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Interference in reflected second-harmonic generation from thin nonlinear films 

M.S. Yeganeh, J. Qi, J.P. Culver, and A.G. Yodh 
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 

M.C. Tamargo 
Bellcore, 331 Newman Springs Road, Red Bank, New Jersey 07701 

(Received 6 November 1991; revised manuscript received 23 January 1992) 

We have observed interference in reflected second-harmonic generation from two adjoined nonlinear 
slabs. Experimental results on ZnSe/Ga.As(OOl) heterostructures a.re obtained and compared to 
theoretical calculations of the phenomena. Together, the experiments and calculations enable us to 
deduce the frequency-dependent bulk nonlinear susceptibility for ZnSe near the Eo transition. 

I. INTRODUCTION 

Although interference in reflection from thin multilay­
ered dielectric films is an important and well-understood 
phenomenon in linear optics, 1 the analogous problem in 
nonlinear optics is not well studied. Nearly 30 years ago 
Bloembergen and co-workers introduced electromagnetic 
nonlinearities into Maxwell's equations and derived the 
conditions for reflection and refraction at the surfaces 
of nonlinear dielectrics.2 They showed that the solution 
of Maxwell's equations with the proper boundary condi­
tions leads to the production of harmonic waves in re­
flection and transmission. The most widely studied in­
terference phenomenon in nonlinear optics was connected 
with the generation of harmonics in transmission through 
a single nonlinear slab. Under these conditions one ob­
serves Maker fringes. 3•4 These fringes arise because the 
source polarization and the free wave generated by this 
polarization have different phase velocities. Interference 
in harmonic generation has also been observed in other 
contexts. For example the phase shift between substrate 
and adsorbate nonlinearities has been seen in several 
systems, 5 and interference between monolayers on oppo­
site sides of a single glass substrate has been observed in 
harmonic generation as a function of slide orientation.6 

In this paper we investigate a class of nonlinear optical 
interference phenomena that is more akin to linear reflec­
tion from a dielectric mirror. In particular, we observe 
interference in the production of second-harmonic (SH) 
waves as a result of reflection from two adjoined nonlinear 
optical slabs. This problem is similar to the Maker fringe 
phenomenon, since SH generation accompanies the trans­
mission of the fundamental field over large distances, but 
we shall see that the second nonlinear slab introduces 
further complexities. 

Besides its intrinsic interest, interference in harmonic 
generation from thin nonlinear films is important for 
other reasons. For .example, the phenomenon provides 
a methodology for med.Suring the second-order suscepti-
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bility of thin overlayer materials. Since many unusual 
crystalline materials can only be grown in very thin lay­
ers above other high-quality solids,7 the ability to mea­
sure nonlinearities in composite systems is valuable. In 
addition, as the use of three-wave mixing to probe solid 
interfaces grows,8- 12 it becomes essential to understand 
fully how interference phenomena can affect the intensity 
of these signals. 

We have observed interference in reflected 
second-harmonic generation (SHG) from a series of 
ZnSe/GaAs(00l) heterostructures with varying overlayer 
thickness. A theoretical solution of the problem is pre­
sented, and used to analyze our measurements. Several 
existing theoretical schemes can be applied to arrive at 
a solution to this problem.13•14 Our calculation combines 
results from Ref. 2 with boundary conditions that arise 
at the interface of two nonlinear media. We find that the 
reflected SH intensity oscillates as a function of overlayer 
thickness. In contrast to the simple Maker fringe result, 
however, more than six Fourier components contribute 
to the spatial dependence of this oscillation. Finally, we 
use our interference data along with our theoretical solu­
tion to determine the frequency dependence of the bulk 
second-order susceptibility of ZnSe. 

The remainder of the paper is organized as follows. We 
first describe the experimental apparatus and our sam­
ples. Then we present theoretical calculations of the non­
linear interference effect, and compare these calculations 
with experiment. Finally, we present measurements of 
the frequency dependence of the ZnSe and GaAs bulk 
second-order nonlinearities as a function of the SH pho­
ton energy between 2.6 and 3.1 eV. 

II. EXPERIMENT 

Our heterostructure sample consists of an epitaxial 
layer of undoped (n ~ 1 x 1015 cm-8 ) ZnSe(00l), with 
thickness ranging from 50 A to 1 µm, grown on a 0.5-
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µm undoped (n :$ 5 x 1015 cm- 3 ) GaAs film terminated 
with 2x4 surface reconstruction. The films were grown 
by molecular-beam epitaxy (MBE) on an n+ silicon­
doped GaAs substrate in a dual MBE chamber, accord­
ing to procedures previously described. 7 At present there 
is substantial technological interest in the ZnSe/GaAs 
heterostructure, because ZnSe has been demonstrated to 
lase near its optical band-gap energy of ~2.7 eV. 15 As a 
result of this interest our samples have been well charac­
terized morphologically, chemically, and to some extent 
electrically. 16 

A schematic of the experimental apparatus is shown 
in Fig. 1. The SHG spectra for each sample were ob­
tained by irradiating the sample with light from a Nd­
YAG (yttrium-aluminum-garnet) pumped tunable dye 
laser, and the power of the reflected light at the second­
harmonic frequency was measured as a function of wave­
length. The incident light pulses were collimated to be 
~ 1.5 mm in diameter, had a temporal duration of 9 nsec, 
and a fluence of ~5 mJ/cm2 . Typical SHG signals were 
~50 photons/pulse. An angle of incidence of 75° was 
used in all experiments. At this angle > 50% of the fun­
damental light was transmitted into the ZnSe overlayer. 

In order to compensate for intensity fluctuations of the 
input beam and systematics in our detection system, a 
SH signal was simultaneously produced and measured 
in transmission along a parallel (reference) optical path 
containing a wedged quartz plate with 0.8° apex angle. 
The maximum SH power of the reference at each fre­
quency was obtained by translating the wedged quartz 
along a direction perpendicular to the laser-beam prop­
agation vector. Our sample intensities were normalized 
using this reference SHG signal. 

The bulk signals from the ZnSe/GaAs(OOl) samples 
were separated from the interface signals by proper choice 
of sample orientation and light polarization.17 GaAs and 
ZnSe are zinc-blende crystals with 43m symmetry. They 
both have a single nonzero bulk second-order suscepti­
bility tensor element, X~i z, 18 whose contribution to the 
output radiation is highly anisotropic. For the p-in-s­
out polarization configuration, the SHG output intensity 
is proportional to cos2 (2¢), where¢ is the angle between 
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FIG. 1. Schema.tic of experimental setup: P, pola.rizer; 
F, spectra.I filter; PMT, photomultiplier tube; M, monochro­
ma.tor; BC, boxca.r a.vera.ger; WQP, wedged qua.rtz pla.te; BS, 
bea.m splitter; A-D, a.na.log-to-digita.l converter. 
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FIG. 2. Reflected SHG intensity a.t fixed frequency from 
the ZnSe/Ga.As(OOl) crysta.I a.s a. function of the rota.tion a.n­
gle ¢, (degrees). Here¢, is the a.ngle between the [100) direction 
a.nd the plane of incidence. The input is p polarized a.nd the 
output is s pola.rized. The ratio of the peak signa.l to null 
signa.I is ~ 5000. The solid line is a. theoretica.I prediction for 
this signa.l variation. 

the [100] direction and the plane of incidence. The ori­
entation dependence of our SHG signal is illustrated in 
Fig. 2. Frequency-dependent measurements were per­
formed using the p-in-s-out polarization configuration at 
¢ = 0. Using this configuration we maximized our sensi­
tivity to the bulk nonlinearity. In analyzing our results 
we have used the linear dielectric constants for GaAs and 
ZnSe given in Refs. 19 and 20, respectively. These values 
were checked against our own linear reflectivity measure­
ments and agreement was good. 

III. THEORY 

In this section we review the theoretical aspects of the 
reflected SH from a semi-infinite medium,2 and then we 
develop a full theoretical expression for the reflected SH 
field of two adjoined nonlinear slabs. Because our exper­
iments utilized the p-in-s-out polarization configuration, 
calculation for p-in-s-out polarization will be given in 
detail. Calculation for the s-in-p-out and p-in-p-out po­
larization configurations are straightforward extensions 
of the p-in-s-out results. 

For all the expressions below, the subscripts "0," "l," 
and "2" refer to vacuum, first medium, and second 
medium, respectively. The subscript "l" is also used for 
the semi-infinite medium. The subscript "Rim" refers 
to the reflected harmonic wave which is generated in 
medium "/" and propagates through medium "m." We 
also assume that the second-order susceptibilities and di­
electric constants change discontinuously at all interfaces. 

A. Review of semi-infinite medium results 

In the semi-infinite problem, solved by Bloembergen 
and Pershan,2 a monochromatic plane wave with fre-
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quency w impinges from vacuum onto a crystal that 
lacks inversion symmetry. The incident wave is refracted 
into the crystal, and the transmitted field interacts with 
the nonlinear medium to produce a second-harmonic 
source polarization, p(2w). The source polarization ra­
diates an electromagnetic wave with angular frequency 
2w. The propagation of the radiated second-harmonic 
electric field, E(2w), must obey the nonlinear wave equa­
tion, 

where c( w) is the w-dependent linear dielectric constant 
of the semi-infinite medium, and the source polarization 
is given by 

P (2w) _ +-+(2) . E(w)E(w) i(kb·r-2wt) 
-X · t t e . (2) 

Here '.i2) represents the second-order nonlinear suscepti­
bility tensor of the crystal, and E~w) represents the trans­
mitted fundamental field with the wave vector kt, and 
kb= 2kt, 

We choose the coordinate system so that the vacuum­
crystal boundary is at z = 0, and the plane of incidence 
contains the z and :c axis [Fig. 3(a)]. If x(2) is inde­
pendent of position inside the semi-infinite medium, the 

.z 
vacuum vacuum 

X X 

crystal 
ZnSe (slab 1) 

GaAs (slab 2) 

(a) (b) 

(c) 

FIG. 3. Simplified coordinate system that defines the 
boundaries and the direction of the fundamental and second­
harmonic electric fields for the case of the semi-infinite slab 
(a), and the two-slab problem (b) and (c). All angles between 
the wave vectors and z axis are positive and less than 90°. 

exact solution to Eq. ( 1) is 

E(2w) = E)2w)ei(krr-2wl) 

41r(4w2 /c2)P [- kb(kb · :f>)] i(kb·r-2wt) 
- k2 - k2 p - k2 e ' 

I b I 
(3) 

where p is a unit vector in the direction of p(2w). The 
first term of Eq. (3) is the free wave solution. This wave 
propagates in the direction of k1, and its amplitude is 
determined by boundary conditions. The second term is 
a particular solution of the nonlinear wave equation. This 
field is bound to the fundamental wave, and propagates 
with wave vector kb, The magnitude of the free (bound) 
wave vector in medium i is represented by k1; (kb;). 

A harmonic wave E~~J is also radiated into the vac­
uum. The wave vector of this reflected SH, k JO, has the 
same direction as the reflected fundamental field. The 

1 . d f E(2w) . E(2w) . s-po anze component o Rl0, i.e., .L Rl0• 1s propor-
tional to the component of P along the y 'axis in medium 
1, P.L,1, i.e., 

E (2w) _ 41rP.L,l [k/1,z - kbl,•] 
.L RlO - · 

' (bl - f/1 k/1,z - k10,z 
(4) 

Here, k;;,z is the z component ofk;; and Ebj(2w) = E;(w), 
Ejj(2w) = t;(2w), and t;(w) is thew-dependent linear 
dielectric constant of medium j. Conservation of k11 at 
all frequencies (Snell's law) enables one to determine the 
components of each wave vector as a function of the in­
cident wave vector. 

For zinc-blende crystals such as GaAs(OOl) and 
ZnSe(OOl) in the p-in-s-out polarization configuration, 
the second-order bulk polarization has the form 

p(2w) _ -kt1,z kt1,x 2 (2..i.) t<w)2 +-+(2) E(w)2 
.L,l - k2 COS 'I' 11,0l Xxyz II , 

tl 
(5) 

where t~~]i ( r~~];) is the Fresnel refraction (reflection) co­
efficient for an a-polarized light beam with angular fre­
quency w propagating from medium i to medium j, and 
E~w) is the component of the incident p-polarized input 
field parallel to the plane of incidence. kn,z and kn,x are 
the z and :c wave vector components, respectively, of the 
transmitted fundamental field in medium 1. Using Eqs. 
(4) and (5) we have 

E(2w) _ +-+(2) y E(w)2 
.L,RlO - Xxyz IJ ' (6) 

where 

Y = -kn,z kn,x 41r k/1,z - ku,z 2 cos(2q,)t(w)2_ 
kl1 fbl - f/1 k/1,z - k10,z 11,0l 

(7) 

The coefficient Y depends only on the linear properties of 
the bulk medium and can be calculated. Using a calcu-
lated y and measured IE~:110I2 we can determine lxi~,J 
In Fig. 4 we plot measured value5; of IE~jI1012 and l~J. I 
for GaAs(OOl). 

In some physical situations the magnitude of the 
second-order susceptibility can vary as a function of po-
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sition within the semi-infinite medium. This can arise as 
a result of local stresses or electric fields near the inter­
face. In Appendix A we give a solution for the special 
case where the susceptibility decays exponentially with 
distance from the vacuum-crystal interface. 
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FIG. 4. (a) Normalized bulk SHG intensity of GaAs(00l) 
as a function of one- and two-photon energy. The error bars 
represent the full range of values obtained from several mea­
surements. (b) lx~~ .. I as a function of one- and two-photon 
energy for GaAs derived from the data in (a) using Eq. (7). 
The E 1 and Eo peaks correspond to two- and one-photon res­
onances at ~2.96 and ~1.4 eV, respectively. The solid line is 
only a guide for the eye. In order to deduce the second-order 
susceptibility of our sample, the SH output power of the ref­
erence wedged quartz was measured, and the effects of the 
finite beam waist in the quartz crystal were included in the 
calculation to determine lxW .. 1-

B. Two adjoined nonlinear optical slabs 

The second-harmonic field produced in reflection from 
two nonlinear slabs is more complex. This complexity 
arises as a result of the additional interface and the sec­
ond nonlinear medium. There are a number of existing 
schemes that can be used to compute our result. 13,14 The 
matrix methods13•14 are particularly useful for problems 
with many layers, and can be applied here as well. We 
will continue, however, to use the results of Ref. 2, in 
combination with more conventional results from linear 
optics. Loosely speaking, there are three fields which 
contribute to the total reflected second-harmonic field in 
the vacuum: (1) a reflected SH field generated from the 
first slab, (2) a multiply reflected SH field produced as 
a result of the propagation of the free and bound har­
monic waves in medium 1, and (3) a multiply reflected 
SH field generated from the second slab. We will see that 
the total reflected SH intensity in the vacuum oscillates 
with respect to overlayer thickness at spatial frequencies 
determined by kJt,z, ku,z, and kb2,z-

The first reflected SH field is produced in slab 1 and 
propagates into the vacuum in the direction of the fun­
damental reflected field (Fig. 3(a)]. The solution for this 
wave is given by Eq. (6) with values of i 2) and Y ap­
propriate to medium 1, which in our case is ZnSe(00l). 

The second field [depicted in Fig. 3(b)] is produced 
when both free and bound waves generated in medium 1 
propagate to the buried interface at z = -d. Their prop­
agation obeys Eq. (3). In general, both bound and free 
waves are reflected from the interface. The exact bound­
ary conditions used to determine these fields are given in 
Appendix B. The reflection of the bound wave depends 
primarily on the linear reflection of the fundamental wave 
at the buried interface. If the reflection amplitude for 
the fundamental field is small, the reflected bound wave 
is also small and our solution simplifies. This is the case 
for the ZnSe/GaAs(00l) interface in our measured energy 
range. The reflected fundamental intensity is at least 20 
times smaller than the incident fundamental intensity, 
and we safely use the simpler result to find that 

E(2w) _ r (2w) E e-2idkJ1 • 
.L,Rll - .L,12 /1 ' 

+ [kbt,z - k12,z] 471"P.L,1 e-id(ki,.,+k.,,.)_ 

kjl,z + k12,z fbl - f/1 

(8) 

This field propagates to the first boundary at z = 0 
where some harmonic light is transmitted into the vac­
uum. Multiple reflections change the amplitude of the 
transmitted field by a factor of 

g = [i _ /2w) r(2w) e-2idk/1.•]-l 
.L,10 .L,12 (9) 

The effects of multiple reflections are important for thin 
overlayers, and must be included to ensure that radiation 
from medium 1 reduces to zero as the first slab thickness 
approaches zero. 

A third SH field is depicted in Fig. 3(c), and discussed 
in detail in Appendix B. It arises when the fundamental 
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field is transmitted through medium 1 into medium 2. In 
medium 2 the field interacts to produce a nonlinear po­
larization, P~~). This polarization radiates a field back 
into medium 1 given by Eq. (6). In our case we must 
insert values of x~~z and Y appropriate to GaAs(00l) 
and the ZnSe/GaAs(00l) interface. The reflected second-
harmonic wave due to the second slab Er121 is 

E (2w} _ 471"P.1.,2 [k/2,z - kb2,z] -id(k11 ,,+,h2 ,,) 
.1. R21 - e . 

' fb2 - f/2 k/1,z + k/2,z 

This field propagates to the first interface at z = 0 where 
again some light at 2w is transmitted into the vacuum. 
Multiple reflections also change the amplitude of this field 
by a factor of g. The total reflected field is the sum of all 
harmonic fields in the vacuum. This field can be written 
in a fairly simple form that clearly delineates the linear 
and nonlinear contribution of the two layers, 

E (2w) (Y .... (2) y. .... (2) ) E(w)2 
.L,tot = 1 Xxyz-1 + 2 Xxyz-2 II · (11) 

(10) Here, 

y: _ t(w}2 t<2w} Q [k/2,z - kb2,z] -id(kn,,+kb2,,) 
2 - g 11,12 .1.,10 2 k + k e , /2,z /1,z 

47r/w>2 k k 
Q . _ 11,0l - tj,z t;,x 2 (2,1,) 
,- 2 cos'I', 

lbj - lfj kt; 

and the detected harmonic intensity If~~) is 

J<2w) - ..:.._IE(2w) 12 {15) 
tot - 871" .L,tot · 

The }'i depend on overlayer thickness d, incidence angle, 
and various constants that are derived from the linear 
properties of the media. This function is a complex ex­
ponential and is responsible for the oscillation of the in­
tensity of the total reflected SH field and the decay of the 
SH power with increasing overlayer thickness. 

The intensity of E.1.,tot, without multiple reflec­
tions, contains six oscillatory terms of the form 
sin2 (d(k11,z±k~,z )/2) and sin2 (d(ku,z-kb2,z)/2), where 
/3 = bl, b2, and fl. This is to be contrasted with the 
Maker fringe result, which has only one oscillatory term 
when multiple reflections are omitted, i.e., sin2 (d(k11 ,z 
-ku,z)/2). The number of oscillatory terms increases 
when multiple reflections are included. None of the differ­
ences discussed above arise unless the second-order sus­
ceptibility in the second slab is nonzero. 

IV. RESULTS 

We have measured the SHG spectra of nine 
ZnSe/GaAs(00l) samples with different overlayer thick­
nesses (Fig. 5). In this way we determined· the thickness 
dependence of the reflected SH intensity at various pho­
ton energies. The result at 2.67 eV is shown in Fig. 6. 
The intensity shows a strong oscillation with respect to 
the thickness of the overlayer. For large values of the 
thickness, d, the intensity approaches the SH intensity of 
a semi-infinite slab of ZnSe. We have observed this two-

(12) 

(13) 

(14) 

slab interference effect for SH photon energies between 
2.6 and 3.1 eV. 

The second-order susceptibility of GaAs(00l) deduced 
from our separate SHG measurements, along with litera­
ture values for the dielectric constants of ZnSe and GaAs, 
were used to fit each set of interference data to Eqs. ( 11 )­
( 15). The solid line in Fig. 6 is a theoretical fit to our 
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FIG. 5. Normalized SH intensity signals from the bulk 
of our ZnSe/GaAs(00l) sample as a function of two-photon 
energy. The ZnSe overlayer thickness was 250 A. The error 
bars represent the full range of values obtained from several 
measurements. 
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FIG. 6. Variation of the normalized SH intensity reflected 
from ZnSe/Ga.As{00l) as a. function of the overla.yer thickness 
at 2.67 eV. The solid line is a theoretical fit using Eqs. {11)­
(15). The lower portion of the figure is a reproduction of the 
overlayer data. for a smaller range of thicknesses. 

experimental data. The agreement is good. It lends sup­
port for our assumption that the second-order bulk sus­
ceptibility of our samples is independent of position in 
each medium within the sample, and it corroborates our 
primary theoretical results. 

The magnitude of the second-order susceptibility of 
ZnSe, and its relative phase with respect to x~~. ofGaAs, 
were the only two free parameters in our fitting routine. 
Thus we are able to use our interference data to deduce 
the frequency-dependent magnitude of the second-order 

susceptibility of ZnSe. Our deduced Ix~~. I for ZnSe are 
shown in Fig. 7(a). This susceptibility exhibits a rel­
atively sharp resonance at ~2.67 eV. This peak corre­
sponds to the E0 transition of ZnSe. In addition, we 
see that the phase between the ZnSe and GaAs suscep­
tibilities changes by 180° near this resonance [Fig. 7{b )]. 
The Eo transition of GaAs is also responsible for the 
small peak at 1.4 eV shown in Fig. 4. The GaAs peak is 
less pronounced than the ZnSe because the joint density 
of states (JDOS) at the r point in GaAs is ~20 times 

smaller than in ZnSe.21 Previous measurements of x~~z 
in GaAs (Refs. 22-25) did not exhibit the E 0 transition 
of this semiconductor. This may have been a result of 

poor resolution of the apparatus and/or sample quality. 
The broad peak at ~2.96 eV in Fig. 4 corresponds to the 
E 1 transition of GaAs. 

V. CONCLUSION 

We have reported the observation of a class of inter­
ference phenomena that arises in reflected SHG from two 
physically adjoined nonlinear slabs. A theoretical expres-
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FIG. 7. (a) Magnitude of the second-order susceptibility 
of the bulk of ZnSe{00l) for energies between 2.6 and 3.1 eV. 
{b) The relative phase of ZnSe susceptibility with respect to 
~;>~ of Ga.As. The error bars were derived from the fits by 
standard statistical methods. Uncertainties in the second­
order susceptibility of GaAs introduced a small additional 
uncertainty in the reported ZnSe susceptibility and phase, but 
this uncertainty was much smaller than the errors reported 
above. The solid lines are only a guide for the eye. 
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sion for this phenomenon was derived and used to fit the 
data. This interference phenomenon was then used to de­
duce the frequency-dependent second-order bulk suscep-
tibility of the overlayer slab. The Ix~~ .. I of ZnSe exhibits 
a sharp resonance at 2.67 eV which we have assigned to 
the Ea transition in ZnSe. The frequency dependence 
of Ix~~ .. I in Ga.As was also measured in the same spec­
tral region, and the Ea and E 1 transitions of Ga.As were 
observed. 
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APPENDIX A: SOLUTION 
OF THE NONLINEAR WAVE EQUATION 

WITH POSITION-DEPENDENT x<2 > 

Localized electric fields or deformation potentials can 
make :t2) position dependent. If the second-order sus­
ceptibility tensor £(2) decays exponentially in the direc-

(a) Continuity of Eu, 

(b) continuity of Hu, 

tion of z with decay constant a, we can write the position­
dependent polarization p(2w) as 

(Al) 

where Po is the polarization at the interface z = -d. 
Then, assuming the linear dielectric constant is still in­
dependent of position, the nonlinear wave equation (1) 
has a solution of the form (3), but with a modified kb, 

kb = 2kt + foz. (A2) 

This leads to a new form for fb(2w), 

ib(2w) = f(w) + i 2 ( 4fok1 • z - a 2). (A3) 

Thus the polarization decay indirectly affects the free 
wave propagation through the boundary conditions, and 
of course, it directly affects the bound wave amplitude in 
the z direction. 

APPENDIX B: EXACT BOUNDARY 
CONDITIONS AT BURIED INTERFACE 

To solve the general problem ofreflection at the bound­
ary between two nonlinear media, we look for solutions 
on both sides of the interface in the form of Eq. (3). The 
general boundary conditions in the p-in-s-out polariza­
tion configuration at the buried interface, which include 
the nonlinearity of both slabs, can be written as follows: 

(Bl) 

"k 471' P.t 1 "k "k 4 71' PJ.. 1 "k E11k11,ze' ,,·ro + ' kbl,ze' ••·ro -E1rkJ1,ze' ,,,·ro - ' kbl,ze' •••·ro 
ibl - f/1 fbl - f/1 

Here the reflected bound wave amplitude is proportional to PJ.. 1 , and 
' 

P l (w)2p 
.L,1 = ru,12 .L,l · (B3) 

k1r1 and kbrl are wave vectors of the reflected free and bound wave in medium 1, respectively, and r0 is the position 
vector at the interface. E1r (E11) is the amplitude of the reflected (refracted) free wave at 2w. The relation between 
E1r and the reflected SH fields in the main text, i.e., E.t,Ru and E.t,R21 , is further clarified below. 

Equations (B1)-(B3) lead to the determination of E1r: 

Ejr = rr~~ E/1 e-2idk11 .• + [ kbl,z - k12,z] 411' P.t,l [1 + k12,z + kb1,z r(w)2 ei2dk.,,,] e-id(k11,.+k.,,.) 
' k/1,z + k12,z fbl - €JI k12,z - ku,z ll,12 

+ 471'P.L,2 [k/2,z - kb2,z]e-id(k,,,.+ko2 ,,). (B4) 

fb2 - f/2 kfl,z + k12,z 
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The reflected SH field, E 1- Rll, arises from the first and 
second terms of (B4). The third term in (B4) gives 
rise to E1-,R21 of the main text. We can see how these 
terms arise by building up our solution from two sepa­
rate boundary value problems. In the first problem we 
suppress the nonlinearity of the second slab. In this case 
P1-,2 = 0 in Eq. (B4), and all harmonic waves originate 
from the first slab. In the second problem we ignore the 
harmonic waves generated in the first slab and study the 
effect of the nonlinearity of the second slab. In this case 
Efl and P1-,1 are zero in Eq. (B4). The total solution is, 
of course, a superposition of these resulting fields. 

The solution to the boundary conditions is alge­
braically simpler if the reflection of the fundamental field 
at the buried interface is small, i.e., 

(B5) 

Under these circumstances we can ignore both the re­
flected bound wave and the effect of this field on the 
reflected free wave, Ejr. This leads to the following sim­
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FIG. 1. Schematic of experimental setup: P , polarizer; 
F, spectral filter; PMT, photomultiplier tube; M , monochro­
mator; BC, boxcar averager; WQP, wedged quartz pla.te; BS, 
bea.m splitter ; A-D, a.nalog-to-digital converter. 


