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Melting of two-dimensional tunable-diameter colloidal crystals 
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Melting of two-dimensional colloidal crystals is studied by video microscopy. The samples were composed 
of microgel spheres whose diameters could be temperature tuned, and whose pair potentials were measured to 
be short ranged and repulsive. We observed two-step melting from the crystal to a hexatic phase and from the 
hexatic to the liquid phase as a function of the temperature-tunable volume fraction. The translational and 
orientational susceptibilities enabled us to defnitively determine the phase transition points, avoiding ambigu-
ities inherent in other analyses and resolving a “dislocation precursor stage” in the solid phase that some of the 
traditional analyses may incorrectly associate with the hexatic phase. A prefreezing stage of the liquid with 
ordered patches was also found. 
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I. INTRODUCTION 

Two-dimensional �2D� melting is a classic problem in 
condensed matter physics �1�, and, over the years, theories 
attempting to understand 2D melting have emphasized topo-
logical defects �2–5�, geometrical defects �6�, and grain 
boundaries �7�. The most popular model for understanding 
the transition is Kosterlitz-Thouless-Halperin-Nelson-Young 
�KTHNY� theory �2–5�, which predicts two-step melting, 
from the crystal to a hexatic phase and then from the hexatic 
to a liquid phase. The intermediate hexatic phase has short-
range translational and quasi-long-range orientational order, 
and the two transitions are beautifully characterized by the 
creation, binding, and unbinding of topological defects, i.e., 
dislocations and disclinations, respectively. Experimenters 
have sought out these features across a wide range of mate-
rials, including monolayers of molecules and electrons �1�, 
liquid crystals �8�, superconductors �9�, diblock copolymers 
�10�, and colloidal suspensions �11–16�. Some experiments 
and simulations have demonstrated substantial agreement 
with KTHNY theory, but others exhibit deviations and am-
biguities possibly due to fnite-size effects �1�, the interaction 
range and form �16�, and out-of-plane fuctuations �17,18�. In  
our view, the collection of evidence clearly points to the 
validity of the KTHNY scenario in 2D systems with long-
range interaction potentials �13–15,19�, but the evidence is 
less convincing in systems with short-range interactions 
�20–24�. Consequently it remains desirable to explore the 
phenomena in other model systems, especially those with 
short-ranged interactions. 

In this paper we examine 2D melting in a colloidal sys-
tem. The pair potential between particles in this colloidal 
suspension is short ranged and repulsive, and the sphere di-
ameter is thermally sensitive, so that temperature tuning can 
be used to vary the sample volume fraction and drive the 
melting transition. Temperature-sensitive particles enable us 
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to follow the spatiotemporal evolution of the same sample 
area through the entire sequence of transitions. This feature 
is attractive and was not realized in previous colloidal melt-
ing experiments which employed samples composed of 
charged spheres in the wedge geometry with density gradi-
ents �11�, nor in experiments that employed samples com-
posed of hard spheres in many different concentration-
dependent cells �12�. The temperature-sensitive samples 
employed herein start in the equilibrium crystal phase and 
reequilibrate rapidly after each tiny temperature jump. There-
fore, they are unlikely to be trapped in metastable glassy 
states during melting. Beautiful recent experiments using 
magnetic spheres with tunable dipole-dipole interactions 
�13–15� share some of these advantages but also differ from 
the present experiments in a complementary way as a result 
of their long-range dipolar interactions. 

We measured a variety of sample properties during melt-
ing, including radial distribution functions, structure factors, 
topological defect densities, dynamic Lindemann parameters 
�13�, translational and orientational order parameters, and or-
der parameter correlation functions in space and time. In this 
process we discovered that the order parameter susceptibility, 
i.e., the order parameter fuctuations, proved superior for 
fnding phase transition points compared to other analyses 
which typically suffer fnite-size and/or fnite-time ambigu-
ities. The susceptibility method has been applied in simula-
tions �17,21�, but to our knowledge has not been applied in 
imaging experiments. Using this method, we clearly resolved 
the intermediate hexatic phase, and we identifed a “disloca-
tion precursor stage” in the crystal phase that traditional 
analyses sometimes incorrectly assign to the hexatic phase. 
In addition, the functional form of the susceptibility near the 
phase transition points, e.g., divergences or discontinuities, 
can be used to determine the order of the phase transition. 

II. EXPERIMENT 

A. Sample preparation and characterization 

The samples consisted of a monolayer of N-isopropyl 
acrylamide �NIPA� spheres confned between two glass cov-
erslips. We synthesized NIPA microgel spheres by free-
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radical polymerization �25� and suspended them in buffer 4 

(A) ρ=0.909 (26.9°C) (B)
solution �pH=4.0, 20 mM acetic acid�. The NIPA polymer 

30°Cbecomes less hydrophilic at high temperature �26�, and there- 3 
24°Cfore the sphere diameter decreases with increasing tempera-

ture as water moves out of the microgel particle. Dynamic 
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light scattering measurements found the NIPA sphere hydro-
dynamic diameter to vary linearly from 950 nm at 20 °C to 
740 nm at 30 °C and showed that sphere polydispersity was 
less than 3%. Such small polydispersity should not affect the 
nature of the melting process �27�. The cleaned glass sur-

1 ↓ 
0 ↑faces were coated with a layer of 100-nm-diameter NIPA 0.5 1 r [µm] 1.5 

spheres to prevent particle sticking. A simple geometrical 
calculation showed that 100 nm close packed spheres on the 
surface give rise to �3 nm surface roughness for the 800-
nm-diameter spheres. This surface roughness is negligible 
compared to sphere polydispersity and wall separation fuc-
tuations. In addition, our observations of the large sphere 
motions at lower concentrations did not fnd evidence of 
preferential spatial locations, i.e., of signifcant surface po-
tentials. 

The dense monolayer of 800 nm spheres formed crystal 
domains within the sample cell of typical size ��40 �m�2, 
corresponding to �3000 particles. Measurements were car-
ried out on a ��20 �m�2 central area away from the grain 
boundaries. In practice we found that grain boundaries af-
fected only a few neighboring lines of particles, and that 
melting started from both inside crystal domains and at grain 
boundaries. This behavior differs qualitatively from grain-
boundary melting in 3D �25� and edge melting in 2D �28�, 
wherein melting starts from grain boundaries or edges and 
then propagates into the crystal. Our observations suggest 
that interfacial energies for liquid nucleation from anywhere 
within the crystal are similar to those near grain boundaries. 
It appears that melting starts nearly simultaneously through-
out the crystal. 

The sample was heated very slowly in 0.1 °C steps for a 
few minutes, and the measurements were taken after the tem-
perature stabilized. We did not observe convection, even in 
samples with smaller particles at much lower volume frac-
tions. The sample cell was approximately 1 �m thick, much 
smaller than the 1-mm-thick glass slide on which it was 
mounted. The temperature difference across the slide was 
about 5 °C, so the gradient across the sample was very small 
��0.01 °C�. Furthermore, the Reynolds number of water at 
this 1 �m scale is small, making convection unlikely. Be-
fore starting the measurements we cycled the samples once 
or twice above the melting point in order to relieve any pos-
sible shear stresses. 

Particle motions were observed by microscope and re-
corded to videotape using a charge-coupled device camera 
operating at 30 frames/s. The particle positions in each frame 
were obtained from standard image analysis algorithms �29�. 
The temperature control �Bioptechs� on the microscope had 
slightly better than 0.1 °C resolution. We increased the tem-
perature from 26.5 to 28.5 °C in 0.2 °C steps and recorded 5 
min of video at each temperature after sample equilibration. 

Particle interactions were directly quantifed by measuring 
the particle radial distribution function g�r� in a dilute �i.e., 
areal density ��10%� monolayer of spheres in the same 
sample cell. We corrected for image artifacts �30� at each 

ρ=0.890 (27.5°C) (C) ρ=0.858 (27.9°C) (D) 

FIG. 1. �a� Pair potential u�r� of NIPA spheres at 24 �squares� 
and 30 °C �circles�. Arrows indicate corresponding hydrodynamic 
radius measured by dynamic light scattering. �b�–�d�: Typical 10 s 
particle trajectories in the crystal, hexatic, and liquid phases, 
respectively. 

temperature using the method described in Ref. �31�. From 
g�r�, we applied liquid structure theory to extract �32� the 
pair potentials u�r� shown in Fig. 1. Note that the potentials 
are short ranged and repulsive. The effective particle diam-
eter at 1kBT is �10% smaller than the hydrodynamic diam-
eter measured by dynamic light scattering. Herein we use the 
hydrodynamic diameter � for defning the areal density � 
=n��2 /4, where n is the areal number density. 

B. Order parameter correlations in space and time 

Figures 1�b�–1�d� show typical particle trajectories in the 
three phases. In KTHNY theory, the traditional way to dis-
tinguish phases derives from the shapes of the order param-
eter correlation functions. For our analysis we frst labeled 
each particle by �xj , yj , t , 6j , Tj�. Here t is time,  6j 

nn= ��k=1e6i�jk� /N is the orientational order parameter, and 
 Tj  = eiG·rj is the translational order parameter for particle j at 
position r j = �xj , yj�. � jk is the angle of the bond between 
particle j and its neighbor k. N is the number of nearest 
neighbors �NNs�. G is a primary reciprocal lattice vector 
determined from the peak of the 2D structure factor s�k� at 
each temperature. In the liquid phase s�k� has no angular 
peak. Therefore we use G of the crystal phase to compute  T 
in the liquid phase; this approach has been used previously 
�18,33�. The assignment of G is not always easy in the crys-
tal or hexatic phase. To this end we maximized  T at each 
temperature �including the liquid phase� by iteratively vary-
ing G around an initial estimate derived from s�k�; the re-
sultant G was assumed to be optimal for that particular 
sample temperature and was used in subsequent calculations 
of order parameter correlation functions and the translational 
susceptibility. 
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FIG. 2. �Color online� �a� Orientational correlation functions g6�r�. Minima in the oscillations are associated with positions in the lattice 
that are not favored by particles. The fve dashed curves are fts of g6�r� to e−r/ 6. r−1/4 is the KTHNY prediction at the hexatic-liquid 
transition point. �b� Circles are the orientational correlation lengths 6 obtained from the fts in �a�. The solid curve is a ft to the KTHNY 
prediction 6����e−b / �i−� with b =0.566 and �i =0.894. These ft values, however, are prone to systematic error as a result of fnite-size 
effects �34�. �c� Orientational correlation function g6�t� in time. t−1/8 is the KTHNY prediction at hexatic-liquid transition point. �d� Expanded 
version of �c� that more clearly exhibits the transition from long-range to quasi-long-range order. The 11 temperatures correspond to the 11 
densities in Fig. 7. 

Correlations of  6 and  T in space and time are readily Despite substantial agreement with the KTHNY model, 
constructed, yielding four correlation functions two major ambiguities arise in the traditional correlation 

function analyses: �1� The power law decay of g6 can refect 
crystal-liquid coexistence rather than the hexatic phase, and g �r =  ri − r j � = � � 

i�ri�  j�rj�	 , �1a� 
�2� fnite-size and fnite-time effects induce ambiguities in 
the correlation function curve shapes near transition points. 
For example, the T=27.7 °C curve in Fig. 2�c� appears tog �t� = � � 

i� �  i� + t�	 . �1b� 
decay algebraically over the fnite measured time scale, but 
could decay exponentially at longer times. Since the curve 

where =6 ,T. Note that gT�r� and g6�r� are two-body quan- appears below the theoretical t−1/8 transition curve, we �per-
tities, and gT�t� and g6�t� are one-body quantities. haps reasonably� assigned the system to the liquid phase. 

From the g6�r� shown in Fig. 2�a�, we can semiquantita-
tively distinguish three regimes corresponding to crystal, 1 
hexatic, and liquid phases as predicted by KTHNY theory: 

26.5
o
Cg6�r��const �long-range orientational order� for 26.5– 

26.7
o
C

6r26.9 °C, g6�r��r− �quasi-long-range order� for 27.1– 26.9
o
C

−r/ 627.5 °C, and g6�r��e �short-range order� for 27.7– 

g T
(t

) 

0.1 1 t [s] 10 

27.1
o
C 

27.3
o

28.5 °C. These three regions are more clearly resolved over 
three decades of dynamic range in Figs. 2�c� and 2�d�, which 
plot the dynamic quantity g6�t�. Comparing Figs. 2�a� and 

27.5
o
C 

27.7
o
C 

27.9
o
C 

2�c�, we confrm the KTHNY predictions �5� that the power 
law decay of g6�t� is two times slower than that of g6�r�, and 
2 = =1 /4 at the hexatic-liquid transition point. gT�t�6t 6r 
and gT�r� yielded consistent results. For example, Fig. 3 
shows that gT�t�� t− �crystal� for T�27 °C and gT�t� 

−t/�e �hexatic and liquid� for T 27 °C. The KTHNY pre-
diction that Tr =1 /3 �5� at the crystal-hexatic transition 
point was also confrmed. The oscillations in g6�r� and gT�r� 
correspond to the oscillations of the radial distribution func-
tion g�r� in Fig. 4. 

28.1
o
C 
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o
C 

28.5
o
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0.1 

FIG. 3. �Color online� Translational correlation functions gT�t� 
in time. 
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FIG. 5. 2D structure factors s�k� at different temperatures. 

hexatic phase and simple Lorentzian for the crystal phase 
�12,35�. However, the profles become quite similar near the 
crystal-hexatic transition point, and we were unable to accu-
rately determine the transition point from fts to s�k�. 

D. Dynamic Lindemann parameter 

Another function of interest is the Lindemann parameter, 
a traditional criterion of melting. For 2D melting, however, 
the Lindemann parameter diverges slowly even in the crystal 
phase due to strong long-wavelength fuctuations in 2D. We 
calculated the dynamic Lindemann parameter L �14�, defned 
as 
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FIG. 4. �Color online� Radial distribution function g�r� at dif-
ferent temperatures. Curves are shifted vertically for clarity. The 
thin red and thick blue dashed curves are the power law and the 
exponential fts, respectively. 

C. Radial distribution functions and structure factors 

Other correlation functions, such as the spatial density 
radial distribution function g�r� in Fig. 4 and the 2D structure 
factor s�k� in Fig. 5, also appeared to have ambiguities near 
phase transition points. The spatial density autocorrelation 
function, i.e., the radial distribution function, is defned as 

where �rrel is the relative neighbor-neighbor displacement, 
�ui is the displacement of particle i, and particles i and j are 
nearest neighbors. As shown in Fig. 6, L2 converges below 
27 °C; in this case particles remain near their lattice sites. 
Divergence of L2 is found above 27 °C; in this case particles 
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g�r =  r � = 2 ���r� + r,t���r�,t�	 , �2� 

n 

where �=�N
j=1 

�t��(r −r j�t�) is the distribution of N particles in 
the feld of view with area A, and n= �� = �N /A is the areal 
density. The angular brackets denote an average over time 
and space. The power law fts the data better in the low-
temperature crystal phase as shown in Fig. 4. However, both 
power law and exponential forms ft the data equally well at 
high temperatures. The 2D structure factors in Fig. 5 were 
obtained by Fourier transforming the 2D radial distribution 
functions before azimuthally averaging them to obtain g�r�. 
The expected functional forms of the angular intensity pro-
fle of s�k� from theory are square-root Lorentzian for the 
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FIG. 6. �Color online� Square of the dynamic Lindemann pa-
rameters at 11 temperatures. 
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FIG. 8. �Color online� Voronoi diagram of the time evolution of 
a nonfree dislocation pair at 27.1 °C. Dark blue and light red rep-
resent particles with fve and seven nearest neighbors, respectively. 
�a�, �b�, and �c� all yield zero Burgers vector as shown by the closed 
hexagonal loop. Dislocations can rapidly form and annihilate in 
pairs, if they are in the same lattice line. 

“free” 6-mer 5–7-5–7-5–7�. In fact, Fig. 7�a� very likely 
overestimates �m because suffcient numbers of nonfree dis-

0.02 

0.75 0.8 ρ 0.85 ρ ρ 0.9
i m locations are needed before the dislocation chemical poten-

tial reaches zero and free dislocations are produced. Conse-FIG. 7. �Color online� �a� Thick dashed curve: N=5 disclination 
density. Thin dashed curve: N=7 disclination density. Diamonds: 
net disclination density; Circles: dislocation density ftted by 

− ��0.36963−2bm/��me �5�. �b� Translational and �c� orientational suscep-
tibilities. Dashed curves: �L derived from subbox sizes L 
=5,10,20  �m from top to bottom. Symbols: �� extrapolated from 
dashed curves. The solid curve in �c� is a ft to the KTHNY predic-

−b�/ �i−�tion �23� �6���� e with �i =0.901, b� =1.14. Vertical solid 
lines partition crystal �regions I and II�, hexatic �region III�, and 
liquid �regions IV and V� phases as determined from susceptibilities 
in �b� and �c�. Region II is a dislocation precursor stage of the 
crystal with dislocations. Region IV is a prefreezing stage �36� of 
the liquid with ordered patches. 

can more readily exchange positions with their neighbors via 
the gliding and climbing of dislocations �5�. This transition at 
27 °C is consistent with our direct measurement of disloca-
tion densities �see discussion below� in Fig. 7�a�. 

E. Defect densities and dynamics 

Defect densities are helpful for distinguishing among dif-
ferent phases. Particles with N� 6 are considered to be de-
fects. KTHNY theory suggests that the creation of free dis-
locations �isolated 5-7 pairs� drives the system from crystal 
to hexatic phase, and the creation of free disclinations �iso-
lated N=5 or 7 defects� drives the transition from the hexatic 
to the liquid phase. We measured defect concentrations as a 
function of temperature. Figure 7�a� shows that dislocations 
start to appear for T 27 °C �i.e., �m =0.905�, and disclina-
tions start to appear for T 27.7 °C �i.e., �i =0.875�. Al-
though defect density measurements are less sensitive to 
fnite-size effects than the correlation functions �34�, the as-
signment of a melting volume fraction �m based on defect 
density �Fig. 7�a�� is somewhat problematic. Problems can 
arise because �1� the data �Fig. 7�a�� inevitably include dis-
locations that are not completely “free,” e.g., the dislocation 
pairs in Fig. 8�a�, that are nearly adjacent to one another, 
point in opposite directions, and thus give zero Burgers vec-
tor for a large Burgers circuit, and �2� the data �Fig. 7�a�� are 
susceptible to other systematic errors, e.g., miscounting large 
defect clusters as equivalent to a free dislocation �e.g., a 

quently, a dislocation precursor stage in the crystal phase 
might be expected. 

We also observed more N =8,9  than N=3,4  defects. This 
imbalance compensated for some of the density difference 
between fve and seven NNs. In fact, a small imbalance in 
fve and seven NN disclinations might be expected. The con-
centration equality holds only in perfect crystals with peri-
odic boundary conditions and neglecting N=3,4 ,8 , . . .  de-
fects �5�. Our samples have free boundary conditions. 
Periodic boundary conditions create an artifcial constraint 
that forces vacancies and interstitials to be created in pairs 
rather than diffusing in from the surface �5�. For similar rea-
sons, the densities for fve and seven NNs are different in our 
experiment, but are usually observed to be the same in simu-
lations �e.g., �18��. Furthermore, any deviation from the strict 
monolayer limit can produce a concentration asymmetry �5�. 

Besides the static properties noted above, we observed 
some interesting defect dynamics. For example, dislocations 
often dissociated from larger defect clusters �e.g., 6-mer 5–7-
5–7-5–7� rather than from isolated pairs of dislocations �the 
5–7-5–7 quartet�, perhaps because the energy change for 
such disassociation is small. 

F. Susceptibilities 

In order to avoid the ambiguities outlined above and de-
termine the true �m, we explored the utility of another 
method for fnding phase transition points. This method is 
based on the order parameter fuctuations and is character-
ized by the order parameter susceptibility 

� L = L2��  2  	 − �    	 2� . �4� 
NHere L is the system size, =6 ,T, and   = ��i=1  i� /N is 

the total order parameter averaged over all N particles in the 
L�L box. For example, �T measures the response of the 
translational order parameter to sinusoidal density fuctua-
tions with periodicity characterized by G. � is a measure of 
the fuctuations of the order parameter in 9000 frames. To 
ameliorate fnite-size effects, we calculated �L in different 
size subboxes within the sample �dashed curves in Figs. 7�b� 
and 7�c�� and then extrapolated to ��, thus attaining the ther-
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modynamic limit. The �L of small subboxes were noisy due 
to statistics; thus before calculating �L, we randomized each 

2particle’s �xj , yj� position within the �20 �m� box while 
leaving its �t , j6 , jT� untouched. Such position randomiza-
tion did not affect �L in the largest box, but smoothed �L in 
subboxes, averaging over spatial fuctuations while preserv-
ing time fuctuations. Without such a spatial average, the 
dashed curves in Figs. 7�b� and 7�c� became noisier, but the 
same transition points �diverging points� were resolved. The 
experimental noise is estimated as the standard deviation of 
 T in different time frames with respect to the mean � T . 
The error bars in Fig. 7�b� are estimated from deviations of 
G that gave the same noise as found for  T. 

The sharp divergence or discontinuity of �T� and �6� in 
Figs. 7�b� and 7�c� clearly indicate the two transitions of the 
melting process. Although the magnitude of � suffered from 
size effects, the divergence point of � was robust to box size. 
Thus the susceptibility method avoided fnite-size ambigu-
ities. The divergence of � also avoids ambiguities arising 
from the similar functional forms of other measures �e.g., 
correlation functions� near transition points. Theoretically we 
expect the divergence of � to have better statistics than the 
correlation function shape, because � is essentially an inte-
gral of the correlation function. We also observed that the 
divergence points of the susceptibilities were robust to small 
uncertainties in G, although the exact magnitude of �T was 
somewhat sensitive to G. 

G. Five regimes 

Five regimes are marked off in Fig. 7 based on the various 
analyses we have carried out. Region I is crystal with few 
dislocations �Fig. 7�a��, convergent dynamic Lindemann pa-
rameters over the measured time scales �Fig. 6�, constant 
g6�r� and g6�t� �Fig. 2�, and algebraic decay of gT�t� �Fig. 3�. 
We take region II to be a dislocation precursor stage in the 
crystal because dislocations have started to appear, but their 
density is not high enough for the system to reach the hexatic 
phase, wherein the chemical potential of dislocation reaches 
zero. In other words, the observed dislocations in region II 
are not free. This gas of nonfree dislocations causes a soft-
ening of the crystal, an effect which has been observed in the 
crystal phase �37�. The dynamic Lindemann parameter is di-
vergent in region II, a direct consequence of the nonzero 
dislocation density, which permits particles near dislocations 
to diffuse out of their cages via the gliding and climbing �5� 
of dislocations. The correlation function g6�t� has fnite-size 
ambiguity in region II. For example, the T=27.1 °C curve in 
Fig. 2�d� appears to have lost orientational order over the 
measured time scale, but could become constant at longer 
times. If correlation measurements are accurate, then part or 
all of the precursor stage II can be correctly assigned to be in 
the crystal phase; see Ref. �37�. Interestingly, Li has reana-
lyzed the simulation data in Ref. �18� with susceptibilities 
and has also observed the dislocation precursor stage �38�. 

Region III is the hexatic phase as determined from the � 
measurements and other analyses. In region IV, disclinations 
start to appear �Fig. 7�a��, and g6�r� and g6�t� decay expo-
nentially �Fig. 2�. We take region IV to be a prefreezing 

liquid �36� because it has visible ordered patches. The non-
zero  6, the splitting of the second peak in g�r�, and the 
hexagonal shape of s�k� in region IV also are indicative of 
the presence of ordered patches. Such ordered patches have 
been observed in simulations �38�, but we are not aware of 
reports of a prefreezing stage in 2D melting experiments, 
perhaps because it is well known that ordered clusters often 
exist in dense fuids. Region V is the liquid phase. 

H. Phase transition order 

The order of the phase transition can, in principle, be 
deduced from the shape of the susceptibility curves. If the 
curve on the left of the diverging point and the curve on the 
right of the diverging point have the same asymptotic �, then 
the transition is second order; otherwise, it is frst order �39�. 
The curve shape in Figs. 7�b� and 7�c� are consistent with 
second-order transitions. However, the �T curve shape is sen-
sitive to the choice of G even though the divergence point is 
quite robust. For example, using G of the crystal for all 
temperatures yielded a curve shape that appeared more like a 
frst-order transition. 

For the liquid-hexatic transition in Fig. 7�c�, when we 
ftted the left part �liquid regime� of the curve with the 
KTHNY prediction, we obtained an unreasonably high 
asymptotic transition density �i =0.901 �21�. This discrep-
ancy suggests that the hexatic-liquid transition may be more 
frst-order-like. In addition, the continuous phase transitions 
must satisfy universality relations, while frst-order transi-
tions need not. Our b6 =0.566, from Fig. 2�b� and b6� 
=1.14, from Fig. 7�c� do not completely satisfy the univer-
sality �23� b6� = �2− 6�b6 where 6=1 /4. This failure could 
be viewed as further evidence of a frst-order transition; how-
ever, when we forced b6� and b6 to satisfy the universality 
relation, they still gave somewhat reasonable �albeit worse� 
ftting curves because other ftting parameters were adjust-
able too. For example, the fve data points in Fig. 2�b� can be 
ftted well by the other two free parameters when b6 is fxed. 
In total, the evidence leans slightly to favoring a frst-order 
liquid-hexatic transition, but is not suffcient to unambigu-
ously exclude a second-order transition. Future work with 
fner control of the approach to the phase transition should 
enable us to pin down the order of the two transitions more 
precisely. 

III. CONCLUSIONS 

In summary, we used the divergence of susceptibilities to 
determine the phase transition points of a 2D colloidal sus-
pension during the melting process. This approach avoided 
ambiguities from fnite-size effects and the divergence points 
were robust. We clearly observed the hexatic phase in a sys-
tem of particles interacting via short-range soft-repulsion po-
tentials. Five regimes were assigned to the phase diagram in 
Fig. 7. A number of KTHNY predictions were quantitatively 
confrmed, especially near the hexatic-liquid transition, but 
the order of the two phase transitions was not unambiguously 
resolved due to our limited temperature resolution. 
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