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There is a rich variety of systems in nature which are essentially dense aggregations 
of particle-like structures whose positions vary randomly in space and time. Some 
common examples include fog, smog, microemulsions, suspensions of glass or polymer 
microspheres, red blood cells, and ocean particles. In order to understand better and 
ultimately to gain control over these suspensions it is highly desirable to characterize the 
structure and dynamics of these systems. 

Light scattering has been widely used and is particularly well-suited for structural 
and dynamical studies of colloids because the important length scales, such as particle size 
and interparticle spacing, are comparable to the wavelength of light. Unfortunately, this 
advantage is often offset by the fact that colloidal particles scatter light so strongly that 
multiple scattering becomes a significant problem at all but the lowest particle 
concentrations. As a consequence, progress in the study of dense colloids has lagged that 
of colloids at very low particle concentrations. 

Recently a new spectroscopy has been developed and applied to study the 
properties of colloidal suspensions which multiply scatter light (1,2,3]. The technique, 
called diffusing-wave spectroscopy (DWS), exploits the diffusive nature of light transport 
in strongly scattering media to relate temporal intensity fluctuations of the scattered light to 
average particle motion. In contrast to more traditional dynamic light scattering methods 
[ 4,5], DWS probes particle motion over length scales much shorter than the light 
wavelength, and offers the possibility of studying the strongly correlated particle motions 
often present in dense media. 

In this contribution we introduce a new diffusing-wave spectroscopic probe which 
utilizes light pulses and exploits the phase fluctuations of optically gated photons to 
eliminate the usual average over photon pathways. The principles are discussed and 
experimentally demonstrated. We have used the method to test several critical assumptions 
of the original multiple light scattering theories, and we have studied particle diffusion in 
the high volume fraction limit where hydrodynamic interactions are important. Since the 
general field is quite new we will review the important aspects of conventional DWS before 
discussing the pulsed ideas and our experiments. 

Review of Diffusin~-Wave Spectroscopy 

The advances of DWS are best appreciated against the backdrop of the widely 
successful spectroscopy of quasielastic (or dynamic) light scattering (QELS) [4,5] . In 
QELS the low frequency noise spectrum of the scattered light is analyzed to obtain 
dynamical information about the various mechanical degrees of freedom of the scatterers. 
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An experimental set-up for a typical QELS experiment is shown in Figure 1. Here 
a volume of solvent containing N identical macromolecular scatterers is illuminated by a 
plane wave with a frequency ro and a wavevector ko=21t/A. Scattered light is detected far 

from the sample at an angle 8 with respect to the incident propagation direction. For dilute 
samples we can ignore multiple scattering effects, and the electric field at the detector is 
superposition of the fields radiated by each of the individual particles. Since the position of 
each particle is random and varies randomly in time, the field at "the detector, E(t) will 
fluctuate in time. The phase of the electric field at the detector due to the jth particle 
depends on its position rj, its field strength Aj, and the scattering wavevector q, where q = 

lql = 2kosin8/2. The physical content in these fluctuation measurements is contained in the 

autocorrelation function, g1 (t) = (E*(t)E(t+'t))/(IE(t)l2), of the scattered electric field. For 
Brownian motion in dilute systems we typically have Aj = A and uncorrelated particle 

motion. In this case gl (t) reduces to an exponential function with a decay rate that is 
inversely proportional to the time it takes a particle to move a leqgth ~ 1/q. Thus by varying 
the scattering angle 8 it is possible to measure the relaxation of particle density fluctuations 

over length scales of 'A/2 and larger. In practice the intensity autocorrelation function, g2( t) 

= (I(t)l(t+t))/(I(t))2, is often the quantity measured and the Bloch-Siegert [6] relation, gi(t) 

= 1 +lg1 (t)l2, is used to derive g1 ('t) from the data. 

QELS is a "single scattering spectroscopy" in the sense that the scattering problem 
is well posed only within the Born approximation. In more dense systems incident 
photons experience many scattering events before emerging from the medium and it 
becomes essential to incorporate the multiple scattering process directly into our 
interpretation of the fluctuation spectra. Indeed it is precisely because of this limitation that 
a great variety of systems remain unstudied. 

At high concentration (i.e., volume fractions, q>>0.2), the simple system of strong 
macromolecular scatterers undergoing Brownian motion provides a good example of a 
class of dense, fluctuating random media that we wish to observe. Consider the 
experimental geometry depicted in Figure 2. Here a dense sample of Brownian particles is 
illuminated by a plane wave on the front face, and a portion of the light that has propagated 
through to the other face is collected through a small aperture at the output plane. · 

Microscopically one can envision each photon traveling ballistically between 
particles, and experiencing changes in propagation direction after each scattering event. 
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Figure I. Experimental set-up for a typical QELS experiment. Scattered light is detected at 

an angle 8 with respect to the incident propagation direction. 
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Three length scales characterize photon transport in the media: (1) s, the total distance 
traveled by a photon, (2) 1, the mean distance traveled by the photon between particle 
encounters, and (3) l*, the transport mean free path of the photon. Physically, l* 
corresponds to the mean distance traveled by a photon before its propagation direction is 
completely randomized. Thus I* is the random walk step size for the "diffusing photons". 
Typically ifs>> I* then the diffusion approximation is quite good. We assume this to be 
true, and we also assume that the disorder in the sample is uncorrelat_ed. 

Consider a single photon path of length s through the media. A typical photon will 
experience n=s/1 scattering events. We can write the phase of the electric field for the light 
emerging along this pathway in terms of the position of the jth particle rj, and the 
momentum transfer Qj for the jth scattering event [7 ,8] 

N 
Es(t) ~ e-irot Il eiq.•r.(t) 

. 1 J J J= 
(1) 

In contrast to QELS, we note that the phase shifts due to each scattering event enter 
multiplicatively rather than in an additive way , and that the momentum transfer Qj are 
different for each scattering event. 

The time-averaged autocorrelation function g! ('t) of the scattered field takes on a 

particularly simple form when the particles move independently and the particle 
displacement is a random Gaussian variable. Then, if we assume that the photon 
momentum transfer is independent of the particle displacement, we can show that [1,7,8],, 

(2) 

where (&2('t)) is the mean square displacement of a particle in time 't. Equation 2 is the 
primary result of the simplest DWS treatment. 

Information on the dynamics of particle motion is contained in the decay of g! ('t). 

In contrast to QELS, we see that the field correlation function is sensitive to particle motion 
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Figure 2.Top: Schematic of a typical DWS measurement. Light from laser is directed onto 
a dense colloidal suspension. Each photon travels through the sample along a 
complicated path. At the ouput face we collect a portion of the emerging light and 
direct it onto a photomultiplier tube. / nset: Magnification of a portion of a photon 
path. Here the photon encounters two particles at locations rj and rj+}. Thephot
on travels ballistically between particles and experiences a momentum transfer 
in thejth collision given by Qj=kj- kj+l-
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over length scales 'A,/✓ s/l*, which, since s>>l*, is generally much less than A. Thus, in 
addition to being able to probe the dynamics of optically turbid samples, DWS is sensitive 
to motion on a substantially different range of length and time scales than QELS. 

Qualitatively we expect all of these dynamic light scattering correlation functions to 
decay in the time it takes the phase of the scattered field to change by 1t. In single scattering 

experiments this occurs when a typical particle position changes by ~ 1/q (>JJ2) along the 
direction parallel to q. In the multiple light scattering experiments this occurs when the 
total particle displacement projected along the direction of the output speckle wavevector 

changes by ~A. Since the scattered photons encounter many particles en route to emerging 

from the sample, the distance that each particle must move is much less than A. Loosefy 

speaking we can associate a phase shift of ~ko(Ar('t)) with each step in the photon random 

walk. Since the direction of ~r('t) is random, the total phase shift along any particular 
direction will scale as the square root of the number of photon random walk steps. 
Equation 2 is a quantitative statement reflecting this simple idea .. 

The first experiments demonstrating these ideas were carried out with cw lasers 

[1,3,7] In this case the total electric field autocorrelation, Gt('t), function is computed by 

incoherently summing the contributions of each path-dependent g! (t) weighted by P(s), the 

probability that a photon will travel a distance s through the medium, i.e. 

00 s 
G 1 ('t) = f O gi(t) P(s) ds. (3) 

For purely Brownian motion, (~r2(t)) = 6DOt, and G1 (t) is the Laplace transform of P(s) 
with scale factors that are simply related to Do. The pulsed-DWS technique (PDWS) 
which we describe shortly, enables us to isolate the contributions of specific photon 

pathlengths and thereby directly measure the path-dependent autocorrelation function g1 

(t). This is particularly useful when the mean square particle displacement does not 
depend linearly on time, and in regimes where it is not apparent that the diffusion 
approximation is valid. In addition, with the same apparatus, we can directly measure l*. 

Pulsed Diffusing-Wave Spectroscopy 

The basic ideas of PDWS are illustrated with the use of Figure 3. We employ .a 

laser that emits a train of identical light pulses. Each pulse has a temporal duration ~t, and 

a carrier frequency CJlo. Adjacent pulses within the train are separated by a time T. A beam 
splitter divides the pulse train into reference and sample pulse trains. The reference train is 
optically delayed, and the sample train is directed into the suspension which is contained in 
a rectangular glass cell. Light pulses emerging from the opposite side of the cell are 
"stretched" due to the distribution of photon path lengths through the sample. In order for 
PDWS to be most effective, the pulse broadening due to multiple scattering must be large 
compared to the input pulse width and small compared to the train repitition rate, i.e., 

~t<<~s/c<<T, where ~s represents the characteristic width of P(s). The scattered pulse 
train is then recombined with the reference train in a frequency doubling crystal, and a 
second harmonic (SH) pulse train is produced when the two input fields nonlinearly mix 
[9,10]. Ifs' is the difference in path length between the reference and sample arms when 

the sample is removed, then each pulse within the SH train will have a field Es•(2roo,l), 
proportional to the reference field, ER(t), and the path-dependent scattered field Es(t,s'). 
When fluctuations in the reference field are negligible, ER(t) =ER, and we have 

Es•(2ro0 ,t) ~ ER Es(t,s') . (4) 
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In most cases of interest, the time scale of the fluctuation in the phase of ES(t,s') is much 
longer than T, and the autocorrelation function of the SH photons is given by 

g1 (2ro0 ,'t) ~ IES(t,s')l2 ((Es(t,s'))* Es(t + 't,s')) ~ P(s') g1 ('t) . (5) 

Thus we see that the SH electric field will experience the same fluctuations due to particle 
motion as the scattered electric field for a single pathlength. By varying the path length 

f difference, s', between the sample and reference arms, the reference pulse "gates" the total 
sample electric field, so that only a very narrow range of photon paths centered about s=s' 
contribute to the fluctuations of the upconverted field. The autocorrelation function of the 
SH field is simply the integrand of Equation (3) evaluated at the appropriate s, 

(6) 

Note that the temporal behavior of the autocorrelation function no longer depends 

on the shape of P(s), and for fixed s, a plot of ln[g1 (2roo,'t)] vs 't directly yields the time 

dependence of (&-2(t)). In DWS any process that affects P(s), such as sample geometry 
or absorption, modifies the temporal decay of the measured autocorrelation function. Thus 
even processes that do not affect particle diffusion must be properly accounted for when 
analyzing DWS data. Since PDWS is insensitive to P(s) these types of problems are 
eliminated. 
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Figure 3. (a) Schematic of the PDWS experimental set-up: BC, beam combiner; BD, beam 
dump; BS, beam splitter; I, iris; L, lens; M,Mirror; NC, nonlinear crystal; PMT, 
photomultiplier tube; S, sample; SF, second harmonic spectral filter. (b) Sketch 
of the reference, sample, and second harmonic pulse intensities during two 
intervals separated by several microseconds. Temporal fluctuations in the sample 
pulse intensity arise from particle motion on the microsecond time scale. 
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An imponam additional feature of this scheme is that the dependence of the average 
SIi in1ensi1y on 1he reference delay s, is proportional to P(s}. Thus we can directly 
measure P(s) for any geometry. By fitting the results to predictions of photon diffusion 
theory, we can experimentally determine t• and Lhe photon absorption length la. 

Optical gating has been used with considerable success in time-resolved 
luminescience studies of semiconductors [ I OJ, and more recenLly in coherent backscancring 
measurements [ I 1,121. In contrast to these cases, the present application is the first to 
exploit the phase flucmations of lhe gated photons. By eliminating the average over 
photon pathlengths, the new technique is essentially a very high resolution version of 
DWS. We expect that just as a number of high resolution laser spectroscopic techniques 
such as saturation spectroscopy for example, have revealed microscopic penurbations in 
the frequency domain, the spatial precision of PDWS will yield new information on 
problems concerning particle motion on different length seal.es. 

To illustrate the basic features of PDWS we have carried out a number of 
measurements on the Brownian dynamics of dense colloidal suspensions. The ligh1 
source was a mode-locked Nd:YAG laser(>.,::: 1.06 microns) that produced a 100 MHz 
train of 90-psec pulses. The average oup1ut power of 5 Watts, was spli1 evenly between 
the reference and sample beams (sec Figure 3). A ponion of the transmiued output from 
the sample was collected by two irises and imaged aJong with the reference beam into a 
KTP doubling crystal (5x5x5 mm, Type 11). The second harmonic pho1ons were spatially 
and spectrally filtered from the fundamental photons, and collec1ed. Typical photon count 
rates were between 80 and 600 KHz, allowing normaJized intensity autocorrelation 
functions, g2(t). to be obtained with 100 nsec time resolution in 2 to 20 minutes. The 
intensity correlation functions arc related to the field correlation functions 1hrough the 
Siegert relation. 

ln the inset of Figure 4a we plo1 the log of a typical SH in1ensity autocorrclarion 
function f g 1 (2coo,'t)]2 vs 't. The sample used in this case was a suspension of 0.460 µm-

diameter polystyrene spheres in water. The volume fraction of spheres was ¢, = 0.30, the 
sample 1hickness was 2 mm, and the reference arm delays were s=7.0 cm and s=l3.0 cm. 
We emphasize Llmt in conuast 10 DWS measunnenlS the curves decay exponentially. Some 
of our runs exhibited a sligh1 upward curvature at longer times. This effect was due to our 
relatively long pulse durations and wilJ be eliminated in the future by using shoner laser 
pulses. 

Using this sample we have performed measunnents at differeni optical delays s. In 
figure 4a we plot the slope, r1, of the ln[g1 (2COo,'t)] vs 't curve as a function of s. Below 
this plot, in figure 4b we show our measurment of P(s) oblained by the time averaged SH 
photon yield as a function of reference delay. We also caJcuJa1ed P(s) by solving the 
diffusion equation (1 3] subject 10 boundary conditions which insure there is no flux Qf 
dlffusing pho1ons into the medium [ 141 (dashed curve). The solid line through lbe dnta 
represents lhe best fit of theory to experiment after we account for fini1e pulse duration and 
the small absorption of ligh1 by water. Aside from an overall nom13lization, the only 
adjustable parameter is 1•. From our P(s) data we deduce that 1•=3 1.6 µm. This value of 
1*, coupled with the measw-ed slope of the r1 vs s curve yields a paniclc diffusion constant 
ofD=6.20xl0-9 cm2/sec for this sample. 

Wilhin the limitations of the curren1 apparatus, these measuremenlS corraborate the 
primary result of DWS. Thai is, the electric field autocorrelation of a photons that ha-.ie 

diffused s/1* steps, decays by exp(-'t 2~ D) per s1ep. This is explicitly demonstrated over 

path lengths ranging from 2200 10 4100 steps. Experiments are currently underway to test 
this hypothesis 1n the more complica1ed backscauering geometry where it is expected to 
breakdown. 
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Table 1. Summary of diffusion and 1 * data for various volume fractions of polystyrene in 
water. Also shown are the theoretical extimates for the self diffusion coefficient, 
D=Do(l-1.83<!>), [15], where Do is the Stokes-Einstein diffusion coefficient 

(kBT/67tT1a) and <I> is the volume fraction of spheres. 

Concentration l*(µm) D(cm2/s) D(cm2/s) 
(volume fraction) (exp.) (exp.) (theo.) 

0 .05 148±16 1.06±0. lOx 10-8 1.14xI0-8 

0.10 61.8±4.0 7.34±0.8xI0-9 l.03x I0-8 

0.20 41.7±3.4 7 .85±0. 78x 1 o-9 7.97xI0-9 

0. 30 31.6±2.2 
.· 9 

6.20±0.47x 1 o- 5.67xI0-9 

It addition to the measurements described above we report some preliminary results 
of a concentration dependent study undertaken with this technique in the high volume 
fraction limit. In Table 1 we have tabulated our measured values of 1 *, and D for various 
particle volume fractions. We also indicate theoretical estimates of D based on 
hydrodynamic corrections to the motion [ 15]. There clearly exists a substantial deviation 
between theory and experiment as we approach the highest densities. At present we are not 
sure of the origin of these deviations, but quantitative studies are underway to try and 
understand these differences. 

In conclusion we have introduced a pulsed DWS technique which substantially 
improves on the spatial resolution and the interpretation of conventional DWS experiments. 
With shorter light pulses it will be possible to observe ballistic particle motions, and more 
complicated systems in greater detail. The technique has enabled us to explicitly test a 
fundemental assumption of DWS theory, and it can be applied in the important 
backscattering geometry where some of the diffusive assumptions are known to break 
down. We note also that this general idea of performing an autocorrelation measurement 
on optical gated photons can be extended to conventional QELS measurements. In this 
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Figure 4. (a) Plot of the decay rate, ft, of the SH temporal field correlation function vs 
reference arm delays (same scale as (b)). Solid line is a least squares fit to the 

data. Inset: Plot of the log of the SH intensity autocorrelation function 
[g1 (2roo,t)]2 vs t for s=7.0, 13.0 cm. Both curves exhibit the expected single
exponential decay. (b) P(s): measured (open circles) and calculated (solid line). 
Dashed curve represents P(s) for delta function input pulses. 
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case the gating feature can be used to do optical ranging since there is no multiple light 
scattering. Projects along these lines are underway in our laboratories. 
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