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Abstract. Diffuse correlation spectroscopy (DCS) is an emerging optical modality used to measure cortical cer-
ebral blood flow. This outlook presents a brief overview of the technology, summarizing the advantages and 
limitations of the method, and describing its recent applications to animal, adult, and infant cohorts. At last, 
the paper highlights future applications where DCS may play a pivotal role individualizing patient management 
and enhancing our understanding of neurovascular coupling, activation, and brain development. © The Authors. 
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1 Introduction 
Cerebral blood perfusion is a biomarker of brain health and 
function. Functioning neurons need adenosine triphosphate 
(ATP), and ATP is produced almost entirely through oxidative 
metabolism. Therefore, if the oxygen supply is insufficient, then 
energy-dependent neuronal processes cease, and irreversible 
cellular damage ensues. Adequate cerebral blood flow (CBF) 
ensures the delivery of oxygen and needed substrates to tissue, 
and it also ensures removal of metabolic waste products. Thus, 
the quantification of CBF is useful for diagnosis and manage-
ment of any brain injury or disease associated with ischemia or 
inadequate vascular autoregulation. Further, the quantification 
of CBF in healthy subjects, for example with respect to age or 
during functional activation, can elucidate connections between 
vascular physiology and neurophysiology, and these normative 
parameters, in turn, improve our ability to recognize and under-
stand a diseased brain. 

This paper is focused on a relatively new blood flow meas-
urement modality that utilizes the intensity fluctuations of 
near-infrared (NIR) light to noninvasively quantify CBF at 
the bedside. This technology is called diffuse correlation spec-
troscopy (DCS). Initial research in animals and in humans 
has validated DCS indices of CBF and has demonstrated its 
potential as a preclinical and neuroscience research tool and 
as a clinical monitoring tool. Herein, we present a brief back-
ground about DCS instrumentation and the underlying theory, 
and we summarize its most prominent cerebral monitoring 
applications to date. Then, we discuss the advantages and 
limitations of current technology and indicate directions for 
improvement. Finally, we suggest clinical and neuroscience 
applications that could benefit significantly from this novel 
technology in the future. 

2 Diffuse Correlation Spectroscopy 
Background 

As noted above, DCS is an emerging optical modality to mon-
itor CBF. In recent years, excellent reviews about the theory, 
instrumentation, validation, and clinical applications of DCS 
have been published, and the interested reader will enjoy these 
papers.1–5 DCS detects blood flow by quantifying temporal 
fluctuations of light fields emerging from the tissue surface. 
Typically, these light fields are generated by illuminating the 
brain surface with NIR laser light; some of the NIR light prop-
agates through the scalp and skull and into the brain where it is 
scattered by moving red blood cells in tissue vasculature before 
emerging from the tissue surface. This “dynamic” scattering 
from moving cells [Fig. 1(a)] causes the detected intensity to 
temporally fluctuate [Fig. 1(b)], and the time scale of these fluc-
tuations is quantified by the intensity temporal autocorrelation 
function of the collected light [see Fig. 1(c)]. 

In practice, the correlation diffusion equation,6,7 or its inte-
gral analog,8,9 is employed to fit the measured autocorrelation 
function to simple physical models and thereby extracts a cer-
ebral blood flow index (CBFi, cm2∕s). Numerous studies in 
humans and in animals (recently reviewed in2) have shown that 
the relative changes of CBFi over time, that is, relative cerebral 
blood flow (rCBF), agree very well with relative changes in CBF 
measured by “gold standard” blood flow measurement tech-
niques, such as arterial spin-labeled MRI (ASL-MRI) and fluo-
rescent microspheres as shown in Fig. 2(a). Further, in neonatal 
piglets and humans, absolute CBFi has been shown to correlate 
strongly with CBF measured by bolus tracking time-domain 
near-infrared spectroscopy (NIRS) and with CBF measured 
by phase-encoded velocity mapping magnetic resonance imag-
ing (MRI) in the sagittal sinus [see Fig. 2(b)], respectively.10–12 

Additionally, the combination of NIRS-measured hemoglobin 
oxygen saturation (SO2) and DCS-measured CBFi has been uti-
lized to derive quantitative information about cerebral oxygen 
metabolism (CMRO2).
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DCS instrumentation consists of three main components: a 
long-coherence-length (>5 m) laser operating in the NIR to 
deliver light to the tissue; single photon counting avalanche pho-
todiode (APD) detectors that output an electronic pulse for every 
photon received; and a photon correlator that keeps track of the 
arrival times of all photons detected by the APDs and derives an 
intensity correlation function from the temporal separations of all 
pairs of photons (see Fig. 1). The correlator has traditionally been 
a piece of hardware, but with improved computation power and 
speed, software computation of temporal correlation functions 
will soon become increasingly prevalent. These components are 
readily housed in lightweight, portable enclosures that can be 
incorporated into a bedside clinical monitoring unit. To date, 
most DCS instruments have been home-built; however, recently 
several companies (Hemophotonics, ISS Inc., Flox Medical, 
Canon USA) have initiated commercialization of DCS systems. 

2.1 Advantages 

DCS offers several advantages over other methods that measure 
CBF. Unlike traditional clinical CBF measurement modalities, 
such as xenon-133 computed tomography (xenon-CT) and posi-
tron emission tomography, DCS does not expose the patient to 

ionizing radiation. Furthermore, unlike safer new methods such 
as ASL-MRI, DCS is relatively inexpensive, portable, and the 
DCS measurement can easily be carried out multiple times dur-
ing a patient’s hospital stay. Lastly, in contrast to transcranial 
Doppler ultrasound, which probes blood flow in major vessels, 
DCS can be used at any location on the patient’s head to assess 
regional cortical microvascular flow. 

While these advantages of DCS are important for patients of 
all ages, they are most significant for infants, a population for 
whom access to MRI is limited. Indeed, DCS holds the potential 
to fill a critical niche for the assessment of neonatal brain 
health, brain development, autoregulation, responses to physio-
logical manipulation or therapeutic intervention, and functional 
responses to sensory and cognitive stimuli. Because measure-
ments can be performed in a rapid, noninvasive, and low-risk 
fashion using a portable bedside instrument without anesthesia 
or sedation, DCS provides distinct advantages over other perfu-
sion modalities used in infants, such as ASL-MRI, which 
requires transport from clinical units to the radiology depart-
ment, sedated or sleeping patients to limit motion, and which 
suffers from noise when CBF is low (as is typically seen in 
infants). 

DCS instrumentation is easy to assemble and requires only 
one wavelength that can be chosen based on laser availability 
and cost (e.g., by contrast, NIRS requires multiple wavelengths 
within the NIR tissue absorption window). In addition, unlike 
the NIRS technique, DCS measurements do not require refer-
ence phantoms for quantification. Finally, as noted above, when 
DCS is integrated with NIRS, the combined instrumentation 
derives a more robust picture of brain health, i.e., via measure-
ment of tissue oxygenation, cerebral blood flow, and oxygen 
metabolism. 

In addition to the direct advantages of the diffuse optical 
technology over the existing methods, DCS theoretical concepts 
can be adapted to improve other blood flow imaging techniques. 
For example, the elements and concepts from DCS have recently 
found use in more surface-sensitive CBF imaging methods, 
such as laser speckle contrast imaging (LSCI);15–20 further, the 
combination of DCS theory, spatial frequency-domain imaging, 
and LSCI has led to quantitative measurements of the physical 

Fig. 1 (a) Schematic of typical DCS instrumentation that consists of a long-coherence length source 
coupled to a multimode fiber for light delivery to the tissue, photon-counting detector(s), and an auto-
correlator board that computes the intensity of the autocorrelation function, g2ðτÞ, based on photon arrival 
times (b), (c) Sample g2ðτÞ curves obtained over the frontal cortex in a subject under baseline conditions 
(black) and under hypercapnia (3% inspired carbon dioxide, gray). The increased decay rate of g2ðτÞ 
during hypercapnia reflects the increase in CBF by vasodilation. 

Fig. 2 Selected validation of DCS measured CBFi against other CBF 
modalities. (a) Relative changes in CBF measured by DCS (rCBFDCS) 
is highly correlated with relative CBF measured with fluorescent micro-
spheres (rCBFFM);

14 (b) Absolute CBFi correlates well with absolute CBF 
measured with phase encoded velocity mapping MRI in neonates.12 
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properties of liquids21 and depth resolved blood flow measure-
ments.22 Recent experiments have also increased the depth 
sensitivity of blood flow imaging using DCS concepts.23 

2.2 Limitations 

Numerous validation studies in both adults and children have 
shown that the relative changes in CBFi over time (i.e., 
rCBF) measured by DCS agree quite well with rCBF measured 
by other modalities (see Fig. 2 and Ref. 2). However, the quan-
tification of absolute CBFi remains to be determined across a 
wide range of subjects and tissue types. To date, the correlations 
between CBFi and absolute CBF (measured by other modalities) 
have only been observed in young piglets and in human neo-
nates, i.e., population cohorts in whom the ratio of extracerebral 
thickness to the source-detector separation is approximately 
0.25 or smaller. In older pediatric populations and in adults, 
the contribution of the thick scalp and skull layers to CBFi can-
not be neglected; in these cases, the absolute quantification of 
CBFi will most likely require the use of multilayered model-
ing.24 Moreover, because of the relevant scalp contribution in 
adults, it is desirable to account for probe pressure effects,25 

especially when the source-detector separation is less than 
2.5 cm. In neonates and in small animals, these factors play 
a relatively small role, most likely because the ratio of extrac-
erebral thickness to source-detector separation is small, and 
it is therefore more likely that the detected photons will travel 
through the cortex. 

Another important parameter needed for quantification of 
CBFi is the tissue reduced scattering coefficient, μs ’, i.e., the 
reciprocal of the photon random walk step length. Although 
CBFi is influenced by both tissue absorption and scattering coef-
ficients, μa and μs ’, respectively, uncertainties in μa lead to rel-
atively small errors in CBFi (<20%), whereas uncertainties in 
μs ’ can translate to substantial errors in CBFi. 

26 Thus, when 
quantifying an absolute CBFi, it is desirable to combine DCS 
with a method to determine absolute μa and μs ’ for the tissue 
of interest, e.g., frequency- or time-domain NIRS. We note, 
however, that in neonates, Jain et al. observed a strong correla-
tion between CBFi and CBF in the sagittal sinus despite assum-
ing a fixed μs ’ across the entire cohort [see Fig. 2(b)].

12 This 
agreement, at least in part, may have been a result of the homo-
geneity of the patient cohort, i.e., all were <1 week neonates 
with congenital heart defects. Clearly, in future studies it will 
be better to measure μs ’ in all subjects whenever possible. 
(Note: the effects of uncertainties in μa and μs ’ on CBFi are 
diminished when monitoring relative changes in CBFi over 
time, since these tissue parameters change little except in cases 
of extreme interval blood loss/gain, edema, etc). 

As is the case with other optical modalities, the penetration 
depth of DCS, while larger than wide-field optical methods, 
such as LSCI, is limited compared to traditional clinical modal-
ities, such as MRI and CT. Like NIRS, a common rule-of-thumb 
for DCS is that it samples a banana-shaped region underneath 
the optical probe that is roughly one-third to one-half of the 
source-detector separation;1 thus, typical DCS experimental set-
ups with source-detector separations of 2 to 3 cm are sensitive to 
superficial cortical regions. CBF in deep brain structures has not 
been quantified by DCS. To increase the penetration depth, 
larger source-detector separations are required. The use of 
larger source-detector separation configurations, however, is 
challenging since DCS optimally requires single-mode detec-
tion fibers for measurement of the intensity autocorrelation 

function. The throughput of single-mode fibers is relatively 
low and leads to a low signal-to-noise ratio (SNR), especially 
in adults where large source-detector separations (>2 cm) are 
needed to detect cerebral signals. This low SNR becomes 
even more problematic in the presence of hair and/or dark 
skin; it can increase acquisition times and reduce temporal res-
olution. To overcome the issue of low SNR, most groups employ 
multiple detector fibers bundled together in the same position, 
and then the autocorrelation curves from all detectors are aver-
aged to derive a single curve. Unfortunately, this strategy is 
a relatively expensive option that requires many photon count-
ing detectors. Alternative strategies to improve SNR include 
increased light collection through improved collection optics, 
such as those presented by Dietsche et al.,27 or the use of few-
mode (rather than single mode) detection fibers.28 Additionally, 
improved SNR can be achieved by increasing the amount of 
light delivered to the tissue;29 however, the ANSI standards 
for skin exposure must be considered, and a large diameter 
source fiber and/or diffuser should be used to keep light expo-
sure levels within safe limits. 

Finally, a significant limitation of DCS is its susceptibility to 
motion artifacts. Of course, most neuroimaging techniques are 
sensitive to motion artifacts, hence this issue is not unique to 
DCS. To understand this problem more deeply, recall that 
blood flow contrast in DCS primarily derives from intensity 
fluctuations due to moving particles in the sampled volume. 
Therefore, the motion of the probe when it is in contact with 
the patient can cause additional fluctuations due to static tissue 
(and other) structures that can add noise (random and system-
atic) to estimates of CBFi. In practice, securing the optical 
probes as firmly as possible to the subject’s head has reduced 
motion artifacts. Looking forward, DCS can employ the same 
analytical approaches used in functional NIRS to account and 
filter for motion (principle component analysis, wavelet analy-
sis, spline interpolation, etc.30,31) and thereby eliminate artifacts 
via improvements in optical probes.32 On the experimental side, 
Yucel et al. have had excellent recent success in reducing motion 
artifacts in NIRS data by gluing optodes to the tissue surface 
with collodion, a glue used with electroencephalogram (EEG) 
electrodes.32 This approach may also be feasible for DCS, 
although it may be more practical for utilization in critically 
ill patients when the potential benefits from cerebral blood 
flow monitoring outweigh the annoyances of gluing fibers. 
Additionally, recent approaches with DCS in muscle studies 
during exercise have successfully employed a dynamometer 
to gate DCS acquisition and partially remove the effects of 
motion;33,34 variants of this approach might be useful for 
the brain. 

3 Diffuse Correlation Spectroscopy 
Applications 

3.1 Animals 

Animal models have provided a rich environment for the vali-
dation of DCS. Early studies focused on measurement and 
validation of relative changes in CBF with time (rCBF): 
Zhou et al. used a closed head injury neonatal piglet model 
to demonstrate excellent one-to-one agreement of DCS changes 
in CBF against the changes in CBF measured with fluores-
cent microspheres [see Fig. 2(a)];14 Carp et al. validated rCBF 
measured by DCS in a rodent model against ASL-MRI.35 

Recent work has also shown agreement between absolute CBFi 
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with absolute CBF measured with bolus tracking time-domain 
NIRS using indocyanine green dye in piglets. Diop et al. 
calibrated DCS CBFi to physiologic units (ml∕ min ∕100 g) in  
piglets,10 while Verdecchia et al. performed a similar experiment 
to calibrate CBFi for individual piglets during various physio-
logical manipulations.13 

In addition to these validation studies, the quantitative and 
noninvasive aspects of DCS CBF measurements are very attrac-
tive for a variety of animal studies. In rodents, DCS offers the 
possibility of deep tissue CBF quantification without the need 
for thinning or removal of the skull, thus leaving the brain 
unperturbed (i.e., as opposed to more traditional methods of 
CBF measurement in animals such as laser Doppler flowmetry 
and laser speckle contrast imaging). DCS has been used in ani-
mal models to study baseline and activated hemodynamics as 
well as related metabolic changes.36 DCS has also been used 
to study diseases such as ischemic stroke,37,38 phenomena 
such as cortical spreading depressions,39 and CBF responses 
to different anesthetics and carbon dioxide.40 Additionally, 
DCS has been used to extract depth-resolved spatial maps of 
blood flow.37,39 In sum, these studies have demonstrated the 
potential of DCS in preclinical and neuroscience animal studies. 
Arguably, it appears to be a more robust and quantitative mea-
sure of CBF than laser Doppler (which has limited depth pen-
etration and poor repeatability), and its validation has opened 
the possibility for future longitudinal studies due to the noninva-
sive nature of the technique. 

3.2 Adults 

Although DCS has been largely restricted to measures of rCBF 
in adults due to difficulties in absolute baseline quantification 
(see Sec. 2.2), the above-mentioned advantages (see Sec. 2.1) 
have resulted in numerous preliminary studies demonstrating 
the clinical potential of DCS. DCS has been successfully applied 
to monitor rCBF during clinical interventions, such as postural 
manipulation or blood pressure regulation in patients with 
ischemic stroke,41 traumatic brain injury, and subarachnoid 
hemorrhage.42,43 These works have demonstrated the need 
(and potential) for individualized monitoring of cerebral hemo-
dynamics during therapeutic interventions. In essence, we are 
discovering that the standard treatment protocols designed to 
optimize cerebral perfusion in damaged tissue do not always 
yield the desired result; this limitation of the standard protocols 

is understandable in light of the often highly heterogeneous 
nature of these brain injuries, and it points to the need for more 
individualized management (see Fig. 3). In addition, DCS has 
been used to detect acute spinal cord ischemia in sheep mod-
els,44 to assess CBF changes due to vocal stuttering,45 and to 
elucidate the effects of normal aging on posture manipulations.46 

Per new therapeutics, DCS has been used to characterize the 
cerebral hemodynamic responses due to transcranial magnetic 
stimulation (TMS) in an effort to elucidate the mechanisms 
of TMS.47 Finally, per functional activation studies, DCS 
has shown spatiotemporal sensitivity to finger tapping48 and 
visual stimulation,49,50 thereby demonstrating its utility for 
basic neuroscience/physiological studies in patients in a natural 
environment. 

By directly addressing some of the limitations noted above 
(Sec. 2.2), it should be possible to expand the use of DCS for 
clinical monitoring in adults. Improvements to increase SNR 
and temporal resolution will help the development of functional 
experiments in adults. Lower costs for sources and detectors 
should permit whole brain functional imaging experiments that 
will start to investigate multiregion evoked CBF and CMRO2 
changes as well as global resting state CBF and CMRO2 for 
exploration of regional functional activity and functional con-
nectivity in the adult brain. 

3.3 Infants 

Infants and young children are ideal populations to study with 
DCS, because they have thinner extracerebral layers than adults. 
Thus, in this population the community has observed higher 
SNR, excellent reproducibility of CBFi (i.e., within 10% to 
15%11), and greater sensitivity to cortical tissue as compared 
to adults. Further, infants often have less hair than adults, a mun-
dane but important factor that improves SNR. 

To date, neonatal studies with DCS have branched in many 
directions. In contrast to adults, where the majority of clinical 
research has focused on changes over time caused by relatively 
brief interventions (i.e., interventions of order 1 h), neonatal 
experimental results encompass both episodic monitoring as 
well as periodic quantification of absolute CBFi. Episodic mon-
itoring has been used to quantify the response to hypercapnia,51 

postural manipulation,52 drug delivery,53 surgical intervention,54 

therapeutics,53,55 and functional activation.56 These studies have 
provided previously unknown and very valuable information 
about CBF and CMRO2 responses to intervention. For example, 

Fig. 3 Relative changes in cerebral blood flow measured with DCS during postural manipulation of head-
of-bed (HOB) position from 30 to −5° (inset) for (a) a typical healthy subject, (b) a stroke patient who 
demonstrated the typical response of impaired autoregulation in the injured hemisphere when HOB is 
lowered, and (c) a stroke patient who demonstrated a paradoxical response in the injured hemisphere 
during the lowering of HOB, seen in approximately 20% of stroke patients. (a) Left hemisphere in dark 
gray, right in light gray, (b,c) contralesional in dark gray, ipsalesional in light gray. Figure courtesy of 
Mesquita et al.3 
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Buckley et al. observed significant and substantial dose-depen-
dent increases in CBF following bolus administration of sodium 
bicarbonate to correct metabolic acidosis.53 Recognizing these 
dose-dependent effects may be especially important in treating 
patient populations where the risks of rapid fluctuations in 
CBF may lead to subsequent brain injury and thus limit the ben-
efits of correcting the underlying acidemia. Dehaes et al. have 
observed substantial decreases in CBFi and CMRO2i in hypoxic 
ischemic injured neonates under therapeutic hypothermia.55 The 
ability to measure CMRO2 during therapeutic hypothermia and 
assess its dynamic may help to individually optimize and guide 
this therapy. 

Further, Roche-Labarbe et al. recently demonstrated the fea-
sibility of DCS functional studies in infants.56 By combining 
NIRS with DCS, both CBF and CMRO2 changes are measured 
(see Fig. 4). Understanding metabolic and vascular functional 
measures, as well as their coupling relationships, holds tremen-
dous potential for assessment of perceptual and cognitive devel-
opment and for deriving early indications of neuropsychological 
and behavioral deficits in at-risk populations. 

Following numerous validation studies,2 the periodic mea-
sures of CBFi have been used to investigate changes in cerebral 
hemodynamics over the first month of development in term and 
preterm infants,11,57 as well as regional and hemispheric 
differences in cortical flow.58 These works elucidate the normal 
evolution of SO2, CBF, and CMRO2 in the developing neonate, 
which is critical to understanding brain in disease states. 
Furthermore, the works by Roche-Labarbe et al.57 and Dehaes 
et al.,55 in particular, highlight the relative insensitivity of SO2 
alone, i.e., the standard parameter provided by commercially 
available stand-alone NIRS devices, as a measure of brain 
health. These works demonstrate the obvious advantage that 
DCS adds in providing a more complete picture of neonatal 
development through quantification of CBF and CMRO2. 

4 Future Applications 
From a clinical perspective, because DCS is a safe, inexpensive, 
noninvasive, and portable modality, it can be used as a bedside 
monitor of cerebral perfusion in both the intensive care unit 
(ICU) and the operating room (OR). Commercially available 

continuous-wave NIRS devices that estimate regional cerebral 
oxygenation (rSO2) are already in widespread use in ICUs 
and ORs. DCS provides valuable complementary information 
to NIRS per microvascular CBF and, therefore, regional oxygen 
delivery. The combination of NIRS with DCS also enables the 
quantification of regional CMRO2, a parameter that many 
believe is a direct measure of neuronal health;59 this information 
provides the clinician with a more complete assessment of cer-
ebral health and physiology than either SO2 or CBF alone. 

As an example of how the combination of NIRS and DCS 
can be used, we note that SO2 can increase either with increased 
neuronal activity (i.e., when supply exceeds neuronal demand) 
or with decreased neuronal activity (i.e., when neuronal oxygen 
consumption is decreased). Therefore, when increases in SO2 
are noted by NIRS, it is vital to determine if the changes are 
associated with increased delivery or decreased oxygen con-
sumption; DCS measures of CBF combined with NIRS can 
help assess increases/decreases in neuronal activity. In addition, 
if decreases in SO2 are observed, simultaneous quantification of 
CBF can help clinicians ascertain whether these decreases are 
due to the failure of oxygen delivery (as when CBF decreases 
due to decreased cardiac output) or due to increased oxygen con-
sumption. Looking forward, the potential for DCS combined 
with NIRS to enable ICU and OR management of subjects 
based on optimizing regional cerebral CMRO2 should be 
explored as an alternative to strategies based on a secondary sys-
temic and/or cerebral parameters, such as SO2. 

Per therapy development, DCS can be used in both animal 
and human studies, especially for therapies (e.g., drugs, etc.) 
aimed at altering cerebral microvascular perfusion. This approach 
would see first testing in animal studies, which, in turn, would 
then set the stage for DCS monitoring in human trials. 

Beyond the immediate potential for DCS in the clinic, DCS 
and other diffuse optical tools should be expected to help sci-
entists increase our understanding of neurovascular coupling 
and early brain development. The ability to monitor neurovas-
cular responses in more natural environments, outside the noisy 
MRI scanner, will enable the use of more complex stimulation 
paradigms. In addition, monitoring CBF with DCS or the entire 
suite of CMRO2, SO2, and CBF (when combined with NIRS) 
will enable us to better understand the nature of the neurovas-
cular response. The ability to quantify CMRO2 during func-
tional changes, for example, will permit better interpretation 
of functional response, since oxygen metabolism changes will 
be less influenced by systemic physiology. 
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