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Abstract. Diffuse optical tomography (DOT) has been employed to derive spatial maps of physiologically important 
chromophores in the human breast, but the fidelity of these images is often compromised by boundary effects such 
as those due to the chest wall. We explore the image quality in fast, data-intensive analytic and algebraic linear 
DOT reconstructions of phantoms with subcentimeter target features and large absorptive regions mimicking the 
chest wall. Experiments demonstrate that the chest wall phantom can introduce severe image artifacts. We then 
show how these artifacts can be mitigated by exclusion of data affected by the chest wall. We also introduce and 
demonstrate a linear algebraic reconstruction method well suited for very large data sets in the presence of a chest 
wall. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.2.026016] 
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1 Introduction 
Diffuse optical tomography (DOT) employs near-infrared light 
to probe the optical properties of highly scattering biological 
tissues.1–3 DOT has shown promise in breast cancer imag-
ing4–15 because optical methods are sensitive to changes in 
physiological parameters such as blood volume and tissue oxy-
genation, alterations of which are biomarkers for cancer and 
other disease processes. Typical source-detector arrangements 
in DOT include the ring16 and slab14,17,18 geometries. In the latter 
case, both transmission14 and reflection19 measurements have 
been used, though transmission measurements provide more 
sensitivity for deep tissues since the detected light in this geom-
etry is more likely to travel through all areas of interest. 
Recently, it has been demonstrated that the image quality in 
DOT,20–22 and in other imaging modalities such as inverse dif-
fraction,23 can be significantly improved by utilization of large 
data sets in the reconstruction. The plane-parallel transmission 
geometry is particularly well suited for utilization of larger data 
sets, because it offers the possibility of noncontact scanning 
methods20,24–27 wherein a computer-controlled beam scanner 
on one side of the sample is used for illumination and a mega-
pixel charge coupled device (CCD) camera is used for detection. 
A characteristic feature of noncontact scanning is the availability 
of very large data sets with up to ∼109 independent measure-
ments, e.g., with ∼103 source positions and ∼106 CCD pixels 
per source. Naturally, utilization of data sets consisting of more 
than ∼105 independent measurements presents a serious com-
putational challenge. For this reason, we developed fast algo-
rithms capable of reconstructing very large data sets in 
simple imaging geometries (including the slab).28–32 

Numerical simulations29 have demonstrated the full potential 
of these methods, but the simulations also indicate that large 

imaging windows are required. To obtain optimum resolution, 
for example, the dimensions on both sides of the slab where 
sources and detectors are scanned should be larger by a factor 
of about 3 in both transverse directions compared to the slab 
width, but in practice, a somewhat smaller ratio is expected 
to be sufficient due to the presence of experimental noise and 
other imaging system imperfections.20,21 

Unfortunately, in clinical breast imaging, the large windows 
described above are not achievable due to physical limitations 
imposed by the chest wall, and its consequences in DOT are 
poorly understood. To address this problem, we employ engi-
neered phantoms to study the effects of the chest wall on 
image reconstruction. These tissue phantoms are similar to 
many that have been employed with success in the DOT com-
munity for preclinical, in vitro investigations to ascertain the 
utility and limitations of various image reconstruction 
schemes.7,33,34 One advantage of phantom experiments is that 
we can compare reconstructions obtained under similar condi-
tions but with different imaging windows, some of which would 
be physically unavailable in vivo. Based on these experimental 
results, we discuss and compare two approaches for reconstruct-
ing large data sets under the condition that the large imaging 
windows, which are required by the methods of Refs. 28 
through 32, are unavailable; we then explore methods to amelio-
rate the chest wall effects. 

The main conclusion of this paper is that both the analytical 
and algebraic data-intensive linearized image reconstruction 
methods can produce reasonable results, provided the data 
points are appropriately restricted to exclude measurements 
that are strongly influenced by the chest wall. Under these con-
ditions, an absorbing target with subcentimeter features can be 
clearly reconstructed in the middle of a 6 cm slab, even when the 
chest wall is only 2 cm from the target. We obtain good images 
of the target even in the presence of a large chest wall phantom 
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that introduces significant nonlinearities into the inverse prob-
lem due to its larger absorption coefficient compared to the 
background as well as due to its size. Moreover, we discovered 
a data restriction condition such that the presence of the chest 
wall phantom imposes minimal artifacts or distortions in the 
image. The performance of both algebraic and analytic image 
reconstruction methods were compared under this condition 
and, while neither method is perfect, we believe that a role 
for both methods in DOT exists, the choice depending upon 
the particular clinical application. 

The reminder of this paper is organized as follows. In Sec. 2, 
we describe the experimental set up. Section 3 contains details 
of the image reconstruction methods. Section 4 explains our 
approach to data restriction. Section 5 presents the results and 
Sec. 6 contains a brief summary. 

2 Experiment 
The experimental apparatus is shown schematically in Fig. 1. 
Briefly, a collimated continuous-wave (CW) 785 nm laser 
diode is coupled to a two-dimensional galvanometer scanner 
(Thorlabs GVS012). The laser beam with a focused spot size 
of 0.5 mm is raster scanned on a 35 × 35 square grid with a 
4 mm spacing covering a 13.6 × 13.6 cm2 area on one side of 
the imaging tank (whose overall dimensions are 44 × 44 × 
6 cm3). The thickness of the tank was chosen to be close to 
the average compression used in our previous clinical studies 
based on diffuse optical tomography.7,14 As each source position 
is illuminated, data is collected from the opposite side of the 
tank over a 21.2 × 21.2 cm2 field of view (FOV) area with a 
CCD camera (Andor, DV887ECS-UV, lens 25 mm F/0.95). 
The FOV was mapped to the grid of 512 × 512 CCD pixels. 
This corresponds to a rectangular grid on the surface of the 
tank with the spacing p ¼ 0.416 mm. 

A bar target is suspended in the mid-plane of the tank 
(3 cm from either surface) using monofilament fishing line. 
The target is made of silicon rubber (RTV-12, General 
Electric), titanium oxide (T-8141, Sigma-Aldrich) and carbon 
black (Raven 5000 Ultra Powder II), with the absorption coef-
ficient μa ¼ 0.2 cm−1 and the reduced scattering coefficient 
μ 0 s ¼ 7.5 cm−1 . The tank is filled with a scattering fluid (μa ¼ 
0.05 cm−1 and μ 0 s ¼ 7.5 cm−1); these background optical prop-
erties are similar to those used in previous in vitro and clinical 
research. The contrast between the target and the surrounding 
fluid is purely absorptive with the ratio of about 4. 

A chest wall phantom (Biomimic, INO μa ¼ 0.1 cm−1 and 
μ 0 s ¼ 5.0 cm−1 , dimensions 40 × 20 × 5.8 cm3) is suspended at 
various distances d from the top edge of the bar target (d ¼ 2, 5,  

8, 11, 14, 17 cm). The optical properties of the chest wall phan-
tom were chosen to mimic muscle tissue.35–37 Thus both absorp-
tive and scattering contrast exists between the chest wall 
phantom and the background fluid. The bar target and the 
chest wall phantom are shown in Fig. 2. Note that the chest 
wall phantom almost entirely fills the imaging tank; the clear-
ance between the chest wall phantom and the inner surfaces of 
the tank is 1 mm on both sides. 

3 Image Reconstruction 

3.1 Linearized Integral Equations 

This research employs linear image reconstruction methods 
and CW data. In principle, one could also resort to 
time-38–43 or frequency-resolved44–47 measurements and non-
linear reconstruction methods1,31 to obtain a reconstruction 
of the target and the chest wall phantom simultaneously; how-
ever, these approaches require more expensive and complex 
instrumentation, as well as more time-consuming computa-
tional schemes. For our linear approach, two independent 
measurements of the transmitted intensity are taken, one in 
a homogeneous (reference) slab and the other in a slab with 
the target and the chest wall phantom present. We denote 
these measurements by I0ðrd; rsÞ and Iðrd; rsÞ, respectively,  
where rd and rs are the two-dimensional vectors specifying 
the lateral positions of the detector and the source on the 
respective surfaces of the tank. In this work, I0 and I are 
expressed in CCD counts. These measurements can be related 
to the medium optical properties through the relations: 

Iðrd; rsÞ ¼ AðrdÞBðrsÞGðrd; rsÞ; 
I0ðrd; rsÞ ¼ AðrdÞBðrsÞG0ðrd; rsÞ: (1) 

Here AðrdÞ and BðrsÞ are unknown coupling coefficients 
associated with the source and detection system which can 
be excluded from consideration as described below. Gðrd; rsÞ 
and G0ðrd; rsÞ are the Green’s functions for the diffusion 
equation in the slab with the inhomogeneities present and in 
the homogeneous (reference) slab, respectively. The latter is 
known analytically.32 The two Green’s functions are math-
ematically related by the Dyson equation. Under the assump-
tion that the scattering properties of the medium are spatially 
uniform, the Dyson equation has the form 

Fig. 1 Schematic of the experimental setup. A collimated CW 785 nm 
laser source at is raster scanned on one side of the imaging tank. The 
transmitted light on the detection plane is collected by a CCD for each 
source position. 

Fig. 2 Phantoms used in the experiment. (a) 6 mm thick bar target with 
μa ¼ 0.2 cm−1 and μ 0 s ¼ 7.5 cm−1 has slots 48 mm tall and 9 mm wide. 
The outer dimensions are 60 × 50 mm2 . (b) The chest wall phantom 
with μa ¼ 0.1 cm−1 and μ 0 

s ¼ 5.0 cm−1 . 
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Gðrd; rsÞ ¼ G0ðrd; rsÞ− 
Z 

V 
G0ðrd; rÞδαðrÞGðr; rsÞd3r: (2) 

Here the integral is taken over the volume of the slab and 
δαðrÞ ¼ c½μaðrÞ − μa0 is the deviation of the absorption coef-
ficient at a given point from the background value cμa0, where  
c is the average speed of light in the medium. 

The procedure of linearization consists of making an 
approximation to Eq. (2) so as to exclude the unknown function 
Gðr; rsÞ from the right-hand side. In the first Rytov approxima-
tion,48 Eq. (2) is rewritten as 

Gðrd; rsÞ 

¼ G0ðrd; rsÞ exp − 
Z 

V 

G0ðrd; rÞδαðrÞGðr; rsÞd3r 
G0ðrd; rsÞ 

: (3) 

Consequently, we define the data function ϕðrd; rsÞ according to 

ϕðrd; rsÞ ¼ −G0ðrd; rsÞ ln 
Iðrd; rsÞ 
I0ðrd; rsÞ 

(4) 

and use Eq. (3) to obtain an integral equation of the form Z 

V 
G0ðrd; rÞδαðrÞG0ðr; rsÞd3r ¼ ϕðrd; rsÞ: (5) 

Here the right-hand side contains the measurable data function, 
and the left-hand side is an integral transform of the contrast 
whose kernel is known analytically. This formulation of the lin-
earized inverse problem of DOT is standard.48 The Green’s func-
tion G0ðr; r 0Þ, which enters Eq. (5), is defined in Ref. 32. 

3.2 Analytical Reconstruction Method 

This method is described in detail in Ref. 32. Its applications to 
the slab geometry with experimental data have been reported in 
Refs. 20 and 21. The method requires the Fourier transform of 
the data function ϕðrd; rsÞ with respect to both variables. 
To obtain this Fourier transform, the data function must be mea-
sured over sufficiently large areas so that the integrals involved 
(approximated by sums in practical implementations) have con-
verged. This requirement translates into the need for sufficiently 
large imaging windows that was discussed above. 

In our experiments, some data points are strongly affected by 
the presence of the chest wall. The actual source and detector 
positions for the affected data points depend on the separation 
d between the chest wall and the top of the bar target. At the two 
smallest separations (d ¼ 2 cm  and 5 cm), contamination of the 
data function by the chest wall is significant. Under these cir-
cumstances, two approaches for data analysis are natural to 
consider: 

1. Use all data points available (i.e., in a wide window on 
both sides of the slab). This scheme will include, in 
some cases, data points strongly affected by the 
presence of the chest wall. In this case, the analytical 
image reconstruction algorithm is applied as intended 
by mathematical design, i.e., without additional 
approximations. However, the strong nonlinearity 
of the inverse problem due to the presence of the 
chest wall phantom renders the underlying first 
Rytov approximation invalid. This, in turn, results 
in poor-quality reconstructions or inability to 

reconstruct the target at all. From the practical point 
of view, this approach is simply not feasible in vivo 
because the data, which are collected in our experi-
ment over large windows, are physically unavailable 
in the case of a real chest wall. 

2. Truncate the data function by replacing data points, 
which are either deemed as physically unavailable 
in vivo or as too badly contaminated by the presence 
of the chest wall, with zeroes. This is equivalent to 
replacing a subset of optical measurements obtained 
in the heterogeneous medium with the respective mea-
surements obtained in the homogeneous (reference) 
medium. Approach 2 is numerically efficient and 
directly applicable in vivo. In fact, we will demonstrate 
below that it produces images of reasonable quality, 
i.e., of much better quality than approach 1. 
However, the additional approximation involved in 
this approach results in the appearance of image arti-
facts that are poorly controlled and may be viewed as 
undesirable. 

Note that in the implementation of the analytical method, we 
have followed closely Ref. 21 with some minor modifications. 
Thus, as in Ref. 21, we have used the change of variables 
ψðq; pÞ ¼  ̃ϕðq þ p; −pÞ, where ϕ̃ðqd; qsÞ is the Fourier trans-
form of the data function defined in Eq. (4). Here we use a “sym-
metric version” in which ψðq; pÞ ¼  ̃ϕðq∕2 þ p; q∕2 − pÞ. The 
variables p and q were sampled as follows: qij ¼ Δðix̂ þ jŷÞ, 
pkl ¼ Δðkx̂ þ lŷÞ, where Δ ¼ 2π∕ð331 × pÞ, −28 ≤ i; j ≤ 28 
and 0 ≤ k, l ≤ 6. This corresponds to using 572 ¼ 3249 “exter-
nal” degrees of freedom and 72 ¼ 49 “internal” degrees of free-
dom, where the terminology of Ref. 32 has been used, or a total 
of 49 × 3249 ≃ 1.6 × 105 independent Fourier-space data 
points. Using these parameters, the necessary computations 
require 7 × 109 floating point operations. On an Intel Core 2 
Duo processor this translates into 7 min of computation time. 

3.3 Algebraic Reconstruction Method 

Algebraic image reconstruction methods are obtained by discre-
tization of the volume integral in Eq. (5) and computation of the 
pseudo-inverse for the obtained system of linearized equa-
tions.49 This method does not require large windows and can 
be used with any data restriction. In terms of the two approaches 
1 and 2 described in Sec. 3.2, approach 2 does not involve, in 
the case of the algebraic method, any assumptions about the 
discarded data points, while, in the analytical reconstruction 
method, it is assumed that these data points are zero. On the 
other hand, the algebraic method requires explicit volume dis-
cretization in terms of voxels, while the analytical method 
allows one to reconstruct the target on any grid without 
much additional effort and is not dependent in any way on vol-
ume discretization. 

For the purpose of obtaining algebraic reconstructions, the 
reconstructed volume was divided into cubic voxels. The 
voxel size h was taken to be equal to 8 CCD pixels p. Thus, 
h ¼ 8 × 0.416 mm ≃ 3.3 mm. The grid consisted of 41 × 41 
voxels in the lateral direction and 17 voxels in the depth direc-
tion. Therefore, the discretized volume was a parallelepiped 
with the dimensions 13.6 × 13.6 × 4.3 cm3 consisting of 
N ¼ 21853 voxels. This parallelepiped was positioned from 
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each surface of the slab. The target was situated approximately 
in the middle of the discretized volume. 

The discretization described above, and the approximation of 
the integral in Eq. (5) with a Riemann sum, results in a system of 
algebraic equations Ax ¼ b where Amn is the M × N weight 
matrix, where M is the number of distinct source-detector 
pairs, N is the number of voxels, xn ¼ δαðrnÞ∕α0 is the vector 
of dimensionless contrast (n ¼ 1; : : : ; N) and bm is the m-th data 
point (m ¼ 1; : : : ;M). The equations are cast in dimensionless 
form by defining a dimensionless Green’s functions according 
to G̃0ðr; r 0Þ ¼ D0hG0ðr; r 0Þ, where D0 is the diffusion coeffi-
cient in the Intralipid solution. Then we have 

Amn ¼ ðkdhÞ2 G̃0ðrdm; rnÞG̃0ðrn; rsmÞ; 

bm ¼ − ̃G0ðrdm; rsmÞ ln 
Iðrdm; rsmÞ 
I0ðrdm; rsmÞ 

: 
(6) 

Here kd ¼ 
ffiffiffiffiffiffiffiffiffiffiffiffiffi 
α0∕D0

p 
, rn is the position of the center of the n-th 

voxel while rdm, rsm are the detector and the source positions of 
the m-th data point used in the reconstruction. 

The pseudoinverse solution to the above system of equations 
is defined as the unique solution to the system ðA Aþ
 2IÞx ¼ A b, where   is the regularization parameter and I is 
the identity matrix. In our experiments, the number of measure-
ments M is much larger than the number of voxels N (e.g., M ∼ 
107 and N ∼ 104). Correspondingly, the most time consuming 
part of finding the pseudoinverse (at least, in the numerical 
approach used by us) is the computation of the matrix product 
A A. In the most challenging case considered, we have used 
M ¼ 2 × 107 and N ¼ 2 × 104, which requires 8 × 1015 floating 
point operations. On an 8-core Xeon workstation with the peak 
performance of 56 GFlops, this translates into 40 h of compu-
tation time. However, this time-consuming procedure must be 
repeated only once for a given source-detector arrangement 
and given optical properties of the background medium 
(Intralipid). The latter did not change in the experiments 
reported in this paper. Thus, the resultant matrix A A, once 
computed, was stored on a hard drive and re-used for image 
reconstruction with each new data set obtained, e.g., for various 
positions of the chest wall phantom. Note that computation of 
the projection, that is, of the N-component vector A b involves 
only one matrix-vector multiplication and its computational cost 
is insignificant. 

The computation of A A can be greatly accelerated by the use 
of the method proposed in Ref. 50. In this approach, the detec-
tors are sampled for the purpose of computing the product A A, 
but not for computing the projection A b. In this way, the num-
ber of data points and the voxels used is not reduced but the 
computation time is shortened dramatically with no or minimal 
effects on the image quality. Indeed, we have verified that A A 
can be computed by using the method in Ref. 50 in about 2 h 
with very minimal degradation of image quality. However, 
the questions of computational efficiency are largely outside 
of the scope of this paper, and we will adduce, therefore, 
only the images obtained by computing A A without additional 
approximations. Note that the matrix A A is small enough to be 
diagonalized; its eigenvectors and eigenvalues can be also stored 
on a hard drive for future use. However, in this study, we have 
solved the equation ðA A þ  2IÞx ¼ A b directly by the conju-
gate-gradient descent method. 

An additional feature of the algebraic method described here 
is that it does not require that the set of detectors used be 

independent of the position of the source. We have taken advan-
tage of this feature and have excluded the data points that are 
very far off-axis. Specifically, for each source, we have used 
only such detectors that are situated no further from the axis 
of the source than a given radius R. We have used 
R ¼ 6.25 cm, so that R is slightly larger than the width of 
the slab (6 cm). The justification for discarding the strongly 
off-axis data points is that these measurements contain predomi-
nantly noise. 

3.4 Medium Parameters Used in the Reconstructions 

To perform quantitative reconstruction of the contrast, a few 
additional parameters must be specified. These parameters 
have been obtained by fitting the transmission function 
I0ðrd; rsÞ in the homogeneous (reference) medium to the ana-
lytical prediction of the diffusion theory. The diffuse wave num-
ber kd was found to be equal to 0.72 cm−1 . We note that the 
numerical value of D0 is not needed for the reconstructions 
as long as we are interested in the dimensionless relative contrast 
xðrÞ ¼ δαðrÞ∕α0. An additional parameter that enters the 
expression for G0ðr; r 0Þ is the extrapolation distance l associ-
ated with the diffuse-nondiffuse boundary condition. The latter 
was found to be equal to 0.83 mm. 

4 Data Restriction 
The rejection of the datapoints deemed unreliable or too noisy is 
an established practice in DOT.51–54 Here this data restriction 
methodology is used in a somewhat different context and 
with a somewhat different goal compared to previous work. 
In the usual approach, data points are rejected based on an a 
priori knowledge or a statistical model for the target without 
specific regard for the location of the rejected source-detector 
pairs. Here we reject certain data points based solely on their 
location. Our purpose is not to suppress noise, but rather to 
investigate the reconstruction effects of the imaging window 
restriction and the proximity of the chest wall phantom to the 
target. In particular, we are posing the following question: 
how close the sources and detectors can be placed to a chest 
wall to guarantee that the reconstruction of the target is not sig-
nificantly distorted or contaminated by the latter. 

As discussed above, we denote the distance between the top 
of the bar target and the bottom of the chest wall phantom by d. 
We have collected the data for d ¼ 2, 5, 8, 11, 14, and 17 cm. 
The various data sets are graphically illustrated in Fig. 3. In par-
ticular, in Fig. 3(c), we show with red lines the positions of the 
lower edge of the chest wall phantom that correspond to differ-
ent values of d and fall within the CCD FOV; these include 
d ¼ 8, 5, and 3 cm. In this figure, the positions of sources 
are shown by red dots. The drawing is to scale and a sample 
reconstruction is superimposed with the drawing to indicate 
the target shape and position. The larger, dark blue square cor-
responds to the FOV of the CCD camera. 

The maximum available number of independent source-
detector pairs is ð512 × 35Þ2 ≃ 3.2 × 108 . As discussed below, 
only a fraction of this data set was used in the reconstructions. 
Some data points have been eliminated by “windowing” (in the 
algebraic image reconstruction), other data points were 
eliminated by sampling of the detectors (in the algebraic recon-
structions, every second detector was used and), and yet other 
data points have been eliminated by numerical data restriction, 
which is described below in this section. The maximum data 
set used in algebraic reconstruction consisted of ≃ 2 × 107 
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measurements; see more detailed information for various data 
restrictions in Table 1 below. 

We now discuss the data restriction. The latter was accom-
plished by removing all sources and detectors situated above one 
of the green lines shown in Fig. 3(c). In the case of algebraic 
reconstruction, these sources and detectors were simply not 
used, which did not amount to any additional approximation. 
In the case of the analytical reconstruction, it was assumed 
that the corresponding source-detector pairs produced zero 
data points bm (not zero intensity). The different data restrictions 
used are quantified as follows. There are 35 rows of sources. 
We define the quantity NR (Numerical data Restriction) as 
the number of the source row (counting from top to bottom) 
above which no sources and/or detectors are included in the 
reconstruction. Thus, if NR ¼ 5, the data are restricted to 
sources and detectors lying at the level of the fifth source 
row and below it. For example, NR ¼ 5 excludes the four top-
most lines of sources and all detectors that lie above the fifth line 
of sources. In the reconstructions, we have used NR ¼ 5, 8, 9,  
10 and, for each value of NR, we have performed image 
reconstruction with all available values of d. Table 1 summarizes 
the subsets of data used for each value of NR. 

5 Results 
The quantity plotted in all figures of this section is 
xðrÞ þ 1 ¼ αðrÞ∕α0. From physical considerations, this func-
tion is nonnegative, since the medium is not amplifying. 
However, the image reconstruction reported here utilizes various 

approximations. This can result in reconstructing unphysical 
negative values of absorption, which are shown in the figures 
by the color black (the same color scale is used throughout). 
We note that the occurrence of negative absorption can be 
avoided by making use of a positivity constraint in the algebraic 
reconstruction method. The positivity constraint can be incorpo-
rated in the conjugate-gradient descent algorithm, which was 
used by us to invert the matrix A A. However, we have 
found that the areas of negative absorption appear mostly in 
the case of the analytic (fast) image reconstruction method, 
which cannot incorporate the positivity constraint. On the 
other hand, the algebraic reconstructions have produced either 
no areas of negative absorption, or artifacts so severe (e.g., when 
d ¼ 2 cm  and no numerical data restriction) that the use of the 
positivity constraint was not useful. In other words, we did not 
encounter a situation in which the positivity constraint was 
simultaneously numerically feasible and useful; therefore, it 
has not been used for producing the images shown in this 
section. 

Reconstructions of the central slice of the medium (3 cm 
from either of the slab surfaces) obtained with varying values 
of d and various numerical data restriction (NR) are shown 
in Fig. 4. It can be seen in Fig. 4(a) that the analytical inversion 
with no data restriction (the topmost row of images) produces 
severe image artifacts when chest wall is d ¼ 2 cm  and 
d ¼ 5 cm  away from the target. Data restriction with NR ¼ 5 
results in a reasonable, yet suboptimal, image quality when 
d ¼ 5 cm, but not when d ¼ 2 cm. To remove the artifacts asso-
ciated with the chest wall completely, NR ¼ 10 is required. 

However, NR ¼ 8, 9, 10 used in conjunction with the ana-
lytical reconstruction yields an additional image artifact, which 
is unrelated to the chest wall phantom. To see that this is true, 
consider the images for d ¼ 17 cm, which are not affected at all 
by the chest wall phantom, yet exhibit the additional artifact just 
mentioned. This artifact is shown as a black area where the 
reconstructed absorption coefficient is negative and, therefore, 
outside of the physically allowable range. We thus conclude 
that reconstructing the target by the analytical reconstruction 
method is feasible with the use of the appropriate data restric-
tion, yet it results in an additional image artifact where the 
absorption in underestimated. 

The appearance of this artifact can be understood. As men-
tioned above, the data restriction used with the analytical 

Fig. 3 Models for data restriction. (a) Photograph of the drained imaging tank illustrating the position the target with respect to the chest wall phantom. 
(b) Schematic of the imaging tank. (c) Illustration of the various data sets used in the reconstructions. The dark blue square is the CCD FOV while the 
inner light blue square indicates the reconstruction region. The red dots indicate the source positions. A sample reconstruction is superimposed with the 
drawing to illustrate the target shape and position. The red lines indicate the three lowest position of the chest wall phantom (other positions are outside 
of the CCD FOV) while the green lines illustrate the restricted data sets where all the sources and detectors situated above a given green line have been 
discarded. 

Table 1 Data restriction sizes. 

Numerical data 
restriction (NR) 

Number of 
sources 

Number of distinct 
source-detector pairs 

No restriction 35 × 35 ¼ 1225 20591492 

5 35 × 31 ¼ 1085 16479152 

8 35 × 28 ¼ 980 14661145 

9 35 × 27 ¼ 945 14074728 

10 35 × 26 ¼ 910 13457507 
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Fig. 4 Images of the central slice obtained by analytical (a) and algebraic (b) reconstruction methods. Different columns show data obtained with 
the chest wall phantoms at different distances d from the bar target. Different rows of images correspond to different data restrictions NR, as indicated. 
The color bar applies to all other images shown below. 
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Fig. 5 Slices through the medium drawn at different depths (from the plane of sources) as indicated. Analytical image reconstruction method with 
d ¼ 5 cm and d ¼ 2 cm. 
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Fig. 6 Same as in Fig. 5 but obtained by algebraic reconstruction. 
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reconstruction amounts to assuming that the truncated data 
points are zero. In other words, we assume that, in the presence 
of the target, the truncated source-detector pairs would have 
measured the same intensity as in the homogeneous slab, so 
that Iðrd; rsÞ ¼ I0ðrd; rsÞ for the truncated source-detector 
pairs [see Eq. (4)]. The reconstruction algorithm seeks a contrast 
function δαðrÞ, which is compatible with this assumption. For a 
purely absorbing target, however, the actual intensity Iðrd; rsÞ is 
smaller than I0ðrd; rsÞ when at least one of the points rd, rs is 
located not too far from the target (in the lateral direction) due 
to increased optical absorption. Whenever such data points are 
discarded, an artifact with negative δα is produced by the 
reconstruction algorithm to compensate for the absorption in 
the target. It can be seen that this artifact is located between 
the target and the region of source-detector pairs, which have 
been discarded. Of course, this analysis applies to the case 
when the position and optical contrast of the target is known. 
In general, it may be difficult to predict the position of this arti-
fact or to distinguish it from a true occurrence of negative δα. 
There may also be a spatial overlap of the artifact and a true 
inhomogeneity. 

We now turn to the algebraic reconstructions [Fig. 4(b)]. 
For the unrestricted data set, the image quality is still poor. 
However, when the data restriction is gradually introduced, 
the artifacts disappear. Thus, in the case NR ¼ 10 and 
d ¼ 2 cm  (the image in the bottom right corner), the target is 
clearly visible, and the image quality is about the same as 
with the use of the unrestricted data set and d ¼ 17 cm. 
Thus, introduction of the data restriction does not result in addi-
tional image artifacts or quality degradation when the algebraic 
method is used. 

In Figs. 5 and 6, we show slices drawn through the medium 
at different depths. Figure 5 displays the results of the analy-
tical image reconstruction for d ¼ 5 cm  and d ¼ 2 cm  and 
Fig. 6 displays analogous data obtained by the algebraic 
reconstruction. In addition, we show in the right-most column 
of images the reconstruction averaged over the depth of the sam-
ple (that is, over different slices). Note that all reconstructed 
slices were used for the purpose of averaging, not only those 
shown in the figures. Note that, in all cases, we have recon-
structed 13 slices separated by the distance of 8h ≈ 3.328 mm 
with the central slice located exactly in the mid-plane of the slab. 
The “average” reconstruction was obtained by computing the 
arithmetic average of the reconstructions in all 13 slices. 

These averaged (“projection”) images correspond to the 
usual radiological projections obtained with a parallel beam 
of X-rays. The qualitative conclusions that can be drawn from 
Figs. 5 and 6 are the same as above. The analytical recon-
struction produces reasonable image quality for the smallest 
chest wall-target separation d ¼ 2 cm  and NR ¼ 10 but at 
the cost of an additional image artifact. The algebraic recon-
struction is free from this artifact, but underestimates the image 
contrast relative to the analytic method (see below). The depth 
resolution is slightly better in algebraic reconstructions but, 
overall, much worse than the lateral resolution. This is typical 
for DOT images. 

One interesting feature observed in both types of image 
reconstruction is the following. The projection images dis-
cussed above are, generally, more stable and exhibit reasonable 
quality even when the individual slices contain severe artifacts. 
For example, consider the d ¼ 2 cm  algebraic reconstructions 
without data restriction (Fig. 6). Even though all slices drawn 

through the medium are badly corrupted by the artifacts asso-
ciated with proximity of the chest wall phantom, the projection 
image shows the target clearly. Moreover, the edge of the chest 
wall phantom is also clearly visible at the correct location. 
This result is somewhat unexpected and can be useful in the 
situations when the depth resolution is not of essence. We 
emphasize that obtaining the projections still requires knowl-
edge of the three-dimensional distribution of the absorption 
coefficient; the projections cannot be computed or measured 
directly without such knowledge. 

We note that, in both types of image reconstructions, we 
see an underestimation of the contrast for the target phantom 
compared to the expected value. This underestimation can be 
attributed to the poor transverse (depth) resolution of 
the three-dimensional reconstruction which results in the 
“spreading” of the contrast in that direction. Indeed, consider 
the depth-integrated contrast, Hðx; yÞ ¼ ∫ ½αðx; y; zÞ∕α0− 
1 dz, where x, y are the coordinates in the plane of the slab 
and z is the transverse (depth) coordinate. Inside the target, 
we have αðx; y; zÞ∕α0 ≃ 4 and the target thickness in the trans-
verse direction is Δz ¼ 0.6 cm. Therefore, the actual value of 
H for a line passing through the target and perpendicularly 
to the slab surface is H ≃ 1.8 cm. In the reconstructed images, 
the transverse thickness of the target is overestimated and is 
equal, approximately, to 2 cm while the quantity αðx; 
y; zÞ∕α0 is underestimated and is equal, approximately, to 2. 
By using the reconstructed values to estimate the integrated con-
trast, we obtain H ≃ 2 cm, which is reasonably close to the 
actual value. 

6 Summary and Discussion 
We have used phantom experiments to investigate systemati-
cally the effects of the chest wall on diffusion optical tomogra-
phy (DOT) of the breast. The results lead us to several promising 
conclusions. 

First, we have found that, when absorption contrast is 
of interest, simple CW instrumentation with linearized inversion 
can suffice. This finding was obtained in spite of the presence of 
the chest wall phantom in close proximity to the target, which 
first renders the inverse problem nonlinear and, second, differs 
from the background Intralipid and the target not only in absorp-
tion but also in scattering properties. Generally, under the 
conditions stated above, time- or frequency-resolved measure-
ments and nonlinear image-reconstruction methods are required. 
We, however, have been able to bypass these complications 
by appropriately restricting the data points used in the re-
construction. We note that in clinical applications of DOT, 
the location of the chest wall relative to the sources and detectors 
is usually known; therefore, the approach of this paper to data 
restriction can be applied in vivo. Work remains, however, to 
optimize these approaches. This may require more sophisticated 
and/or data-driven algorithms for data rejection, as well as 
experimentation in vivo. In this paper, we have demonstrated 
that the rather severe effects of the chest wall can, in principle, 
be rectified by appropriate data restriction in conjunction with a 
linear image reconstruction. The paper shows that, by means of 
properly restricting the data points used in image reconstruction, 
it is possible to resolve a small absorptive target in the vicinity of 
a spatially and optically large inhomogeneity and that the quality 
of the reconstruction is almost unaffected by the chest wall. 

Interestingly, we have also found (see Figs. 5 and 6) 
that the image contrast, when averaged over the depth of a 
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plane-parallel sample (we refer to this quantity as the projec-
tion), is not as sensitive to systematic errors encountered in 
image reconstruction as the individual slices drawn through 
the medium. Thus, under certain conditions, the nonlinearity 
of the inverse problem and the presence of a scattering contrast 
render our image reconstruction methods inadequate. 
Reconstructed slices show severe image artifacts in this case. 
The projection, however, is free from these artifacts and displays 
the target clearly. This finding may be significant since a pro-
jection of the type just discussed is similar to the usual radio-
graphic projection, yet it displays the contrast specific to the 
near-infrared spectral range. 

Finally, we have developed and verified with experimental 
data an algebraic image reconstruction method, which is well 
suited for the use with the data sets restricted by the presence 
of the chest wall and capable of handling data sets as large as 
2 × 107 independent measurements. 
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