obtained by 
counting the number of repetitions for each of the fve 
wavelengths separately (see Fig. 5) reveals that each 
wavelength choice tends to cluster around particular 
central wavelengths. The optimum fve-wavelength 
sets fall in the range 650 ˇ 3, 710 ˇ 10, 865 ˇ 15, 
912 ˇ 4, and 928 ˇ 4 nm. Any arbitrary combination 
of these fve wavelengths stays in the same neighbor-
hood of R, � values. 

We next examine how the histograms change with 
the different types of chromophores and the different 
numbers of wavelengths used. Suppose that there are 
only two primary absorption chromophores, i.e., oxy-
hemoglobin �HbO2� and deoxyhemoglobin �HbR�. R 
� � distributions similar to those in Fig. 1 are ob-
tained for different numbers of wavelengths N 

3, 4, 5. Each distribution (not shown) has an opti-
mum set with high R and low � values. The histo-
grams of the optimum wavelength sets are shown in 
Fig. 6. With three wavelengths (the minimum num-
ber needed N ˆ L 2), the optimum sets are 650 
ˇ 2, 716 ˇ 4, and 902 ˇ 16, as seen in Fig. 6(a). 
Figures 6(b) and 6(c) show that the addition of the 
fourth and ffth wavelengths does not provide any 
new group, but rather broadens the second wave-
length range from 716 ˇ 4 to 720 ˇ 16 nm, and that 
the last wavelength range shifts slightly from 902 
ˇ 16 to 896 ̌ 30 nm. The data suggest that when the 
absorption chromophores are only HbO2 and HbR, 
the optimum wavelength formulation developed 
gives an optimum set with three rather distinct wave-
lengths no matter how many wavelengths are used to 
get R and �. 

Fig. 6. Histograms for the optimum wavelength sets obtained 
with two absorption chromophores (HbO2 and HbR) for different 
numbers of wavelengths N: (a) N 3, (b) N 4, (c) N 5. 

We performed a similar analysis this time with 
three chromophores [oxyhemoglobin �HbO2�, deoxy-
hemoglobin �HbR�, and water �H2O�] and obtained 
the histograms shown in Fig. 7. In the case of four 
wavelengths we obtain the histogram in Fig. 7(a), 
which shows that the optimum sets fall in the ranges 
of 650 ˇ 2, 722 ˇ 10, 884 ˇ 24, and 930 ˇ 2 nm,  as  
reported in our previous letter.27 Increasing the num-
ber of wavelengths from four [Fig. 7(a)] to fve [Fig. 
7(b)] broadens the second wavelength range from 
722 ˇ 10 to 720 ˇ 20 nm, but it also shifts the center 
of the third wavelength distribution from 884 to 
836 nm. When we use six wavelengths [Fig. 7(c)], an 
additional peak in the distribution occurs centered at 
880 nm. These last histograms show that, with three 
chromophores HbO2, HbR, and H2O, when we exceed 
four wavelengths, the R � � maps provide a quanti-
tatively new set, provided more than one measure-
ment wavelength is to be selected from the 720 
ˇ 15�nm range. 

5. Scattering Prefactor A and Power b 

The optimum wavelength analysis discussed in Sec-
tion 3 assumed a homogeneous and fxed value for the 
scattering power b. This assumption makes it possi-
ble to easily compute the matrix in Eq. (22) numeri-
cally. However, the scattering power b may not be 
homogeneous in tissue. It is therefore necessary to 
quantify the error induced by this assumption. 

So far we have used the simplifed Mie theory to 
express the reduced scattering coeffcient as  s� 

A��b .32 A more general way of writing the scatter-
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Fig. 7. Histograms for the optimum wavelength sets obtained 
with three absorption chromophores (HbO2, HbR, and H2O) for 
different numbers of wavelengths N: (a) N 4, (b) N 5, (c) N 

6. 

ing coeffcient is33 

 s� a(2˙˝nm)b��b , (25) 

where a is proportional to the density of the scatter-
ing centers, is the radius of the scatterers, and nm is 
the index of refraction of the medium. The value of b 
varies between 0.37 and 4 as the radius of scatterers 
changes from 1 to 0.05  m.33 Equation (25) suggests 
that separate measurements of A and b are needed to 
quantify the scattering size and density of the scat-
terers in tissue. 

A simulation of three scattering objects with differ-
ent target A and b images is shown in Fig. 8. To have 
a good ft, a large number of wavelengths �N 15� 
sampled from the 650–930�nm range at 20�nm inter-
vals were used. In the reconstructions we found that 
the scattering prefactor (A) and power (b) exhibited 
strong cross talk; typically b tends to be updated 
rather than A. The cross talk between A and b can be 
attributed to valleys appearing in the contour plot of 
the log of the error function, as seen in Fig. 9(a). Here 
we defne the error function as 

i N 

E(A, b) � {log(A�i 
�b) � log[ s�(Ao, bo, �i)]}

2, (26) 
i 1 

where Ao 9000 and bo 1.3 are chosen to give 
 s��650 nm� 19.8 cm�1 and  s��930 nm� 12.5 
cm�1, respectively. The value of E changes more rap-
idly with b, as shown in Fig. 9(a), thus explaining why 

Fig. 8. Target and reconstructed images of A and b obtained with 
the multispectral method with 15 wavelengths sampled from the 
650–930�nm range at 20�nm intervals. 

the scattering perturbations are compensated mainly 
by updates in b. 

We now introduce a new set of variables that yields 
a better scaled problem. Let ˛	 log�A� � r b  and ° 

b�t. Here we set 

1 i N i N �1�2 

r � N � log(�i), t N�N � log2(�i) � (rN)2� 
i 1 i 1 

(27) 

so that the resulting error function E�˛, °� written in 
terms of and takes the form of a noninteracting 
function; i.e., there are no cross terms in the expan-
sion: 

i N 

E(˛, °) � {˛� rt°� t° log(�i) � log[ s�(Ao, bo, �i)]}
2 

i 1 

i N 

N˛2 �N°2 �˛�2� log[ s�(Ao, bo, �i)]� 
i 1 

i N 

�°�2rt � log[ s�(Ao, bo, �i)] 
i 1 

i N 

� 2t � log(�i)log[ s�(Ao, bo, �i)]� 
i 1 

i N 

� � log2[ s�(Ao, bo, �i)]. (28) 
i 1 

The circular contours shown in Fig. 9(b) illustrate the 
improvement in scaling achieved with this change of 
variables. 

Figures 10(a) and 10(b) shows the reconstructed 
images of A and b, using the new set of variables and 

in the inversion. The scattering prefactor and 
power images are superior to those obtained without 
scaling. The conventional A, b images obtained by 
ftting  s���� (reconstructed at each wavelength sep-
arately) to A��b are also shown for comparison in 
Figs. 10(c) and 10(d). The ftting process in the con-
ventional case utilized the Nelder Mead simplex 
method implemented in the MATLAB function fmin-
search. However, simulations (results not shown) 
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Fig. 9. Contour plots of the log of the error functions. (a) E�A, b� 
is poorly scaled, as demonstrated by the presence of narrow con-
tour valleys. The global minimum is located at Ao 9000 and bo 

1.3. (b) The same error function expressed in terms of and has 
a well-defned minimum (˛o 0.44, ° o 0.14), with circular con-
tours illustrating the improvement in scaling. 

with fve objects [as in Fig. 2(b), wherein we let A, b 
or , vary] exhibited convergence problems for the 
absorption chromophore concentrations, and we were 
unable to reliably reconstruct A and b. 

In summary, we fnd that with our current algo-
rithm it is better to fx one of the scattering param-
eters, and for the reasons explained in Section 3, we 
prefer to fx b. More sophisticated algorithms and 
scaling methods may give better images of A, b, and 
chromophore concentration; such algorithms are un-
der investigation. 

6. Generalization to Frequency- and Time-Domain 
Measurements 

The multispectral method as formulated in Section 2 
is applicable to frequency- and time-domain mea-

Fig. 10. The multispectral reconstruction of the target medium in 
Fig. 8, using the new set of variables �˛, °�, provides accurate A and 
b images as shown in (a) and (b), respectively. The A and b images 
displayed in (c) and (d), respectively, are reconstructed with the 
conventional method, i.e., ftting reconstructed  s���� images at 15 
wavelengths to the simplifed Mie scattering form �A��b�. 

Fig. 11. Simplifed schematic of the parallel-plate diffuse optical 
tomography instrument. The female subject lies in a prone posi-
tion, and soft compression is applied with a source plate. 
Continuous-wave measurements are accomplished with a lens-
coupled CCD in transmission mode. The orientation of image slices 
are shown beneath the instrument. 

surements and will still be advantageous for recon-
struction based on these data compared with 
traditional DOT image reconstructions.41 The multi-
spectral approach improves frequency- and time-
domain-based reconstructions because it effectively 
reduces the number of unknowns. 

Our optimum wavelength analysis (Section 3), 
however, is based partially on nonuniqueness that 
arises when there is only one type of measurement 
available, i.e., either amplitude or phase. When the 
source-modulation frequency is high enough �� 
� 50 MHz� to produce phase changes larger than the 
phase noise, the residual norm R loses its impor-
tance. Therefore the wavelength sets 1 and 3 in Fig. 
1 yield similar reconstructed images, whereas set 2 
continues to show cross talk between absorption chro-
mophore images; i.e., the choice of � is still important 
in wavelength selection for frequency- and time-
domain measurements. The importance of the resid-
ual norm, R, depends on the signal-to-noise ratio. 

7. In Vivo Results 

In this section we present preliminary in vivo 3D 
images obtained from a female subject with a cancer-
ous breast lesion. We frst give a brief description of 
our instrument and then outline some technical de-
tails in the data analysis and image reconstruction. 
We then compare images obtained with the two dif-
ferent methods: conventional DOT and multispectral 
DOT. We note, however, that such comparisons with 
in vivo data can never be fully conclusive, because we 
do not have a priori knowledge of the true physiolog-
ical properties. 

Figure 11 illustrates the basics of our instrument, 
a parallel-plate DOT system that has been charac-
terized3 by use of various tissue phantoms and an in 
vivo healthy breast. The female subject lies in a prone 
position with both of her breasts inside the measure-
ment box. The box is flled with a matching Intralipid 
fuid, and the breast is lightly compressed with a 
movable compression plate. Forty-fve laser source 
fbers are located on this plate, forming a 9 � 5 reg-
ular grid. The cw and frequency-domain data are 
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acquired at four wavelengths (690, 750, 786, and 
830 nm) in transmission mode (through a lens-
coupled CCD) and in remission mode (through nine 
fbers located on the compression plate), respectively. 
3D image reconstruction utilizes mainly 984 cw data 
points binned from the CCD. Frequency-domain data 
are utilized only in a preprocessing step to obtain a 
good initial guess for the breast and matching fuid 
optical properties. 

In this study the total number of measurements 
used (including all wavelengths) was 84,524. A fnite-
element mesh40 with 48071 nodes was constructed for 
the forward and inverse basis. A linear or nonlinear 
inversion in these large dimensions involving the Ja-
cobian matrix with conventional DOT (single wave-
length at a time) or multispectral DOT (multiple 
wavelengths simultaneously) requires approximately 
15 and 120 Gbytes of memory, respectively. Both are 
well above the limit �3 Gbytes� of our current 32�bit 
computing platforms. Thus, for both conventional 
and multispectral (Subsection 2.B.2) DOT inversions, 
the gradient-based approach36 was employed with 
spatially variant Tikhonov regularization.3,42 Recall 
that in conventional DOT, absorption and scattering 
values are reconstructed for each wavelength, and 
thus the total number of unknowns for each recon-
struction node is 2 times the number of wavelengths. 
In the multispectral approach we have only four un-
knowns (HbO2, HbR, H2O, and A) at each node re-
gardless of wavelength count. 

We obtain reconstructed images of total hemoglo-
bin concentration THC  HbO2� �  HbR�  M, blood 
oxygen saturation �YT 100 �  HbO2��� HbO2� 
�  HbR���, water concentration and  s� at 786 nm. 
The lipid concentration was assumed to be 57% as 
reported in the literature.5,43,44 The scattering power 

Fig. 12. Conventional DOT method was used to obtain (a) the 
reconstructed total hemoglobin concentration, (b) the blood oxygen 
saturation, (c) the water concentration, and (d) the scattering im-
ages of a subject with invasive ductal carcinoma near the nipple 
area. Note that the water concentration (c) drops to negative val-
ues. 

Fig. 13. (a) Total hemoglobin concentration, (b) blood oxygen sat-
uration, (c) water concentration, and (d) scattering images of the 
same subject, reconstructed with the multispectral method. Reli-
able images were obtained compared with conventional DOT. 

b 1.17 was fxed according to bulk breast properties 
measured from frequency-domain data. 

Figure 11 illustrates the orientation of the recon-
structed images. The subject was a postmenopausal 
female with an invasive and in situ ductal carcinoma. 
Magnetic resonance imaging reported a mass of 2 cm 
in size in retroareolar (behind nipple) location where 
both DOT reconstruction methods indicate with high 
contrast in THC [Fig. 12(a) and Fig. 13(a)] and  s� 
[Fig. 12(d) and Fig. 13(d)] images. The two methods 
gave somewhat different images, however. The con-
ventional DOT reconstruction showed negative water 
concentration at the cancer site [Fig. 12(c)], which 
was probably compensated by a false increase in THC 
[Fig. 12(a)]. The multispectral method, on the other 
hand, provided a more robust water concentration 
within the physiological range [Fig. 13(c)] even 
though the measurement wavelengths in our system 
do not fall into the optimum wavelength group; i.e., 
the measurement wavelength set has low �	 36.8 
and low R 0.05 values. In total, the in vivo results 
provide evidence for the superiority of the multispec-
tral DOT approach. 

8. Summary 

We have presented and tested multispectral DOT in 
detail. The a priori spectral model constrains the im-
age reconstruction such that the number of un-
knowns stays constant even as the number of 
measurement wavelengths increases. We have 
shown that this technique can overcome the non-
uniqueness problem observed in cw measurements, 
and we have developed a procedure to choose the best 
measurement wavelengths. The effects of different 
wavelength choices on image reconstruction were 
demonstrated with computer simulations and were 
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shown to be consistent with our theoretical expecta-
tions. We have discussed the optimum wavelengths 
for different absorption chromophores and wave-
length combinations, and we have provided optimum 
wavelength distributions for typical experimental 
scenarios. 

We have also shown that reliable separation of 
scattering prefactor (A) and scattering power (b) is  
possible with improvements in the scaling of the in-
verse problem. However, cross talk was observed in 
simulations in which the scattering prefactor (A), 
scattering power (b), and absorption chromophores 
were all allowed to vary. Finally, in our preliminary 
in vivo experiments we have compared the tradi-
tional DOT image reconstruction with the multispec-
tral method. The former has shown comparatively 
improbable values for the water concentration that 
degrades the reliability of other chromophore concen-
tration values. 

We thank Joseph M. Giammarco for useful dis-
cussions and gratefully acknowledge funding from 
the National Institutes of Health grant 2-RO1-
CA75124-04. 
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