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We study connections between vibrational spectra and average nearest neighbor number in disordered 
clusters of colloidal particles with attractive interactions. Measurements of displacement covariances 
between particles in each cluster permit calculation of the stiffness matrix, which contains effective 
spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational 
properties of corresponding “shadow” glassy clusters, with the same geometric confguration and 
interactions as the “source” cluster but without damping. Here, we investigate the stiffness matrix to 
elucidate the origin of the correlations between the median frequency of cluster vibrational modes 
and average number of nearest neighbors in the cluster. We fnd that the mean confning stiffness of 
particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, corre-
lates strongly with average nearest neighbor number, and even more strongly with median frequency. 
Further, we fnd that the average oscillation frequency of an individual particle is set by the total stiff-
ness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest 
neighbor bond stiffness, in a manner similar to the simple harmonic oscillator. © 2013 American 
Institute of Physics. [http://dx.doi.org/10.1063/1.4774076] 

I. INTRODUCTION 

Colloidal particles that interact via strong short-range 
attractive potentials form disordered clusters,1, 2 and these 
clusters often have large local packing fractions and parti-
cle confgurations similar to common “space-flling” colloidal 
glasses. Recent experiments3 have suggested that the vibra-
tional properties of small clusters of colloidal particles with 
attractive interactions are similar to the vibrational properties 
of jammed glasses.4, 5 Specifcally, the median frequency of 
the cluster vibrational spectrum, ωMed, was found to correlate 
strongly with the average number of neighbors, NN , in the  
cluster. This behavior resembles that in simulations of me-
chanically stable athermal jammed packings, wherein the so-
called Boson peak frequency scales linearly with the average 
number of contacts between particles.5 Thus, further explo-
ration of the strong correlation between NN and ωMed holds 
potential to distinguish properties universal to disordered sys-
tems (e.g., Refs. 3 and 5) from properties that are system spe-
cifc (e.g., Ref. 6). 

In this contribution we experimentally investigate the vi-
brational properties of disordered clusters of colloidal par-
ticles with attractive interactions. Disordered clusters are 
formed in water-lutidine suspensions wherein wetting ef-
fects induce fuid mediated attraction between micron-sized 
polystyrene particles.6–9 Each cluster is characterized by the 
number of particles it contains (N) and its average number 
of nearest neighbors (NN ). Displacement covariance matrix 

10–13techniques employed in recent papers are then used to 

determine phonon spectra of each attractive glassy cluster. 
Specifcally, video microscopy is employed to measure dis-
placement covariances between each particle pair in each 
cluster. Using this information, we calculate the cluster stiff-
ness matrix, Kij, which contains the effective spring constants 
that link each pair of particles i and j. From the stiffness 
matrix, we derive the phonon density of states of correspond-
ing “shadow” attractive glass clusters with the same geomet-
ric confguration and interactions as the “source” experimen-
tal colloidal system, but absent damping.11 While numerical 
simulations can also access the vibrational density of states 
of disordered systems (e.g., Ref. 5), the results presented here 
are from real clusters that self-assembled via complex inter-
actions or were assembled with laser tweezers. Thus, these 
results are relevant for real systems that can easily be made in 
the lab, as opposed to idealized model systems. 

Previous work has demonstrated that the median cluster 
vibrational frequency, ωMed, depends strongly on the average 
number of nearest neighbors, NN , but weakly on the number 
of particles, N, in the cluster, and weakly on other structural 
parameters of the cluster.3 The present experiments reveal that 
ωMed has an even stronger correlation with the mean stiffness 
felt by individual particles than with NN , i.e., the mean of 
the diagonal elements of the stiffness matrix, Kii compared to 
NN . Kii , in turn, is shown to be correlated with NN , among 
other factors. This experimental observation is further sup-
ported by a simple theoretical argument. In addition, we fnd 
that the average oscillation frequency of any given particle 
in the cluster increases as the square root of its total nearest 
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neighbor bond stiffness, similar to the behavior of a simple 
harmonic oscillator. Thus, while global spectral properties are 
controlled, in large part, by network connectivity, local vibra-
tional properties are controlled by local stiffness. Finally, the 
work provides microscopic evidence that spectroscopic obser-
vations can be used to probe structural coordination properties 
of disordered media. 

II. BACKGROUND 

A. Experimental system 

The experiments employ bidisperse suspensions of 
micron-sized polystyrene particles (Invitrogen), with diame-
ters of dS = 1.5 μm and dL = 1.9 μm, and number ratio of 1:2, 
respectively. Binary mixtures of particles were used to mini-
mize crystallization. Particles were suspended in a mixture 
of water and 2, 6-lutidine (WL) near its critical composition, 
i.e., a lutidine mass fraction of 0.28. Colloidal particles in this 
near-critical WL binary mixture experience temperature de-
pendent fuid-mediated repulsive or attractive interactions.7, 8 

Particles are well dispersed at T = 300.15 K, but at T 

= 306.45 K they aggregate and form clusters, because luti-
dine preferentially wets the polystyrene particles. 

A plethora of different disordered particle clusters are 
created by frst suspending particles deep in the repulsive 
regime (300.15 K), and then rapidly increasing the sample 
temperature (to 306.5) in situ.3 Sample temperature control 
was accomplished using an objective heater (Bioptechs) con-
nected to the microscope oil immersion objective.14–16 Parti-
cles are confned between two glass coverslips (Fisher) with a 
spacing of ∼1.1 ± 0.05dL; the sample is therefore a quasi-2D 
system. The glass cell was treated with hexamethyldisilazane 
(HMDS), so the particle-wall interaction potential is repulsive 
at relevant temperatures.9 The global area fraction is ∼0.2. 

Disordered clusters of various sizes and shapes self-
assemble. Other clusters are created with aid of laser 
tweezers,17 either by grabbing particles and adding them to 
existing clusters, or by dragging an optical trap across a 
cluster and forcing rearrangements. Samples equilibrated for 
about six hours before measurements began. Video data were 
collected at a rate of 10 frames per second. 

The number of particles, N, is only weakly corre-
lated with NN (Fig. 1). For linear clusters (NN < 2), 
N and NN have a strong correlation; for more compact clus-
ters (NN ≥ 2), N and NN have a very weak correlation. 

(a) (b) 

FIG. 1. (a) Plot summarizing the number of particles, N, and average number 
of nearest neighbors, NN , in every cluster studied. (b) Experiment snapshots 
of fve different clusters. 

Note, Fig. 1(a) is plotted on a linear-log plot. Thus, while it 
appears N and NN may be strongly correlated for N < 20, 
this is not the case (for N < 20, R2 = 0.37). 

B. Theoretical analysis 

The vibrational properties of each cluster are extracted by 
measuring displacement correlations of the particles within 
each cluster. Specifcally, we defne u(t) as the  2N-component 
vector of the displacements of all particles from their average 
positions (x, y), and we extract the time-averaged displace-
ment correlation matrix (covariance matrix), Cij =� uiuj t, 
from experiment, where i, j = 1,  . . . ,  2N run over all particle 
and positional coordinates, and the average runs over time. 
Note, the calculation of Cij depends only on particle displace-
ments. In the harmonic approximation, the correlation matrix 
is directly related to the cluster stiffness matrix, defned as the 
matrix of second derivatives of the effective pair interaction 
potential with respect to particle position displacements. In 
particular, (C−1)ijkBT = Kij, where Kij is the stiffness matrix. 
Experiments that measure C therefore permit us to construct 
and derive properties of a “shadow” glassy cluster that has 
the same static properties as our colloidal system (e.g., same 
correlation matrix, same stiffness matrix, etc.).11–13 Follow-
ing Ref. 18, we expect undamped particles, that repel at very 
short-range and attract on longer length scales, due to fuid 
mediated effects, to give rise to solid-like vibrational behav-
ior on time scales long compared to particle collision times, 
but short compared to the time between particle rearrange-
ment events.10, 13 

The stiffness matrix is directly related to the dynami-
cal matrix characterizing system vibrations, Dij = Kij , where 

mij 

mij = √ 
mimj and mi is the mass of particle i. The eigenvec-

tors of the dynamical matrix correspond to particle displace-
ment amplitudes associated with the various phonon modes, 
and the eigenvalues of the dynamical matrix are the frequen-
cies/energies of the corresponding modes. Data were col-
lected for 10 000 s so that the number of degrees of freedom, 
8 ≤ 2N ≤ 500, is small compared to the number of time 
frames (>10 × 2N). Additionally, we fnd Kij is far above 
the noise only for adjacent particles, as expected. 

C. Finite-sampling correction 

To correct for fnite-time effects, we extrapolate to “inf-
nite time” and derive “true” frequencies. To this end, we use 
the relationship 1/ω(Nf rames) = 1/ω(inf) + m2N/Nf rames , 
where Nframes is the number of images collected, 2N is the 
number of degrees of freedom in the sample, and m is a mul-
tiplicative constant (Fig. 2).19 This correction was found to 
have little effect on ωMed; i.e., the coeffcient of determina-
tion, R2 = 0.85, was unchanged when comparing corrected 
and uncorrected frequencies. 

As a side note, the correlation does not depend on par-
ticle size. We plotted the median frequency versus the aver-
age number of neighbors for large particles and the average 
number of neighbors for small particles. The correlation per-
sists, but is weaker. The best linear fts for NN > 2 yield 
R2 = 0.80 and R2 = 0.67 for small and large particles, 
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FIG. 2. The median frequency, ωMed (black squares), and the infnite-time-
extrapolated median frequency (red circles), are plotted versus the average 
number of nearest neighbors, NN . 

respectively. Thus, the correlation is at its strongest when both 
large and small particles are considered. 

III. RESULTS 

A. Effect of Kii  on ωMed 

Interestingly, that data reveal that a strong relationship 
exists between ωMed and NN , despite the fact that NN does 
not directly enter into any calculation of ωMed (Fig. 2). Thus, 
information about NN must be implicit in Kij. In fact, the av-
erage of the diagonal elements in the stiffness matrix, Kii , has 
a strong correlation with NN too (Fig. 3). This effect might be 
expected, since the diagonal elements of the stiffness matrix 
typically balance out the springs of neighbors pushing against � 
the selected particle i, i.e., j = iKij ≈ −Kii. Here, each spring 
represents the strength of the harmonic interaction between 
particle i and particle j, and Kii is essentially the curvature of 
the harmonic potential well that confnes particle i. Since the 
sum is dominated by the nearest neighbor springs (i.e., non-
nearest neighbor spring constants are approximately zero), Kii 

depends strongly on the neighbor number of particle i. Thus, 
as NN increases, Kii tends to increase as well, i.e., more 

FIG. 4. The mean of the diagonal value of the stiffness matrix, i.e., Kii , 
plotted versus the total number of particles in the cluster, N. 

(or decrease) without changing average NN , for example via 
changes of the interparticle separation between neighboring 
particles. 

Conversely, Kii has relatively little correlation with the 
total number of particles in a cluster, N (see Fig. 4). This 
weak correlation (R2 = 0.14) is expected, since non-nearest-� 
neighbor spring constants are ∼0, and the sum j = iKij only 
depends strongly on NN . 

We next investigated the relationship between Kii and 
ωMed. The correlation between these two parameters is very 
strong; the coeffcient of determination is R2 = 0.92 (Fig. 5 
inset). In fact, this correlation is even stronger than the one 
observed between ωMed and NN (Fig. 2). Finally, we investi-� 
gated the correlation between Kii and ωMed (Fig. 5), since 
Kijei = ω2ei, where ei is the polarization of mode i. The corre-
lation between these two parameters is also very strong, with 
a coeffcient of determination R2 = 0.93, and the best linear ft � � 
of Kii and ωMed gives ωMed ∝ 1.09(4) Kii . The latter ob-� 
servation implies that Kii and ωMed increase with a nearly 
1-to-1 ratio; note, however, the accessible dynamic range is 
not large enough for a power-law ft to unambiguously distin-� 
guish between ωMed ∝ Kii and ωMed ∝ Kii , even though a 
very strong correlation exists. 

neighbors lead to stronger confnement. Kii can also increase 

FIG. 5. The median vibrational frequency of cluster mode spectra versus the 
square root of the mean of the diagonal value of the cluster stiffness matrix, � 
i.e., Kii . Black squares and red circles represent clusters with NN ≥ 2 
and NN < 2, respectively. Inset: The median vibrational frequency of cluster 

FIG. 3. The mean of the diagonal value of the stiffness matrix, i.e., Kii , mode spectra versus the mean diagonal value of the cluster stiffness matrix, 
plotted versus the average number of nearest neighbors in the cluster, NN . i.e., Kii . 
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� 
The strong correlation between Kii and ωMed is self-

consistent with the fact that ωMed is largely independent of N; 
Kii is strongly correlated with NN (Fig. 3), but only weakly 
correlated with N (Fig. 4). Physically, increasing the number 
of nearest neighbors increases the number of bonds in a par-
ticle’s confning “cage,” and is a factor that strongly affects 
Kii. However, the average number of neighbors in a cluster 
is only weakly correlated with the number of particles in a 
cluster, N (Fig. 1). A simple theoretical derivation of the cor-� 
relation between Kii and ωMed is provided in the Appendix. 
In essence, Kij can formally be written as the sum of a matrix, 
Aij, and the identity matrix multiplied by Kii . The median fre-
quency of Kij is then the median frequency of Aij plus Kii ; 
thus, ωMed ∝ Kii . 

As a side note, the correlation between ωMed and Kii does 
not depend on particle size. We plotted the median frequency 
versus the average number of neighbors for large particles and 
the average number of neighbors for small particles. The cor-
relation persists, but is weaker. The best linear fts for NN > 2 
yield R2 = 0.60 and R2 = 0.82 for small and large particles, 
respectively. Thus, the correlation is at its strongest when both 
large and small particles are considered. 

Finally, we note that the previously observed3 relation-
ship between ωMed and NN had two regimes, suggesting a 
clear distinction between the effects of locally rigid struc-
tures (NN > 2) and purely foppy structures (NN < 2). In 
the present experiment, however, the observed relationship 
between Kii and ωMed, does not clearly separate into two 
regimes and thus does not readily distinguish between the ef-
fects of these qualitatively different structures. This scenario 
arises partially due to the limitations of calculating a meaning-
ful median vibrational frequency. For clusters with NN < 2, 
more than half of the modes are foppy. These modes have 
small frequencies, independent of Kii , which are nearly zero. 
Thus, the median frequency for these clusters does not depend 
on Kii . 

B. Vibrational properties of individual particles 

To explore local vibrational properties around each 
particle, we calculate the polarization vector-weighted � � 
frequency ωiα �= j=1..2N ω(j ) ∗ e(j )2 

i / j=1..2N e(j )2 
iα , 

where e(j )2 is the polarization vector for mode j, particle i,iα 

direction α (x or y). Essentially, ωiα measures the average 
frequency in which particle i participates in direction α. ωiα 

has a strong correlation with Kii (Fig. 6). Further, the best 
0.47(1)power-law ft is ωiα �∝ K , reminiscent of a simple ii √ 

harmonic oscillator, for which ω ∝ K . 
Surprisingly, we fnd that the location of a particle to have 

little effect on ωiα , i.e., ωiα is not qualitatively different for 
particles on the cluster surface as compared to particles in the 
cluster interior. In either case, ωiα simply depends on Kii. 

IV. DISCUSSION AND SUMMARY 

We have found that the median vibrational frequency, 
ωMed, of a disordered cluster is predominantly set by Kii , 
the ensemble-averaged confning stiffness for particles in the 

FIG. 6. The eigenvector-weighted frequency, ωiα , plotted versus diago-
nal stiffness matrix elements, Kii. Solid red line is the best power-law ft. 
The relationship between ωiα and Kii is reminiscent of a simple harmonic 
oscillator. 

cluster. Kii , in turn, has a strong correlation with NN , the  av-
erage number of nearest neighbors; this latter effect produces 
the previously observed3 correlations between NN and ωMed. 
Thus, the present observations suggest that the fundamental 
origin between NN and ωMed is a result of mean confning 
stiffness in the cluster. Further, the average frequency of an 
individual particle, ωiα , increases as a power-law with Kii, 

0.47(1)i.e., ωiα i ∝ K , a relationship reminiscent of a simple ii 

harmonic oscillator. Thus, while the total vibrational spectrum 
is set by the collective nature of the disordered network, the 
average vibrations of individual particles are determined pri-
marily by local stiffness. 

While these results explain properties of disordered clus-
ters, it’s natural to consider how they inform other commonly 
studied systems. Specifcally, since the average number 
of nearest neighbors and mean confning stiffness correlate 
strongly with the median phonon frequency, our observations 
suggest that anytime the average number of nearest neighbors 
is increased in a disordered system, it is likely that the me-
dian frequency of the ensemble will increase as well. This ef-
fect should apply to different physical systems ranging from 
athermal jammed packings of purely repulsive particles4, 5 to 
aging glasses,15 and the observation suggests a spectroscopic 
means to probe average coordination and changes thereof. 

Finally, the results presented here suggest that the vi-
brational modes can be shifted to lower (higher) energy by 
“doping” a glass with particles that are softer (stiffer) than av-
erage; these particles would also have especially low (high) 
average frequencies. This could be accomplished in colloids 
by mixing hard and soft particles, or by mixing particles with 
different amounts of surface charge. For atomic or molecu-
lar glass-formers, this could be accomplished by mixing so-
called “fragile” glasses with “strong” glasses.20 Interestingly, 
recent works have suggested that particles in glasses that par-
ticipate more than average in quasi-localized low frequency 
modes are more prone to rearrangement.21–24 Based on our  
fndings, we speculate that regions containing soft “dopant” 
particles may be likely to rearrange. Alternatively, doping a 
glass with a small number of especially hard particles could 
potentially create regions that are unlikely to rearrange. This 
could potentially also be accomplished by creating regions 
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with small NN, perhaps with laser tweezers, as previous stud- correlates with ωMed, making it a natural choice. Further, 
ies found such regions to be associated with enhanced partic-
ipation in quasi-localized modes.25, 26 
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APPENDIX: DERIVATION OF RELATIONSHIP 
BETWEEN ωMed AND Kii  

The strong relationship between Kii and ωMed can be 
understood from some simple linear algebra. The eigenval-
ues of the stiffness matrix are obtained from the relation 
(Kij − ω2Iij )eωl 

= 0, where eωl 
is the eigenvector for the lth 

mode with frequency ωl and Iij is the identity matrix. If we 
defne a new matrix, Aij = Kij − cIij, where c is a chosen 
scalar, we can then write (Kij − ω2Iij )eωl 

= (Aij + cIijl 

− ω2Iij )eωl 
= (Aij − [ω2 − c]Iij )eωl 

= (Aij − λlIij )eωl 
,l l 

where λl is the lth eigenvalue of Aij (just as ω2 is the lth 
eigenvalue of Kij. Thus, λl = ω2 − c and ωl =

√ 
λ
l

l + c. Note  l 

that while ωl must be positive, λl may be positive or negative, 
depending on the chosen value of c. However, what value 
should be selected for c? 

The median of ω is the Nth mode (there are 2N degrees √ 
of freedom), ωN, and ωN = λN + c. If  c is chosen such 
that c ≈ ωN 

2 , then λN is small and ωN only depends strongly 
on c. For example, if we set c = ωN 

2 , then ωN =
√ 

λN + c � 
= λN + ω2 , so  λN trivially is 0. N 

In an attempt to identify an interesting or useful value 
for c, we next set  c = Kii . We have already seen that Kii 

FIG. 7. The eigenvalues, λ, of matrix Aij = Kij − KiiIij , normalized by the 
mean of the diagonal value of the stiffness matrix, i.e., Kii , and plotted versus 
the number of neighbors NN. 

� 
the best linear ft between Kii and ωMed has a slope of 
nearly 1 (1.09(4)), implying that λN is likely small compared � 
to Kii . Placing c = Kii into the formula above gives us � 
ωMed = λMed + Kii . λMed can be calculated from the ma-
trix Aij = Kij − KiiIij (Fig. 7). There is little correlation be-
tween NN and λ, and λ is smaller in magnitude than ω2 

Med 

(Fig. 7). This relationship should also be expected as Fig. 5 
shows that Kii is typically larger than ω2 

Med , which, in turn, 
requires that λ is negative. 

While we have experimentally demonstrated that λMed is 
small compared to Kii , could we have predicted this relation-
ship based on the overall shape of Kij? If  Aij were a random 
matrix, its median eigenvalue would be 0, according to the 
Wigner semi-circle law.27 Of course, Aij is not a truly random 
matrix. Thus, further study is required to elucidate the origin 
of the relationship between Kii and ωMed. 
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