
Proc. Natl. Acad. Sci. USA 
Vol. 91, pp. 4887-4891, May 1994 
Medical Sciences 

Scattering of diffuse photon density waves by spherical 
inhomogeneities within turbid media: Analytic solution 
and applications 
D. A. BoAstt, M. A. O'LEARYtt, B. CHANCE*, AND A. G. YooHt 

Departments of tPhysics and *Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 

Contributed by B. Chance, December 30, 1993 

ABSTRACT We present an analytic solution for the 
scattering of diffuse photon density waves by spherical inh­
omogeneities within turbid media. The analytic result is 
compared to experimental measurements. Close agreement 
between theory and experiment permits the use of the theory 
to determine the properties of unknown sphere-like objects 
embedded in turbid media. The analytic solution is extended 
to encompass several problems of practical interest in imag­
ing, including the influence of multiple sources, multiple 
objects, and boundaries on the characterization of spherical 
inhomogeneities. We also extend the solution to encompass 
time-domain measurements. 

Recently, useful information about turbid media such as 
human tissue has been derived from photons migrating 
through these media (1). The diffusing photons enable us to 
noninvasively probe highly scattering materials and deter­
mine their average scattering and absorption properties (2, 3). 
Furthermore, the diffusing photons can also be utilized in 
imaging objects such as tumors hidden in turbid media (4-7). 
We present an analytic solution for the scattering of diffuse 
photon density waves (DPDWs) from spherical inhomoge­
neities embedded in an otherwise homogeneous medium and 
apply it to object imaging. 

The occurrence ofDPDWs has been described in detail (8, 
9). In general, these waves arise when an intensity-modulated 
source of light is introduced into a highly scattering or diffusive 
medium. Microscopically, individual photons undergo a ran­
dom walk within the medium. Collectively, a wave of photon 
density is produced that propagates spherically outward from 
the source. These waves have a well-defined phase and 
amplitude at every point in the diffusive medium. When a 
localized heterogeneity is embedded in the medium, the spher­
ical wave is distorted. The degree of distortion is determined 
by object characteristics (such as its position, shape, size, and 
scattering) and absorption properties. 

Since the Helmholtz equation is known to describe the 
transport ofDPDWs in a piecewise homogeneous media (9, 
10), we expect that an exact solution exists for the scattering 
ofDPDWs by spherical objects. The solutions will be similar 
to, and simpler than, the theory of Mie scattering (11) often 
used in optics. 

We derive the analytic solution of the Helmholtz equation 
for a piecewise homogeneous system consisting of a spher­
ical object composed of one highly scattering medium 
embedded in a second highly scattering medium of infinite 
spatial extent. This solution is easily extended to semiin­
finite media by using the extrapolated zero boundary con­
dition (2, 12, 13). The analytic solution is compared with 
experimental data to assess the theory's predictive power, 
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and a simple inverse localization algorithm is demonstrated 
to determine the size and location of a spherical object. 
Finally, the theory is extended to include more complex 
problems in imaging. 

THEORY 
The incoherent transport of photons in a highly scattering 
medium is generally described by a transport equation (11, 
13). In most media, however, light transport is well approx­
imated by the diffusion equation. The approximations of the 
transport equation leading to the diffusion equation have 
been discussed (12-14). We use the diffusion approximation 
as the starting point of our analysis. Later we will consider 
errors introduced by this approximation. The time-dependent 
diffusion equation is 

Vf.La 1 aU(r, t) 1 
V2U(r, t) - D U(r, t) - D at = -D S(r, t). [I] 

For diffuse light, U(r, t) is the photon density, vis the speed 
of light in the medium, D = v[3(µ.~ + µ.JJ-1 is the photon 
diffusion coefficient, ~ is the reduced scattering coefficient, 
µ.,,is the absorption coefficient, and S(r, t) is the source term. 
When the intensity of a point source is sinusoidally modu­
lated with frequency w, U can be written as a sum of 
time-independent and time-dependent parts-i.e., U = 
Uoc(r) + U Adr)exp(-iwt), where i is the square root of -1 
(8). In this paper, we are concerned with time-dependent 
solutions, which, in the presence of an oscillating point 
source, obey the Helmholtz equation 

and 

[2b] 

where Mis the source modulation. In an infinite medium, the 
solution of Eq. 2a is a damped spherical outgoing wave. 

In the presence of a spherical heterogeneity, U Adr) is 
found by constructing a general solution to Eq. 2a outside 
and inside the sphere and applying the appropriate bound­
ary conditions. It is natural to analyze the problem in 
spherical coordinates whose origin coincides with the cen­
ter of the spherical object (Fig. 1). The general solution 
outside the sphere is in the form of a superposition of 
incident (inc) and scattered (scatt) waves (15)-i.e., Uout = 
Uinc + Uscatt, where 

Abbreviation: DPDW, diffuse photon density wave. 
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F10. 1. To solve the Helmholtz equation for a spherical bound­
ary, it is natural to use spherical coordinates with the origin at the 
center of the object (a). The source is positioned on the z axis (9. = 
11) to exploit the azimuthal symmetry of the problem, and the 
relevant distances between the source, object, and detector are 
indicated in the figure. Scattering from multiple objects is dia­
grammed in b. The first- and second-order waves scattered from the 
first object are illustrated by solid and dashed lines, respectively. The 
relevant distances are indicated in the diagram. 

® I 
=ikout L j,(k°u1r<)h}(k0u1r>) L f1,m(9s, cf>s)Y1,m(9, cf,). 

l=O m=-1 
[3a] 

and 

Uscau = L [A1 ,,J1(k0u1r) + B1 mn1(k°u1r)]f1 m(9, cf,). [3b] 
/,m ' ' ' 

Inside the sphere, the general solution is 

Uin = L [Ct ,,J1(kinr) + D1 mn1(kinr)]Y1 m(9, cf,) . [4a] 
l,m ' ' ' 

Here, j1(x) and n1(x) are spherical Bessel and Neumann 
functions, respectively, hf{x) is the Hankel function of the 
first kind, Y1,m(9, cf,) is the spherical harmonics, k0 u1 and kin 
are the complex wave numbers outside and inside the sphere, 

8 

,....._ 
Ill ... 6 Cl) 

a, 
E 

:;:; 
C 

4 Cl) 
u ......., 

2 

a Amplitude Contours 

-4 -2 0 2 
(centimeters) 

' 6'0 

4 

Proc. Natl. Acad. Sci. USA 91 (1994) 

respectively, r (r5) is the position of the detector (source) 
measured from the center of the sphere, and r < (r>) is the 
smaller (larger) of lrl and Ir.I, The unknown parameters (A1,m, 
B1,m, Ct,m, and D1,m) are determined using the following 
boundary conditions: (i) U must be finite everywhere except 
at a source, (ii) Uou1 must asymptotically approach a spher­
ically outgoing wave as r - oo, (iii) the flux normal to the 
boundary must be continuous; i.e., D0 u1P.VUou1 = DinP.VUm, 
where D0 u1 (Din) is the photon diffusion coefficient outside 
(inside) the sphere, and (iv) the photon density must be 
continuous across the boundary; i.e., U;n = U0 u1 at r = a (10, 
12). 

Considering these boundary conditions and using the or­
thogonality relation for the spherical harmonics (15), we find 
that for U out, 

A = -ikouthl(koutz )Y* (1r 0) l,m I s /,m , 

and 

Bt,m = iAt,m, [Sb] 

where x = k0 u1a, y = kina, r5 = (r = Zs, 9 = 1r, cf, = 0), and 
j/ and h}' are the first derivatives of the functionsj, and h} with 
respect to the argument. Placing the source on the z axis 
exploits the azimuthal symmetry of the problem leading to 
A1,m = C1,m = 0 for m ¥- 0. The distortion of the wave is 
entirely dependent on the parameters kou1 = k(w, ~ou1, ~ 1) 

and kin= k(w, µ,;in, µ.i."), D0 u1, Dm, rs, and the object radius 
a. When k0 u1a < 1, which is true for most cases of medical 
interest, the infinite sum in U0 u1 converges, permitting the 
sum to be truncated after obtaining the desired precision. The 
preceding calculations require no more than 20 terms in the 
series to obtain better than 10-s precision, which far exceeds 
experimental precision. On a Sun Microsystems (Mountain 
View, CA) Spare 2, Uout can be calculated 10-100 times per 
second (depending on the above mentioned parameters). 

For the special case wherein the heterogeneity is a perfect 
absorber, we take the limiting form of Eq. S as µ.i." - 00 to 
determine Uout• Instead, one could use a more phenomeno­
logical boundary condition that requires either U out to be zero 
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Fm. 2. Exact calculation of the wave distorted by a perfectly absorbing sphere of radius 0.5 cm positioned 4.0 cm from the source, which 
is at the origin, is plotted in a. The contours are of constant amplitude and are plotted in intervals of 10 decibels (dB). For these plots, the 
surrounding medium's optical characteristics are~= 10 cm-1 andµ,..= 0.02 cm-1, the modulation frequency is 200 MHz, and v = 2.25 x 1010 

cm/s. The amplitude of the scattered wave is plotted in b, where the contours are drawn every 10 dB. 
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on an extrapolated boundary (2, 12, 13) or the outward radial 
component of the flux to be zero on the boundary; however, 
we found that the resulting differences were small. 

The photon density outside the sphere is a superposition of 
the incident wave and a scattered wave. Constant amplitude 
contours of Uout and Uscatt in the presence of a perfect 
absorber are plotted in Fig. 2. The distortion of the wave front 
will decrease with absorber size because, to leading order, 
the intensity of the scattered wave is proportional to ka [i.e., 
the Ai,m = (ka)21+1]. It is interesting to note that the scattered 
wave becomes more isotropic for smaller objects. Analyti­
cally this arises because as ka decreases the contribution 
from the higher order (l > 0), partial waves become less 
significant compared to the l = 0 spherical partial wave. 
These results are consistent with recent "difference" mea­
surements performed on absorbing spheres by Sevick et al. 
(16). 

The analytic solutions enable us to estimate the measure­
ment precision required to detect ideal objects. The required 
phase precision is determined from the position-dependent 
difference in phase between the incident wave and the 
distorted wave, while the required amplitude precision is 
found from the position-dependent ratio of I U out!/! Vinci. Con­
tour plots of the phase difference and the amplitude ratio 
indicate the spatial positions that are most sensitive to the 
presence of the object as well as the required signal-to-noise 
ratio. Fig. 3 illustrates this spatially dependent sensitivity for 
a perfectly absorbing sphere immersed in a medium with µ,;. 
= 10.0 cm-1 andµ,,.= 0.02 cm-1• These plots show thatl.0° 
phase and 10.0% amplitude precision is sufficient for local­
ization with measurements made in the shadow (within 4.0 
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FIG. 3. These sensitivity plots demonstrate the phase and am­
plitude resolution necessary to measure a DPDW distorted by a 
perfect absorber. (a) Phase difference between an incident wave and 
the wave distorted by a LO-cm-diameter absorber. (b) The ratio of the 
amplitude of the distorted wave with respect to the incident wave. 
For these plots, the surrounding medium's optical characteristics are 
µ,; = 10 cm-1 andµ,..= 0.02 cm-1, the modulation frequency is 200 
MHz and v = 2.25 x 1010 cm/s. The dots in a represent the locations 
where measurements were made to characterize the object. 
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FIG. 4. Experimental measurements (solid lines) of a DPDW 
distorted by a 1.3-cm-radius perfect absorber are compared to the 
theoretical prediction (dotted lines) for the given experimental pa­
rameters. Phase contours are drawn every 20° in a, and the amplitude 
contours are drawn every 10 dB. For this experiment, the optical 
properties of the surrounding medium wereµ,;= 3.0 cm-1 andµ,..= 
0.02 cm-1, w = 200 MHz, and v = 2.25 x 1010 cm/s. 

cm of the object) of the LO-cm-diameter absorber. This is 
well within the 0.1° phase and 0.1% amplitude precision 
available with current detectors. Localization of smaller 
absorbers will require better precision. 

EXPERIMENTAL DESIGN 
The experimental setup has been discussed in detail (9) and 
is briefly described here. We modulate a 780-nm output of a 
5-mW laser diode at 200 MHz. Photons from the source are 
guided through a 6.0-mm-diameter fiber optic cable into a 
60-liter tank containing a turbid medium called Intralipid.§ 
The scattering medium is essentially infinite and is homoge­
neous except for the small spherical inhomogeneity, a black 
sphere, that is suspended in a fixed position from the top of 
the tank. Measurements of the relative photon density (17) 
are made by positioning one end of a detection fiber in the 
Intralipid at a known location relative to the source and 
attaching the other end to a photomultiplier tube. The signal 
is heterodyned down to 25 KHz and is analyzed by lock-in 
techniques to obtain the phase and amplitude of the photon 
density. The wave is detected in this way as a function of 
position within the tank. 

Two sets of experiments were performed, one to check the 
validity of the theory and the other to resolve object char­
acteristics by fitting the theory to experimental data. The 
optical properties of the given concentration of Intralipid 
were determined before each experiment through separate 
measurements of phase and amplitude of the DPDW propa­
gating in the infinite homogeneous system (3, 8). These 
quantities were used in our subsequent analysis. 

In the first set of experiments, the object and source are 
fixed in the Intralipid with a separation Zs• The phase and 
amplitude of the distorted DPDW are measured by moving 
the detector to different points on a two-dimensional grid 
containing the source and the center of the object. These 
experimental results are then compared to the prediction of 
Eq. 3 for the given object properties. 

In the second set of experiments, the properties of different 
spherical absorbers are found by fitting the theory to a 
measurement of the distorted wavefront along a line. This 
was accomplished by minimizing the least squares theoretical 
fit to the experimental data with respect to object position 
relative to the source and object radius. 

§Jntralipid is a polydisperse suspension of fat particles ranging in 
diameter from 0.1 µ.m to 1.1 µ.rn. The Intralipid used here was 
obtained from the hospital of the University of Pennsylvania. 
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Table 1. Results of fitting theory to a series of experimental observations of a DPDW scattered 
by an absorber 

Exp. Z<1e1ector, cm Intralipid, % I*, cm Ztii, cm Xtit,Cm Ytit,Cm atii, cm 

A 6.5 0.25 0.60 3.87 -0.05 0.08 1.02 
B 7.5 0.25 0.60 4.08 -0.06 -0.56 1.04 
C 6.5 0.50 0.33 4.06 0.00 -0.13 1.12 
D 7.5 0.50 0.33 4.01 -0.02 0.08 1.15 
E 6.5 0.75 0.23 4.20 0.01 -0.07 1.15 
F 7.5 0.75 0.23 4.11 0.00 0.12 1.20 
G 6.5 1.00 0.18 4.12 0.02 0.00 1.22 
H 7.5 1.00 0.18 4.17 0.00 0.04 1.21 

Absorber had a radius of aexp = 1.3 cm and was positioned at Z = 4.0 cm, X = 0.0 cm, and Y = 0.0 
cm. For each experiment, the detector was positioned at Z<1etector and scanned from - 2.0 cm < X < 
2.0. The experiments were performed in different concentrations of Intralipid for which the photon 
random walk step is given by I*, where I* = 1/ µ,!.. In all experiments,µ,,.= 0.02 cm-1, w = 200 MHz, 
and v = 2.25 x 1010 cm/s. 

RESULTS 
Our measurements indicate that the analytic theory accurately 
predicts the distortion of the DPDW. Furthermore, because of 
the close agreement, we are able to characterize a spherical 
absorber embedded in the turbid medium. These observations 
were not obvious a priori for one major reason: our theory is 
derived from the diffusion equation, but photon migration is 
better approximated by a transport equation. In fact, signifi­
cant differences between the diffusion equation and the trans­
port equation arise near sharp boundaries. As mentioned 
below, we have detected evidence of these differences. 

The measured distortion of the DPDW by a perfectly 
absorbing sphere is shown in Fig. 4 and compared to the 
predicted distortion. This comparison illustrates that the 
analytic solution shows good agreement with the experimen­
tal data. 

As an example of the utility of the analytic solution, we 
have compared theory to measurements of phase and ampli­
tude of the DPDW along lines parallel to those indicated in 
Fig. 3a to predict object size and location. The results of these 
experiments are presented in Table 1. Fits for two of these 
experiments are shown in Fig. 5. 

The results in Table 1 show that a fit to measurements made 
in the shadow of the object determines the x and y position 
of the absorber to an accuracy of ±0.1 cm and the z position 
to ±0.2 cm. Finally, the object radius was determined to 
within ±0.3 cm. With a decrease in the photon random walk 
step, the discrepancy between the determined radius and the 
known radius is seen to decrease. This trend is a result of 
applying the diffusion equation to a system with a sharp 
absorbing boundary. 

APPLICATIONS 
In this section, we demonstrate the extension of the analytic 
solution toward other imaging scenarios. 

Phased Sources. Measurements made with a phased source 
are highly sensitive to the presence of heterogeneities (6, 18). 
A simple phased source consists of two oscillating light 
sources of equal amplitude that are 180° out of phase and are 
separated by a small distance. In a homogeneous medium, the 
DPDWs generated by each source interfere to create a nodal 
plane of zero amplitude across which the phase shifts by 180". 
The presence of an inhomogeneity distorts this nodal plane 
into a quasinodal surface. ,r Inhomogeneities may be detected 
by measuring the distortion of the quasinodal surface. 

In the presence of a spherical object, the position­
dependent photon density generated by a system of sources 

1Jn the presence of an inhomogeneity, the nodal plane is perturbed 
into a surface across which there is a large change in phase (of order 
180°) and on which the amplitude is a minimum rather than zero. We 
refer to this new surface as a quasinodal surface. 

is easily calculated by summing Eq. 3 for each source. This 
solution is useful in analyzing the effectiveness of using 
phased sources to characterize hidden objects in comparison 
to single sources. 

Scattering from Multiple Objects. Another important sce­
nario involves samples that contain two or more spherical 
objects. In this case, the distorted wave is calculated by 
summing scattering events of different order. We first cal­
culate the scattering of the incident wave from each object. 
This is the first-order scattered wave. The first-order scat­
tered waves are incident on and, consequently, scattered by 
the surrounding objects resulting in second-order scattered 
waves whose amplitude is smaller than the first-order wave. 
For two spherical objects embedded in an infinite homoge­
neous medium, the general solution is of the form 

00 

Uout = Uinc + L cu:catt 1 + u~tt 2), [6] 
n=l ' ' 

where U~u,i is the nth-order scattered wave from the ith 
object (see Fig. 1). While the first-order waves (U!ca11.J are 
easily calculated using Eq. 3, the second-order waves 
(U;cau,J require the solution of complex integral equations. 
The dominant portion of uiau,;, however, can be computed 
analytically; it is the l = 0 component of U!c,.11,i scattering 
from the ith object (i # j). The significance of the second­
order wave can be estimated by the ratio of U~11,; to U inc• 

Our comparisons find that U;ca11 ; is negligible in most cases. II 
The distortion of a DPDW by ~everal objects is thus accu­
rately computed using only the first-order scattered waves. 

Semllnfinite Media. In medical imaging, measurements are 
typically made by placing the source and detector on the skull 
or breast tissue. Treating such a system as infinite is obvi­
ously incorrect and will lead to discrepancies between theory 
and experiment. Planar boundaries between diffusive and 
nondiffusive media can be modeled by requiring U001 = 0 on 
an extrapolated zero boundary a distance Zo = 0. 7104/ ~ from 
the actual boundary, away from the diffusive medium (2, 12, 
13). Multiple planar boundaries can be modeled by employing 
additional zero boundary conditions. To first order, the zero 
amplitude boundary condition is satisfied by placing an image 
source of negative amplitude at the position of the actual 
source reflected about the zero boundary. The photon den­
sity is then calculated by superimposing the DPDWs gener­
ated by the two sources and their respective scattered waves. 
In general, one must also consider an image of the scattered 
waves to ensure that Uout equals zero on the extrapolated 

II Second-order scattered waves are negligible when (r,tJ{l2)/(r,1r11rJd) 
I exp[ik(r,1 + '!i + rid - r,d)ll << 1 where i andj denote the different 
objects (see Fig. 1). 

https://1800)andonwhichtheamplitudeisaminimumratherthanzero.We
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Fm. 5. Fits to experiments C and G from Table 1 are presented in a and b, respectively. The experimental data(◊) are compared to the 
best fit (solid line). The experimental parameters are given in Table 1. 

zero boundary. These images then create waves that scatter 
off the object, ad irifinitum. 

Comparing calculations for semiinfinite and slab systems 
with infinite systems, we found that the wavefronts have the 
same general shape except near the boundaries and that the 
object sensitivity is unaffected by the boundaries. 

'llme-Domaln Measurements. Our scattering theory is easily 
extended to the time domain. A pulse of light propagating in 
a turbid medium can be thought of as a superposition of many 
DPDWs with different modulation frequencies. Thus, a time­
resolved measurement of the propagation of a light pulse is an 
easy way to determine the frequency response of the system 
(19). To calculate the response to a pulse of light, we simply 
compute the scattering due to each DPDW in parallel. 

We computed the temporal evolution of a light pulse with 
width -r = 10 ps and period T = 1.0 µ,s in an infinite medium 
with different-sized perfect absorbers. The results indicate 
that the measured photon density will decrease as a result of 
an absorber but that the decay rate of the light energy density 
is relatively unaffected by its presence. These results are 
consistent with the experimental observations of Liu et al. 
(20). 

CONCLUSIONS 
We have presented an analytic solution of the Helmholtz 
equation for the scattering of diffuse photon density waves 
from spherical objects embedded in an otherwise homoge­
neous turbid medium. Our experimental observations dem­
onstrate that this solution can be used in coqjunction with a 
simple imaging algorithm to characterize spherical objects. 
Finally, the analytic solution permits a straight forward 
approach to the complicated analysis of measurements made 
with phased sources, scattering from multiple objects, the 
effect of planar boundaries, and measurements made in the 
time domain. We will present these latter results in greater 
detail elsewhere. 
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