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Fig. 3. NaYF4 (AR ¼ 1.4) NR superlattices. (A) TEM image of a monolayer superlattice of NRs that are oriented parallel to the substrate. The upper right inset is 
the corresponding SAWED pattern and the lower right inset is the corresponding SAED pattern. Both patterns are acquired from an area of ∼6.5 μm2. (B) TEM 
image of a double-layer superlattice of NRs that are oriented parallel to the substrate. The upper left inset is the high-magnification TEM image acquired from 
the same domain. The upper right inset is the corresponding SAWED pattern and the lower right inset is the corresponding SAED pattern. Both patterns are 
acquired from an area of ∼6.5 μm2. (C) Optical micrographs of the NaYF4 (AR ¼ 1.4) NR superlattices observed with crossed polarizers. The scale bar represents 
30 μm. (D) AFM image showing the domain boundaries of the NR superlattices. 

(Fig. 4D). This general method to vertically align and assemble nanoprism has six neighbors. However, the packing symmetry de-
NRs maybe of interest for various applications such as photovol- viates from the square lattice expected for perfect cubes. The ar-
taics (46), plasmonic biosensing (47), and magnetic information rangement, in light of recent theoretical work on the packing of 
storage (3). fourfold rotationally symmetric superdisks, can be described as 

The ordering of the as-deposited hexagonal nanoprisms and the Λ1-lattice packing (48). Due to the reduced shape symmetry, 
nanoplates superlattices is also strongly dependent on the de- the hexagonal nanoprisms self-organize into a configuration that 
tailed geometry of individual NCs: In the hexagonal nanoprism maximizes the packing density. On the other hand, hexagonal 
assemblies (Fig. 5A and SI Appendix: Fig. S27), each “cube-like” nanoplates self assemble into close-packed hexagonally ordered 

Fig. 4. NaYF4 (AR ¼ 2.0) NR superlattices. (A) TEM image of a monolayer superlattice of NRs that are oriented parallel to the substrate. The lower right inset is 
the corresponding SAED pattern acquired from an area of ∼2 μm2. (B) TEM image of a double-layer superlattice of NRs that are oriented parallel to the 
substrate. The lower right inset is the corresponding SAED pattern acquired from an area of ∼2 μm2. (C) TEM image of a monolayer of vertically aligned 
NR superlattices. The upper left inset is the high-magnification TEM image showing the hexagonally closed-packed array of NRs. The upper right inset is 
the corresponding SAWED pattern acquired from an area of ∼60 μm2 . (D) TEM image of a closed-packed hexagonally ordered array of vertically aligned 
NRs. The upper right inset is the corresponding SAWED pattern and the lower right inset is the corresponding SAED pattern. Both patterns are acquired 
from an area of ∼6.5 μm. 
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Fig. 5. Hexagonal nanoprism and nanoplate superlattices. (A) SEM image 
of a monolayer superlattice of NaYF4: Yb/Tm (22∕0.2 mol%) hexagonal na-
noprisms. The upper right and lower right insets are the high-magnification 
SEM and TEM images, respectively. (B) SEM image of the self-assembled 
superlattice of NaYF4: Yb/Er (20∕2 mol%) hexagonal nanoplates. 

arrays (Fig. 5B and SI Appendix: Fig. S28–30), consistent with the 
sixfold symmetry of nanoplates. 

Conclusions 
In summary, we have shown that under different synthetic con-
ditions, NaYF4-based UCNPs develop regular facets and finally 
evolve into a diverse family of morphologies (spheres, rods, 
hexagonal prisms, and plates) in accordance with the underlying 
hexagonal unit-cell symmetry. Monodisperse UCNPs with dis-
tinct shapes are model systems to advance the understanding 
of the shape-directed assembly/packing behaviors of nanocol-
loids, but also open new opportunities in fields such as bioimaging 
(18, 19) and photodynamic therapy (20, 49). Programming aniso-
tropic NCs to assemble into desired two- and three-dimensional 
patterns enables the production of complex nanoscale architec-
tures useful for applications such as solar cells (46) and plasmonic 
metamaterials (50). 

Materials and Methods 
Synthesis of Upconversion Nanophosphors (UCNPs). All syntheses were carried 
out using standard Schlenk techniques. 1-Octadecene (ODE; technical grade, 
90%), oleic acid (OA; technical grade, 90%), NaðCF3COOÞ and EG were 
purchased from Sigma Aldrich. REðCF3 COOÞ3 (RE ¼ Y, Yb, Er, Tm) and Y, Yb, 

1. Tao A, Sinsermsuksakul P, Yang P (2007) Tunable plasmonic lattices of silver nanocrys-
tals. Nature Nanotechnol 2:435–440. 

2. Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film 
field-effect transistors. Science 310:86–89. 

3. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles 
and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. 

4. Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Structural diversity 
in binary nanoparticle superlattices. Nature 439:55–59. 

5. Talapin DV, et al. (2009) Quasicrystalline order in self-assembled binary nanoparticle 
superlattices. Nature 461:964–967. 

and Er 1,000 ppm ICP standard solutions were purchased from GFS Chemicals, 
Inc. HoðCF3COOÞ3 was purchased from Rare Earth Products, Inc. CeðCF3 COOÞ3 

was prepared according to the literature method (51) using cerium(III) carbo-
nate hydrate (Aldrich) and trifluoroacetic acid (Alfa Aesar) as the precursors. 
A typical protocol for the synthesis of hexagonal phase NaYF4-based UCNPs is 
described below: certain amount of NaðCF3COOÞ and REðCF3COOÞ3 (see SI 
Appendix: Table S1 for details) together with 15 mL of ODE and 15 mL of 
OA were added to a three-necked flask. The mixture was then heated under 
vacuum at 100 °C for 45 min to form a transparent, yellow solution. The re-
action flask was flushed with N2 for 5 min and was then placed into a molten 
NaNO3∕KNO3 (1∶1 mass ratio) salt bath that was stabilized for 342 °C. A large 
amount of white smoke was produced after about 1.5 min, indicating the 
decomposition of metal trifluoroacetates (51). After 20–35 min of reaction 
under N2 flow and vigorous magnetic stirring, the solution was cooled down 
by adding 15 mL of ODE. The products were isolated by adding ethanol and 
centrifugation. Due to the mondispersity of the as-synthesized samples, no 
size-selective fractionation is needed. The UCNPs were redispersed in hexane 
with nanocrystal concentration of about 5.0 mg∕mL. 

Assembly of UCNPs into Superlattices. The assembly was done using a variant 
of the interfacial assembly method recently developed by our group (41). 
Briefly, a 1.5 × 1.5 × 1 cm3 Teflon well was half-filled with EG. Certain amount 
of UCNP dispersions (see main text for details) was drop-cast onto the EG sur-
face and the well was then covered by a glass slide to slow down solvent 
evaporation. After 40 min, the nanocrystal film was transferred onto glass 
substrates or TEM grids (300-mesh) that was further dried under vacuum 
to remove extra EG. 

Structural and Optical Characterization. TEM images and electron diffraction 
patterns were taken on a JEM-1400 microscope operating at 120 kV. HRTEM 
images were taken on a JEOL 2010F microscope operating at 200 kV. Scan-
ning electron microscopy (SEM) was performed on a JEOL 7500F HRSEM. 
Power XRD patterns were obtained on the Rigaku Smartlab diffractometer 
at a scanning rate of 0.1° min−1 in the 2θ range from 10° to 80° (Cu Kα radia-
tion, λ ¼ 1.5418 Å). For XRD measurement, samples were prepared by depos-
iting hexane solutions of nanocrystals onto a glass substrate. Dynamic light 
scattering (DLS) measurements were performed on a Delsa Nano C system 
(Beckman Coulter). AFM height images were obtained on the DI Multimode 
AFM. Quantitative elemental analysis was carried out with ICP-OES on a 
SPECTRO GENESIS ICP spectrometer. Room temperature upconversion emis-
sion spectra were acquired with the fiber-optically coupled USB4000 fluores-
cence spectrometer (Ocean Optics) using an external continuous-wave laser 
centered at ∼980 nm as the excitation source (Dragon Lasers). The optical 
photographs of the emitting UCNPs were taken using a Nikon D300 digital 
camera. Nanorod superlattices on glass substrates were imaged under 
crossed polarizers using a Leica DMRX upright microscope equipped with 
a charge-coupled device (CCD) camera (Hitachi KP-M1U). 
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