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A brief review of the underlying principles of diffusing-wave spectroscopy is given, and direct measurements 
of the path-dependent correlation funct10n are described. In addition we introduce expenments to probe 
pa rticle motion on very short length ( < 2A) and time ( < IO ns) scales. and discuss recent measurements 
of structure and difTusion in dense binary hard sphere fluids. 
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INTRODUCTION 

In this communication we discuss some exciting new developments connected with 
multiply scattered speckle fields and their use as probes of dense colloidal suspensions. 
Since our subject matter is quite different from the mainstream of topics covered in 
the Nonlinear Optical Symposium, 1 we will review the general principles of the new 
measurements. and then describe some related work from our laboratory. The goal 
of this paper is to provide a subjective snapshot of this growing field. Thus. our 
presentation is swift and informal. The interested reader can pursue details by follow
ing up on the references provided. 

The properties of multiply scattered light have been of interest to a broad range 
of scientists for well over a century. 2 ln physics we quite often find ourselves concerned 
with single-scattering problems for which the theoretical connection between measure
ment and material characteristics is relatively clear; multiple scattering is a nuisance. 
On the other hand a very large number of systems in nature scatter light many times. 
For example, multiple scattering is intimately tied to the white appearance of table 
salt, clouds, fog, and foam. The phenomenon affects our ability to image through 
biological tissue and transmit information through the atmosphere. Importantly 
(with respect to the present paper) this phenomenon also affects our ability to study 
dense solid, liquid, and gaseous dispersions. This is because the relevant length scales 
in these dispersions, such as particle size and interparticle spacing, are often compa
rable to the wavelength of light. 

In this paper we focus on a new spectroscopy that has been developed and applied 
to study the properties of optically dense colloidal suspensions. The technique, called 
diffusing-wave spectroscopy (DWS) is basically a class of dynamic, or quasi-elastic, 
light scattering (QELS) experiment that is applicable to systems that multiply scatter 
light. 3- 5 DWS is exciting for seyeral reasons. 

First, it offers the possibility to experiment with new systems. Progress in our 
understanding of dense colloids has lagged that of dilute colloids (at least in part) 
as a result of multiple scattering. With this new probe we can look fonvard to 
probing the dynamics of strongly interacting colloidal structures (e.g. volume 
fractions, ¢ > O. l ), and ultimately improving our understanding of the roles played 
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by Coulombic. steric. hydrodynamic. and hard-sphere interactions in producing 
these structures. 

Second. it turns out that one can use the probe to re-examine the Brownian 
dyn amics of a single isolated particle suspended in a fluid 6 on new length and time 
sca les. The key quantity of interest here is the average particle displacement, and 
its var!ation as a functi?n of time. The shortest length scal~s ~robed_ by single 
scattenn,g measurements ·9 are set by the wavelength of the incident light beam 
(- 5000 A). However. after a particle has moved 5000 A its diffusive motion is wel) 
established. The shortest length scales probed by the multiple scattering measurements 
a re set by the probe wavelength divided by the square root of the number of random 
walk steps taken by a typical photon diffusing through the medium. The number 
of random ~alk steps can be made verj' large enabling t~e _experimenter to study 
particle motions on length scales of~ 10 A and lower. In this time regime the particle 
motion is evolving from purely ballistic to diffusive behaviour. A full theory of this 
phenomena must directly couple particle motion to the hydrodynamic degrees of 
freedom of the surrounding fluid. 10 

Finally. the fluctuation and transport properties of multiply scattered light are 
interesting in their own right. There are a number of important problems in this area. 
We are particularly interested in understanding the breakdown of DWS as, for 
example. the number of scattering events decreases. In addition. we are trying to 
elucidate further the role of material structure in affecting the properties of the diffuse 
light fields. Problems of photon localization. 11 and speckle statistics12 are also related 
to the phenomena we discuss here. and have been the subject of intense effort recently . 

DIFFUSING-WAVE SPECTROSCOPY: BASIC IDEAS 

In this sect ion we derive the basic results needed to understand a DWS measurement. 
A typical sample in these experiments consists of a suspension of polystyrene spheres 
in water. The particles have diameters between~ 0.05 and - 3 µm, and for the purposes 
of this exposition we will assume they are hard spheres. The concentration. size, 
and refractive index of the spheres controls the scattering rate in our samples. 

Suppose we wish to investigate the Brownian dynamics of the particles in a dilute 
system. If the sample is dilute enough, a photon scatters on average less than once 
when traversing the medium, and we can perform a standard quasi-elastic light 
scattering (QELS) measurement.' -9 In this measurement the sample is illuminated 
with a monochromatic input light field possessing a well-defined propagation vector, 
k'". In the presence of this field each particle acts like a oscillating dipole, and thus 
radiates some output field. A detector located in the far field points toward the 
sample along a particular direction, and thus defines an output propagation vector, 
k 0 ut· In the case of quasi-elastic scattering, I k;n I = I kout I = k0, and the total field at 
the detector surface is a superposition of all radiated particle dipole fields. Since the 
particles move, the relative phase between individual fields changes in time. and the 
measured intensity fluctuates. 

Information about the sample is most easily obtained by measuring the temporal 
autocorrelation function of the scattered electric field. For independent particles 
undergoing Brownian motion it is easy to show7- 9 that this autocorrelation function 
dec-ays exponentially in time at a rate proportional to q2 (.1? ( r)) . Here (.1? ( r)) is the 
mean square particle displacement during the time interval r, and 
q = I k 0 u1 - k;0 I = 2k0sin( 8/2) is the scattering wavevector for the particular experi
men ta! geometry used ( 8 is the scattering angle.) One can learn considerably more 
about the suspension with this type of measurement, 7 but the main points we stress 
here ar.: that sampli: information is derived from the autocorrelation function of the 
sea ttered field, and that the fluctuation time that characterizes the decay of this field 
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correla tion function is equal to the time it takes a particle to move a distance - l iq . 
Note that l!q is of the order of the probe wavelength A. or larger. 

Diffusing-wave spectroscopy is also a quasi-elastic light scattering measurement. 
but under drastically different circumstances: (I) the particle concentration is made 
very large. and therefore (2) the light is multiply scattered. Incident photons diffuse 
through the dense colloid. hence the_ name 'diffusing-wave spectroscopy'. The 
experimental apparatus is fairly simple (see Figure l). A light field illuminates the 
front face of a cuvette of thickness L, containing a dense colloid. A complicated 
interference or speckle pattern is produced at the output plane of the cell. If the 
particle positions were fixed. then the speckle pattern would be static. but since the 
particles move. the pattern at the output face fluctuates in time. In our experiments 
we collect a single. diffraction limited output speckle. and measure its temporal 
correlation function. This is quite similar to the single scattering experiment. The 
major advance of DWS lies in the development of quantitative relations between 
the correlation functions of the multiply scattered speckle field and the density 
fluctuations within the sample. 

Laser Sample Photomultiplier Autocorrelator 

FIG U RE I Schematic of a typical DWS measurement. Light from a laser 1s directed onto a cuvette 
containing a dense colloidal suspension. Each photon travels through the sample along a complicated 
path. At the output face a portion of the emerging speckle field is directed onto a photomultiplier 
tube. and the mtensity autocorrelation function of the speckle is computed using standard photo n 
correlation electronics. 

In order to best understand these ideas it is useful to begin by considering the 
properties of an electric field produced by photons travelling along a single trajectory 
through the sample. The trajectory must begin at the point where we deposit our 
incident photons, and must end at our output collection point where the photons 
emerge. Microscopically one can envisage each photon travelling ballistically between 
particles. and experiencing changes in propagation direction after each scattering · 
event. Three important length scales characterize the photon transport in this 
picture: ( l) s, the total distance travelled by the photon; (2) /, the mean distance 
between particle encounters; and (3) t, the transport mean free path of the photon. 
The distance / is determined primarily by the total scattering cross-section and 
number density of the constituent particles. The transport mean free path, /", corre
sponds to the distance a photon travels in the media before its wavevector is completely 
randomized. Thus r is the random walk step-size for the diffusing photons; it depends 
primarily on/ and the differential scattering cross-section of the particle. For micro
meter size spheres, r is usually several times larger than / and ranges from - l O to 
> 100 µmin our experiments. The most probable total path-length, s. scales as (l1i(), 
and can be of the order of several centimeters for I mm-thick sample cells. 

This ray picture 13 works remarkably well in providing expressions for the field 
correlation functions. We now outline the basic steps in their derivations. First we 
assume that the photon experiences a momentum change q1 = k,.1- k1 as a result of 
scattering from the jth particle at position r1 in the sample. If there are N = sf I 
scattering events then we can write the phase of the electric field. £ 1 (t.s), along this 
trajectory as a product of phase factors for each scattering event, i.e. 

N 

E;(t, sJ - e-iwrn eiq1•r1u> 

J= I 
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The total speckle fields. Er(t), due to all paths of length s through the sample will 
be a sum of path-dependent fields of the form in Equation I. i.e. Er(l) = l, E,(t.s) . 
[nformation about the particle dynamics are derived from the path-dependent temporal 
autocorrelation function. g~( r) =(Er.(!+ r)Er(t) )/ ( I Er(!) I:). of the total speckle 
field. where( ... ) represent a time average. The problem is now formulated in a general 
way. and a number of simple assumptions enable us to calculate g\( r) . 

First we assume that the individual E,(t,s) are uncorrelated. This is not strictly 
correct. but the higher order corrections have been estimated by field theoretic 
methods 14 and are quite small for the experimental geometries used in typical DWs 
measurements. If. in addition. we assume that the particles are non-interacting, then 
we conclude that 

II/ 

S ( ) < -iwrn iq1•.1r,(r)) g I ! = e e one path . (2) 
)=I 

Here ilr} r) is the displacement of the jth particle during the time r. The product of 
phase shifts can be simplified dramatically if successive phase shifts along the trajectory 
are uncorrelated. Then we can replace the product of phase shifts wi th the average 
single particle phase shift raised to the power N. 

s _ -,wr[ 1q•.1r( r) ) ]·v 
gl (r) -e (e singleevent (3) 

The complicated problem has thus been reduced to a calculation of the average 
value of. e'49 .:i,1r,. for a 'typical particle' in the scattering pathway. However. q and 
.Jr( r) are different for each scattering event, and we must average over all allowed 
momentum transfers and particle displacements. Certainly q is no longer a quantity 
that is well defined by experimental geometry. To solve this problem we make the 
assumption that q and Llr( r) are independent variables. Again this assumption cannot 
strictly be true since we use a fixed input/output geometry for the photons. so that 
if the particles move, we effectively demand that the scattering q1s change too . 
However. one can again show by calculation 15 that for the present experiments the 
first order dynamical correction as a result of this breakdown is very small (essentially 
undetectable.) We further assume that the particle displacement is a centred, random 
Gaussian variable. and perform the Llr( r) average to obtain, 

s -iwr[( { 2( 2 )}) ]N g I ( f) = e exp -( l /6) q L1r ( 't') q. single event (4) 

In any practical DWS experiment the argument of the decaying exponential in 
Equation 4 will be ~ l/ N. Thus, it is reasonable to perform the q-average on only 
the first-order term in the expansion of the exponential, and we arrive at the funda
mental result for the path-dependent correlation function: 

s -iwr[ { ( 2)( 2 )}]N g 1 (r) = e exp -( 1/6) q L1r (r) (5) 

Here (q2 ) is the mean square scattering vector for a single scattering event in the 
sample. For independent particles it is straightforward to show that (q1-)= 2(k0)2 (/i() 
so that, 13 • 

(6) 

Notice that g~( r) decays by lie when the average particle displacement is~ )../(s/t) 1'2. 

All dynamic light scattering correlation functions decay in the time it takes the 
phase of the scattered field to chauge by ~ ;r. In single scattering experiments thili 
occurs when a typical particle position changes by liq(>).) along the direction defined 
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by q. In the multiple light scattering experiments this occurs when the total particle 
displacement projected along the direction of the output speckle wavevector changes 
by ~ A. Since the scattered photons encounter many particles before emerging from 
the sample. the distance that each particle must move is much less than A. Loosely 
speaking we can associate a phase sh_ift of ko-Jr( r) with each step in the photon 
random walk. Since the direction of ..lr( r) is random, the total phase shift along 
any particular direction will scale as the square root of the number of photon random 
walk steps. Equation 6 is a quantitative statement reflecting this simple idea. 

In practice the measured DWS correlation functions depart significantly from the 
result in Equation 5. This is because in a real experiment there are many photon 
pallzlengtlzs that contribute to the output speckle field. The distribution of pathlengths 
depends on details such as experimental geometry, absorption. etc. CW measurements 
are sensitive to the total electric field autocorrelation function, G1( r). which is 
computed by incoherently summing the contributions of each path-dependent g\( r ) 
\-1.eighted by P(s), the probability that a photon will travel a distances through the 
medium. i.e. 

For purely Brownian motion. (.1r( r)) = 6Dr where D is the particle self-diffusion 
constant. and we see from Equation 7 that G1( r) is the Laplace transform of P(s ) 
with appropriate scale factors. Using the diffusion equation one can calculate P(s) 
for various experimental geometries 13 ·16 such as plane-wave-in/point-source-out. or 
point-source-in/point-source-out. etc. In fact it is essential to incorporate the correct 
P(s) function or the estimated diffusion coefficients will be incorrect . \\/e note also 
that. in practice. the photon correlation experiments measure an intensity au to
correlat ion function, G:( r). rather than the field correlation function. and that the 
two are assumed to be related through the Siegert relation.9 G~( r) = l + /3 1 G1( r) :_ 

RECENT PROGRESS 

In this section we describe some results we have obtained in our laboratory. Once 
again our desire is to provide a flavour for the types of problems one can hope to 
address. Therefore many of the results are preliminary. We first discuss our direct 
measurements of the path-dependent correlation function, then we comment on 
some new experiments we are performing to measure particle displacements smaller 
than 2A, and finally we describe some work on interacting colloids. 

Direct Measurement of the Path-dependent Correlation Function 

In the previous section we derived a rather simple expression for the path-dependent 
speckle field correlation function g~( r). It is desirable to verify directly that Equation 6 
is correct. Until recently all DWS measurements have been made with cw laser~. so 
that it was essential to incorporate the proper functional form of P(s) in Equation 7 
in order to correctly interpret experimental results. We have developed a pulsed 
variant of the original DWS apparatus that enables us to verify directly the primary 
theoretical result of the original DWS theory (Equation 6), and ultimately sharpen 
the resolution of DWS by isolating the contributions of specific photon pathlengths 
to the autocorrelation function. 17 This method is discuised in detail elsewhere, i 7 so 
we will describe the basic ideas in words, and then point out our key results. 

Our experiment takes advantage of nonlinear optical gating in a qualitauvely new 
way. We employ a laser that emits a 100 MHz train of identical, temporally short 
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( ~ 90 ps, A= cdc = 1.06 µm) light pulses to irradiate our colloidal suspension. Any 
single pulse that is incident on the sample emerges from the sample with a considerably 
longer duration. The output sample pulse is 'stretched' in time, and its time averaged 
intensity profile has the same shape as the path-dependent probability function. P(s), 
1n Equation 7. The output sample pulse is then combined in a nonlinear crystal with 
a reference pulse derived from the same laser. As in all optical gating experiments, 
the re ference pulse remains temporally short. and its temporal delay with respect to 
the sa mple pulse is carefully controlled. A train of upconverted (second harmonic 
SH) pulses is produced in the nonlinear crystal and detected by a photomultiplie; 
tube. Ifs' is the difference in path-length between the reference and sample arms 
when the sample is removed, then each pulse within the SH train will have a field 
£(2w. r). proportional to the reference field. ER(t), and the path-dependent scattered 
field Eo(t.s'). When fluctuations in the reference field are negligible. ER(!)= ER, we 
have 

(8) 

In contrast to previous gating ex.periments 18 we now measure the temporal auto
correlation function of the upconverred photons. For most cases of interest, the time 
scale of the fluctuation in the phase of £ 0(t,s) is a much longer source repetition 
rate. and the duration of the stretched pulse is~ I Ox shorter than the laser repetition 
rate. Under these conditions the graininess of the sampling process is unimportant. 
and the autocorrelation function of the SH photons is given by 

g 1 (2w,r)-(E0 .(t+r.s)£0 (t.s))/(l£0 (t,s)l2)-g~(r), withs=s·. (9 ) 

Notice that the SH electric field will experience the same fluctuations due to particle 
motion as the scattered electric field for a single pathlength. By varying the pathlength 
difference, s'. between the sample and reference arms, the reference pulse ·gates' the 
electric field £0(1.s) so that only a very narrow range of photon paths centred about 
s = s' contribute to the fluctuations of the upconverted field (the actual range of 
paths is determined by the temporal width of the reference pulse.) The autocorrelation 
function of the SH field is simply the integrand of Equation 7 evaluated at the 
appropriate s. The temporal behaviour of the autocorrelation function no longer 
depends on the shape of P(s) and. for fixed s. a plot of ln[g 1(2w, r)J versus r directly 
yields the time dependence of (L\r( r) ). In DWS any process that affected P(s). such 
as the sample geometry or absorption. modified the temporal decay of the measured 
autocorrelation function. Since the pulsed method is insensitive to P(s) these types 
of problems are eliminated. 

An important additional feature of this scheme is that the dependence of the 
average SH intensity on the reference delays. is proportional to P(s). Thus we can 
directly measure P(s) for any geometry. By fitting the results to predictions of photon 
diffusion theory. we can experimentally determine /* and the sample absorption. 

The most important physical results of this work are shown in Figure 2. In the 
inset of Figure 2 we plot the log of the time varying part of a typical SH intensity 
autocorrelation function I g 1(2w. r) 12 versus r. The sample used in this case was a 
suspension of 0.460 µm d\ameter polystyrene spheres in water. The volume fraction 
of spheres was 0.3 and the sample thickness was 2 mm. The decay curves were taken 
at two delays: s = 7 cm, ands= 13 cm. In contrast to the DWS measurements these 
curves decay exponentially. This is the expected result when the particle is moving 
diffusively (see Equation 6.) 

Using this sample we performed similar measurements at other values of optical 
delay. The results of these experiments are sumarized in the main part of Figure 2. 
Herc we plot the slope, I'i. uf the In i g 1 (2w.,, j versus r curv~ as a funccion of s. 
Within the limitations of the apparatus the measurements corroborate the primary 



SPECKLE FLL:CTlJA TIO NS LiSED AS PROBES 

0.4 ---------...-------,,------"'T'---, 

0 .1 

0.0 

C 
-:. 0 . 10 
2S 

0.01 

0.0 

0 

. 
13cm 

4 

r(µs) 

4.0 

6 

s(cm) 

8.0 12.0 
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resul t of 0\\-'S. That is. the path-dependent electric field correlation function decays 
exponentially at a rate proportional to s. 

Very-Early Time Particle Diffusion 

It was pointed out above that one of the frontiers of DWS is its use as a probe of 
particle motion on very short length scales. This is possible because the correlation 
function (see Equation 6) decays by~ l/e when particles have moved a distance of 
- )./(s1() 1 :_ In principle we can make this distance smaller and smaller by using 
thicker and thicker sample cells until the particle no longer moves diffusively. Indeed 
a recent quantitative DWS experiment 19 has demonstrated that it is essential to 
incorporate a full hydrodynamic picture of particle interactions when considering 
particle motion in the non-diffusive regime (e.g. when ( .1r( r)) does not depend 
linearly on time.) Further work along these lines can be anticipated because these 
types of problems have not been studied quantitatively, and it appears highly desirable 
to push these measurements into shorter and shorter time regimes. 

All DWS measurements performed thus far have been carried out in time domain 
using standard photon correlation techniques. However, probing shorter and shorter 
time regimes becomes more difficult with photon correlation techniques since they 
are ultimately limited by the finite bandwidths of photomultiplier tubes and other 
detection electronics. On the other hand. no experiments have been reported which 
measure the fluct4ation spectra in the frequency domain. This is probably because 
of the difficulties that arise in inverting the data and then extracting meaningful 
information from the wings of the spectral lines. Thus. although one of the most 
important new physical applications of DWS is connected with trying to understand 
very early time Brownian mot-ion, to our knowledge all of the experimental efforts 
to push to shorter times have focused on using faster photon correlators. Presently 
the smallest bin width in a commercially available photon correlator is 12.5 ns. 

We have developed a 4ualitativdy different approach for measuring these corre
lation functions which can, in principle, enable the experimenter to study variations 
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in the correlation function on the femtosecond time-scale. ~0 Our approach combines 
diffusing-wave spectrosc~py with Michelson_interferometry. It is ~et one more appli
ca tion of the .Michelson interferometer, which appears to be quite practical in the 
context of DWS. and early time particle dynamics. In essence the experimenter 
measures the.field viszbility20·11 of the sample output speckle with a Michelson interfer
ometer. The measurement is in the time-domain where the connection to mean 
square particle displacement is clear. and. in addition, the measurement provides 
direct information on the more fundamental elecrricfieldcorrelation function. which 
is usually derived from intensity autocorrelation measurements using the Siegert 
relation. 4 We call the new method diffusing-wave interferometry (OWl)_:o 

Our current apparatus (a 2 m interferometer) enables us to probe particle motion 
on short length ( < 2 A) and time ( < l O ns) scales. In Figure 3 we show some preliminary 
results. Our sample consists of 0.205 µm-diameter polystyrene spheres in water. The 
volume fraction of the spheres is relatively low, q, = 0.03. but the sample is 5 cm 
thick so that out of 5 W of incident laser power at 5145 A. we collect only about 
200 photoelectrons per second. In Figure 3 we plot the root-mean-square particle 
displacement as a function of time. The data are obtained by using the interferometer 
to measure a correlation function of the form in Equation 7. and then inverting the 
data to find the best value of ( .1r2( r)). Notice that the particle has moved - 2 A 
after 10 ns. and that we can resolve substantial changes in the nature of the particle 
motion. The multiple scattering probe enables us to use -5000A light to observe 
- 2000 A diameter particles move less than 2 A! 

~-0 ,--------------------T , ! 
l.6 -~--~---: -f-r--~· 

~ I J .,.. ___________ .l _______ _ 
B • . f I f O 8 ' !_ t ~_i':_, ---------- ··-··-··--·· · 

0.4 ----,----r--I1-----------··------
u 
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FIGCRE 3 Root-mean-square particle displacement as a function of time for 0.205 ,um-diameter 
polystyrene spheres in water (4'1 = 0.03). The data were obtained by inverting the measured electric 
fie ld autocorrelation function (measured by DWl), and finding the value of the mean square 
displacement that gave the best fit to the measured correlation function. 

Although the data are still preliminary we note that in this regime one can study 
qualitatively new aspects of the Brownian motion problem. These aspects require a 
more complete understanding of the mechanisms by which the particle dynamics 
are coupled to the hydrodynamic degrees of freedom of the fluid. 10·22 For example, 
during a time-scale that is less than the i1uid viscous damping time. but greater than 
the time for sound to travel a particle diameter. the particle moves ballistically with 
a hydrodynamic effective mass that is different from the particle bare mass. We are 
involved in measurements to examine these and related issues experimentally for the 
first time. 
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Interacting Hard-Sphere Colloids 

Our new-found ability to study particle diff usio·n in dense colloids presents us wit h 
the possibility to understand the complex particle interactions that determine the 
properties of these systems. Our discus_sion thus far has basically ignored particle 
in teractions. but clearly it is important to begin to include the effects of material 
structure in our treatment of the multiply scattered light. The first work of this 
nature has been earned out in connection with monodisperse colloids.n24 We refer 
the reader to these papers and reference25 for the complete details of this formalism. 
Presently. we will qualitatively discuss the ideas that are involved, and then give 
some more complex examples from our laboratory which illustrate the full application 
of these theories. 

We measure two quantities in our experiments: f, the photon transport mean free 
path . and D, some effective particle diffusion constant . Generally. f depends only 
on interparticle structure. while the measured D will depend on interparticle structure 
and dynamics. Let us discuss /" first. Thus far we have treated I and r as parameters. 
The connection between / and r arises in a variety of random-walk problems such 
as the problem of directed polymers, and of course the diffusive transport of light. 
The common feature that emerges from all these treatments is that 

i" = ll( l -(cos9)). (10) 

In light scattering / is the mean distance travelled by the photon before it scatters 
from a particle. The evaluation of (cos 9) is harder. but we can easily understand 
its meaning in the context of dilute (but still multiply scattering) colloids. In this 
case we envisage the photon travelling relatively long distances ( ~ I 00 µm) before 
scattering from a single particle. The momentum transfer. q = I k0 u1 - k0 I= 2k0sin ( 012) . 
that accompanies each scattering event is well defined and we have 

. , ., , 
l = ll( 1-(cos 0)) = l/(2sin~(0/2)) = 2(k0 )~ l/(q·). 

The quantity (q2) is just the average value of q= for a given scattering event. This 
can be calculated by computing a weighted average q2, where the weighting factor 
is the form factor, F(q). of the particle. The form factor is obtained from Mie scat
tering theory. 2 

The next level of complication arises when we introduce short-range correlations 
into the colloidal suspension. In this case it is useful to imagine the photon travelling 
relatively long distances through the medium and then scattering from small correlated 
'groups' of particles. This picture is reasonable provided that the correlation length 
or size of each group of particles is small compared to / and t. If this is the case 
we arrive at essentially same result as in Equation l l, except now the q-average 
must be weighted by the product of the single particle form factor, F(q), and th~ 
material structure factor. S(q). Thus we see that the transport properties of light 
are related to the material structure, but it turns out that the explicit connection 
involves a q-average, and some informatron is lost (with respect to single scattering). 

The dynamical measurements amount to determining the initial decay rate or first 
cumulant of our electric field autocorrelation function. In single scattering experiments 
on non-interacting systems the initial decay rate directly gives the single particle 
self-diffusion coefficients. On .the other hand when the particles interact, even this 
diffusion constant can depend on q through the material structure factor S(q) as 
well as through the material hydrodynamic (q-dependent) factor, H(q).7·26 The DWS 
correlation functions provide q-averaged information on these quantities. For large 
particles the weighted averages can be particularly sensitive to the large-q value (i .e. 
essentially infinite-q) of these quantities. If the structure is not important (i.e. particle 
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interactions are weak) the measurements provide information on the free particle 
diffusion constants. 

Recent DWS experiments have focused primarily on the observation of 
concentration-dependent particle diffusion in monodisperse systems. 23 "4·17 We have 
been working on related problems in colloids composed of binary hard spheres. The 
asymmetric binary colloids present us with fundamental geometric questions about 
particle packing and interparticle forces. In contrast to the uniform dispersions, the 
interparticle forces in binary colloids depend on the relative sizes and concentrations 
of the constituent particles. This extra degree of freedom produces a much richer 
variety of phases and phenomena. 27- 30 As a first step towards addressing these issues 
we have undertaken a systematic study of the diffusion and structure of binary hard
sphere colloids. Our work aims toward extending DWS to even more complex 
systems. Below we describe some preliminary results on structure and dynamics in 
these novel systems. 

The experimental apparatus we use is basically the same as in Figure 1. Samples 
of 1 mm or 0.5 mm thick cuvettes are illuminated from one side by the 514 nm line 
of a cw Ar-ion laser, and the intensity fluctuations of a single speckle are monitored. 
We measure r by comparing the average transmitted intensity to values obtained 
from well-understood monodisperse samples, and we extract an effective diffusion 
constant D.rr from the first cumulant of the intensity autocorrelation function decay 
curve. Measurements are made on mixtures of polystyrene spheres with different 
particle diameters. In each experiment the volume fraction of large spheres ( <Pt_) is 
held constant and the volume fraction of small spheres ( ~) is increased from zero 
to about 0.3. 

In Figure 4 we plot the reciprocal of the measured transport mean free path as 
a function of small sphere volume fraction for two different hard sphere systems. 
The solid lines are the predicted variation derived using structure factors, S(q), fr om 
Percus-Yevick (PY) theory. 31 The dashed lines are derived from essentially the same 
theory. except we ignore structural interactions between unlike spheres. The ratio of 
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FIGURE 4 The inverse photon mean free path is plotted against volume fraction of small spheres for 
two systems. In (a) the volume fraction of t~e 2.0 ,um-diameter large spheres is fixed at 0.10. and the 
0.625 µm-diameter small sphere volume fraction is varied. The data almost fall on a straight line as 
expected in the absence of interparticle interactions. In (b) the large spheres (diameter= 0.205 µm
diameter) occupy a volume fraction of 0.045 while the volume fraction of small spheres 
(c'. :ameter = 0.065 ~.m) is varied. i-l~re w~ sec the effects of interparticl~ struccure which cause the graph 
to slope downwards; a non-interacting theory would predict a straight line with a positive slope. 
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ball diameters in the two experiments is the same ( ~ 3). In a first approximation l/ r 
should vary linearly with the scatterer number density. Deviations from simple lines 
are a result of particle ordering (S(q)). which decrease the optical resistance. We see 
that the large particle system (Figure 4(a)) basically follows these trends. However, 
the simple ideas break down significantly in the small particle system ( Figure 4(b)). 
Physically this phenomena is most apparent when the probe wavelength is larger 
than the small sphere diameter. Notice. however. that the exact theory. which includes 
correlations between unlike spheres still predicts the data correctly. The striking 
agreement between theory and experiment gives us confidence that DWS can indeed 
be used as a sensitive probe of interparticle structure. 

Our results on particle diffusion are more difficult to describe without a substantial 
digression. Nevertheless, these aspects of our experiments are also quite promising. 
In Figure 5 the effective diffusion constant is plotted as a function of a small sphere 
vo lume fraction in the large particle system. It is possible to show that Derr is a 
weighted average of the diffusion constants for each sphere . In the high-q limit one 
can derive,1·33 an exact expression (to first order in particle volume fraction) for 
Derr· This theory predicts the variation of the solid line in Figure 5. Theories that 
ignore hydrodynamic coupling between unlike spheres (dashed line). and all spheres 
(dotted line) are also shown for comparison. With these experiments we are able 
to test the hydrodynamic coupling coefficients in the theory of unlike spheres for 
the first time. 

3 
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FIGURE S The measured diffusion constant. for the 2.00/0.625 µm-diameter system in Figure 4(a). 
nonnalizcd by its vah1c for a system with no small spheres, shows the sensitivity of DWS to 
interparticle interactions. The solid line is a theory which includes tbose interactions. The dashed line 
includes only interactions between particles of the same size. The dotted line ignores all interpart icle 
interactions. 

CONCLUSIONS' 

We have discussed the method of diffusing-wave spectroscopy in some detail, and 
we have tried to demonstrate its utility as a new probe of dense colloidal suspensions 
with examples from our laboratory. Many interesting experiments remain. Most 
work up to now has centred on colloidal suspensions, but recently the methods have 
bcl!u extended to foams. l4 It appears the 5eld will co:itinue to be fruitful and exciting 
for years to come. 
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