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We present a detailed theoretical, experimental, and numerical study of light diffusion and diffusing-wave 
spectroscopy in nematic liquid crystals. We report on experiments showing that the transport of light energy 
is governed by an anisotropic correlation diffusion equation, and we measure the parallel and the perpendicu-
lar components of the diffusion tensor and the diffusing-wave spectroscopy temporal decay rate. We derive 
theoretically the correlation diffusion equations. We then calculate the diffusing-wave spectroscopy temporal 
decay rate, and we provide explicit approximate, yet accurate, expressions for the components of the light dif-
fusion tensor, which we evaluate numerically as a function of material parameters of nematics. Using the 
actual scattering cross sections for a nematic, we simulate photon transport and verify that it is described at 
long times by an anisotropic diffusion equation with diffusion coeffcients in excellent agreement with both 
those obtained experimentally and those obtained from our analytical expressions. © 1997 Optical Society of 
America. [S0740-3232(97)03001-9] 
1. INTRODUCTION 

A. Overview of Multiple Scattering 
During the past decade we have witnessed the rapid 
growth of an interdisciplinary feld of optical research 
aimed at understanding and using the phenomenologies 
associated with highly scattered light in turbid media. 
Recent fundamental advances include, for example, the 
discoveries of coherent backscattering1,2 and hidden 
correlations3 in disordered media, studies of photon 
localization,4 the theory and the creation of photonic 
band-gap materials,5 investigations of light diffusion in 
highly scattering media with photon gain,6 and the devel-
opment and the application of diffusing-wave spectros-
copy (DWS),2,7–9 whereby temporal correlations of highly 
scattered light probe dynamical motions in homogeneous 
complex fuids such as colloids,10 foams,11 emulsions,12 

and gels,13 as well as in heterogenous complex fuids and 
tissues.14 

In addition, although light has been used to investigate 
the interior of the human body for many years,15 the re-
cent recognition and the widespread acceptance that light 
transport over long distances in human tissues is well ap-
proximated as a diffusive process have led to the use of 
diffusing near-infrared photons16 to view body function 
and structure in deep tissues. With this basic physical 
model, it is possible to separate quantitatively tissue scat-
tering effects from tissue absorption effects and to incor-
porate accurately the effects of boundaries.17 Waves of 
diffuse light energy density18 (and their time-domain 
analogs19) propagate deeply in tissues while obeying 
simple optical rules such as refraction,20 diffraction,21 

interference,22 and dispersion23 as they encounter varia-
tions in tissue optical properties. Finally, functional im-
0740-3232/97/010156-23$10.00 ©
aging and spectroscopic techniques that use these diffus-
ing photons are being explored for such applications as 
the detection of brain bleeds,24 the quantifcation of oxy-
gen saturation in the brain,25 the study of mitochondrial 
diseases,26 and the detection of breast tumors.27 

To date, virtually all media studied with diffusing light 
have been isotropic. In media, such as muscle tissue, 
that are not isotropic, quantifcation of light signals is 
still accomplished with isotropic physical models. In this 
paper we investigate the nature of light diffusion and cor-
relation transport through orientationally ordered turbid 
materials. A preliminary report of the work appears in 
Ref. 28. We are interested in understanding the mani-
festations of these directional correlations on light diffu-
sion and on the transport of higher-order correlation func-
tions such as the temporal electric-feld autocorrelation 
function. We provide rigorous theoretical predictions 
about these issues, and we corroborate them with exten-
sive experimental and computational evidence. We have 
focused on the specifc case of light transport through tur-
bid nematic liquid crystals to address these phenomena. 
An alternative theoretical treatment for general aniso-
tropic media appears in Refs. 28 and 29. 

Nematic liquid crystals are composed of rod-shaped 
molecules that are translationally disordered but that 
align on average along a common direction. The pre-
ferred direction is described by a unit vector n called the 
director. As a result of these directional correlations, 
nematics present interesting complications for light diffu-
sion that extend beyond isotropic, random media. The 
optical properties of nematic liquid crystals are highly 
anisotropic.30,31 The speed of light with electric polariza-
tion perpendicular to the director differs from that with 
polarization in the plane of the director and the propaga-
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tion wave vector. The light-scattering cross sections, 
which originate from local director fuctuations, depend 
on the directions of the electric feld and the propagation 
vectors with respect to the average molecular orientation. 
Furthermore, nematic liquid crystals strongly scatter vis-
ible light; samples with thicknesses greater than a few 
millimeters appear milky white, and, by analogy with 
milky-white colloids and foams, one might expect that 
photons diffuse through these media. Indeed, in two el-

32,33egant recent papers, coherent backscattering from 
turbid nematics has been observed. 

Our paper is organized as follows. In the remainder of 
Section 1 we present the basic theoretical ideas that un-
derly light diffusion and correlation transport in nematic 
liquid crystals, and we present our experimental results. 
In particular, we write down the diffusion equation for 
light transport in the nematic liquid crystal and provide 
expressions for the photon diffusion coeffcients parallel 
and perpendicular to the director. We also provide an ex-
plicit formulation, analogous to that of DWS in isotropic 
media, for the temporal electric-feld autocorrelation func-
tion of the diffused speckle. The experiments are then 
presented and analyzed with this formalism. In Section 
2 we present a rigorous derivation of the main theoretical 
results: We establish an explicit connection to previous 
studies in isotropic media and describe some predictions 
for some as yet unobserved phenomena. Finally, we 
present computer simulations that amplify and enlarge 
the scope of our experimental and theoretical observa-
tions. In a series of appendixes, we provide the deriva-
tions with technical details of results used in Section 2. 
In Appendix A we calculate the photon Green function in 
the weak-scattering limit. In Appendix B we derive a 
path-integral formulation for photon diffusion in nematic 
liquid crystals. In Appendix C we calculate the mean-
square displacements per photon scattering step for direc-
tions parallel and perpendicular to the director, and in 
Appendix D we display the complete structure factor that 
determines scattering cross sections in nematic liquid 
crystals. 

B. Diffusing-Wave Spectroscopy in a Nematic Liquid 
Crystal 
Nematic liquid crystals are uniaxial fuids30,31 with bar-
like molecules aligned on average along a local anisotropy 
axis specifed by the unit Frank director n(r, t), as de-
picted schematically in Fig. 1. The equilibrium director 

Fig. 1. Schematic representation of a nematic liquid crystal 
showing molecules aligned on average along the local Frank di-
rector n(r, t) and the equilibrium director n0 . 
n0 is spatially uniform. Thus nematics are bire-
fringent,34,35 with light wave vector k propagating in or-
dinary rays, with electric polarization perpendicular to 
both wave vectors k and n0 , and in extraordinary rays, 
with polarization in the plane defned by k and n0. The 
velocities of the ordinary and the extraordinary rays are 
different, and the velocity of the extraordinary ray de-
pends on the angle between k and n0. 

Linear deviations d n(r, t) of the director are perpen-
dicular to n0 . Since there is no energy cost associated 
with a uniform rotation, fuctuations in n(r) diverge at 
small wave vector q in the absence of external aligning 
felds: ^udn(q)u2& ; T/Kq2, where T is the temperature 
and K is a Frank elastic constant, which depends on the 
direction of q relative to n0. In addition, there are long-
wavelength, low-frequency diffusive hydrodynamic modes 
with characteristic frequency Gq ; Kq2/h, where h is a 
viscosity, which depends, like K, on the direction of q. 
The time-dependent fuctuations in d n(q, t) are propor-
tional to (T/Kq2)exp(2Gqt). The direction of local dielec-
tric anisotropy is parallel to n(r, t), so fuctuations in n 
lead to fuctuations in the dielectric tensor eij  . Fluctua-
tions in eij  scatter light with cross section proportional to 

B~q, t ! ; ~De!2 ~v/c !4 ~T/Kq2!exp~2Gqt !, (1.2.1) 

where De 5 e i 2 e' is the dielectric anisotropy, v is the 
angular frequency of light, and c is the velocity of light. 
The long-wavelength divergence of B(q, t) causes light to 
scatter much more strongly in a nematic liquid crystal 
than in an isotropic fuid, where fuctuations in eij  are 
produced by fuctuations in the density. This form of 
B(q, t) should be contrasted with its form, B(q, t) 
5 uF(q)u2S(q, 0)exp(2Dsq

2t), in a dilute colloidal 
2suspension,7,8 where uF(q)u is the particle form factor, 

S(q, 0) is the static structure factor, and Ds is the self-
diffusion constant of the colloidal particles. Although the 
structure factor has interesting behavior at wavelengths 
of the order of the spacing between particles, it does not 
diverge as q ! 0. The dynamics of the liquid-crystal 
and the colloidal systems are both diffusive. The fre-
quency Gq in a nematic is, however, explicitly propor-
tional to the static structure factor T/Kq2, whereas Ds 
need not depend on S(q, 0). 

A typical path of light rays in a large nematic sample is 
depicted in Fig. 2. There is a series of steps, with an av-
erage length equal to a mean free path l between scatter-
ing events that alter the direction of light propagation. 
At length scales greater than the scattering mean free 
path l* . l, there is no correlation between step direc-
tions, and transport becomes diffusive. Nematic liquid 
crystals are uniaxial, so the light-energy density E Ł e0E 
will obey an anisotropic diffusion equation. More gener-
ally, the time-dependent electric-feld autocorrelation 
function G (R, T, t) 5 ^E(R, T 1 t/2) Ł e0E(R, T 2 t/2)& 
measured in DWS experiments obeys an anisotropic dif-
fusion equation with a dynamical absorption coeffcient 
m(t):  

]  
2  2  D  2  1  m~  ˜2  D i  ¹  i  '  ¹  '  t !  G ~R,  T,  t !  5  J~R,  T !,F G]T  

(1.2.2) 
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Fig. 2. Typical photon path in a nematic, obtained from our nu-
merical simulations. Note that there are many short steps with 
small angle changes between steps. 

where J̃ (R, T) is a source term and D i and D' are, respec-
tively, the photon diffusion coeffcients for directions par-
allel and perpendicular to n0 . In isotropic systems the 
single photon diffusion constant D can be expressed as 
D 5 (1/6)^R2&/^T&, where ^T& is the average time and 
^R2& is the mean-square photon displacement per step. 
The angle brackets ^ & here denote an average over all the 
random paths of the diffusing photon. When there is a 
single light velocity ̄c, ^T& 5 l/ c̄. In addition, in isotropic 
systems, ^R2& 5 2ll* , where the ratio l/l* of the mean 
free path to the transport mean free path is equal to ^1 
2 cos u &, where u is the change in angle between input 
and output directions at a scattering event. Thus in iso-
tropic systems 

1 ^R2& 1 
D 5 5 c̄l* . (1.2.3)

6 ^T& 3 

In anisotropic systems, mean free paths depend on polar-
ization and direction of propagation. The average time 
between collisions ^T& and the mean-square displace-
ments per step ^R i 

2& and ^R' 
2& for respective directions 

parallel and perpendicular to n0 are, however, well de-
fned, and 

1 ^R i 
2& 1 ^R' 

2& 
D i 5 , D' 5 . (1.2.4)

2 ^T& 4 ^T& 

As we show below, the mean free path for the extraordi-
nary ray tends to zero as the external magnetic feld H 
aligning the director tends to zero. It is nonetheless pos-
sible to defne an average scattering mean free path ̄l, an  
average speed of light c̄, and parallel and perpendicular 
transport mean free paths l i * and l' * that are fnite in the 
H ! 0 limit, such that ^R i 

2& 5 (2/3)̄ll* i and ^R' 
2& 

5 (4/3)̄ll' * . Then D i 5 c̄l* i /3 and D' 5 c̄l' * /3. In Sub-
section 2.E we derive an analytic expression for ^T& in 

o.s 
terms of B(q, t) and the indices of refraction of the nem-
atic. Exact analytic expressions for the mean-square dis-
placements ^R i 

2& and ^R' 
2& cannot be obtained here. Ex-

cellent approximations to these quantities are, however, 
derived in Appendix C. In Refs. 28 and 29 we give the 
diffusion constants in a form that involves the inversion 
of an infnite-dimensional matrix. The frst in a se-
quence of approximations is identical to the expressions 
derived here. The photon diffusion coeffcients obtained 
from these expressions for the nematic liquid-crystal ma-
terial p-pentyl-p8-cyanobiphenyl (5CB) studied experi-
mentally are D i 5 1.43 3 109 cm2/s and D' 5 0.98 
3 109 cm2/s, yielding D i /D' 5 1.45, in good agreement 
with experiments. 

The dynamic absorption coeffcient m(t) can be ex-
pressed as 

m~t ! 5 
1 

^T& 
dB~t !K L ,

B 
(1.2.5) 

where dB(t) 5 B(0)  2  B(t). In isotropic systems, 
dB(t) 5 2B(0)k0

2Ds(l/l* )t, where k0 is the wave num-
ber of light, so m(t) 5 (2 c̄/l* )Dsk0

2t. In nematics, 
dB(t)/B  depends only on viscosities and not on elastic 
constants determining B(0): 

2# 4c @n v 1 
m~t ! ; 2kBT~De!2 tK L8p @n3# c4 h 

42kBT~De!2v t 
5 , (1.2.6)F G

9pc3Ae geff' 

where [np] is an average over angle and polarization of 
the pth power of the index of refraction, ^(1/h)& is a 
weighted average over paths of the inverse viscosity, and 
geff is an effective viscosity, which can be approximated by 
the rotational viscosity g. For the nematic compound 
5CB, g 5 81 cycles per second (cps). 

In most experiments (including those reported here), a 
constant-power laser beam illuminates the sample, and 
the intensity of scattered light is measured at a detector. 
These experiments measure the T-independent feld cor-
relation function G (R, t) [i.e., the zero-frequency limit of 
the Fourier transform of G (R, T, t)]. The normalized 
electric-feld correlation function measured at the detec-
tor is then g1(t) 5 G (R, t)/G(R, 0). It can be expressed 
as an integral over all the arrival times of the quantity 
exp@2m(t)T # weighted by the probability P(R, T) that a 
diffusing photon arrives at R in time T: 

U(R, T)/*  0 dTU(R,  T), where U(R, T) satisfes the 

` 

g1~t ! 5 E dTP~  
0 

R, T !exp@2m~t !T#. (1.2.7) 

The diffusive probability 
` 

can be written as P(R, T) 
5 
diffusion equation 

] 
2S 2 D i ¹

2 2 D' ¹ DU~R, T ! 5 0, (1.2.8)
]T i ' 
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Fig. 3. Idealized geometry for photon diffusion in an anisotropic 
medium. Shown are the vector R from the source to the detec-
tor and the decomposition of R into components z and r parallel' 
and perpendicular to the director n0. 

subject to boundary conditions defned by the geometry of 
the experiment. For a point source in an infnite me-
dium, 

1 1 
U~R, T ! 5 

4puTu!3/2~ D'AD i 

2 21 uzu r' 
3 expF 2 S 1 D G ,4uTu D i D' 

(1.2.9) 

where z is the component of R along n0 and r is its com-' 
ponent perpendicular to n0, as shown in Fig. 3. 

C. Experimental Results 
We performed experiments with 5CB, a nematic liquid 
crystal with a nematic-to-isotropic transition temperature 
Tc 5 35 °C. Our experimental setup is shown in Fig. 4. 
The liquid crystal was housed in a quartz cylindrical cell 
that was 1 cm thick and 2 cm in diameter. The entire 
sample was placed in a magnetic feld for uniform orien-
tation of the director along the z direction shown in Fig. 
4(a). The cylindrical cell rested in a hollow Al frame 
through which water was circulated from a temperature 
controlled source, as shown in Fig. 4(c). With the feld 
turned off, the sample was heated to T 5 40 °C, well into 
its isotropic phase. A magnetic feld of 2 kG was then ap-
plied. As shown in Fig. 4(b), the magnet produced a feld 
that was uniform to within 5% at 2 kG over the cylindri-
cal region, 3 cm in length and ;3 cm in diameter. Be-
cause the sample cell could easily ft inside this region, 
there was relatively little fuctuation in the feld strength 
over the size of the cell. To ensure alignment of the feld 
parallel to the input and output faces of the cell, we 
placed a Hall probe against the sample face and adjusted 
the angle of the sample until the feld measured was zero. 
Then the sample was slowly cooled in this magnetic feld 
from the isotropic phase to the nematic phase at T 
5 30 °C. We were able to control the temperature of the 
sample to within ;1°, even when the sample was illumi-
nated by laser powers of as high as ;100 mW. Thus at 
30 °C the sample was safely in the nematic phase. 
Slowly cooling the liquid crystal through the isotropic– 
nematic phase transition ensures signifcant alignment of 
the director along the feld direction. The magnetic co-
herence length at this feld strength is ;12 mm, much 
smaller than the sample dimensions. We illuminated 
the sample with ;10 mW of light at l 5 514.5 nm from 
an Ar-ion laser. For detection we used a multimode fber 
coupled directly to a photomultiplier tube, from which the 
detected photons were passed to a digital temporal auto-
correlator with 25-ns minimum bin width. 

Light is scattered in a liquid crystal by fuctuations of 
the local director. These fuctuations lead to a photon-
scattering cross section that depends on the propagation 
direction of the incident and the scattered photons and on 
the directions of their electric polarization. The scatter-
ing cross section reaches a maximum for light traveling 
perpendicular to the director and vanishes to zero for 
light traveling parallel to the director. We expect this 
scattering anisotropy to cause the energy-density distri-
bution in the steady state to be anisotropic. We intend to 
detect this anisotropy by measuring the diffuse transmis-
sion through the cell in directions parallel and perpen-
dicular to the director, i.e., along the z and the y axes, re-

Fig. 4. (a) Diffuse transmission measurement. PMT, photo-
multiplier tube. (b) Temporal correlation measurement. The 
coordinate system chosen uses the x axis along the incident light 
direction, the z axis along the director, and the y axis along the 
direction perpendicular to both the director and the incident 
light direction. (c) Sample holder and cell. 
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Fig. 5. Anisotropic diffusive transmission in 5CB. The coordi-
nate system follows that given in Fig. 4. (a) Normalized diffuse 
transmission intensity parallel and perpendicular to the director. 
(b) Ratio of the diffusive transmission intensity parallel to the di-
rector to that perpendicular to the director as a function of dis-
tance from the center of the cylindrical cell. The dashed curve is 
the calculated result obtained by solution of Eq. (1.2.2). 

spectively, in Fig. 4(a). These results can be seen in Fig. 
5. The illuminating area of our input beam was ;1 mm2.  
To minimize errors due to laser intensity fuctuations, we 
picked off a small amount of the input beam with a mi-
croscope slide placed in front of the sample and concur-
rently measured its transmission through a turbid colloi-
dal suspension. We normalized our nematic liquid-
crystal transmission signal, using this weak reference 
beam. The input beam direction was aligned perpen-
dicular to the sample face and was approximately Gauss-
ian. 

Approximately 80% of the laser output was polarized 
perpendicular to the director. With a combination of a 
polarizer and a half-wave plate, we were able to orient the 
polarization of the input beam so that it was mostly par-
allel or mostly perpendicular to the director. We con-
trolled the polarization of the detected light by placing a 
small piece of Polaroid over the tip of the detection fber, 
which was attached to a y – z translation stage. The tip 
was located within 1 mm of the cell and was oriented per-
pendicular to the output cell face. We translated the f-
ber parallel and perpendicular to the director and took 
relative intensity measurements (with respect to the ref-
erence signal) every 0.5 mm. The average intensity mea-
surements were made with the photon counter in our au-
tocorrelator. We counted at each position for 10 s, 
recording between 1 million and 10 million photons. 

We frst determined the center of the sample cell by 
fnding the maximum transmitted intensity along both 
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the y and the z directions. In particular, we made an ini-
tial scan along each axis. We identifed the center by as-
suming that the scan was symmetrical about the center, 
or maximum, and we located the midpoint between two 
positions of equal intensity about the center. We did this 
for several different intensity pairs and then averaged 
these midpoints to fnd the center. This process of deter-
mining the location of the center of the sample cell was 
accurate to approximately 0.1 mm. Because of the open-
ing in the sample cell (see Fig. 4), the boundary conditions 
at negative y are different from those at positive y. As  a
result, we were forced to neglect the data far in the nega-
tive y direction. After determining the center, we mea-
sured the transmitted intensity at each point, using four 
runs at each of the four possible input and output polar-
ization combinations. To within the error bars deter-
mined by the standard error in the average, all these runs 
exhibited the same transmission curve. We therefore av-
eraged over all 16 runs for our fnal analysis of the data. 
We determined the accuracy of the intensity measure-
ments by fnding, for each point, the standard deviation of 
the mean of each of the 16 runs performed. This gave an 
accuracy of approximately 0.5%. 

Clearly, there is anisotropy in transmission. The rela-
tive widths of the transmission intensity profles in direc-
tions parallel and perpendicular to the director establish 
that the D i is larger than D' . In Fig. 5(a) we exhibit the 
transmitted intensity profle parallel to the director in 
both the positive and the negative z directions. For the 
transmitted intensity profle perpendicular to the direc-
tor, we consider only the positive y direction because of 
the asymmetry of the boundary conditions described 
above. Also, a slight asymmetry about the center of the 
sample cell exists in the scan parallel to the director. 
This asymmetry is due, in part, to our not having located 
precisely the center of the sample cell and, therefore, the 
center of the intensity distribution. 

In Fig. 5(b) we plot the ratio of parallel to perpendicu-
lar transmission as a function of radial position from the 
sample center. The graph is an average of the positive z 
data and the negative z data, each divided by the data in 
the positive y direction. The error equals the difference 
in each of these ratios. This average takes into account 
the asymmetry in Fig. 5(a). As expected, the anisotropy 
increases rapidly over the length scales probed. By use 
of the anisotropic diffusion equation (1.2.8) for light trans-
port applied in a cylindrical cell, it is possible to estimate 
the ratio of D i to D' . The analytical solution to the iso-
tropic diffusion equation for the cylindrical geometry is 
well known. In the anisotropic case we expect the light 
to diffuse faster along the director than perpendicular to 
the director. We can therefore apply the analytical iso-
tropic solution to our problem by scaling the variable 
along the director (z) by the ratio of the diffusion con-
stants, D i/D'. By ftting the data to the scaled analyti-
cal solution, we determine an optimum diffusion constant 
ratio. To fnd the solution specifc to our system, we also 
carefully considered the relatively small boundary-
condition effects. We estimated an extrapolation 
length36 for the boundaries, i.e., a distance outside of the 
cell where the boundary can be considered to be com-
pletely absorbant, compensating for the refected light at 
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the actual boundary. We took the extrapolations length 
z0 to be bl* , where b 5 (1  1  R)/(1  2  R), with R being 
the refectivity of our curved quartz surface. The l* that 
we used was determined by comparison with a colloid, as 
described below. Because we scaled the axis along the 
director, we also scaled the extrapolation length along the 
director, by scaling b. This analysis yielded a best ft 
when the scaling factor was the ratio D i /D' 5 1.60 
6 0.25. 

In a set of control measurements, we flled the same 
cell with a colloidal suspension of polystyrene spheres of 
comparable optical density. The experiment was per-
formed on this sample under identical circumstances, ex-
cept that the magnetic feld was turned off. These re-
sults can be seen in Fig. 6. Two important observations 
were made. First, no anisotropy in diffuse transmission 
was observed within the experimental error of 0.5%. 
This was expected, since there is no asymmetry in the 
structure of the colloid and, therefore, no asymmetry in 
the way that it scatters light. Second, by adjusting the 
particle concentration, we were able to achieve a trans-
mission profle midway between the profles shown in Fig. 
5(a). From standard relations for colloids we then de-
duced a photon random-walk step length l* 5 0.75 
6 0.10 mm for this concentration (f 5 0.003) and par-
ticle diameter (204 nm). Then, using the relation D 
5 (c/n)l* /3, where n is the index of refraction of water, 
we obtained a value for the diffusion constant of the col-
loid of D 5 0.6 3 109 cm2/s, which we identifed with the 
average diffusion constant (D i 1 D')/2 of the nematic. 
From the measured ratio of the diffusion constants in the 
liquid crystal, D i /D' 5 1.60 6 0.25, we then estimated 
the absolute values of D i 5 0.7 6 0.1 3 109 cm2/s and 
D' 5 0.5 6 0.1 3 109 cm2/s. This value for l* also indi-
cates that the sample thickness of 1 cm was more than 10 
random-walk steps, confrming that light propagation 
was in the diffusing limit. 

The dynamics of the system were probed in two differ-
ent geometries. The measured temporal autocorrelation 

Fig. 6. Comparison of normalized diffuse transmission intensity 
of a colloid with the liquid-crystal transmission parallel and per-
pendicular to the director. The two colloid scans were averaged 
since they exhibited no anisotropy within our error; the colloid 
curve clearly falls between the liquid-crystal scans. 
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Fig. 7. Dynamical temporal measurements in 5CB. (a) For-
ward scattering. (b) Backscattering. 

functions for transmission and backscattering are shown 
in Fig. 7. For the transmission experiments, the input 
beam was aligned exactly as in the static experiment, i.e., 
normal to and in the center of the input cell face. We 
then measured the correlation function at two detector lo-
cations radially symmetric about the input beam (4 mm 
from the central axis), but with one detector displaced 
along the director and the other displaced perpendicular 
to the director. Because of the thickness of the sample, 
the count rate was low; therefore all the polarizers were 
eliminated from the setup to maximize the detected inten-
sity. The rapid decay of the correlation function also de-
creased our count rate and required the use of our mini-
mum bin width of 25 ns. With the laser aperture open 
and its output at 1.25 W, we had an average count rate of 
50,000 counts/s. We performed four runs of the correla-
tion experiment, each for 1 h. We then averaged these 
runs and determined error bars from the standard error 
of the average. We were able to obtain correlation func-
tions in both cases, and, though we observed a slight dif-
ference within our signal-to-noise ratio as expressed in 
the error bars, it was diffcult to distinguish between 
these two curves. 

The setup for the backscattering experiment was quite 
different from those of the previous experiments. The in-
put beam was ;4 mm in diameter, allowing us to analyze 
the system in an approximate plane-wave-in–point-out 
geometry. The output fber detected backscattered light 
at an angle of ;14° at a distance of ;40 cm from the in-
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put face of the sample. The intensity detected in this ge-
ometry was greater than in transmission, so we were able 
to make polarization-dependent measurements, as we did 
for the intensity distribution case. With the laser output 
at 10 mW, we measured 10–40 kcnts/s. We took four 
measurements for each of the four polarization combina-
tions and, seeing no signifcant difference in the different 
polarization measurements, we averaged all 16 of the 
runs as was done for the transmission experiment. Be-
cause of the fnite size of the sample cell, the longest pho-
ton paths were cut off, causing a decrease in temporal de-
cay of the correlation function. When analyzing the 
backscattering decay constant, we disregarded the early-
time data, i.e., we ftted the long-time data. 

To extract the temporal decay rates and hence the di-
rector’s effective rotational viscosity, we used both the 
forward- and the backscattering normalized temporal cor-
relation functions [Eq. (1.2.7)], g1(t), i.e., 

` 

dTP~T !exp@2~ (1.3.1)g1~t ! 5 E At/geff!T#, 
0 

2where A 5 2kBTDe v4/9pc3Ae' is a constant related to 
the optical anisotropy [relation (1.2.6)] and geff is an effec-
tive viscosity, arising from an arithmetic and angular av-
erage of the mode viscosities.28,29 We demanded that the 
light diffusion constants and the rotational viscosity 
agree in all the cases. By numerically generating solu-
tions for each of the three geometries (two transmission 
and one backscattering) we obtained good agreement 
among the three values. The g value was found to be 
60 6 10 cps, in reasonable agreement with the value of 70 
cps that may be obtained by other techniques.30,31 In ad-
dition, the average l* value was found to be approxi-
mately 0.75 6 0.2 mm. 

2. THEORY OF MULTIPLE SCATTERING IN 
A NEMATIC 
A. Properties of the Nematic Phase 
Light scattering in the nematic phase occurs as a result of 
fuctuations in the local dielectric tensor eij(r,  t), which in 
equilibrium is uniaxial with principal axis along the spa-
tially uniform director n0. The dominant fuctuations in 
eij(r,  t) arise from director fuctuations, and we can ap-
proximate eij(r,  t) by a uniaxial tensor oriented along the 
local director n(r, t): 

e ij~r,  t !  5  e id ij  1  Deni~r,  t !nj~r,  t !, (2.1.1) 

where e and e i are the dielectric constants for electric' 
felds, respectively, perpendicular and parallel to the di-
rector and De 5 e i 2 e' is the dielectric anisotropy. The 
energy cost arising from spatially nonuniform variation of 
n(r, t) can be calculated from the Frank–Oseen–Zocher 
free energy30,31: 

1 
F@n~r, t !# 5 E @K1~¹ Ł n!2 1 K2~n Ł ¹ 3 n!2 

2 

1 K3~n 3 ¹ 3 n!2 2 Dx~n Ł H!2#d3r, 

(2.1.2) 
where K1 , K2 , and K3 are Frank elastic constants describ-
ing, respectively, the free energy associated with splay, 
twist, and bend distortions (see Fig. 8). We also include a 
magnetic-feld term with Dx 5 x i 2 x' the anisotropy of 
the magnetic susceptibility. If Dx . 0, an alignment of 
the director parallel to the feld H is favored. Even in a 
uniformly aligned sample there exist thermally induced 
fuctuations of the director,37 

n~r, t ! 5 n0 1 dn~r, t !, (2.1.3) 

that lead to fuctuations in the local dielectric tensor and 
hence to scattering of light. This is the scattering pro-
cess for which we want to formulate the theory of DWS. 
To do so, we have to consider light propagation in a ho-
mogeneous uniaxial medium (Subsection 2.B). Then we 
consider the fuctuations in the dielectric tensor (see Sub-
section 2.C) to understand single-scattering processes. 
Finally, we investigate multiple-scattering events (Sub-
sections 2.D and 2.E) and report on numerical simula-
tions (Subsection 2.F). 

B. Light Propagation in a Homogeneous Nematic 
In this section we review light propagation in uniaxial 
media and rederive familiar expressions34,35,38 for the 
phase and the group velocities of the ordinary and the ex-
traordinary waves. 

A nematic liquid crystal is a uniaxial medium in which 
light propagates in ordinary and extraordinary rays with 
different polarizations and speeds of light. The ordinary 
ray has a polarization that is perpendicular to both the 
wave vector k and the equilibrium director n0. Its phase 
and group velocities are parallel to k, with magnitudes in-
dependent of the direction of k. The extraordinary ray 
has a polarization in the k–n0 plane. Its phase and 
group velocities are not parallel, and their magnitudes de-
pend on the wave vector k, which is parallel to the phase 
velocity. Figure 9 summarizes the geometry for light 
propagation. û 1 and û 2 are orthogonal unit vectors per-

0pendicular to n . û 1 lies in the k–n0 plane, and û 2 is per-
pendicular to this plane. The wave vector k makes an 
angle u with n0. For the ordinary ray, the electric feld E 

Fig. 8. Pure splay, twist, and bend modes. 

(a) (b) 

(c) 
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Fig. 9. Directions of polarization vectors e1 , d1 and e2 , d2 in re-
lation to Frank director n0 and to wave vectors k, û 1 , and û 2 . 
Vectors n0 , û 1 , and û 2 also form the basis for describing director 
fuctuations of wave vector k. 

and the displacement D are parallel to û 2 . For the ex-
traordinary ray, the displacement vector D is parallel to 
2cos un0 1 sin uû 1. 

Light propagation is determined by the Maxwell wave 
equation 

@~¹2d ij  2  ¹ i¹ j!  2  ~]2/]t2  !e ij~r,  t !#Ej~r,  t !  5  0. 
(2.2.1) 

To discuss light propagation in a homogeneous nematic, 
we ignore fuctuations of the dielectric tensor and use Eq. 
(2.1.1) with the equilibrium Frank director n0: 

0 0 0e ij  5  e'd ij  1  Deni  nj  . (2.2.2) 

The dielectric displacement D and the electric feld E are 
related in the usual way: 

Di 5 e ij  
0Ej  . (2.2.3) 

In the absence of free charge, the divergence of D is zero: 

¹ iDi 5 ¹ ie ij  
0Ej  5  0. (2.2.4) 

With the plane-wave ansatz for the electric feld: 

E~r, t ! 5 Eaea~k̂ !exp@i~k Ł r 2 vt !#, (2.2.5) 

we transform the wave equation (2.2.1) to a generalized 
eigenvalue equation: 

@k2 ~d ij  2  k̂ 
ik̂ 

j!  2  ~v2/c2  !e ij  
0#eaj~k̂ !  5  0, (2.2.6) 

which determines the electric-polarization vector ea(k̂ ) 
and a direction-dependent index of refraction 

na~k̂ ! 5 ck/v  (2.2.7) 

for the two possible electric-feld modes. 
We now construct basis vectors ea for the electric feld 

and da for the displacement feld.29,38 These vectors are 
depicted in Fig. 9. We begin by defning da(k̂ ) for the di-
electric displacement through 

0di 
a 5 e ij  eaj  . (2.2.8) 
Because D 5 daDa exp@i(k Ł r 2 vt)# is transverse, k 
Ł da 5 0. Equation (2.2.6) can then be used to show 
that the vectors ea(k) are perpendicular to e ij  

0kj  and that 
ea and da are dual to each other so that their magnitudes 
can be chosen to satisfy the biorthogonality relation 

ada 
Ł eb 5 db . (2.2.9) 

For the ordinary ray, d2 is parallel to û 2 , and e2i 
25 (e0) ij  

21dj  . Thus, to satisfy Eq. (2.2.9), we chose 

1 
e2 5 û 2 , d2 5 n2û 2 , (2.2.10)

n2 

where the unit vector û 2 is perpendicular to both the 
Frank director n0 and the wave vector k, which enclose 
the angle u, and where n2 is the refractive index of the or-
dinary ray, satisfying 

1 1 
2 

5 . (2.2.11) 
n2 

e' 

Now we can construct the polarization vectors of the ex-
traordinary light wave. From the biorthogonality condi-
tion (2.2.9) it follows that they lie in the plane spanned by 
n0 and k. In addition, the polarization vector d1 has to 
be perpendicular to k: 

d1 5 n1~k̂ !~2sin u n0 1 cos u û 1 !, (2.2.12) 
0where the unit vector û 1 is perpendicular to n . Then we 

obtain e1 from e1i 5 e ij  
021dj  

1:  

sin u cos u 
e1 5 n1 S 2 n0 1 û 1 D . (2.2.13)

e i e' 

The normalization of d1 and e1 is determined by Eq. 
(2.2.9), and the refraction index n1(k̂ ) is identifed with 
the help of the eigenvalue equation (2.2.6): 

1 sin2 u cos2 u 
2 

5 1 . (2.2.14) 
n1 ~k̂ ! e i e' 

The angle d1 between e1 and d1 satisfes 

21/2
1 sin2 u cos2 u 

cos d1 5 1 . (2.2.15)S D2 2 2n1 ~k̂ ! e i e' 

For the ordinary light wave d2 5 0. Finally, we note 
ˆ ˆthat the projection operator d ij  2  kikj  can conveniently 

be written as 

1ˆ ˆ ad ij  2  kikj  5  (  di  
adj  . (2.2.16)

2 a na 

It is important to remember, especially when comparing 
with formulas for isotropic systems, that neither da nor ea 
is a unit vector: da has magnitude na , whereas ea has a 
magnitude that scales as an inverse index of refraction. 
In addition, Ea is really A4p times an energy density 
rather than an electric feld. This follows because E 
Ł D 5 SaEa 

2 and E Ł D/4p  is the energy density. 
There are two velocities, the phase and the group ve-

locities, associated with wave propagation. We need to 
discuss them in more detail. Light modes are character-
ized by the dispersion relation 
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c
2 2va ~k! 5 

2k2 

5 vpa ~ k̂ !k2, (2.2.17)
2na ~k̂ ! 

for each polarization a, where vpa(k̂ ) 5 c/na(k̂ ) is the 
phase velocity, which depends on direction for the ex-
traordinary ray. Equivalently, modes can be character-
ized by the wave vectors 

v v 
ka ˆ ! ˆ [ ˆ5 na~k k k. (2.2.18)

c vpa~k̂ ! 

For a given frequency v, the wave vector ka lies on the 
wave-vector surface, which, as shown in Fig. 10, is a circle 
of radius n2v/c for the ordinary ray (a 5 2) and an el-
lipse with semiaxes Ae'v/c and Ae iv/c for the extraordi-
nary light wave (a 5 1). In numerical simulations, on 
which we report below, we follow the paths of single pho-
tons. They transport energy and thus propagate along 
the Poynting vector, which is given by the energy density 
of the light wave times the group velocity vga 

5 ¹kva(k).34 For the ordinary ray vg2 5 vp2 i k̂ 2. 
The group velocity of the extraordinary wave: 

1 
2vg1~k̂ ! 5 ¹kv1 ~k! [ vg1eg1~k̂ !

2v1~k! 

cn1~k̂ !  k i  k'  
5 S n0 1 û 1 D . (2.2.19)

k e' e i 

is normal to the wave-vector surface, as illustrated in Fig. 
10. The unit vector eg1(k̂ ) is parallel to vg1(k̂ ) and nor-
mal to the wave-vector surface. The phase velocity 
makes an angle uR with the director n0 given by 

n1
2 ~k̂ ! 

cos uR 5 cos d1 cos u, (2.2.20)
e' 

where d1 denotes the angle between the polarization vec-
tors e1 and d1, which we introduced in Eq. (2.2.15). d1 is 
also the angle between k̂ ivp1 and vg1, implying the rela-
tion 

vg1 cos d1 5 vg1 Ł k̂ 5 vp1 5 c/n1~k̂ ! (2.2.21) 

Fig. 10. Diagram showing the wave-vector surface and the di-
rections of the phase and the group velocities. 
between the magnitudes of the group and the phase ve-
locities. Finally, we note that the Poynting vector for po-
larization a, 

Sa 5 @1/~4p!#Ea 
2vga , (2.2.22) 

is the group velocity times the energy density. This can 
be derived by use of Maxwell’s equations and the rela-
tions between phase and group velocity reviewed in this 
section. 

C. Fluctuations of the Director and the Dielectric 
Tensor 
We now allow the director to fuctuate around its equilib-
rium value: n(r, t) 5 n0 1 dn(r, t). For small fuc-
tuations we have d n(r, t) ' n0 since n(r, t) is a unit vec-
tor. We write the Fourier transform dn(q, t) 
5 *d3rdn(r, t)exp iq Ł r in the basis shown in Fig. 9: 

dn~q, t ! 5 dn1~q, t !û 1 1 dn2~q, t !û 2 , (2.3.1) 

where the amplitudes dnd (q, t) (d  5  1, 2) characterize 
the different director modes. Then the Frank free en-
ergy, Eq. (2.1.2), takes the form 

2 E d31 q 
2F@n~r, 0!#  5  Kd~q!udnd~q, 0!u  ,

2  d
(

51  ~2p!3  

(2.3.2) 

with q-dependent elastic constants 

Kd~q! 5 Kd q' 
2 1 K3q i 

2 1 DxH2, (2.3.3) 

where q' and q i are, respectively, the components of q 
perpendicular and parallel to n0. If we choose q i 5 0,  
the director modes are pure splay (d 5 1) or twist (d 
5 2) modes. For q' 5 0, we obtain two bend modes. 
The distortions corresponding to these modes are illus-
trated in Fig. 8. For a general wave vector q, the modes 
contain a combination of bend and either splay or twist 
deformations. 

Quasi-elastic light-scattering experiments in nematics 
measure the time-dependent director autocorrelation 
function30,31,39 

kBT Kd~q! 
^dnd~q, t !dnd * ~q, 0!&  5  exp 2 tF G .Kd~q! hd~q! 

(2.3.4) 

The frst factor in this expression results from the appli-
cation of the equipartition theorem, which states that 
each director mode has an average thermal energy kBT/2. 
The second factor refects the purely diffusive temporal 
decay of the director modes. The relaxation frequency is 
given by the quotient of elastic, Kd (q), and viscous, hd (q), 
forces. To arrive at this result, one has to analyze the 
Leslie–Erickson equations.30,31,40 They comprise the 
Navier–Stokes equations for a uniaxial medium, which 
describe the fuid motion, and dynamical equations for 
the director. The viscosity hd (q) is a combination of sev-
eral Leslie viscosities that appear in these equations. 
The important contribution to hd (q) comes from the rota-
tional viscosity g, which measures viscous forces hinder-
ing the rotation of the director. In Eq. (2.3.4) we have ne-
glected a second fast mode, whose character is 

https://�kva(k).34
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predominantly that of velocity diffusion. Its characteris-
2tic frequency (h /r)q (where r ' 1 gm/cm3 is the mass 

1density) is much greater than Gq , since hr ; 102 cm2/s 
5 6is much greater than K/h ; 102 – 102 cm2/s. 

The spatial autocorrelation functions ^dnd (R, 0)  
3 dnd  (0, 0)&, where d 5 1, 2 stands for the two compo-
nents perpendicular to n0, follow from Eq. (2.3.4) after a 
Fourier transformation. In the one-constant approxima-
tion (K 5 Ki) it reads30 

^dnd~R, 0!dnd~0, 0!& }  ~1/R !exp~2R/j!, (2.3.5) 

where the magnetic coherence length 

j 5 A K 
(2.3.6)

DxH2 

gives the length scale over which director fuctuations are 
correlated. 

The director fuctuations induce fuctuations deij(r,  t) of  
the dielectric tensor. They follow from Eq. (2.1.1) to frst 
order in d n(r, t): 

de ij~r,  t !  5 De@dni~r,  t !nj  
0  1 ni  

0dnj~r,  t !#.  
(2.3.7) 

The scattered electric feld for a single-light-scattering 
event is proportional to the Fourier component 

deab~ka  2 qb  ,  t !  5 eaide ij~ka  2 qb  ,  t !ebj  ,  
(2.3.8) 

where the pairs kb , eb and ka , ea stand, respectively, for 
the wave vector and the polarization of the incoming and 
the scattered electric feld. In experiments one measures 
the temporal autocorrelation function of the scattered 
electric feld through time correlations in the light inten-
sity. For single scattering this autocorrelation function 
is proportional to 

Bab~k̂ ,  q̂ ,  t !  5 ~v4/c4  !^deab~ka  2 qb  ,  t !  

3 deab  * ~ka  2 qb, 0!&, (2.3.9) 

where v is the angular frequency of light. We call 
ˆBab (k, q̂ , t) a structure factor because it contains infor-

mation about the elastic and the dynamic properties of 
the director modes. Using deij(r,  t) from Eq. (2.3.7) and 
the autocorrelation function of Eq. (2.3.4), we obtain 

ˆBab~k,  q̂ ,  t !  

4v  N~ea  ,  eb  ,  û d!  Kd ~qs! 
5 ~De!2kBT exp 2 t ,4 ( 

2 F Gc d51 Kd ~qs! hd ~qs! 

(2.3.10) 

with 

ˆqs 5 ~v/c !~nak 2 nbq̂ b! (2.3.11)a 

and with 

N~ea , eb , û d! 5 @~n0  
Ł eb!~û d  Ł ea!  

1 ~û d  Ł eb!~n0  
Ł ea!#2,  

(2.3.12) 

a geometry factor. Note that N(ea , eb , û d ) is zero if both 
ea and eb are perpendicular to n0. This means that there 
is no director-induced ordinary-to-ordinary scattering. 
There is only scattering from an ordinary ray to an ex-
traordinary ray and vice versa, and scattering from an ex-
traordinary ray to an extraordinary ray. Of course, there 
is ordinary-to-ordinary scattering produced by fuctua-
tions in the isotropic part of the dielectric tensor. This, 
however, is much smaller than the director-induced scat-
tering, and we ignore it. 

The structure factor is related to the differential cross 
section giving the scattered energy per unit of time, solid 
angle element, and incident intensity in a medium of vol-
ume V:41 

dsab  V  
a  5  na  

3  ~k̂ !Bab~k̂ ,  q̂ ,  t  5 0 !nb~ q̂ !cos db .dVk ~4p!2 

(2.3.13) 

The indices a and b denote, respectively, the modes of the 
scattered and the incident light. Note that here we use 

athe solid angle element dVR for the wave vector. For 
extraordinary light, it differs from the solid angle element 
dVR 

a of the Poynting vector, which is relevant for experi-
ment. The connection between the two is given by 

1 6dVR d cos uR n1 ~k̂ !cos3 d1 
5 5 , (2.3.14)

1 d cos u e 2dVk ' e i 

where we used Eqs. (2.2.20) and (2.2.14). In comparing 
Eqs. (2.3.9) and (2.3.10) with results for isotropic systems, 
it is useful to recall how quantities scale with dielectric 
constant or index of refraction. Normally one would ex-
pect deab to scale as a dielectric constant. However, be-
cause of the normalization of ea , deab has no scale. The 
cross section, in contrast, scales as Bab times an index of 
refraction to the fourth power, i.e., it scales as the square 
of a dielectric constant, as it does in an isotropic system. 

D. Fluctuations in eij  and Damping 
Fluctuations in density, the Frank director, and other 
quantities, give rise to fuctuations deij(r,  t) in the local 
dielectric constant from its equilibrium value e ij  

0:  

e ij~r,  t !  5 e ij  
0  1 de ij~r,  t !. (2.4.1) 

Fluctuations in eij  lead to fuctuations in the local plane-
wave amplitudes. To describe this situation, we assume 
that the frequency of input radiation is v, and we decom-
pose E(r, t) into polarization components determined by 
ea : 

E~r, t ! 5 ea~¹̂ !Ea~r, t !exp~2ivt !, (2.4.2) 

where ¹̂ 5 ¹/u¹u. The frequencies of temporal varia-
tions of Ea(r, t) are determined by those of deij  , which are 
slow compared with the light frequency v. In this limit 
we can use the slowly varying amplitude approximation 
in which the frequency of temporal variation of the 
amplitude Ea(r, t) is much slower than v. Then 
]2/]t2e ij(r,  t)Ej(r,  t)  5 2(v2/c2)e ij(r,  t)Ej(r,  t). Tak-
ing the dot product of Eq. (2.2.1) with eai and using Eqs. 
(2.2.9) and (2.2.16), we obtain 

2 21 v v 
2 ¹2 2 Ea~r, t ! 5 deab~r,  t !Eb~r,  t !,F G2 2 2na ~¹̂ ! c c 

(2.4.3) 
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where 

a bdeab~r,  t !  5  ei  ~¹̂ !de ij~r,  t !ej  ~¹̂ !. (2.4.4) 

Note that deab (r, t) is actually an operator because of the 
gradient dependence of the polarization vectors. The or-
der of these vectors is important: the gradient in the left 
vector acts on all that follows it, including deij(r,  t). 

Equation (2.4.3) is now in a standard form for the ap-
theory.29,42,43plication of diagrammatic perturbation 

Appendix A outlines the calculation of the average Green 
function, Ga(k, v), for propagation of light with polariza-
tion a in the weak-scattering limit from the graphs shown 
in Fig. 11. The result is 

k2 2v iv 1 
21 ~k, v! 5 2 2 ,Ga 2 na 

2 ~k̂ ! c c na~k̂ !la~k̂ , v! 

(2.4.5) 

where the bare mean free path la(k̂ , v) is determined by44 

E dVq ˆ 3
4p 

5 na~k̂ !( Bab~k,  q̂ ,  t  5  0 !nb ~ q̂ !,  
la~k̂ , v! b 4p 

(2.4.6) 

where Ba,b (k̂ , q̂ , t) is defned in Eq. (2.3.9) and ka is given 
by Eq. (2.2.18). The physical mean free path l8 , as  we  a 
show below, is equal to la /cos da . 

We show in Appendix A that Eq. (2.4.6) implies that 
the mean free path for extraordinary-to-extraordinary 
scattering tends to zero as (ln DxH 2)21 as H ! 0. This 
would seem to invalidate the approximations of the weak-
scattering limit. However, scattering in this limit is 
highly peaked in the forward-scattering direction so that 
it takes many scattering events to change the direction of 
light propagation. Thus, as we show below, the trans-
port mean free paths, and thus the photon diffusion con-
stants, are perfectly fnite. 

To discuss multiple scattering in real space, we need 
the spatial Fourier transform of Ga(k, v). The Green 
function for the ordinary ray is isotropic and identical in 
form to that of an isotropic medium: 

3n2
G2~R, v! 5 exp@in2~v/c !R#exp~2R/2l2 !.4pn2R 

(2.4.7) 

The Green function for the extraordinary wave is more 
complicated,38 but it can be calculated straightforwardly 
by anisotropic rescaling of lengths and wave vectors in 

Fig. 11. Graphs for the photon Green function in the weak-
scattering limit. 
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G1~r, v! 5 E exp~ik Ł R!F 1 2 

2 ~2p!3 e e i c 

G 
' 

21 
v 1 

2 i 
c n1~k̂ !l1~k̂ , v! 

Aee i ' 
5 exp@i~v/c !R8#exp@2R8/~2l1 !#,

4pR8 

(2.4.8) 

where 

R8 5 Ae iR' 1 Ae'Ri . (2.4.9) 

The Green function gives the electric feld at R in re-
sponse to a disturbance at the origin. Thus R is parallel 
to the group velocity vg1(R̂ ), where R̂ is the unit vector 
parallel to R. The wave vector kR 

1 that produces a group 
velocity parallel to R must, from Eq. (2.2.19), have the 
form kR 

1 5 A(e Ri 1 e iR'), where A is determined by' 

the requirement that (kR 
1)2/n1

2(k̂ 
R 

1) 5 (v/c)2. These 
considerations imply that 

v e Ri 1 e iR v' ' ˆ ˆ 1kR 
1 5 

2 
5 n1~kR 

1 !kR ,
c Ae c 

'R i 
2 1 e iR' 

(2.4.10) 

ˆv vn1~k 1 !R
R8 5 kR 

1 
Ł R 5 R cos d1 , (2.4.11)c c 

and R8 5 n1R cos d1. Thus the Green function for the 
extraordinary ray can be rewritten as 

e iAe' 
G1~R, v! 5 exp~ikR 

1 
Ł R!

4pn1R cos d1 

3 exp~2R cos d1/2l1 !. (2.4.12) 

From this we see that the physical mean free path for ex-
traordinary photons is 

l1
l18 5 . (2.4.13)

cos d1 

rather than l1 . 

E. Multiple Scattering and Diffusion 
In this section, we consider multiple scattering in a nem-
atic liquid crystal and show how it leads to energy diffu-
sion with anisotropic diffusion coeffcients. The intensity 
of radiation measured at the detector can be obtained 
from the function 

r t 
EaG a~R, r, T, t ! 5 K S R 1 

2
, T 1 D2 

r t 
3 Ea* R 2 ,S 2

, T 2 D L2 

(2.5.1) 

which is determined by the source intensity Ja(R8, r8, T8) 
Fab(R  2  R8,  r,  r8,and the energy propagator 

T 2 T8, t) through 
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r8dT8FabG a~R, r, T, t ! 5 E d3R8d3 ~R 2 R8, r, r8, 

3 T 2 T8, t !Jb~R8, r8, T8, t !. 

(2.5.2) 

In the weak-scattering diffusion approximation, Fab can 
be expressed as a sum of ladder diagrams,29,42,43 as shown 
in Fig. 12, which reduce in Fourier space to the Bethe– 
Salpeter equation 

ab~K,  V,  t !  5  dabfk  
aFk,k8 ~K,  V!~2p!2d~k  2  k8!  

1  E  d3k1  a  ˆ ˆfk  ~K,  V!Bag~k,  k1 ,  t !  
~2p!3  

gb~K,  V,  t !,3 Fk1 ,k8 (2.5.3) 

where 

Fab  ~R,  r,r8,  T,  t !  

d3K  d3k  d3k8  dV  
5  E  

~2p!3  ~2p!3  ~2p!3 2p  

3  exp~iK Ł R!exp~ik Ł r!exp~2ik8 Ł r8! 

ab3 exp~2iVT !Fk,k8 ~K, V, t !, (2.5.4) 

K V K 
afk ~K, V! 5 GaS k 1 

2
, v 1 DGa * S k 2 

2
,

2 

V 
v 2 D . (2.5.5)

2 

Note that V is the frequency conjugate to T and not a 
solid angle. 

We are interested primarily in the diffusive part of Fab . 
There are functions fa(k̂ ) and ca(k̂ ), which we determine 
in Appendix B, that project out this diffusive part so that 
the function 

F~R, T, t ! 

d3k E d3k8 
fa 

ab5 E ~k̂ !Fk,k8 ~R, T, t !cb * ~k̂ 8! 
~2p!3 ~2p!3 

(2.5.6) 

satisfes a diffusion equation at t 5 0. Contributions to 
F can be expanded diagrammatically, as shown in Fig. 
12. Each diagram contains double Green-functions lines 
[representing fk 

a(R, T)] that are connected by interac-
tion vertices representing scattering events. Diagrams 
can be classifed according to the number N of double 
Green-function lines. We show below that each double 
Green-function line can be identifed with a step 

Fig. 12. Diagrammatic representation of Fab in terms of ladder 
diagrams. 

► ► T ► + 

' ◄ ◄ ◄ 

► T ► r ► + 
◄ • ◄ • ◄ 
of the diffusing photon. Thus F can be written as a sum 
over N of contributions FN arising from all possible walks 
of N steps: 

` 

F 5 ( FN . (2.5.7) 
N51 

Each term FN can be expressed as an integral over all po-
sitions of scatterers. Introducing an obvious notation in 
which 1 refers to all arguments with subscript 1, we can 
write its Fourier transform as 

FN ~K, V, t ! 5 E dN...d1f~N !f~n !s~n !  

N21  

3  )  B~i  1  1, i !f~i !s~i !c~1 !, 
i51 

(2.5.8) 

where d15dT1d3R1d3k1 /(2p)3,  

s~1 !  5  exp~2iK Ł R1 !exp~iVT1 !, (2.5.9) 

and f(1) is the spatial and the temporal Fourier transform 
of Eq. (2.5.5): 

f~1 ! 5 fk1 

a1~R1 , T1 !, (2.5.10) 

¯ ea1
3 

5 exp~2cos da1 
R1 /la1 

!~2p!3 

~4pna1 
cos da1 

R !2 

3 d~k1 2 kR 
a1 !d(T1 2 @R1 /vg,a1 

~R̂ 
1 !#), 

(2.5.11) 

with 

H e 2e i if a 5 1'¯ e 3 5 3 (2.5.12)a e if a 5 2. 
' 

Using the above information, we show in Appendix B that 
FN(K 5 0, V 5 0, t 5 0)  5  FN(0, 0, 0), for an appropri-
ate choice of f and c, can be represented as the integral 
over all possible paths of a path probability distribution 
PN[path]: 

fN ~0, 0, 0! 5 E d@path#PN@path#. (2.5.13) 

We can then express FN(K, V, t) as an average over this 
distribution: 

FN ~K, V, t ! 5 K expS 2iK Ł ( Rp D expS 1iV( Tp D
p p 

N Ba ,a ~kp , kp21 , t ! 
p p21 

3 ) L , 
p52 Ba ,a ~kp , kp21,0! 

p p21 N 

(2.5.14) 

where ^ &N  signifes an average over all paths with N scat-
tering events and Tp 5 Rp /vga is the photon travel time 

p 

for step p. This expression is similar, but not identical, 
to expressions8,45 in the literature for F(R, T, t). Keep-
ing as usual only the dominant terms in a cumulant ex-
pansion, we obtain 
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FN ~K, V, t ! 5 exp$2N@ 2
1KiKj^RiRj& 2 iV^T& 

1 ^dB~t !/B&#%, (2.5.15) 

where 

1 
^RiRj& 5 

N ( ^RpiRp8j&N  
p,p8 

1 2  
5  

N  ( ^RpiRpj&  1  
N  ( ^Rpi  ,Rp8j&  

p  p.p8  

0 0  1  1  0 0  !5  ^R i  
2&Nni  nj  2  ̂ R'  

2&N~d ij  2  ni  nj  

(2.5.16) 

is the tensor describing the average mean-square dis-
placement between scattering events, 

ˆ^T& 5 ^Rp /vga ~kp!&N (2.5.17)
p 

is the p-independent average time between scattering 
events, and 

dB~t ! dBa1 ,a2 
~k1 , k2 , t ! 

5 , (2.5.18)K L K LB Ba1 ,a2 
~k1 , k2 , 0!  

with 

dBa1 ,a2 
~k1 , k2 , t ! 5 Ba1 ,a2 

~k1 , k2 , 0!  

2  Ba1 ,a2  
~k1 ,  k2 ,  t !.  

(2.5.19) 

In Appendix B we derive analytic expressions for ^T& 
and ^dB(t)/B&. Although analytic expressions for the 
mean-square displacements cannot be obtained, in Ap-
pendix C we derive formal expressions for these quanti-
ties that will permit us to obtain good approximations for 
them. We begin with ^T&: 

8p @n3# 
^T& 5 , (2.5.20)

c @B#n 

where 

E dVkdVp 3 3@B#n 5 ( na ~k̂ !Bab~k,  p, 0!nb ~p̂  !  
ab  ~4p!2  

(2.5.21) 

is the angular and polarization average of Bab (k, p, 0)  
and 

1 
3@n3# 5 E dVk 

na ~k̂ ! (2.5.22)
2 ( 4pa 

is a similar average of n3. Similarly, 

dB~t ! 1 
3K L 5 ( E  dVkdVp  

na ~k̂ !@Bab~k,  p, 0!
B @B#n ~4p!2ab  

32 Bab~k,  p,  t !#nb~p̂ !. (2.5.23) 

The sum over N to obtain F (K, V, t) is easily done. 
The result in the small k, V, and t limit is 

1 
F~K, V, t ! 5 D~K, V, t !, (2.5.24)

^T& 

where 
1 
D~K, V, t ! 5 

2 1 D2iV 1 D iK i 'K' 
2 1 m~t ! 

(2.5.25) 

is the diffusion propagator, with 

1 ^R i 
2& c ^R i 

2&@B#n
D i 5 5 ,

2 ^T& 16p @n3# 

1 ^R 2& c ^R 2&@B#n' ' 
D 5 5 , (2.5.26)' 4 ^T& 32p @n3# 

1 dB c @dB#n 
m~t ! 5 5 . (2.5.27)K L^T& B 8p @n3# 

Equations (2.5.17)–(2.5.27) completely characterize diffu-
sive transport and DWS in a uniaxial anisotropic me-
dium. Using Eqs. (2.5.2), (2.5.24), and (2.5.25), we obtain 
the diffusion equation (1.2.2) in real space after Fourier 
transforming with respect to V and K. 

In isotropic systems with a single direction-indepen-
dent index of refraction n, ^T& and the isotropic diffusion 
constant are normally expressed as 

nl  1  c  
^T& 5 , D 5 l* , (2.5.28)

c 3 n 

where l and l* are, respectively, the mean free and the 
transport mean free paths of the diffusing light. To 
make contact with these isotropic formulas, it is useful to 
introduce an average index of refraction n̄ , an average

¯ mean free path l, and transport mean free paths l i * and 
l* such that ' 

n̄ ¯ ^T& 5 l, (2.5.29)
c 

1 c 1 c 
D i 5 ¯ l i * , D' 5 ¯ l' * . (2.5.30)

3 n 3 n 

Using Eq. (2.4.6), we can defne ̄l by means of 

4p 1 E dVk 4pna 
2 ~k̂ ! 1 @B#n 

5 ( 5 .¯ 2# 2#l 2@n a 4p la~k̂ ! 2 @n 

(2.5.31) 

Then ^T& 5 (̄l/c)(@n3#/@n2#), and 

@n3# 
n̄ 5 . (2.5.32) 

@n2# 

Similarly, D i 5 (c/2n̄)(^R i  
2& /̄l), and D 5 (c/4n̄)' 

3 (^R 2& /̄l). Thus we can defne l* i and l* by using ' ' 

2 4 
^R i 

2& 5 
3 

l̄ l* i , ^R 2& 5 
3 

l̄ l* . (2.5.33)' ' 

In an isotropic system, l̄ reduces to l, n̄ to n, and l i * 
5 l* to l* . In nematics l̄ tends to zero as H ! 0,' 

whereas l i * and l* do not. Thus both the average time' 

^T& and the mean-square displacements ^R i 
2& and ^R 2&' 

tend to zero in this limit, but the ratios ^R i 
2&/^T& and 

^R' 
2&/^T& do not. 

The dynamic absorption coeffcient m(t) can be ex-
pressed in terms of these new variables as 

https://2.5.17)�(2.5.27
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c @dB~t !#n 
m~t ! 5 . (2.5.34)¯¯ ln @B#n 

In isotropic systems, @dB(t)#n /@B#n 5 2k0
2Dst(l/l* ), and 

m(t) 5 (2c/nl* )Dk0
2t. In liquid crystals, Eq. (2.5.34) is 

not so useful because the mode frequencies Gq are propor-
tional to B, as indicated in Eq. (2.3.4). As a result, 

4v 
@dB~t !#n /t 5 ~De!2kBT 4 (c a,b,d 

3 3 

3 E dVk dVp na ~k̂ !N~ea , eb , û d!nb ~p̂ ! 

4p 4p hd~q! 

4v N 
5 ~De!2 kBT ( F G , (2.5.35) 

c4 d hd n 

where q 5 nak 2 nbp, depends only on viscosities and 
not on Frank elastic constant Ki or the magnetic feld. 
The average [N/hd]n is defned by Eq. (2.5.21), with B be-
ing replaced by N/hd . 

The evaluation of ^R i 
2& and ^R' 

2& 5 2^Rx 
2& is outlined 

in Appendix C. The exact expressions for these quanti-
ties involve the inversion of infnite-dimensional matri-
ces. If we approximate these matrices by their lowest 
nonvanishing terms, we obtain the following expression 
for the photon diffusion coeffcient: 

z z z4pc 4p 2 B 11 1 B 22 2 2B 12
D i 5 

5 S D3 det B z 
n2 ~2 1 h! 

4pc 4p 2 

D' 5 S D5 3n2 ~2 1 h! 

x x x ~1 1 h!B 11 1 B 22 2 2A1 1 hB 12 
3 , 

~1 1 h!det B x 

(2.5.36) 

where h 5 De/e' , 

zB ab  5  E  dCdC8dfdf8@C2  2  CC8#Bab~C,  C8,  f,  f8!,  

(2.5.37) 

x 2 f5 E dCdC8dfdf8@~1  2  C2  !cosB ab  

2 A1 2 C2A1 2 C82 

3 cos f cos f8#Bab~C,  C8,  f,  f8!,  (2.5.38) 

with 

C [ Ck 5 n1~k̂ !cos uk /n2 . (2.5.39) 

The full expression for Bab(C,  C8,  f,  f8) is given in Ap-
pendix C. 

To discuss the diffusion constants D i and D' , we intro-
duce a factor 

c3 K3 e 2 
' 

D0 5 3p 
2 3 

, (2.5.40) 
v n2 kBT ~De!2 

-----------

--
which gives the order of magnitude of the diffusion con-
stants, and write 

˜ ˜D i 5 D0D i , D' 5 D0D' . (2.5.41) 

˜ ˜The numerical factors D i and D depend only on the ra-' 
tios of the Frank elastic constants (K1 /K3 and K2 /K3) 
and on the relative dielectric anisotropy De/e' . With the 
material parameters of the nematic compound CB15 
(De/e 5 0.228, n2 5 1.543, K3 5 5.3 3 1027 dyn), green ' 

light (v/c 5 1.15 3 105 cm21), and a temperature T 
5 300 K we obtain D0 5 1.5 3 109 cm2/s. 

For 5CB we show in Fig. 13 how the diffusion constants 
˜ ˜D i and D and the relative anisotropy (D i 2 D')/D'  be-' 

˜ ˜have in a magnetic feld. D i and D grow with H because' 
the magnetic feld suppresses director fuctuations. The 
feld dependence of the relative anisotropy in the diffusion 
is weak. For ordinary magnetic felds up to 5 3 104 G, 
which corresponds to a magnetic coherence length j3 of 

˜ ˜approximately 1 mm, the changes in D i and D are small.' 
˜ ˜The values for H 5 0 read D 5 0.95 and D 5 0.65,i ' 

˜ ˜with a ratio D i /D 5 1.45. Taking these values together ' 

with D0 5 1.5 3 109 cm2/s, we obtain D i 5 1.43 3 109 

cm2/s and D' 5 0.98 3 109 cm2/s. These values are in 
excellent agreement with the numerical simulations on 

˜ ˜which we report in Subsection 2.F. The ratio D i /D is' 

also in good agreement with experiments. However, the 
absolute values of D i and D' are larger by a factor of 2. 
We attribute this partially to the fact that the experi-
ments used light with a longer wavelength. Note, again, 
that both diffusion constants are fnite for H ! 0, al-
though the scattering mean free path for extraordinary-
to-extraordinary scattering goes to zero. 

In Fig. 14 we explore the anisotropy in the diffusion as 
a function of the dielectric anisotropy De/e' . We set 
K1 5 K2 5 K3. Even at De 5 0, the diffusion constants 
D i and D' are slightly different because of the inherent 
anisotropy in the nematic structure factor. The anisot-
ropy in the diffusion grows with De because the speed of 
light of the extraordinary light ray is larger along the di-

˜ ˜Fig. 13. Field dependence of the diffusion constants D i and D' 

and the relative anisotropy (D i 2 D')/D'  for the nematic com-
pound 5CB (K1 /K3 5 0.79, K2 /K3 5 0.43, and De/e 5 0.228).' 
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Fig. 14. Relative anistropy (D i 2 D')/D'  as a function of 
De/e for K1 5 K2 5 K3.' 

˜Fig. 15. Reduced diffusion constant D as a function of K1 /K3' 

and K2 /K3 for De 5 0.  

rector than perpendicular to it. In contrast, for De/e' 

, 20.15, the anisotropy (D i 2 D')/D'  changes sign, 
and light diffuses faster perpendicular to the director. 
This effect and the inversion point D i 5 D' should be ob-
servable in discotic nematics where De is negative. 

Finally, we discuss the dependence of the diffusion on 
the elastic constants K1 /K3 and K2 /K3. We show in Fig. 
15 that, since the light scattering from the director modes

˜increases, D decreases with the elastic constants. At' 
the extreme values K1 /K3 5 K2 /K3 5 0.01, we obtain 
D̃ 5 0.07. The contour lines reveal an asymmetry be-' 

˜tween the splay (K1) and the twist (K2) distortions. D' 
decreases more strongly with K2 /K3. The diffusion con-

˜stant D shows a similar behavior. Figure 16 gives thei 

anisotropy (D i 2 D')/D'  for the same range. It grows
˜with decreasing elastic constants, showing that D is' 

˜more affected by splay and twist distortions than is D i . 
The asymmetry between splay and twist is clearly visible. 
Figures 15 and 16 cover the range of conventional ther-
motropic nematics where usually K1 /K3 , 1 and K2 /K3 

, 1.  
Until now, we have concentrated on the scalar photon 

diffusion propagator. The polarization and direction de-
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pendence of diffusing photons are also of interest. We 
show in Appendix B that the function 

k82dk8
ab~K,  V,  t !  5 E  k2dk  

abˆ ˆ ~K, V, t !,Fk,k8 Fk,k8 ~2p!3 ~2p!3 

(2.5.42) 

which determines the intensity of diffused radiation with 
polarization a and phase direction k̂ produced by a source 
of radiation with polarization b and phase direction k̂ 8, 
satisfes 

3 31  c na ~k̂ !nb ~k̂ 8!
abf k̂ k̂ ~k, V, t ! 5 D~K, V, t !.8 ~4p!2 8p @n3# 

(2.5.43) 

From this we can calculate the polarization dependence of 
the intensity of output radiation. In particular, using 
Eq. (2.2.22) for the Poynting vector, we obtain 

2uS1~k̂ !u 1 n1 ~k̂ ! 
R 5 5 (2.5.44)

2uS2~k̂ !u cos d1~k̂ ! n2 

for the ratio of output intensity of the extraordinary ray 
to that of the ordinary ray propagating along the direction 
vg1(k̂ ). This ratio is independent of the polarization 
state of the input radiation. 

F. Numerical Simulations 
To complete our experimental and theoretical investiga-
tion of light diffusion in the nematic phase, we performed 
numerical simulations. How does the photon distribu-
tion evolve if we launch photons uniformly along the x di-
rection and perpendicular to the director, which we 
choose parallel to the z axis? Initially, after relatively few 
scattering events, the photon cloud will be asymmetric, 
still indicating the initial direction of the photons. As 
time passes, the photons experience further scattering 
events and lose their memory of their initial direction. 
As a result, the cloud becomes more symmetric, although 
it will be elongated or fattened along the z axis as a re-

Fig. 16. Relative anisotropy (D i 2 D')/D'  as a function of 
K1 /K3 and K2 /K3 for De 5 0.  

--------

0.01 

1 Ki/Ka 



Stark et al. Vol. 14, No. 1/January 1997/J. Opt. Soc. Am. A 171 
Fig. 17. Clouds of photons projected on the xy, the xz, and the 
yz  planes for times t 5 10 ps (left-hand column) and t 5 100 ps. 

sult of the anisotropic diffusion. At this stage the distri-
bution r (x, y, z) of the photon positions is Gaussian, i.e., 

1 1 ~x 2 x0 !
2 

r~x, y, z ! 5 exp 2F
2p!3/2 2 ~ sxsysz 2sx 

~y 2 y0 !
2 ~z 2 z0 !

2 

2 
2 

2 
2 

, (2.6.1)G
2sy 2sz 

where the diffusion constants follow from 

sx 
2 5 2Dxt, sy 

2 5 2Dyt, sz 
2 5 2Dzt. 

(2.6.2) 

The positions x0 , y0 , and z0 defne the true starting point 
for a diffuse photon source. 

In our simulations we placed 2000 photons at the ori-
gin, half of them with ordinary and the other half with ex-
traordinary polarization. Then we let them propagate 
along the positive x axis for a time dt 5 0.1 ps, which was 
chosen such that the traveled distance ds 5 vgadt ' 2 
3 1023 cm was much smaller than the scattering mean 
free path. We note that photons transport energy and 
that therefore they travel along the Poynting vector Sa 
with the group velocity vga . The direction of Sa is differ-
ent from the wave vector ka , as explained in Subsection 

t•10psec 
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2.B. After each time step we checked for scattering 
events. A photon was scattered if a random number gen-
erated between 0 and 1 was smaller than the scattering 
probability ds cos da /la(k̂ ) [see Appendix B and Eq. (B4)]. 
We then determined the new polarization mode and wave 
vector of the scattered photon by using the conditional 
probability p (k2 , a2uk1 , a1) for a scattering event from po-

ˆlarization a1 and phase direction k1 to polarization a2 and 
ˆphase direction k2 [see Appendix B and Eq. (B6)]. The 

conditional probability depends on the differential cross 
section, which is proportional to the structure factor 
Ba2 ,a1

(k̂ 
2 , k̂ 

1 , 0). We used reported data on 5CB for the 
calculations. 

In Fig. 17 we show projections of the photon cloud on 
the xy,  xz, and yz  planes for times t 5 10 ps (left-hand 
column) and t 5 100 ps (right-hand column). At t 5 10 
ps the xy  and the xz  projections clearly indicate the ini-
tial direction of the photons. At t 5 100 ps the cloud 
looks symmetric, and in the xz  and the yz  projections we 
can sense a slight elongation along the z axis. We ftted 
several snapshots with the Gaussian distribution 
r(x, y, z) of Eq. (2.6.1). In Fig. 18 we plot the variances 

2 2 2sx , sy , and sz which grow, as expected, linearly in 
time. The diffusion constants Dx and Dy perpendicular 
to the director are equal and are smaller than Dz by a fac-

2 2Fig. 18. Variances sx , sy , and sz 
2 for the Gaussian distribu-

tion of the photon positions. The upper left-hand inset gives the 
diffusion constants that follow from the variances. 

Fig. 19. Averaged photon position x0 5 ^x& as a function of 
time. It reaches a constant value of 1.5 mm. 
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tor of 1.46, which is in excellent agreement with our theo-
retical prediction and in good agreement with experi-
ment. Interestingly, the center of the photon cloud is not 
the origin but is shifted in the positive x direction. The 
distance from the center reaches a constant value of ap-
proximately 1.5 mm, as shown in Fig. 19. This is the dis-
tance that the photons need to randomize their initial di-
rections and is of the order of the mean free path l' * . 
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Note added in proof: While this paper was being ref-
ereed, a theoretical paper on light diffusion in nematic 
liquid crystals was published.47 Its results and conclu-
sions are similar to ours. 

APPENDIX A: WEAK-SCATTERING 
PHOTON GREEN FUNCTION 
In this appendix we review briefy the derivation of the 
weak-scattering form for the single-photon Green func-
tion, and we show that the mean free path for 
extraordinary-to-extraordinary scattering vanishes in the 

0.41,46limit H ! The average photon Green function 
can be expanded in powers of fuctuations in the dielectric 
tensor. In the weak-scattering limit, to which we restrict 
ourselves in this paper, the only diagrams contributing to 
G are the noncrossing diagrams shown in Fig. 11. In the 
weak-scattering limit the photon Green function remains 
diagonal in the polarization indices a and b (see Refs. 28 
and 29), and the inverse Green function becomes 

21 021Ga ~k, v! 5 Ga ~k, v! 2 Sa~k, v!, (A1) 

where 

Sa~k, v! 5 E d3q
Bab~k,  q, 0!Gb~q,  v!  (A2) 

~2p!3 

is the photon self-energy and 
2 

k2 
21 

v 
Ga 

0 ~k, v! 5 2 (A3)F S D G 
na 

2 ~kc ˆ ! 

is the bare Green function. Using Im Ga 
0(k, v) 

5 2i(p/2)@na(k̂ )c/v#d @k 2 na(k̂ )(v/c)#  and restricting 
ourselves to the energy shell with k 5 (v/c)na(k̂ ), we ob-
tain 

v 1 
Im Ga 

21 ~k, v! 5 
c na~k̂ !la~k̂ ! 

d3q 05 ( E Bab~ka  ,  qb!Im Ga 
b ~2p!3 

3 ~q, v! 

dVq p 
35 ( E Bab~ka  ,  qb!nb ~ q̂ !.  

b ~2p!3 2 

(A4) 
This equation is equivalent to Eq. (2.4.6). 
The preceding expression shows (1) that the mean free 
path for ordinary rays is determined entirely by scatter-
ing into extraordinary rays because the factor N [Eq. 
(2.3.12)] in B22 is zero, and (2) that the mean free path for 
extraordinary rays tends to zero as the reciprocal of the 
logarithm of DxH2 because of divergent extraordinary-to-
extraordinary scattering. The latter follows because qs 

ˆ ˆis zero when a 5 b and when ka 5 q̂ a . B11(k, q̂ , 0)  in  
the neighborhood of q̂ 5 k̂ can be expressed as 

4~De!2 v2 1 
B11 ' T 

e i 
2e' 

2 c2 
~k̂ !K1n1

2 

1 

2 
3 

sin2 uk~duq!2 1 C~k̂ !~dfq!2 1 @DxH2/K1~v/c !2n1 ~k̂ !# 
, 

(A5) 

where C(k̂ ) is a well-behaved function of uk and fk and 
where we used N(e1 , e1 , u1) 5 4 cos2(uk 2 uq) ' 4.  
Using this in Eq. (A4), we obtain 

2 24p ~De!2 v n1 ~k̂ ! DxH2 

' T ln .F G2 2 2 2l1~k̂ ! pe i e' c AC~k̂ ! K1~v/c !2n1 ~k̂ ! 
(A6) 

Thus the mean free path for extraordinary-to-
extraordinary scattering tends to zero as H tends to zero. 
The transport mean free path is, however, fnite in this 
limit. 

APPENDIX B: PATH INTEGRALS FOR 
PHOTON DIFFUSION 
In this appendix we fll in the missing steps between Eqs. 
(2.5.12) and (2.5.13). The integral over dTi in Eq. 
(2.5.11) is trivial; it sets Ti 5 Ri /vg,ai 

in s(i), i.e., it sets 
the travel time to the distance divided by the group veloc-
ity. The propagator f(1) has a delta function setting k 

aequal to kR , the wave vector corresponding to energy 
2propagation along R. In addition, f has a factor of R2 . 

These two factors simplify integrals over R and k: 

E d3Rd3k ~2p!3 

d~k 2 kR 
a! 

~2p!3 R2 

adVR ! E dRdVk d@k 2 c/na~k̂ !#, (B1)adVk 

where VR 
a and Vk 

a are, respectively, the solid angles as-
sociated with R and k for the wave with polarization a 
with Jacobian 

dVR 
a d cos uR na 

6 

5 5 cos3 da , (B2)
dVk 

a d cos uk ¯ e 3 
a 

where we used Eq. (2.5.12) and, for a 5 1, we used Eq. 
(2.3.14). The B and the f factors can now be combined to 
yield 

----------

---------

https://published.47
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1 ˆ ˆ 4 ˆB~2, 1!f~1 ! ! Ba2a1 
~k2 , k1 , t !na1 

~k1 ! 
~4p!2 

3 cos da1 
exp@2R1 cos da1

/la1 
~k̂ 

1 !# 

ˆ ˆ 3 ˆBa2a1 
~k2 , k1 , t !na1 

~k1 ! 
5 (B3)

ˆ 
pa1 

~R1 !, 
Za1 

~k1! 

where 

exp@2R cos da /la~k̂ !# 
pa~R !dR 5 dR (B4) 

la~k̂ !/cos da 

is the probability that light with polarization a starting at 
aR 5 0 and traveling in the direction kR undergoes a 

scattering event in the interval (R, R 1 dR), and where 

Za~k̂ ! 5 ~4p!2@na~k̂ !la~k̂ !#21 

ˆ 35 ( E dVk8 , k̂ 8, t 5 0 !nb ~k̂ 8!. (B5)Bab~k  
b 

Thus we can defne the conditional probability 

3 ˆ ˆna2 
~k2 !Ba2 ,a1 

~k2 , k1 , 0!  
p~k2 , a2uk1 , a1 ! 5 (B6) 

Za1 
~k̂ 

1 ! 

that light scatters from polarization a1 and phase direc-
ˆ ˆtion k1 to polarization a2 and phase direction k2 . This 

probability satisfes the required normalization condition 

ˆ ˆ( E dVk2
p~k2 , a2uk1 , a1! 5 1. (B7) 

a2 

We can now show, with an appropriate choice of f (1) and 
c (1), that the integrand IN of FN(0, 0, 0) in Eq. (2.5.8) is 
an N-independent constant times the normalized prob-
ability distribution for paths with N scattering events. 
To be explicit, consider F4 5 *d1 . . . d4I4, where, again 
with an obvious shorthand-notation: 

p~4 !n3 ~4 ! B~4, 3!n3 ~3 !p~3 ! 
I4 5 f~4 ! 

Z~4 ! Z~3 ! 

B~3, 2!n3 ~2 !p~2 ! B~2, 1!n3 ~1 !p~1 ! 
3 c~1 !,

Z~2 ! Z~1 ! 

(B8) 

where now 1 5 (R1 , Vk1
, a1) refers to those variables 

that remain after integration over k1 and VR1
. With the 

choice f(1)  5  c(1)  5  AZ(1),  this function can be writ-
ten as 

3 3I4 5 A2p~4 !p~4u3 !p~3 !n ~3 !B~3, 2!n ~2 !p~2 ! 

3 pT ~2u1 !p~1 !, (B9) 

where pT(2u1)  5  p(1u2) is the operator transpose of 
p(1u2). The variables 1, . . .,  4 defne the distance trav-
eled and the direction and the polarization of light of each 
of the four steps that we are considering; i.e., they defne 
a particular light path, and I4 can be regarded as a func-
tion of path. Then 
F4 ~0, 0, 0! 5 E d@path#I4@path# 

3 35 A2 E d2d3n ~3 !B~3, 2!n ~2 ! 

5 A2 ( E dVk3
dVk4 

na3
3 ~k̂ 

3 !Ba3 ,a2 a3a2 

3 ~k3 , k2 , 0!na2
3  ~k̂  

2  ! [  A2  ~4p!2@B#n  ,  

(B10) 

where d[path]5d1d2d3d4, [B]n is defned in Eq. (2.5.21), 
and where we used the normalization condition Eq. (B7) 
to carry out the integrals over 1 and 4. Note that [B]n 
scales as an index of refraction squared. Thus, choosing 

21/24pA 5 @B#n , we can defne the probability for a given 
path with four scattering events to be 

P4@path# 5 I4@path#. (B11) 

This probability consists of products of conditional prob-
abilities p(aub) for scattering from b to a and a single 
joint probability: 

p~a !n3 ~a !B~a, b !n3 ~b !p~b ! 
P~a, b ! 5 (B12) 

~4p!2@B#n 

for scattering from b to a or from a to b. The joint and 
the conditional probabilities satisfy the relation 
p(4u3)P(2,  1)  5  P(4,  3)pT(2u1). Thus P4 can be ex-
pressed in any of the following equivalent forms: 

TP4 5 p~4 !p~4u3 !P~3, 2!p ~2u1 !p~1 ! 

5 P~4, 3!pT ~3u2 !p~2 !pT ~2u1 !p~1 ! 

5 p~4 !p~4u3 !p~3 !p~3u2 !P~2, 1!. (B13) 

These equations are easily generalized to arbitrary N: 
N 

PN 5 ) p~s !p~sus 2 1 !P~k, k 2 1 ! 
s5k11 

k22 

3 ) pT ~s 1 1us !p~s !, (B14) 
s51 

where k is any integer from 2 to N. 
The above form for PN can now be used to calculate 

^T&, ^dB(t)/B&, and ^R i 
2&, ^Rx 

2&. We begin with ^T&. 
For arbitrary step a, we have 

^T& 5 E d@path#PN@path#Ra /vg ~a ! 

1 
5 E d1d2p~1 !~R1 /vg1 !P~1, 2!p~2 ! 

~4p!2@B#n 

ˆ1 E dVk1
dVk2 

la1 
~k1 ! 

5 (
@B#n a1 ,a2 ~4p!2 ˆ ˆcos da1 

~k1 !vg,a1 
~k1 ! 

3 ˆ 33 na1 
~k1 !Ba1a2 

~k1 , k2 , 0!na2  
~k2  !  

8p @n3#  
5  , (B15) 

c @B#n 
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where [n3] is defned as in Eq. (2.5.22) and where we used 
Eq. (2.4.6) for la(k̂ ) and Eq. (2.2.21), relating vga1 

cos da1 

to c/na1
(k̂ ). Similarly, 

^dB~t !/B& 5 E d@path#PN@path#dB/B 

1 E dVkdVp 35 ( na ~k̂ !@Bab~k,  p, 0!  
@B#n ab  ~4p!2  

3  
@dB~t !#n  

2 Bab~k,  p,  t !#nb ~p̂ !  5  .  
@B#n  

(B16) 

We now turn to the calculation of F k̂̂k 
ab(K,  V,  t) intro-8 

duced in Eq. (2.5.43). First consider the function 

N,abF k̂̂k ~K, 0, 0!  5  E  dN  . . . d1haaN  
~Vk  ,  VkN  

!8 

N21 

3 f~N !s~N ! ) B~i 1 1, i !f~1 !s~1 ! 
i51 

3 ha1b~Vk1
, Vk8! 

~4p!2@B#n 
5 haaN  

~Vk  ,  Vk8!K 
Za~k̂ !Zb~k̂ 8! 

3 expS 2iK Ł ( Rp D ha1b 
p 

3 ~Vk1
, Vk8!L 

N 

~4p!2@B#n
' ^haaN  

~Vk  ,Vk8!&N  
Za~k̂ !Zb~k̂ 8! 

3 expK S 2iK Ł (
p 

Rp D L 
N 

3 ^haaN  
~Vk  ,  Vk8!&N  , (B17) 

measuring the energy response for paths of N steps, 
where 

hab~V,  V8!  5  dabd~V  2  V8!. (B18) 

The approximation in the last step of relation (B17) in-
volves the neglect of fuctuations with decay times that 
are rapid compared with diffusion times. The average 

3na ~k̂ !Za~k̂ ! 
^haaN  

~Vk  2  VkN  
!&N  5  (B19) 

~4p!2@B#n 

can be evaluated with the frst form of Eqs. (B13) and 
(B5). F k̂̂k 

ab(K,  V,  t) is evaluated as the sum over N of 
F k̂̂k 

N,ab(K,  V,  t), which one obtains from relation (B17) 8 
by replacing ^exp(2iK Ł (pRp&N with FN(K, V, t) in Eq.  
(2.5.14). The result, Eq. (2.5.43), follows directly from re-
lations (B17) and (B19) and from Eq. (2.5.20) relating ^T& 
to [B]n . 
APPENDIX C: CALCULATION OF ^Rz 
2
‰, 

2
‰^Rz 

In this appendix we outline a method for calculating the 
mean-square displacements per step, ^Rz 

2& and ^Rx 
2&. 

Once these have been calculated, the parallel and the per-
pendicular diffusion coeffcients can be calculated by 
means of Eqs. (2.5.26). The complex steps in these cal-
culations are facilitated by the introduction of some addi-
tional formalism. In particular, the Dirac bra and ket 
formalism of quantum mechanics is extremely useful. 
We introduce the ket 

u1& 5 uVk1
, a1&, (C1) 

specifying the state with a photon of polarization a1 
propagating with phase velocity in the directions Vk1

. 
Matrix operators can be expressed in the usual way in 
terms of their matrix elements with the above kets and 
their associated bras. For example, 

B~1, 2! 5 Ba1 ,a2 
~k̂ 

1 , k̂ 
2 ! 5 ^1uBu2&. (C2) 

The integrands for probability path integrals defned in 
Eqs. (B9) and (B14) always involve a factor n3(1). Be-
cause of this, it is useful to defne the unit operator with 
an n3(1) weight: 

31 5 E d1u1&n ~1 !^1u 

3 ˆ5 ( E dVk1 
uVk1

, a1&na1 
~k1!^Vk1

, a1u, (C3) 
a1 

and orthogonality by means of 

d~1 2 2 ! d~uk1 
2 uk2 

!d~fk1 
2 fk2 

! 
^1u2& 5 5 .

3 3n ~1 ! sin uk1 
na1 

~k1! 
(C4) 

Matrix elements, inner products, and matrix elements of 
operator products then follow. A function ga1

(Vk1
) of 1  

5  (Vk1
,  a1) can be expressed as 

ga1 
~Vk1 

! 5 g~1 ! 5 ^1ug&. (C5) 

The inner product of two functions f and g is 

3^fug& 5 E d1f~1 !n ~1 !g~1 !, (C6) 

and the 1–18 matrix element of the product of two opera-
tors A and B is 

3^1uABu18&  5  E  d2^1uAu2&n ~2 !^2uBu18&. (C7) 

The matrix elements of an operator A and its inverse 
A21 satisfy 

3E d2^1uA21u2&n ~2 !^2uAu18& 5 ^1u18&. (C8) 

With a few more defnitions, we can express ^Ri 
2& in a 

compact operator form. First, we defne the operators 

1 d~2 2 1 !˜ 21Z ~2, 1! 5 , (C9)
Z~1 ! n3 ~1 ! 
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p̃~2, 1! 5 
B~3, 1! 

Z~1 ! 
˜ 215 ^2uBZ u1&. (C10) 

Then 

˜ 3Z~1, 2! 5 Z~1 !d~1 2 2 !/n ~1 !. (C11) 

The matrix elements of the nth power of the ith compo-
nent of the mean free displacement per step is 

ˆ ˆ ˆ^1u~li8!n& 5 @la1 
~k1 !ega1 ,i~k1 !/cos da1 

~k1 !#
n , (C12) 

where ega(k̂ ) is the unit vector along the group velocity 
with polarization a, which is equal to k̂ when a 5 2 and 
is given by Eq. (2.2.19) when a 5 1. With these defni-
tions it is straightforward with the aid of Eq. (B14) to 
show that the mean-square displacement for a given bond 
satisfes 

~4p!2@B#n ̂ Rpi  
2&  5  2^~li8!2uBuc&, (C13) 

where uc& is the uniform state, with ^1uc& 5 1 being inde-
pendent of Vk1 

and a1 . Similarly, 

^RniRmi&  5  ^li8up̃n  2  m  2  1Buli8&, (C14) 

1 
( ^RniRmi&  5  ^li8u~1  2  p̃ !21Buli8&N n . m 

5 ^li8uZ̃~Z̃ 2 B !21Buli8&. (C15) 

The fnal matrix element in Eq. (C13) can be reexpressed 
as 

3 3^~li8!2uBuc& 5 E d1d2li8
2 ~1 !n ~1 !B~1, 2!n ~2 ! 

35 E d1li8
2 ~1 !n ~1 !Z~1 ! 

3 ˜ 35 E d1d2li8~1 !n ~1 !Z~1, 2!n ~2 !li8~2 ! 

5 ^li8uZ̃uli8&, (C16) 

where we used Eqs. (B5) and (C11): Combining Eqs. 
(C13), (C14), (C16), and (2.5.16), we obtain 

~4p!2@B#n ̂ Ri 
2& 5 2^li8uZ̃ 1 Z̃~Z̃ 2 B !21Buli8& 

5 2^li8uZ̃~Z̃ 2 B !21Z̃uli8& 

5 2^giu~Z̃ 2 B !21ugi&, (C17) 

where 

~4p!2 

^1ugi& 5 li8~1 !Z~1 ! 5 eg,i~1 !. (C18)
n~1 !cos d~1 ! 

Using Eqs. (2.2.19) and (2.2.21), we obtain 

~4p!2 cos uk1 
ˆn 1 !˜ 1~k 

^1ugz& 5 S D , (C19)
n2 1 

~4p!2 sin uk1 
cos fk1 

ˆ~e /e i !ñ1~k1 ! ^1ugx& 5 ' ,S Dn2 1 

(C20) 
where 
n1~k̂ ! 1 1 h 
1/2 

ñ1~k̂ ! 5 5 S D , (C21)
n2 1 1 h cos2 uk 

h 5 De/~e !. (C22)' 

Equation (C17) provides a formally complete expres-
sion for the displacement ^Ri 

2&. Unfortunately, the in-
verse of the operator 

B 5 Z̃ 2 B (C23) 

cannot be calculated exactly, and we must resort to some 
approximation scheme to calculate ^Ri 

2&. The most di-
rect approach for evaluating B21 is to fnd the matrix el-
ements of B in some appropriate basis and take its matrix 
inverse. We need only a particular matrix element (the 
gi – gi element) of B21, and for approximation purposes it 
is useful to choose a basis set with the state ugi& propor-
tional to one of its members. For the ordinary polariza-
tion, the normal spherical harmonic basis set satisfes the 
above criterion. For the extraordinary rays, formal prop-
erties of the reduced index of refraction ñ1(k̂ ) allow us to 
construct a basis set with the desired properties from the 
spherical harmonic set. To this end, we defne 

Ck 5 ñ1~k̂ !cos uk , 

2Sk 5 ñ1~k̂ !sin uk 5 ~1 1 h!A1 2 Ck. (C24) 

Using Eq. (2.2.14), we can show that 

3 ~1 1 h!dCk 5 ñ1 ~k̂ !d~cos uk!, (C25) 

so that 

3E dVkn1 ~k̂ ! 5 ~1 1 h!n2
3 E dCkdfk . (C26) 

Thus a complete set of orthonormal states relative to the 
unit operator defned in Eq. (C3) is 

1 1 
^Vkaulmb&  5  da

b  
3/2 !1/2 

Ylm~Ck,a  ,  fk!,  
n2  ~1 1 ha 

(C27) 

where h1 5 h, h2 5 1,  Ck,1 5 Ck , Ck,2 5 cos uk , and 
Ylm(cos u, f) is the spherical harmonic expressed as a 
function of cos u and f rather than as a function of u and 
f. It is more convenient for us to use the vector rather 
than complex spherical harmonics for l 5 1, i.e., to use 
uz& 5 ul 5 1,  m  5  0&,  ux&  5  (u1, 1& 1 u1, 21&)/A2, and 
uy& 5 (u1, 1& 1 u1, 21&)/(A2i) rather than the set u1, m&. 
Then 

1 1 A 3 
^Vkauzb& 5 da

b Ck,a ,3/2 !1/2 4pn2 ~1 1 ha 

1 1 A 3 
^Vkauxb& 5 da

b 
3/2 !1/2 4pn2 ~1 1 ha 

3 A1 2 Ck,a 
2 cos fk , (C28) 

and ^maunb&  5  dmndab  for m, n 5 x, z. From this and 
Eqs. (C19) and (C20), we obtain 

^zbugz& 5 ~4p!2An2A4p/3A1 1 h, 

^xb/gx& 5 ~4p!2An2A4p/3, (C29) 
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^zbugx& 5 ^xbugz& 5 0. (C30) 

To fnd an approximate expression for ^Rz 
2& and ^Rx 

2&, we  
restrict ourselves to the subspace spanned by uza& and 
uxa&. There are no x – z cross terms in the B matrix. In 
addition, 

m m3 ~1 1 h!B113 
A1 1 hB12^mauBumb&  5  n2  m m ,F G4p A1 1 hB21 B22 

(C31) 

where 

z (C32)B ab  5  E  dCdC8dfdf8CBabC8, 

xB ab  5  E  dCdC8dfdf8A1  2  C2BabA1  2  C28  (C33) 

Equations (C32) and (2.5.37), respectively, reduce to Eqs. 
(2.5.37) and (2.5.38) with the aid of Eqs. (C23), (C11), and 
(B5). From this, we can calculate 

^Rz 
2& 5 2^gzuza&^zbuB21uzb&^zbugz& 

2 z z z4p ~4p!2 B 11 1 B 22 2 2B 12 
5 2 , (C34)S 3 D 2@B#n 

det B z 
n2 

4p 2 ~4p!2 

^Rx 
2& 5 ^gzuza&^zbuB21uzb&^zbugz& 5 2S D3 n2

2@B#n 

z z z ~1 1 h!B 11 1 B 22 2 2A1 1 hB 12 
3 , (C35) 

~1 1 h!det B z 

mwhere det B m 5 B 11f 
mB 22 

m 2 B 12 
mB 21 . Note that both 

^Rx 
2& and ^Rx 

2& are proportional to [B]n , which diverges 
as H ! 0. The factors following @B#n 

21 in these expres-
sions are well behaved in the zero-feld limit. Thus both 
mean-square displacements tend to zero as H ! 0 in the 
same way that the average time ^T& and the average 
mean free path ̄l tend to zero. Combining Eqs. (C34) and 
(C35) with Eq. (2.5.20), we obtain Eqs. (2.5.36) for D i and 
D' . 

APPENDIX D: STRUCTURE FACTOR 
ˆWe give the two important structure factors B12(k, q̂ ) and 

B11(k̂ , q̂ ) in the coordinates Ck , Sk , Cq , Sq and w 5 f 
2 f8, which we introduced in Appendix C. The param-
eters are the dielectric anisotropy h 5 De/e' , the scaled 

¯ ¯Frank constants K1 5 K1 /K3 and K2 5 K2 /K3, and the 
scaled magnetic feld h 5 n2v/cAK3 /Dx: 

2 2v ~D«!2kBT  Sk  Sk  
2  sin2 wˆB12~k, q̂ ! 5 F2 6 2 ¯ c K3n2 ~1 1 h!2 Q' K1Q' 

2 1 Q i 
2 1 h2 

~Sk cos w 2 Sq!2 

1 , (D1a)G
K̄2Q' 

2 1 Q i 
2 1 h2 
2 

2v ~D«!2kBT  1ˆB11~k, q̂ ! 5 
2 6 2c K3n2 ~1 1 h!2 Q' 

F cos2 w N1 1 2 cos w N2 1 N3 

¯3 
K1Q' 
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