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Abstract 
This review describes the diffusion model for light transport in tissues and the medical applications of 
diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein 
quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The 
theoretical basis for near-infrared or diffuse optical spectroscopy is developed, and the basic elements of 
diffuse optical tomography are outlined. We also discuss diffuse correlation spectroscopy, a technique 
whereby temporal correlation functions of diffusing light are transported through tissue and are used to 
measure blood flow. Essential instrumentation is described, and representative brain and breast functional 
imaging and monitoring results illustrate the workings of these new tissue diagnostics. 

(Some figures in this article are in colour only in the electronic version) 

This article was invited by Professor P M Chaikin. 
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Glossary 

α fraction of dynamic photon scattering 
events in medium 

g scattering anisotropy factor 

µa 
µs 

µs 

v 

absorption coefficient 
scattering coefficient 
reduced scattering coefficient, 
µ = µs(1 − g)s 

speed of light in tissue 
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G0 homogeneous Green’s function 
concentration of the ith chromophore 

tr transport mean-free path, tr ≈ 1/µs 

D photon diffusion coefficient, D = v� tr/3 
Db Brownian diffusion coefficient 
ε extinction coefficient 
λ wavelength of light (nm) 
L(r, ˆ �, t) radiance; power per unit area 

per unit angle traveling in ˆ direction 
at position r and time t 

E(r, ˆ �, t) light electric field traveling 
in ˆ direction at position r and time t 

E(r, t)  total light electric field at position r 
and time t 

I (r, t)  light field intensity (i.e., |E(r, t)|2) at  
position r and time t 

G1 electric field temporal 
auto-correlation function, 
G1(r, τ, t) =� E ∗ (r, t)E(r, t  + τ)  

G2 intensity auto-correlation function, 
G2(r, τ, t) =� I (r, t)I (r, t  + τ)  

g1 normalized electric field temporal 
auto-correlation function, 
g1(r, τ, t)  = G1(r, τ, t)/  E(r, t)E  ∗ (r, t)  

g2 normalized intensity auto-correlation 
function, g2(r, τ, t) = G2(r, τ, t)/  I (t)  2 

 r 2(τ ) mean-square displacement in 
time τ of the scattering particles 
(e.g., red blood cells) 

�(r, t)  photon-fluence rate at position 
r and time t 

U(r) photon-fluence rate; expressed 
in the frequency domain, 
�(r, t) = U(r)e−iωt 

ω laser/source modulation frequency 
BFI blood flow index estimated 

by DCS (i.e., αDb) 
CBF cerebral blood flow 
CMRO2 cerebral metabolic rate of oxygen 
CT computed tomography 
CW continuous wave 
DCS diffuse correlation spectroscopy 
DOS diffuse optical spectroscopy 
DOT diffuse optical tomography 
FD frequency domain 
HbO2 oxy-hemoglobin concentration 
Hbr/Hb de-oxy hemoglobin concentration 
ICG indocyanine green 
MRI magnetic resonance imaging 
NIRS near infrared spectroscopy 
PET positron emission tomography 
RBCs red blood cells 
StO2 tissue blood oxygen saturation 
THC total hemoglobin concentration 
TRS time resolved/domain spectroscopy 

1. Introduction 

More than 80 years ago [1] light was employed to ‘see’ tumors 
in thick tissues. Basic ideas from those measurements still 
survive today. Optical methods offer a range of sensitivities 
useful for characterization of a wide variety of samples. 
The simplest of these methods is light absorption, whereby 
attenuation in signal intensity occurs whenever the light 
wavelength coincides with a material resonance. This effect 
permits quantitative identification of the molecules present 
in a sample, their concentration and their local environment. 
In a different vein, light scattering provides information 
about micrometer-size objects (e.g., such as their molecular 
weight and diameter) that scatter light in the sample, and 
dynamic or quasi-elastic light scattering (DLS or QELS, 
respectively) provides information about motions of those 
objects. Generally, these traditional optical techniques are 
rigorous and are well established in simple, homogeneous, 
optically thin samples. 

In order to use these schemes to study biological tissues, 
however, a physical understanding of photon propagation in 
highly scattering media is required. Otherwise the traditional 
techniques remain qualitative (at best) or are fraught with 
systematic errors (at worst). A key contribution to optical 
studies of tissue was made by Jöbsis in the late 1970s [2– 
4]. Jöbsis observed a spectral window in the near-infrared 
(NIR, ∼650–950 nm) wherein photons could travel deep in 
tissue, as a result of the relatively small absorption of water and 
hemoglobin (see figure 1). Of course this penetrating light was 
also scattered in tissue and more physics insight was required 
for better quantification of detected signals. After the early 
work, arguably the most critical advance in the field was the 
recognition and widespread acceptance that light transport over 
long distances in tissues is well approximated as a diffusive 
process [5, 6]. Using this physical model it is possible to 
quantitatively separate tissue scattering from tissue absorption, 
and to accurately incorporate the influence of boundaries and 
heterogeneities [5, 7–22]. These models for light propagation 
formalized the field and paved the way for a large variety 
of applications ranging from imaging breast tumors (‘optical 
mammography’) to functional imaging of brain [23]. 

Generally, the propagation of light through tissues is 
profoundly affected by scattering. Two length scales are 
important in this context: a rather short ‘scattering length’ 
which corresponds to the typical distance traveled by photons 
before they scatter, and a longer ‘transport mean-free path’ or 
‘random walk step’ which corresponds to the typical distance 
traveled by photons before their direction is randomized. The 
reciprocal of the photon transport mean-free path is called 
the reduced scattering coefficient; it is wavelength dependent 
and is denoted by µ (λ), where λ is the wavelength of light. s 
Light transport in tissue is also affected by a relatively smaller 
absorption. The wavelength-dependent absorption length in 
tissue corresponds to the typical distance traveled by a photon 
before it is absorbed; its reciprocal, the absorption coefficient, 
is denoted by µa(λ). 

In order to sort scattering from absorption in tissue, a 
model that separates the effects of tissue scattering from 
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Figure 1. Absorption (µa) spectra of major tissue chromophores 
over a large wavelength range. The inset shows the so-called 
‘physiological window’ in the near-infrared where water and 
hemoglobin absorption are relatively low. In this part of the 
spectrum, light can penetrate several centimeters in tissue. 
Furthermore, there are clear features in the spectra which enable 
estimation of chromophore concentration from diffuse optical 
measurements at several wavelengths. 

tissue absorption is required. The diffusion model provides 
a formal mathematical basis for this separation, and as a result 
of this approximation, experimenters can directly measure 
oxy- and deoxy-hemoglobin (HbO2, Hbr/Hb), water and lipid 
concentrations using the well-known spectra (figure 1) of  
these molecules [5, 23]. From the scattering coefficient, 
experimenters gain access to information about cells, cell 
nuclei, cell organelles and surrounding fluids. Herein, we will 
refer to this measurement technique which uses diffuse near-
infrared light to infer scattering and absorption, as ‘diffuse 
optical spectroscopy’ (DOS) or ‘near-infrared spectroscopy’ 
(NIRS). The imaging analog of DOS is called diffuse 
optical tomography (DOT); DOT provides a means to assign 
tissue optical and physiological properties independently to 
many volume elements within the tissue sample. Here 
we use ‘tomography’ to refer to both ‘topographic’ (2D) 
and ‘tomographic’ (3D) schemes because they share similar 
formalism. 

The diffusion approach is quite versatile and can be 
adapted further to measure the concentrations and lifetimes 
of exogenous contrast agents such as dyes which can improve 
tumor contrast or specificity [24, 25]. A recent example of 
this application is fluorescence diffuse optical tomography 
wherein the fluorescent emission of a FDA-approved contrast 
agent, Indocyanine Green (ICG), was used to identify breast 
cancer [26]. Other uses include the measurement of the 
concentration of oxidized cytochrome c-oxidase [2, 27] and 
the measurement of very fast changes in scattering related to 
neuronal swelling during neuronal activity [28, 29]. To learn 
more about these and other applications, readers can consult 
recent reviews [23, 24, 30–35]. 

More information is available from diffusing light in 
tissues. Speckle fluctuations of light scattered by tissues 
are sensitive to the motions of scatterers such as red blood 
cells (RBCs). The traditional, single-scattering version of 
this optical technique is well known and has appeared with 
numerous names [36–50] over the years. In most of these 
experiments the temporal auto-correlation function of the 

µ
 (

cm
–1

) 
a 

scattered electric field (or its Fourier transform) is measured 
and is explicitly related to the motions of scatterers within 
the samples. The most significant tissue signal derived 
from the temporal auto-correlation function is from blood 
flow. Early physiological work utilized single-scattering 
theory to analyze data derived from pairs of very closely 
separated (∼0.25 mm) optodes, e.g., Laser Doppler and CCD-
based speckle devices [41–43, 50–59]. Therefore, most of 
these early methods probed superficial tissue (<1 mm). In 
the low signal limit, the photon correlation technique has 
an advantage over its Fourier counterpart because photon 
correlation instruments are essentially single photon-counting 
devices. This advantage enables experimenters to probe more 
deeply into tissue samples, and begs for theoretical models to 
understand similar signals from deep tissues. 

The multiple scattering analog of these dynamic 
light scattering measurements is called ‘diffuse correlation 
spectroscopy’ (DCS) [60, 61] (Note, the technique called 
‘diffusing wave spectroscopy’ (DWS) [62–64] was introduced 
before DCS. DWS is essentially an integral formulation of 
DCS; the name DCS, however, has been adopted in the 
biomedical optics field because ‘DWS’ had connotations for 
both absorption spectroscopy and fluctuation spectroscopy). 
Formally, DCS relies on the fact that temporal correlation of 
light fields in turbid media also obeys a diffusion equation, 
albeit a slightly different one than is used for absorption 
spectroscopy. Thus DCS shares the light penetration 
advantages of NIRS/DOS, but, since DCS explicitly measures 
cell movement, it provides a direct measure of quantities 
such as cerebral blood flow (CBF) [65–67]. Compared with 
NIRS/DOS and DOT, DCS is a relatively new methodology. 
DCS has been extensively validated in vivo in tissues, 
including comparisons with laser Doppler flowmetry (LDF) 
[65] , Doppler ultrasound (DU) [65, 68–71], arterial-spin 
labeled MRI (ASL-MRI) [65, 66, 72, 73], xenon CT [74], 
fluorescent microsphere measurement of CBF [75] and 
against expectations from invasive and non-invasive measures 
of tissue physiology [65–67, 76–78]. In total, these and 
other [65, 66, 68–71, 73–90] studies have shown that DCS 
can reliably provide a blood flow index (BFI) whose 
changes are proportional to relative changes in tissue blood 
flow. Furthermore, some of these studies suggest that 
the combination of DCS and DOS/DOT hold potential for 
continuous non-invasive estimation of metabolic rate of 
oxygen extraction that relies on fewer approximations than 
DOS/DOT alone, hence improving the quality of the metabolic 
rate estimates [71]. 

The rest of this review outlines the fundamentals of diffuse 
optics in tutorial fashion. Toward the end of this review we 
illustrate the utility of diffuse optics with recent examples from 
optical mammography and cerebral monitoring. A glossary of 
terms and symbols is also provided. 

2. Theoretical background 

2.1. Photon diffusion formalism 

Transport theory is the starting point for most theoretical 
formulations of diffuse optics. The key quantity in this 
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formulation is the light radiance, L(r, �̂, t) (W cm−2 sr−1), 
defined as the light power per unit area traveling in the ˆ 
direction at position r and time t . The light radiance is 

2related to the light electric field; L ∼ |E(r, �̂, t)| , where 
E(r, �̂, t) is the electric field at (r, t)  traveling in the ˆ 
direction. L(r, �̂, t) is governed by the radiation transport 
equation (RTE), which is a conservation equation for the 
radiance in each infinitesimal volume element within the 
sample [91–93], i.e., 

1 ∂L(r, �̂, t) 
+ ˆ ·  L(r, �̂, t) 

v ∂t  

= −µtL(r, �̂, t) + Q(r, �̂, t) 

+ µs L(r, ˆ , t)f ( �̂, ˆ ) d . (1) 
4π 

f (  ̂�, ˆ ) is the normalized differential cross-section for single 
light scattering events in the medium; it essentially gives the 
probability that scattered light is scattered into the direction ˆ , 
given its incident direction was ˆ . Q(r, �̂, t) (W cm−3 sr−1) 
is the power per volume emitted by sources at position r 
and time t in the ˆ direction. The loss of radiance out of 
each infinitesimal volume element depends on the absorption 
and scattering coefficients in the volume and is formally 
characterized by the coefficient µt = µa + µs. Here µs 

(cm−1) is the light scattering coefficient, i.e., the reciprocal of 
the ‘scattering length’ (note, µs is different from µ ), and µas 
(cm−1) is the light absorption coefficient, i.e., the reciprocal 
of the ‘absorption length’. v is the speed of light in the 
medium. The left-hand side of equation (1) is a convective 
time derivative of the radiance in the infinitesimal volume 
element about r at time t traveling in the direction ˆ . This 
convective derivative of the radiance must equal the losses due 
to absorption and scattering (first term, right-hand side) plus 
the gains from radiance scattered into ˆ (third term, right-hand 
side), and gains from sources (second term, right-hand side). 
In most cases of interest, the RTE must be solved numerically. 

To reduce the complexity of the RTE, we employ a 
standard method for approximating equation (1) called the 
PN approximation. In this method, L is written as a series 
expansion of spherical harmonics, Y�m (with coefficients φ�m), 
truncated at = N [91–94]: 

N 
2 + 1  

L(r, �̂, t) = φ �m(r, t)Y  �m( �̂). (2)
4π =0 m=− 

We also assume that the normalized differential scattering 
cross-section, f , depends only on the the angle between 
incident and outgoing scattering wavevectors, i.e., f (  ̂�, ˆ ) = 
f (  ̂ · ˆ ). When L(r, �̂, t) is nearly isotropic, the so-called P1 

approximation (wherein the series expansion in equation (2) is  
truncated at N = 1) is valid, and we have [91–94] 

1 3 
L(r, �̂, t) = �(r, t)  + J(r, t)  · �̂. (3)

4π 4π 

Equation (3) introduces two important quantities. The photon 
fluence rate, �(r, t)  (W cm−2), is defined as the total power 
per area moving radially outward from the infinitesimal volume 

element at position r and time t 3. More explicitly, 

�(r, t)  ≡ L(r, �̂, t) d = φ00. (4) 
4π 

The photon flux J(r, t)  (W cm−2) is a vector sum of the 
radiance emerging from the infinitesimal volume, i.e. 

J(r, t)  ≡ L(r, �̂, t) ˆ d 
4π 

1 i = √ (φ1−1 − φ11)x̂ − √ (φ1−1 + φ11)ŷ + φ10z.ˆ (5)
2 2 

Thus, J(r, t)  · ˆ is the power per area traveling in the ˆ 
direction at position r and time t . 

The photon fluence rate and flux are related by a continuity 
equation obtained from integrating equation (1) over all solid 
angles: 

1 ∂�(r, t)  
+  · J(r, t)  + µa �(r, t)  = S(r, t).  (6) 

v ∂t  

Here, S(r, t)  (W cm−3) is the total power per volume emitted 
radially outward from position r at time t , i.e., S(r, t)  ≡ 
Q(r, �̂, t)d .4π 
In the P1 approximation, another relation between and 

J is obtained by substituting equation (3) into equation (1); 
we then multiply the resulting P1 transport equation by ˆ and 
integrate over all solid angles to obtain 4 

3 ∂J(r, t)    �(r, t)  = −  − 3µtJ(r, t)  
v ∂t  

+ 3  Q(r, �̂, t) ˆ d + 3µsgJ(r, t).  (7) 

The anisotropy factor g, which emerges from the differential 
scattering integral in equation (1), is the ensemble average of 
the cosine of the scattering angle θ , i.e., g ≡ 4π f (  ̂ · ˆ ) ˆ · 
ˆ d =� cos θ . The closer g is to unity, the more probable 
it is for a photon to be scattered in the forward direction. In 
soft mammalian tissue, typical values for g range between 0.8 
and 0.98 [95]. 

Assuming isotropic sources (Q(r, �̂, t) = Q(r, t)), the 
integral over Q in equation (7) is zero. Furthermore, if we 
also assume slow temporal variations in the photon flux J , 
then (1/v)∂J/∂t in equation (7) can be neglected compared 
with (µt − µsg)J . With these two assumptions, equation (7) 
simplifies to Fick’s law of diffusion, i.e., 

  �(r, t)  = −3(µ + µa)J(r, t).  (8)s 

µ ≡ (1 − g)µs is called the reduced scattering coefficient. s 
Substituting equation (8) into equation (6) results in 

the photon diffusion equation for the photon fluence rate 
[20, 96, 97]: 

∂�(r, t)   · (D(r)  �(r, t)) − vµa(r)�(r, t)  − 
∂t  

= −vS(r, t).  (9) 
3 Some authors prefer to use the photon energy concentration, �(r, t)  
(J cm−3), which is directly proportional to the fluence rate: = v� . 
4 4πFor any vector A, �̂( ˆ ·A)d = 3 A, and ˆ [ ˆ · (A·�̂)] d  = 0.4π 4π 

∂� ∂�Also, ˆ d = ˆ d = 0 and f (  ̂ · ˆ )J · ˆ d = 4π ∂t  ∂t  4π 4π 

J · ˆ 4π f (  ̂ · ˆ ) ˆ · ˆ d . 
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Figure 2. Three common types of sources are employed. On the far left are schematic ‘banana patterns’ showing the sampled volumes in 
the reflection and transmission geometries. As a rough rule of thumb, the mean light penetration depth in the reflection geometry is of order 
ρ/2 (for a more precise relation, see [495]). For continuous wave (CW), intensity modulated (FD) and time-resolved (TR) sources, the 
detected light intensity over time resembles (1), (2) and (3) respectively. 

Here we have defined the photon diffusion coefficient D(r) ≡ 
v/3(µ (r) + µa(r)).s 

Microscopically, within this P1 picture, photons travel 
through the medium along random walk pathways. Each 
photon is visualized to travel in straight-line segments with 
sudden interruptions wherein either the propagation direction 
is randomly changed or the photon is absorbed. The average 
length of the straight-line segments is the photon random 
walk step or the transport mean-free path, tr , which is 
approximately 1/µ .s 

The validity of the photon diffusion model (equation (9)) 
rests on the validity of the P1 approximation (equation (3)), 
which requires the radiance to be nearly isotropic ( �| J |). 
This isotropy is achieved when µ µa, and whens 
photon propagation distances within the medium are large 
relative to tr . As a rough rule of thumb, µ /µa shoulds 
exceed 10 to accurately apply the diffusion model [98]. 
Additional assumptions, noted above, include source isotropy, 
slow temporal flux variations, and rotational symmetry (i.e., 
f (  ̂  �, ˆ ) = f (  ̂ · ˆ )). Near a boundary such as an air–tissue 
interface, the radiance will no longer be nearly isotropic. In 
section 2.5, we will show how the diffusion model can be 
applied near the surface with additional boundary conditions 
at the interface. For anisotropic tissues, such as axon fiber 
bundles where the rotational symmetry assumption may no 
longer be reasonable, slightly more complicated anisotropic 
diffusion models [99] are necessary for data fitting. For 
complex tissues that contain ‘non-diffusing’ domains such 
as (arguably) cerebral spinal fluid inside the head [100, 101], 
or that contain very high concentrations of blood, as in the 
liver, optimal data analysis requires approximations beyond 
P1. In applications wherein photon propagation distances 
are comparable to tr , the photon propagation directions 
do not fully randomize. Thus, approximations beyond 
the P1 are needed here as well. We will discuss various 
schemes that extend beyond the diffusion (P1) approximation 
in section 2.10. 

2.2. Source types 

To apply the diffusion model, one typically detects light at 
known distances from point sources. Figure 2 shows two 

source–detector pairs; one in the reflection geometry and 
the other in the transmission geometry. In the reflection 
geometry, light injected into the tissue by a source fiber (usually 
coupled to a laser) is detected a distance ρ away with another 
fiber (usually coupled to a photomultiplier tube or avalanche 
photodiode). In the transmission geometry, light detection is 
facilitated using either a fiber or a lens/CCD camera system. 
At first glance, the directional light from a fiber violates the 
isotropic source assumption for the diffusion model. This light 
source, however, can be very well approximated by an isotropic 
light source at depth tr inside the tissue [97]. In practice, 
source–detector separation should exceed 3 tr to apply the 
diffusion model and expect accurate (∼5%) results [102]. 

Three types of light sources commonly used in diffuse 
optics are (see figure 2): continuous wave (CW), intensity 
modulated (FD) and time pulsed (TRS) . The simplest source 
type is CW light, where the intensity remains constant over 
time [103–106]. CW sources enable fast data acquisition 
and the use of simple detectors and detection electronics, but 
as we will discuss further, µa and D cannot be determined 
simultaneously from a single CW measurement. 

Intensity modulated sources (the frequency-domain 
technique, FD) are more complex but also give more 
information about the medium [9, 15, 107, 108]. Here, the 
light intensity of the source at position rs is sinusoidally 
modulated with angular frequency ω (of order 100 MHz or 
larger, up to ∼1 GHz), producing a diffusive wave in the 
medium oscillating at the same frequency. At a given source– 
detector separation, both the amplitude and phase of the 
diffusing wave are measured. The additional information from 
the phase, in principle, permits simultaneous determination of 
µa and D. 

Time pulsed light (the time-domain technique, TRS) is 
related to intensity modulated light via a Fourier transform, 
and it contains the same information content as intensity 
modulated sources scanned over the wide range of modulation 
frequencies present in the pulse [8, 12, 109–112]. Specifically, 
a short light pulse (<100 ps) is delivered to the medium at 
position rs and time ts. The pulse temporally broadens as it 
propagates through the medium. At the detector, the pulse 
shape contains the necessary information to determine D and 
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µa from a single source–detector pair. Also, by employing 
time-gating and moments analysis at the detection end, it is 
possible to pathlength resolve the detected light in order to 
reject contributions from superficial tissue layers [113, 114]. 

2.3. Diffuse photon density waves 

Most of the following theoretical discussion will be given in 
the frequency domain, with the time-domain solution given for 
a common case. Frequency-domain sources induce fluence 
rate disturbances that behave in many ways as overdamped 
waves. To appreciate this point, we start with the diffusion 
equation for the fluence rate (equation (9)) and assume the 
source term has dc and ac parts and can be written in the form 
S(r, t)  = Sdc(r)+ Sac(r)e−iωt . Then we look for the solutions 
that oscillate at the same angular frequency as the source. 
These ac solutions will have the following general form: 

ac(r, t)  = U(r)e−iωt . (10) 

Substituting ac into equation (9), we see that U(r) is 
described by 

 · (D(r) U(r)) − (vµa(r) − iω) U(r) = −vSac(r), 

(11) 

which for homogeneous media gives 
v2 2 − k U(r) = −  Sac(r), (12)
D 

with k2 = (vµa −iω)/D. The general solution of equation (12) 
is an overdamped wave-like fluence rate ‘disturbance’ in the 
turbid medium. Note, slightly different definitions for k2, 
e.g., k2 = (−vµa + iω)/D or k2 = −(vµa + iω)/D with 

ac(r, t)  = U(r)eiωt , enable us to write equation (12) in a  
Helmholtz form. This approach was used early on and had the 
advantage of more obvious analogies with waves. Of course, 
regardless of the way terms are defined in equation (12), the 
solutions are the same. 

2.4. Solutions in infinite, homogeneous turbid media 

The simplest geometry to consider is the infinite, homogeneous 
medium with a single intensity modulated point source at the 
origin (Sac(r) = Sacδ(r)). In this case, the main boundary 
condition is that the fluence rate falls to zero at infinity. The 
solution to equation (12) in this geometry is well known. It has 
the form of a simple overdamped spherical wave with complex 
wavevector k = kr + iki: 

vSac 
U(r) = exp(−kr). (13)

4πDr  
Here, r = |r|,  1/21/2 

vµa 1/2 ω 2  kr = 1 +  + 1  , (14)
2D vµa 

 1/21/221/2vµa ω  ki = −  1 +  − 1 . (15)
2D vµa 

Writing the fluence rate in the form U(r) = Aeiθ , the 
determination of the change in wave amplitude, A, and wave 

Figure 3. Constant phase contours shown as a function of position 
for homogeneous, 0.5% Intralipid solution filling a large aquarium 
(30 × 30 × 60 cm3). At the origin (roughly the middle of the 
aquarium) is the source (3 mW laser diode operating at 816 nm and 
modulated at 200 MHz), resulting in a geometry that very well 
approximates a homogeneous infinite medium. The contours are 
shown in 20◦ intervals. Inset: the measured phase shift (squares) and 
ln |rU(r)| (circles) are plotted as a function of radial distance from 
the source. The slopes reveal −ki and kr , from which µa and D can 
be calculated using equations (15) and (14). (Reprinted with 
permission from [13]. Copyright 1992 American Physical Society.) 

phase, θ , with distance from the source enables experimenters 
to extract the absorption and reduced scattering factors of the 
turbid medium. In figure 3 we show a measurement [13] 
of the amplitude and phase of such a diffuse photon density 
wave (DPDW). 

In tissue measurements, a typical set of parameters are 
µ = 10 cm−1, µa = 0.025 cm−1, ω = 2π× (70 MHz) s 
and an index of refraction n = 1.4. In this case the DPDW 
wavelength (2π/ki ∼ 19 cm) is roughly a factor of 20 greater 
than the attenuation length (1/kr ∼ 1 cm). In the near-field, 
DPDWs have been demonstrated to exhibit several familiar 
wave-like properties including diffraction [14], refraction [13], 
interference [16] and dispersion [17]. 

The time-domain and frequency-domain solutions to 
equation (9) are Fourier transform pairs. Therefore, if the 
solution in one domain is known, then it is straightforward 
to determine the solution in the other domain. The Fourier 
transform of equation (13) gives the fluence rate solution in 
the presence of a pulsed point source of the form, S(r, t)  = 
S0δ(r)δ(t), in the homogeneous infinite medium. The 
resulting fluence rate is 

vS0 
�(r, t)  = exp 

(4πDt)3/2 

2 r − − µavt 
4Dt 

. (16) 

Here, to derive optical properties, one performs a 
nonlinear fit comparing equation (16) with the measured 
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Figure 4. Common geometry used to model tissue. In the 
semi-infinite geometry, w, h and d all go to infinity, while in the 
infinite-slab geometry, w and h are infinite but d is finite. Both 
geometries have azimuthal symmetry about the z-axis, meaning the 
photon fluence rate only depends on the radial and axial cylindrical 
coordinates ρ and z. The unit vector n̂ points from inside the tissue 
to outside. On the left, a single source–detector pair (with 
separation ρ) in the reflection geometry is shown. Note that for the 
slab geometry, detectors can also be used for transmission 
measurements by being placed on the z = d plane. On the right is a 
cross-section showing that the radiance moving into the turbid 
medium at the boundary is due to the Fresnel reflection of the 
radiance incident on the boundary. 

fluence rate temporal arrival distribution at the detector 
(using only a single source–detector separation). The fitting 
determines D and µa. Alternatively, if it is only necessary to 
determine µa, the nonlinear fit can be avoided by noting that 
∂ ln �(r, t)/∂t →−µav as t →∞. Thus, µa is given by the 
slope of the natural log of the fluence rate at long times (i.e., 
typically only a few nanoseconds). 

2.5. Boundary conditions 

While conceptually useful, the infinite homogeneous medium 
is not a good approximation for practical tissue geometries. 
Most realistic geometries have interfaces. A particularly useful 
geometry is the planar interface wherein a semi-infinite turbid 
tissue is bounded in the other half-space by air. To derive 
boundary conditions for the light diffusion problem, it is 
necessary to consider the radiance again. Typically, photons 
escaping from the tissue into air will never re-enter the tissue 
medium. Thus, the incoming irradiance (i.e., total light power 
per area traveling into the diffuse medium at the boundary), 
Jin, is due to Fresnel reflections of the radiance in the diffuse 
medium that travels out toward the interface (see figure 4): 

Jin ≡ L( �̂) ˆ · (−n̂)d 
ˆ ·n̂<0 

= RFresnel( �̂)L( �̂) ˆ · n̂ d �. (17) 
ˆ ·n̂>0 

RFresnel( �̂) is the familiar Fresnel reflection coefficient for light 
incident upon the boundary in a direction ˆ from within the 
medium. 

Using the diffusion model, i.e., substituting the P1 

approximation (equation (3)) in for L, and an appropriate 
form for RFresnel( �̂), one readily obtains the so-called partial-
flux boundary condition (also known as the Robin boundary 
condition) which relates the fluence rate to its gradient at the 
boundary [115, 116]: 

= zbn̂ ·   on the interface. (18) 

Here, zb = 2 tr(1+Reff )/3(1−Reff ), where Reff is the effective 
reflection coefficient to account for the index mismatch 
between tissue and air: Reff ≈ −1.440n −2 +0.710n −1 +0.668+ 
0.00636n (Reff is defined exactly in table 1). n = nin/nout is 
the ratio of the index of refraction ‘inside’ and ‘outside’ the 
diffusing medium. 

The partial-flux boundary condition is exact, but it is 
relatively difficult to use, especially if analytical solutions 
to the diffusion equation with interfaces are desired. In this 
case, a simpler boundary condition is usually made as an 
approximation to the more fundamental result. In particular, 
the fluence rate is Taylor expanded to first order around the 
boundary, with the first-derivative term taken from the partial-
flux boundary condition. The treatment gives a zero-crossing 
point for the fluence rate at a distance, zb, outside (i.e., on the 
air side) of the tissue (figure 5): 

�(z = −zb) = 0. (19) 

Equation (19) is called the extrapolated-zero boundary 
condition. It approximates the exact partial-flux boundary 
condition quite well (see [115, 116] for details). With this 
‘new’ zero fluence rate interface, it is readily possible to use 
the method of images to obtain analytic solutions in a variety 
of geometries. Many researchers employ numerical methods 
to solve these and other problems; in such cases the partial-
flux boundary condition is often directly incorporated into the 
numerical codes rather than the extrapolated-zero boundary 
condition (for example, see [117]). 

2.6. Green’s function solutions 

An age old strategy [118, 119] employed to solve the 
time-domain and frequency-domain diffusion equations 
(equations (9) and (11)) is to first find their respective 
Green’s functions, and then to use these Green’s functions 
to construct more general solutions. In diffuse optical 
spectroscopy, the usual assumption is to treat tissues as 
homogeneous media. For homogeneous media, equation (9) 
can be written in the form A�ˆ (r, t)  = −vS(r, t)/D, where 
Â ≡  2 − ∂/∂t − vµa. The time-domain Green’s function 
G0(r, rs, t, ts) then satisfies AG0(r, rs, t, ts) = −δ(r −ˆ 
rs)δ(t − ts) and the boundary conditions for the geometry 
of interest. Similarly, equation (12) can be written in the 
form BU(r) = −vSac(r)/D, where B ≡  2 − k2. Theˆ ˆ 
frequency-domain Green’s function G0(r, rs) then satisfies 
B̂G0(r, rs) = −δ(r − rs) and the relevant boundary 
conditions. The full fluence rate solution in homogeneous 
media will be the convolution of these Green’s functions with 
the source term vS/D. 

2.7. Solutions for semi-infinite media and other simple 
geometries 

In NIRS/DOS, the most commonly used models approximate 
tissue either as a homogeneous semi-infinite medium or as 
a homogeneous infinite slab (figure 4). In both geometries, 
the method of images can be employed to find the diffusion 
equation Green’s functions, subject to the extrapolated-zero 
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Table 1. Frequency-domain Green’s functions for equation (12) in several homogeneous geometries subject to the extrapolated-zero 
boundary condition (equation (19)). rs is the position of a normalized isotropic point source. With the exception of the infinite case, 
cylindrical coordinates are used explicitly to specify position, i.e., r = (ρ, z). Notation is defined in the lower part of the Table. In practice, 
the infinite sums are truncated after a desired accuracy has been reached. 

Case Green’s function (frequency domain) 

1 
Infinite G0(r, rs) = exp(−k|r − rs|)

4π |r − rs| 
1 exp(−kr1) exp(−krb)Semi-infinite G0([ρ, z], [ρs = 0, zs = tr]) = − 

4π r1 rb 

1 
∞ 

exp[−kr+,m] exp[−kr−.m]
Infinite slab G0([ρ, z], [ρs = 0, zs = tr]) = − 

4π r+.m r−,mm=−∞ √ 
−|z−zs|/ k2+βm1 

∞ 
e

2 
Jm(βmρ)Jm(βmρs)Infinite cylindrical G0([ρ, z], [ρs, zs]) = cos mϕ 

2πa2 
k2 + β2 [Jm(βmab)]2 

b m=−∞ βm m 

√ 
k ≡ (µav − iω)/D Jm(z) mth order Bessel function, 1st kind 

r±,m ≡ ρ2 + (z − z±,m)2 a, cylinder radius 

z+,m ≡ 2m(d + 2zb) + tr ab = a + zb, i.e., extrapolated-zero boundary (cylinder) 

z−,m ≡ 2m(d + 2zb) − 2zb − tr βm, a positive root of Jm(βmab) = 0 

km ≡ k2 + m2π 2/h2
b ρ, radial cylindrical coordinate 

r1 ≡ (z − tr )2 + ρ2 rb ≡ (z + 2zb + tr )2 + ρ2 

Rφ + RJ 1 +  Reff 
Reff ≡ zb = 2 tr

2 − Rφ + Rj 3(1 − Reff ) 
π/2 π/2 

Rφ ≡ 0 sin(2ϑ)RFresnel(ϑ) dϑ RJ ≡ 0 3 sin ϑ cos2 ϑRFresnel(ϑ) dϑ 

m, an integer d, slab thickness (figure 4) 

cos ϑ = ˆ · n̂ (figure 4) RFresnel(ϑ), Fresnel reflection coefficient 

ϑ , angle of incidence in RFresnel(ϑ) ϕ, angle between input/output light beams (cylinder) 

Figure 5. The fluence rate curve is approximated by its tangent line 
at z = 0, and the = 0 intercept of this curve is found to occur 
z = −zb (zb is defined exactly in table 1). 

boundary condition (equation (19)) [120, 121]. For example, 
consider a single normalized isotropic point source at position 
(in cylindrical coordinates) rs = (ρs = 0, zs = tr) in the 
semi-infinite geometry. Recall from section 2.2 that this source 
is a good approximation for light injected into the tissue by 
a fiber at r = (ρ = 0, z  = 0). The extrapolated-zero 
boundary condition is satisfied by introducing a negative image 
point source at zs = −(2zb + tr) (figure 5). Superposition 
of the infinite medium solutions (equation (13)) from each 
(positive and negative) point source yields the homogeneous 
semi-infinite Green’s function. In the frequency domain, 

G0([ρ, z], [ρs = 0, zs = tr]) 

1 exp(−kr1) exp(−krb) = − , (20)
4π r1 rb 

where 
r1 = (z − tr)2 + ρ2 , (21) 

rb = (z + 2zb + tr)2 + ρ2 . (22) 

Let us now consider a NIRS/DOS measurement in 
reflection on a tissue sample, using a frequency-domain 
source (figure 4). Assuming the tissue is well modeled by 
a homogeneous semi-infinite geometry, the fluence rate along 
the tissue surface is S0vG0([ρ, z  = 0], [ρs = 0, zs = tr])/D, 
where G0 is given by equation (20) and S0 is the strength of 
the source. This solution contains two independent equations: 
one for the fluence rate amplitude, A(ρ), and the other for the 
phase, θ(ρ). Thus, as with the infinite medium (section 2.4), 
by measuring A(ρ) and θ(ρ), one can solve the system of 
equations from the semi-infinite solution for D and µa. 

We note that the detected light signal is the radiance 
integrated over the collection solid angle, which in the diffusion 
model is proportional to the fluence rate near the detector 
[115, 122]. It is difficult to predict this proportionality 
constant theoretically. Thus, in practice additional amplitude 
and phase-shift unknowns are usually incorporated into the 
solutions. Multiple source–detector separations are preferred 
to minimize this uncertainty and enable calibration. 

Equation (20) can be fit exactly, but in the limit, 
ρ (� tr + 2zb). The solution then simplifies to 

vSo e−kρ 
U(ρ,  z  = 0) ≈ 2k( trzb + zb

2)
4πD  ρ2 

−kr ρA0e i(−ki ρ+θ0) iθ(ρ)  = e = A(ρ)e . (23)
ρ2 

8 

Fluence Rate <I> 

Air Tissue 

Image -1 Source + 1 
-------~---L----------z 

-(2 Zb t ftr) -Zb ltr 
Extrapolated
Boundary 



Rep. Prog. Phys. 73 (2010) 076701 T Durduran et al 

Note that in this limit, ln[ρ2A(ρ)] and θ(ρ)  depend linearly 
on ρ, 

ln(ρ2A(ρ)) = −krρ + ln  Ao, (24) 

θ(ρ)  = −kiρ + θ0, (25) 

making it particularly simple to fit for ki and kr, which in turn 
permits calculation of µa and D. 

The method of images can also be used to compute 
the frequency-domain Green’s functions for a homogeneous 
turbid medium in other geometries [120, 121]. Table 1 
shows the frequency-domain Green’s functions subject 
to the extrapolated-zero boundary condition for several 
simple geometries. Similarly, analytic solutions exist for 
heterogeneities such as spherical [123] and cylindrical [124] 
inclusions in homogeneous media as well as for multi-layer 
media [125–129]. 

2.8. Spectroscopy for determination of tissue chromophore 
concentrations 

The tissue absorption depends linearly on the concentrations of 
tissue chromophores. In particular, the wavelength-dependent 
absorption coefficient is given by 

µa (λ) = εi (λ) ci . (26) 
i 

Here εi(λ) is the wavelength-dependent extinction coefficient 
(usually known for typical tissue chromophores) and ci the 
concentration of the ith chromophore. We have seen above 
(sections 2.4 and 2.7) that the diffusion approximation enables 
us to separate the scattering and absorption contributions 
in the detected light signals. Thus, by measuring µa at 
multiple optical wavelengths, we generate a system of coupled 
equations (equation (26)) that can be solved to yield the 
unknown chromophore concentrations. Generally, to estimate 
the concentrations of N chromophores, one must determine 
µa at N or more wavelengths. 

NIRS/DOS is typically employed to measure oxygenated 
and de-oxygenated hemoglobin; thus a bare minimum of 
phase and amplitude measurements at two wavelengths are 
required. Use of more wavelengths permits inclusion of 
other tissue chromophores such as water and lipid, and 
also improves the accuracy of the hemoglobin measurements 
because measurement redundancy reduces systematic errors. 
Of course, more wavelengths increase the cost and complexity 
of the instrument and require longer data acquisition times. 

The most common NIRS/DOS configuration is the 
reflection geometry, which employs the homogeneous semi-
infinite medium analysis described above (section 2.7) to  
derive µa(λ). However, other geometries are sometimes used 
to obtain bulk tissue properties; in this case the derived phase-
shift and amplitude as a function of source–detector separation 
are usually more complex than the simple linear functions 
outlined above, and the fitting is correspondingly more tricky 
(but still possible). Imaging schemes employ essentially the 
same ideas on a volume-element-by-volume-element basis to 
assign chromophore concentrations to particular voxels in the 
sample (see section 2.10). 

NIRS/DOS provides quick estimates of bulk chromophore 
concentrations in large tissue volumes. These estimates 

are often accurate enough to be useful in many monitoring 
applications (see section 4). 

One technical problem associated with the multi-
source/detector, multi-wavelength approach arises because 
each source and each detector has a different light coupling 
coefficient to tissue. This ‘coupling coefficient’ (generally, a 
complex number in the frequency domain) is a parameter that 
combines many factors such as the wavelength-dependent fiber 
transmission, different source and detector optics, differences 
in the physical properties of sources and detectors, electronics 
and tissue–fiber interfaces. The measured fluence rate for 
a given source–detector pair is thus equal to a product of 
the true fluence rate with the pair’s coupling coefficients. 
The light coupling coefficients for each source–detector pair 
will be additional unknowns in the inverse problem. If the 
coupling coefficients for different source–detector pairs are 
significantly different, then the NIRS/DOS inverse problem 
is harder with added variables [130]. Several methods are 
commonly employed to address this problem. One approach 
uses calibration phantoms with known optical properties to 
determine the coupling coefficients before and after each 
experiment (see [131]). A second approach employs self-
calibrating probes (see [81]). The first method assumes 
the coupling will be the same for tissue and phantom; the 
second method assumes tissue homogeneity. In the case 
of tomography (section 2.10), it is often assumed that the 
reference measurement cancels out these coupling coefficients 
[132]. A more rigorous approach is to consider the coupling 
coefficients as unknowns and explicitly reconstruct them [130]. 

2.8.1. Optimal wavelengths. Determination of tissue 
chromophore concentrations requires the separation of tissue 
absorption from tissue scattering at more than one optical 
wavelength. The optimal choice of wavelengths for 
chromophore concentration determination is an important 
topic in its own right, with an interesting history that 
involved careful consideration of measurement type, i.e., 
frequency-, time domain, CW and measurement signal-to-
noise. For simple, two-wavelength time- and frequency-
domain instruments, early experimenters wondered about 
which wavelengths to choose to minimize cross-talk between 
chromophores when inverting equation (26). Superficially, 
one might expect that at least one wavelength within the NIR 
window should be below the isosbestic point of hemoglobin 
and one should be above this isosbestic point. The isosbestic 
point is the wavelength wherein the extinction coefficients 
of oxygenated and de-oxygenated hemoglobin are the same 
(∼800 nm, see figure 1); wavelengths below the isosbestic 
point are thus more sensitive to deoxy-hemoglobin, while 
wavelengths above are more sensitive to oxy-hemoglobin. 
However, such wavelength selection processes are limited. 
Yamashita et al [133], Strangman et al [134] and Boas et al 
[135] have shown theoretically and experimentally that when 
using only two wavelengths, a pair at 660–760 nm and 830 nm 
provides superior oxy- and deoxy-hemoglobin separation by 
comparison with what was the more commonly used choice of 
780 and 830 nm. 
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A formal evaluation of the optimum wavelength selection 
for an arbitrary number of wavelengths was carried out by 
Corlu et al [136, 137]; they introduced a general procedure 
for finding those wavelengths which best differentiate tissue 
chromophores using CW and frequency-domain light. These 
results built on a theoretical approach developed in a classic 
paper by Lionheart and Arridge [138]. That paper [138] 
theoretically proved that it is impossible to uniquely separate 
scattering from absorption in a diffuse optical imaging 
experiment employing CW light. In an attempt to circumvent 
this uniqueness problem for CW imaging, Corlu et al 
demonstrated that a multi-spectral approach can be employed 
to uniquely reconstruct the chromophore concentrations, ci . 
In a key advance, Corlu et al [136, 137] abandoned the two-
step approach of determining µa at each wavelength first 
and then inverting equation (26). Instead, they introduced a 
multi-spectral approach that exploits known spectral properties 
of the medium a priori to directly reconstruct chromophore 
concentrations with better fidelity than the traditional two-
step method. Specifically, a priori assumptions about the 
form of the scattering (e.g., µ (λ) = Aλ−b) and wavelength-s 
dependent absorption extinction factors (i.e. equation (26)) are 
used, and the wavelength independent variables ci , A and b 
are reconstructed directly from all of the data simultaneously. 
Because the data from all wavelengths are simulataneously 
used, the inverse problem is better constrained than the 
traditional approach (see [137] for details). The multi-spectral 
technique is now commonly used, and has been extended for 
frequency-domain sources [139], for including uncertainties in 
the hemoglobin extinction coefficients [140], and for spectral 
window optimization when using broadband sources [141]. 

2.8.2. The differential pathlength (DPF) approach. In many 
situations, we are interested in the temporal variation of 
quantities such as hemoglobin concentration or oxygenation 
with respect to some perturbation. In such cases, one 
need only measure ‘changes’ in tissue optical properties, 
i.e.,  µa and  µ . If   µa and  µ are small relative s s 

(0) (0)to their baseline values, µa and µs , respectively, and if 
they are homogeneously distributed across the sample, then a 
much simpler differential pathlength method can be employed 
using only the intensity of the detected light. Specifically, 
this method relates temporal changes in the optical density, 
OD ≡ − ln(A(rd, t)/A(rs)), to changes in chromophore 
concentrations [10, 120, 134, 142–146]. Here A(r, t)  is the 
fluence rate amplitude. Furthermore, only one source–detector 
separation is needed to estimate these concentration changes. 

The differential pathlength method is derived by 
truncating the Taylor series expansion of the optical density 
for a given source–detector separation ρ to first order in µa 

and µ :s 

(0) (0)OD(µ(0) +  µa, µ  +  µ , ρ)  ≈ OD(µ(0), µ  , ρ)  a s s a s 

(0) (0) (0) (0)
∂OD(µa , µs , ρ)  ∂OD(µa , µs , ρ)  

+  µa +  µ .s∂µa ∂µs 

(27) 

Substituting equation (26) into equation (27), we see that 
temporal changes in the detected optical density, i.e., 

OD(λ, t, ρ)  ≡ − ln(A(rd, t)/A(rd, t  = 0)) 

= OD(µ(0)(λ) +  µa(λ, t), µ (0)(λ) +  µ (λ, t), ρ) a s s 

−OD(µ(0)(λ), µ (0)(λ), ρ), (28)a s 

may be related to changes in tissue chromophore concentra-
tions and scattering through a modified Beer–Lambert law: 

OD(λ, t) ≈ (εi(λ) ci(t)) da(ρ, λ) 
i 

+  µ (λ, t)ds(ρ, λ) ∼s (εi(λ) ci (t)) DPF(λ)ρ. 
i 

(29) 

Here, da ≡ ∂OD(λ, t = 0, ρ)/∂µa and ds ≡ ∂OD(λ, t = 
0, ρ)/∂µ are called the differential absorption and scattering s 
pathlengths, respectively, for wavelength λ (or baseline values 
(0) (0)
µa (λ) = µa(λ, t = 0) and µs (λ) = µs(λ, t = 0)) 
and source–detector separation ρ [120]. The last step in 
equation (29) is an approximation that is utilized widely 
in studies of brain hemodynamics (see section 4). This 
approximation assumes that scattering is unchanged (i.e., 
 µ = 0) and that da(ρ, λ) = DPF(λ)ρ, where DPF iss 
a ‘normalized’ ρ-independent differential pathlength factor 
usually obtained from the literature. 

Thus, by measuring OD at multiple wavelengths, we can 
invert equation (29) to determine the changes in chromophore 
concentrations  ci . Again, in addition to assuming small 
absorption and scattering changes, equation (29) assumes 
homogeneously distributed changes for  µa and  µ . If the s 
changes are localized, the modified Beer–Lambert law leads to 
systematic underestimations of the chromophore concentration 
changes (i.e., the partial volume effect) [145]. 

The parameters da and ds depend on source–detector 
separation, tissue geometry and the baseline optical properties 
of the underlying tissue, which in turn depend on the 
wavelength used. The parameters can be estimated analytically 
with a diffusion model, numerically using the Monte Carlo 
method [146], or measured using pulse-time methods in a 
sample of statistically similar tissue types [10]. Pulse-time 
methods are relevant for a differential pathlength analysis 
involving light intensity only, because here the differential 
pathlength factors are related to the photon mean time of flight 
in tissue, t , determined by pulse-time methods [120], i.e., 

da = 1 +  
µa 

v t , (30) 
µa + µs 

ds = 
µav 

t . (31) 
µa + µs 

The differential pathlength approach essentially makes 
a best estimate for the actual light pathlength in the tissue. 
Although it is clearly a very approximate method, it has been 
employed extensively in the biomedical optics community (see 
[35, 147–150], and many others). 
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Figure 6. Illustration of a single scattering DLS experiment (top) and of multiple scattering (bottom) along a single photon path in turbid 
media. kj and kj +1 are the wavevectors before and after the j th scattering event, respectively. qj = kj +1 − kj is the momentum transfer and 
θj is the scattering angle of the j th scattering event. The solid line represents the photon path at time t , while the dotted line represents the 
photon path at time t + τ . During the delay time τ , the j th scatterer moves ∆rj (τ ). (Reprinted courtesy of Zhou [496].) 

2.9. Diffuse correlation spectroscopy 

2.9.1. Dynamic light scattering in the single-scattering limit. 
The dynamic light scattering (DLS) (sometimes called quasi-
elastic light scattering (QELS)) technique is a well-known 
optical method for measuring the motions of scatterers such 
as particles in suspension [45, 46, 151]. In the experiment 
(figure 6(top)), a light beam illuminates a sample. To be 
concrete, let us assume that the sample is composed of a dilute 
solution of particles or macro-molecules; dilute in the sense 
that light is scattered once or not at all as it traverses the sample. 
Each of the particles develops an induced dipole moment in the 
presence of the incident light, and these oscillating dipoles, 
in turn, emit scattered light fields into all directions. The 
scattered light electric field at the detector, E(t), is thus built 
from a superposition of these dipole contributions. Because the 
particles move, the relative phases of the scattered dipole fields 
change and the light field (and light intensity) at the detector 
fluctuates in time. 

It is straightforward to show [45, 46, 151] that for 
independent particles with isotropic dynamics, the normalized 
electric field temporal auto-correlation function (g1) at the  
detector is 

E ∗ (t) · E(t + τ)  i2πf τ −q  r 2(τ ) /6g1(τ ) ≡ = e e 
2 

. (32)�|E(t)|2 

Here, f is the frequency of the incident light, q is the scattered 
wavevector representing the difference between output and 

input beam wavevectors and  r 2(τ ) is the mean-square 
particle displacement in time τ . The brackets represent 
time-averages (for experiments) or ensemble averages (for 
calculations). Thus by measuring the temporal fluctuations 
of scattered light, one obtains quantitative information about 
the particle motions. For the case of Brownian motion, 
 r 2(τ ) �= 6Dbτ ; for the case of random flow,  r 2(τ ) �= 
V 2 τ 2. Here, Db is the particle diffusion coefficient and V 2 

is the second moment of the particle speed distribution. Of 
course there are other types of motions (e.g., rotation) which 
affect these signals, but we will restrict our discussion to these 
two types of particle motion. 

In practice, experimenters often measure the scattered, 
normalized intensity temporal auto-correlation function (g2); 
g2(τ ) ≡� I (t)I (t  + τ)  / I (t)  2, with the intensity I (t)  = 
|E(t)|2. The Siegert relation [152], 

g2(τ ) = 1 +  β|g1(τ )|2 , (33) 

is then used to extract the electric field auto-correlation 
function from the intensity data. β is a constant determined 
primarily by the collection optics of the experiment, and is 
equal to one for an ideal experiment setup. 

2.9.2. Dynamic light scattering in the multiple light scattering 
limit. In samples such as tissue or more concentrated 
colloidal suspensions, the incident light field is multiply 
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scattered. As with light diffusion, one can envision the 
electric field temporal auto-correlation function propagating 
ballistically, then scattering from small volume elements 
within the sample, and then propagating ballistically again 
in a random manner as the light makes its way from one 
side of the sample to the other side. Each of these ‘single’ 
dynamic light scattering events, from a volume element within 
the sample, contributes to the detected correlation function. 
This is illustrated in figure 6(bottom). It is thus apparent that 
the detected field auto-correlation function is also related to 
motions of the scatterers within the medium, albeit in a more 
complex way. There has been elegant research on this multiple 
‘dynamic light scattering’ problem over the years (for example, 
see [61–63, 153–155]). In the late 1980s the diffusing wave 
spectroscopy (DWS) technique was formulated [62, 63, 156]. 
In DWS, the phase of the various photon random walk paths 
through the sample is computed at time τ = 0 and then 
recomputed at time τ . When the scattering events within each 
path are uncorrelated, and when the diffusion approximation is 
valid, one finds that the detected field autocorelation function 
is then essentially equal to the angle-averaged DLS signal 
due to a typical single scattering event in the random walk 
sequence raised to the power N (where N is the number of 
random walk steps in the photon path). The detected signal 
is the integral of these single-path signals over all allowed 
photon paths. Another approach, which we will discuss in 
detail below, employs correlation transport theory to derive 
a diffusion equation for the field auto-correlation function. 
The correlation transport equation and the resultant correlation 
diffusion equation are particularly attractive in the context of 
tissues, because they share a formal similarity with the results 
we have presented already about diffuse photon density waves. 

2.9.3. Diffusion of temporal correlation functions. 
Temporal fluctuations in the sample are characterized by 
an unnormalized electric field auto-correlation function, 
GT

1 (r, �̂, τ ) =� E ∗ (r, �̂, t) · E(r, �̂, t + τ)  , where the 
brackets denote the usual time and/or ensemble averages, 
and as mentioned earlier, E(r, �̂, t) is the electric field at 
position r and time t propagating in the ˆ direction. Ackerson 
and co-workers first suggested that GT is analogous to the1 
radiance L and should be governed by a correlation transport 
equation [154, 155]: 

 · G1
T(r, �̂, τ ) ˆ + µtG1

T(r, �̂, τ ) = Q(r, �̂) 
s+ µs G1

T(r, ˆ , τ )g1( �̂, ˆ , τ )f ( �̂, ˆ ) d . (34) 

sHere g1( �̂, ˆ , τ )  is the normalized temporal field auto-
correlation function for single scattering (see equation (32)), 
f (  ̂�, ˆ ) is the normalized differential single scattering cross-
section, Q(r, �̂) is the light source distribution and µt = 
µa + µs. Equation (34) is a steady-state equation independent 
of time, meaning it is applicable for CW sources and systems 
in equilibrium. 

Given equation (34), one can implement a set of steps 
formally identical to the steps used to derive the diffusion 
equation for photon fluence rate from the radiative transport 
equation. That is, using a P1 approximation for GT

1 , 

the correlation transport equation reduces to the correlation 
diffusion equation for correlation ‘fluence rate’ [60, 61]: 

α  · (D(r) ) − vµa(r) − vµ κ2  r 2(τ ) G1(r, τ )  s 03 

= −vS(r). (35) 

Here, G1(r, τ )  is the correlation fluence rate, i.e. 

G1(r, τ )  = G1
T(r, �̂, τ )d = E ∗ (r, t)  ·E(r, t  + τ)  , 

4π 

(36) 

where E(r, t)  is the total light electric field at (r, t), and S(r) 
is an isotropic source term: 

S(r) = Q(r, �̂) d �. (37) 
4π 

α represents the fraction of photon scattering events that occur 
from moving particles in the medium,  r 2(τ ) is the usual 
mean-square displacement in time τ of the scattering particles 
(e.g., blood cells), κ0 = 2π/λ is the wavenumber of the 
CW light diffusing through the medium and D, µa and v are 
the same optical properties that arise in the photon diffusion 
equation (equation (9)). Furthermore, a set of analogous 
correlation diffusion boundary conditions arise for G1(r, τ ): 

G1(r, τ )  = zbn̂ ·  G1(r, τ )  Partial-flux. (38) 

G1(z = −zb, τ )  = 0 Extrapolated zero.. (39) 

Diffuse correlation spectroscopy (DCS) refers to the 
measurement of the temporal diffusing field auto-correlation 
function to obtain information about tissue dynamics. 
Equation (35) is essentially a differential equation formulation 
of diffusing wave spectroscopy (DWS). It is better suited than 
DWS for handling point sources, heterogeneous media and 
tomography. Note also that if we take the τ = 0 limit of the 
correlation diffusion equation, then we obtain the CW diffusion 
equation for photon fluence rate. 

Since equation (35) with its boundary conditions has the 
same form as the photon diffusion equation (equation (9)) 
for CW sources, Green’s function solutions of the correlation 
diffusion equation will also have the same form. For example, 
in a homogeneous semi-infinite medium, the solution to 
equation (35) is (see equation (20)), 

v exp(−K(τ)r1) exp(−K(τ)rb)
G1(ρ, z, τ )  = − ,

4πD  r1 rb 

(40) 

where K(τ)  = (µa + αµ κ2  r2(τ ) /3)v/D, and r1 ands 0 

rb are given by equations (21) and (22), respectively. The 
new feature is that the decay constant, K(τ), also depends on 
the correlation time τ ; of course that is where the dynamical 
information resides. 

As in the case of DLS, the quantity measured in practice 
is usually not G1, but is instead proportional to the intensity 
auto-correlation function G2(r, τ )  =� I (r, t)I (r, t  + τ)  , 

2where I (r, t)  = |E(r, t)| . Again, the Siegert relation 
(equation (33)) may be used to relate the intensity and field 
auto-correlation functions. 
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Figure 7. The measured intensity auto-correlation curves from two experiments on isolated limb preparations on rats. (left) Shows the 
electric field correlation functions during healthy circulation and under artificial perfusion with a pump. (right) Shows the electric field 
auto-correlation functions from a rat before/after death. 

Thus, G1 is derived from the experimentally measured 
G2, and K2 is determined by fitting to the temporal decay of 
G1 (for a given source–detector separation). This information 
plus optical property information permit determination of 
α  r 2(τ ) . 

Strictly speaking, the Siegert relation is fully valid if 
the electric field, E(r, t), is a Gaussian variable in time 
with zero mean [152]. For samples such as tissue, wherein 
some scatterers are static and some scatterers move, the total 
electric field will have static and dynamic components and 
can be written as E(r, t)  = Ec(r) + Ef (r, t). Here, Ec 

is a time-independent contribution to the total field from 
photons that have experienced only static scattering on their 
path from source to detector. Ef is the field due to photons 
that have experienced at least one dynamic scattering event 
between source and detector; this field will fluctuate in time. 
Application of the Siegert relation in such cases requires 
careful consideration of the interference terms involving Ec 

and Ef . To date, a few methods for circumventing this 
problem have been developed [157–159], e.g., moving the 
sample (or detector) to induce fluctuations in Ec [157] or  
choosing speckles wherein Ec is small. We have conducted 
experiments in tissue phantoms and tissues to explore this 
further. In most practical tissue geometries we have found that 
the intensity auto-correlation functions decay to unity (typical 
field auto-correlation measurements are shown in figure 8); 
collectively these measurements indicate that Ec is small, 
perhaps because most of the detected photon paths involve 
at least one moving red blood cell or another slow moving 
tissue scatterer (e.g., due to subtle vibrations or other effects). 
More work remains to clarify this observation. Nevertheless, 
it appears that one can routinely employ the Siegert relation 
in most tissue dynamics experiments, except perhaps those 
wherein the subject is exercising. 

2.9.4. Blood flow indices from diffuse correlation 
spectroscopy. DCS is most sensitive to the motion of blood 
cells in the microvasculature (i.e. capillaries, arterioles, 
venules), since the diffusing light is mostly absorbed when 
traversing large arteries and veins. Typical detected photons 
experience scattering events from static (or very slow moving) 
scatterers in biological tissue (e.g., organelles and interfaces), 

in addition to the dynamic scattering from moving RBCs (see 
previous section for details) [153]. 

Since the microvasculature is convoluted, we may expect 
that the distribution of the directions of velocities of the 
sampled RBCs is more or less isotropic. Thus, the 
random ballistic flow model is sometimes a first ‘guess’ as 
a choice for the dynamics of RBCs, where  r 2(τ ) �= 
V 2 τ 2 (see section 2.9.1). In practice, however, we and 

others [65, 66, 68–90] have found that the Brownian model, 
 r 2(τ ) �= 6Dbτ , fits the observed correlation decay 

curves better over a wide range of tissue types including 
rat brain [77, 78]; mouse tumors [68]; piglet brain [75]; 
and human skeletal muscle [81], tumors [83, 84] and brain 
[66, 69, 71, 74, 80] (see figure 8). In these cases, Db is 

an effective diffusion coefficient obtained from fitting to 
correlation data; it is a few orders of magnitude larger than 
the traditional thermal Brownian diffusion coefficient of RBCs 
in the blood given by the Einstein–Smoluchowski relation 
[160]. Upon reflection, it should not be too surprising that 
the random flow model does not fit the data well. RBCs in the 
microvasculature do not move ballistically; they experience 
position-dependent shear stresses, they roll, they tumble and 
they translate in the vasculature. 

Clearly, the final cumulative effect of photon–RBC 
interactions on the measured auto-correlation function will 
depend on both the nature of the microscopic motions and 
on the spatial distribution of moving particles in tissue. In 
the vasculature, both of these factors can be quite complex 
[161, 162], and, in fact, their affects on light signals are 
not fully understood. The situation is further complicated 
by the non-trivial distribution of photon paths in tissue; for 
example, contributions from the largest vessels tend to be 
small, since photons that interact with RBCs in an artery are 
mostly absorbed and do not reach the detector. 

Despite these apparent difficulties, we (and others) 
have worked to elucidate DCS measurement sensitivity. 
For example, we have carried out isolated limb perfusion 
measurements in rats (see figure 7(left)). The figure shows 
two correlation decay curves, one from the limb with normal 
circulation and the other due to controlled circulation (of 
roughly the same speed) of an external suspension of RBCs 
(with ∼10 times reduced concentration) through the same 
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Figure 8. Data from a mouse tumor, a piglet brain, a human calf muscle and adult human brain. Dots show the experimental data, the 
dashed line is a fit with  r 2 �∼ τ 2 (random flow) and the solid line is a fit with  r 2 �∼ τ (Brownian motion). Note how the accuracy of 
the fits vary depending on the delay time (τ ) and the longer delays tend to deviate further from the fits for brain measurements. This is 
mainly because later delays correspond to photons that probe more superficial tissues and presence of the skull alters this part of the curves. 
Note, r in the figure titles is the source–detector separation on the tissue surface. 

vasculature. The measurement clearly demonstrates that our 
signal is due to RBC motion. Variation of RBC concentration 
in suspension decreased the measured αDB in a proportional 
manner (∼7.2 times). When healthy flow is compared with that 
from a dead limb the residual decay is <3% of the baseline (see 
figure 7(right)). In the latter state, we altered and monitored 
the temperature of the limb while continuing to measure the 
correlation decay. Fitted αDB was dependent linearly on the 
temperature, as expected for true Brownian motion of the 
scatterers, which has a linear temperature dependence. 

Furthermore, we (and others) have found that the fitted 
parameter αDb (from the Brownian model) correlates well 
with other blood flow measurement modalities. As a result, 
it is natural to identify the αDB parameter as a blood flow 
index (BFI). The BFI is not a measure of absolute blood flow 
in the strict sense (e.g., it has the wrong units), but the relative 
change in BFI has been repeatedly shown to be a quantitative 
measure of relative change in blood flow. In particular, it has 
been shown that under well controlled circumstances, αDb is 
proportional to the absolute blood flow measured by ASL-MRI 
[73] and transcranial Doppler ultrasound [69, 71]. Similar 
sorts of ambiguities are well known in the Laser Doppler 
literature, and in general, calibration and empirical modeling 
are used to estimate absolute values of blood flow velocity 
[43, 153, 163]. Calibration methods similar to those utilized by 
laser Doppler, e.g., to calibrate for ‘biological zero’, are also 
applicable for DCS [164–167]. We also note that it is possible 
(but difficult without constraints) to measure absorption and 
even scattering with DCS [168]. 

2.10. Tomography with diffuse photon density waves 

Many of the simplifying assumptions used in spectroscopy, 
such as homogeneity and a semi-infinite or infinite-
slab geometry, are relaxed when imaging with diffusing 
waves. By using a more realistic model of tissue, diffuse 
optical tomography (DOT) improves the accuracy of the 
measured optical properties. Tomography is also critical for 
identification of localized heterogeneities such as tumors in 
tissue. The goal of DOT is to reconstruct the spatial distribution 
of optical/physiological properties at each point (or volume 
element) in the tissue from measurements of fluence rate on 

the tissue surface. This problem is typically called the ‘inverse 
problem’, whereas ‘forward problem’ refers to the calculation 
of the fluence rate on the tissue surface given a particular 
spatial distribution of optical/physiological properties. The 
transport/diffusion equations provide a tractable mathematical 
basis for tomographic image reconstruction [30]. 

Unfortunately, the dominance of scattering in light 
propagation makes each fluence rate measurement sensitive 
to a relatively large tissue volume compared, for example, 
with x-ray CT wherein scattering is minimal. The inverse 
problem in diffuse optical imaging is thus much more difficult 
than standard x-ray CT. The DOT inverse problem is also 
intrinsically nonlinear with respect to the tissue optical 
properties. As a result, it is computationally intensive to arrive 
at the inverse solutions, though as we will discuss, for some 
applications the problem can be linearized. 

Despite these difficulties, several approaches have 
been developed and successfully applied for diffuse 
optical tomography (DOT) [30, 34, 169–171]. These 
include: backprojection methods [172, 173], diffraction 
tomography in k-space and variants [174–177], perturbation 
approaches [178–182], the Taylor series expansion approach 
[183–188], gradient-based iterative techniques [189, 190], 
elliptic systems methods [191, 192], truncated Newton 
schemes [193–196], multigrid inversion algorithms [197] 
and Bayesian conditioning [198–205]. Other important 
and related theoretical advances include the development 
of analytic inversion formalisms [206–209], development 
and clarification of differencing [210] and differential [211] 
methodologies, and advances in the use of a priori information 
[212, 213]. Experimentally, different schemes such as the 
use of spatially structured/modulated illumination [214–216] 
and phased-arrays of sources [217, 218] were also considered 
to improve localization. For other recent reviews on image 
reconstruction, see [23, 30, 31, 98, 219–221]. 

As mentioned before, though the diffusion model is 
adequate for light transport in most tissues, many biomedical 
applications involve tissues with ‘non-diffusing domains’ 
and/or tissue volumes which are smaller than a few scattering 
lengths. To handle these cases, more complex (and 
more computationally intensive) models are needed. These 
models are summarized in recent reviews [30, 220]. One 
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approach consists of schemes based on the full radiative 
transport equation [30, 190, 222–224], which have recently 
been reviewed by Klose and Hielscher [225]. This approach 
has been especially successful for imaging small tissue 
volumes such as the finger [226]. Another approach is to 
use higher order PN approximations of the transport equation 
[227–230]. If DOT is combined with an anatomical MRI, then 
it is possible to segment tissue into diffusive and non-diffusive 
regions. In this case, a hybrid model can be applied where 
light transport is modeled by diffusion in the diffusive regions 
and by radiosity theory [30, 231–233] or Monte Carlo [234] 
in the non-diffusive regions. The disadvantage of the hybrid 
model is that the boundaries between the diffusive and non-
diffusive regions must be known. That said, many researchers 
are combining DOT with other imaging methods such as MRI 
in order to have more prior information to constrain the inverse 
problem. The incorporation of prior information improves 
the resolution and accuracy of the reconstructed images with 
DOT. A comprehensive review focusing on the incorporation 
of prior information into DOT has been recently published by 
Dehghani et al [235]. 

In the following sections, some common tomography 
approaches are outlined. Forward problem computations are 
an essential part of most of the methods used to solve the 
inverse problem. For simple geometries (e.g., table 1), analytic 
solutions to the forward problem are quite useful. However, 
for complex geometries and/or heterogeneous optical property 
distributions, the forward problem is sometimes solved using 
numerical finite-difference methods (FDM), finite-element 
methods (FEM), boundary element methods (BEM) or Monte 
Carlo [30, 181, 182, 190, 236, 237]. Tomography approaches 
can be classified as linear or nonlinear. As mentioned 
above, the tomography inverse problem is nonlinear, but 
in the limit that the volume element optical properties are 
close to a specified background, the inverse problem is 
approximately linear (section 2.10.1). This is usually the case 
for imaging differences in optical properties. For example, 
in a functional brain activation experiment, the perturbations 
in optical properties due to the brain stimulation are small 
compared with the background resting state of the brain (i.e., 
no stimulus). However, if the goal is to measure absolute 
optical properties, the full nonlinear problem should be tackled. 
Here, we focus the discussion on frequency-domain single-
wavelength data; one can readily expand these ideas to 
continuous-wave and time-domain sources, as well as multi-
spectral data (section 2.8.1). 

2.10.1. Linear numerical inversion using the perturbation 
approach. To start, we write the optical properties at 
position r as 

(0)µa(r) = µ + δµa(r), (41)a 

D(r) = D(0) + δD(r), (42) 

where δµa(r) and δD(r) can be regarded as perturbations from 
a homogeneous ‘background’ medium with optical properties 
(0) (0)
µa and D(0). Here, µa and D(0) are estimated from a 
tissue spectroscopy measurement or from values reported in the 
literature for similar tissue samples. Thus, the inverse problem 

utilizes measurements of fluence rate on the tissue surface to 
determine δµa(r) and δD(r), given some µa 

(0) and D(0). 
Two common forms are used for U(r) to set up the 

inverse problem [238]. The Born approach writes U(r) = 
U0(r) + Usc(r), while the Rytov approach writes U(r) = 
U0(r) exp[UR(r)]. In both cases, U0 is the spatial partsc 
of the frequency-domain fluence rate in the homogeneous 
background medium, which can be calculated theoretically 
given µa 

(0) and D(0), and Usc (exp[UR]) is the correction tosc 
U0 as a result of the heterogeneities. Note that Usc has units of 
power per area, but UR is dimensionless. For more detail onsc 
both approaches see [238]. 

Let us focus on the Born approach. Corresponding Rytov 
results will also be given. In the linear perturbative approach, 
U(r) is set equal to its first-order Taylor series expansion about 
U0, i.e., U = U0+(∂U0/∂µa)δµa+(∂U0/∂D)δD. This defines 
a simple linear problem for δµa and δD: 

T 
Ja,ij , Js,ij δµa(rj ), δD(rj ) = {Usc(rd, rs)i} , (43) 

where [J ] = Ja,ij , Js,ij = [∂U0(rj )/∂µa, ∂U0(rj )/∂D] 
is the Jacobian. The index i refers to the source–detector 
pair and the index j refers to the position within the sample. 
Equation (43) is derived from an expansion of U to first order, 
whose accuracy depends on δµa and δD being small. We 
note that the terminology weight matrix, sensitivity matrix and 
Jacobian are often used interchangeably in the literature to refer 
to the matrix in equation (43). 

One could potentially calculate the Jacobian directly using 
numerical methods, but the perturbation approach lets one 
derive an analytic expression for the Jacobian. Substituting 
U(r) = U0 + Usc, equation (41), and equation (42) into 
the heterogeneous diffusion equation (equation (11)) gives a 
differential equation for Usc: 

vδµa(r)2 2 − k Usc(r) = U(r)
D0 

−δD(r) δD(r) 2U(r) −   ·  U(r). (44)
D0 D0 

As before, k2 = (vµ( a
0) + iω)/D(0). The integral solution for 

Usc(rd, rs), at detector position rd given source position rs, is  
given by the convolution of the homogeneous Green’s function 
G0(rd, r) (for the geometry of interest) with the right-hand side 
of equation (44) (see chapter 5 of [239]): 

−vδµa(r)
Usc(rd, rs) = G0(rd, r)U(r, rs) d

3 r 
D0 

δD(r)
+  G0(rd, r) ·  U(r, rs) d

3 r. (45)
D0 

Equation (45) is intrinsically nonlinear in δµa(r) and δD(r) 
because U(r, rs)on the right-hand side also depends on δµa(r) 
and δD(r). 

If we assume that U0 Usc, equation (44) is readily 
linearized, i.e., U is replaced with U0 in the integrals (U0 is 
independent of the perturbations δµa and δD). Discretization 
of the integral in equation (45) leads to a sum over NV elements 
(or voxels) of size  V : 

NV 

Usc(rd, rs) = Wa,j δµa(rj ) + Ws,j δD(rj ) , (46) 
j=1 
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where Wa,j = −v  VG0(rd, rj )U0(rj , rs)/D0 and Ws,j = 
 V  G0(rd, rj ) ·  U0(rj , rs)/D0. 

In tomography problems, many source–detector pairs 
are typically spread out over the sample surface. Given 
NM source–detector pairs, equation (46) is most easily 
expressed as a matrix equation that relates a vector of source– 
detector measurements to a vector of absorption and diffusion 
coefficient variations at voxels within the sample. Note that 
equations (46) and (43) are identical (i.e. [J ] = [W ]), so that 

∂U0 −v V i iJa,ij = = G0(rd, rj )U0(rj , r ), (47)s∂µa D0ij 

∂U0  V i iJs,ij = =  G0(rd, rj ) ·  U0(rj , r ). (48)s∂D  D0ij 

The matrix [J ] has dimensions NM × (2NV), the 
measurement vector Usc = U − U0 has length NM, and the 
perturbation vector {δµa, δD} has length 2NV. Note, in most 
practical cases in the frequency domain, amplitude and phase 
data are further split in the matrix. Finally, the measurement 
vector Usc is obtained from measurements of the fluence rate 
U ; but as we discussed in section 2.7, the intensity measured 
in practice for a given source–detector pair, I (rd, rs), is  
proportional to the fluence rate U(rd, rs). Thus, as with 
spectroscopy (see earlier discussion on ‘coupling coefficients’ 
in section 2.8), a calibration scheme or explicit reconstruction 
of these unknowns should be employed [130]. 

The linearized Rytov approach (i.e., U(r) = U0(r)× 
exp[UR(r)]) leads to a matrix equation of the same formsc 
as equation (43), except that the measurement vector 

Ja,ij = G0(rd, rj )U0(rj , r )(− V /U0(r )D0), (49) 

UR(rd, rs)sc = ln[U(rd, rs)/U0(rd, rs)] and the Jacobian 
terms are 

i i i i v  d, rs s 

i i i iJs,ij =  G0(rd, rj ) ·  U0(rj , rs)( V/U0(rd, rs)D0). (50) 

Note, the Rytov approximation requires that the scattered field 
varies comparatively slowly (i.e., ( UR)2 is small relative tosc 
vδµa/D

(0) and (δD/D(0))( G0/G0)
2 ). 

The construction and the inversion of equation (43) is  
generally the computationally most expensive step in the 
tomography problem. Because the Jacobian is almost always 
a nonsquare matrix (NM × 2NV), one often multiplies 
equation (43) by the transpose of the Jacobian to create a square 
matrix for the inversion, i.e., 

[J ]T[J ]{δµa, δD}T = [J ]T{Usc}. (51) 

[J ]T[J ] is usually singular, or close to singular, and is 
thus difficult to invert directly. Furthermore, experimental 
noise in the data tends to produce artifacts when explicitly 
solving equation (51). To convert equation (51) into a more 
readily solvable problem, a regularization parameter is usually 
introduced into the inverse problem. The regularization 
parameter is employed to suppress effects of measurement 
noise and model errors, 

[J ]T[J ] +  Rg[C]T[C] {δµa, δD}T = [J ]T{Usc}, (52) 

where Rg is a regularization scalar that weights a regularization 
operator [C] [188, 240–243]. Regularization is a theoretical 

knob that can be adjusted to smooth image artifacts from 
experimental noise and other errors at the cost of decreasing 
the spatial resolution [244, 245]. 

Let us review the steps for this inversion approach. The 
linearized inversion problem constructs a suitable ‘perturbed’ 
fluence rate, often within Born or Rytov approximations. 
The so-called ‘background’, ‘baseline,’ or ‘homogeneous’ 
field, U0, is either measured (e.g., using a homogeneous 
phantom before the breast scan, or during a ‘rest’ period in 
the case of functional studies of the brain) or calculated using 
a forward solver. The second step is the construction of the 
appropriate Jacobian (or weight matrix), which is derived from 
analytic solutions, numerical solutions (such as finite-element 
or finite-difference forward solutions of the photon diffusion 
equation) or a combination thereof. Then, typically, some 
sort of a regularization is applied to the Jacobian. Thus, up 
to this point, the steps are cumbersome but straightforward. 
The next step is to invert the often ill-posed Jacobian. 
Many strategies can be employed for this purpose, including 
‘standard’ singular value decomposition (SVD), algebraic 
reconstruction technique (ART) or simultaneous iterative 
reconstruction technique (SIRT), and k-space expansions 
[30, 170, 175, 179, 206, 208, 220, 239, 246, 247]. Despite the 
well-known [30, 170, 220, 239, 246] limitations of linearized 
methods, these methods are employed for many applications 
including functional brain imaging, wherein well defined 
and often localized optical property changes occur in 
response to neuronal stimulation (see section 4), and optical 
mammography, wherein optical properties change in response 
to stimuli such as compression (see section 3). Furthermore, 
in applications that involve many time points and near real-
time feedback, such as the case of bedside monitoring of brain 
function, the linearized inversion is attractive as a feasible 
option given the current state of portable computational power 
and speed. 

2.10.2. Linear analytical inversion with assumed symmetry. 
For simple geometries such as semi-infinite, infinite slab, 
infinite cylindrical and spherical, Schotland and colleagues 
have developed a fast alternative method for solving the inverse 
problem. Essentially, this method exploits the symmetry of the 
geometry to avoid constructing and inverting the entire weight 
matrix in equation (43) [174, 206–208, 248]. Here, we will 
outline the method for the infinite-slab geometry using the 
Rytov approach. 

The geometry is as defined in figure 4 where ρ is the 
position vector on the plane where there is symmetry. By 
exploiting this symmetry, the Green’s function (G0) can be 
expanded in plane waves along ρ [175, 249], i.e., 

1 iq·(ρ−ρs)G0(ρ, z;ρs, zs) = d2q ζ(q; z, zs)e , (53)
(2π)2 

where ζ(q; z, zs) gives the amplitude and phase of the plane 
wave with wavevector q = (qx, qy) in the plane z due to a 
source in the plane zs. Analytic expressions for ζ(q; z, zs) are 
given in [208]. 

Substituting equation (53) into the linearized Rytov 
solution (section 2.10.1) and then taking a four-dimensional 
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Figure 9. Slices from three-dimensional image reconstructions of the relative absorption coefficient (δµa /µ
( 
a
0)) for targets suspended in a 

6 cm thick slab filled with highly scattering fluid. The Rytov linearized analytic inversion was used for this reconstruction. The three slices 
shown for each reconstruction correspond to depths of 1 cm (left), 3 cm (middle) and 5 cm (right) from the source plane. (a) Schematics of 
the positions of the letters during the experiments. Left: the target consists of letters ‘DOT’ and ‘PENN’ suspended 1 cm and 5 cm from the 
source plane, respectively. Right: the target consists only of the letters ‘DOT’ suspended 3 cm from the source plane. (b) Reconstructed 
image of the letters ‘DOT’ and ‘PENN’. (c) Reconstructed image of the letters ‘DOT’. (Reprinted with permission from [250]. Copyright 
2008 Optical Society of America.) 

(two each for the source and detector coordinates ρs and ρd) 
spatial Fourier transform, we obtain 

zd 

u(˜ qd, qs) = κA(qs, qd; z)vδµ̃ a(qs + qd, z)  
zs 

+ κD(qs, qd; z)δD(˜ qs + qd, z)  dz. (54) 

Both κA and κD are known since we have analytic expressions 
for the coefficients defined in equation (53) and are given by 

κA(qs, qd; z) = ζ(qs; zs, z)ζ(qd; z, zd), (55) 

∂ζ(qs; zs, z)  ∂ζ(qd; z, zd)
κD(qs, qd; z) = 

∂z  ∂z  

− qs · qdg(qs; zs, z)g(qd, z, zd). (56) 

These steps, collectively, reduce the original inverse 
problem to a linear one-dimensional integral equation which 
can be inverted in a manner similar to those mentioned in 
section 2.10.1 to obtain δµ̃ a(q, z)  and δD(˜ q, z), which are 
the spatial Fourier transforms of the ‘images’ we seek to 
reconstruct (see [208] for details). Performing an inverse 
Fourier transform on δµ̃ a(q, z)  and δD(˜ q, z)  gives the desired 
images. Exploiting the planar symmetry this way dramatically 

decreases the computation time relative to constructing the 
inverse for the entire Jacobian numerically (equation (43)). 

For example, Konecky et al [250] used the Rytov 
linearized analytic inversion method to reconstruct objects of 
a complex structure (i.e. letters made from silicone rubber) 
with optical properties comparable to those of tissue embedded 
in an optically thick medium. In this study, reconstructions 
utilizing data sets of 107 source–detector pairs obtained with 
a CW instrument only required a minute of CPU time on a 
1.3 GHz workstation. In addition to identifying the location 
and spatial extent of the heterogeneities, the resulting images 
contained spatially resolved features on the sub-centimeter 
scale at varying depths inside the optically thick medium 
(see figure 9). 

2.10.3. Nonlinear numerical inversion (jacobian- and 
gradient-based methods). Linearized approaches are useful 
for generating images, but if the tissue optical properties are 
significantly different from those of a specified background, 
then the accuracy of the linear image reconstruction will 
be compromised. In section 2.10.1, we showed that the 
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Figure 10. Flow chart of Born and distorted Born iterative methods. A linear inverse problem of the form Jδx  = y is solved for each 
iteration. Both the fluence rate and Green’s function are updated in the distorted born method, but only the fluence rate is updated in the 
Born iterative method (see text for details). The iterations continue until χ2 has reached the desired tolerance. 

linearized inverse problem in the Born approach (U = 
U0 + Usc) is valid if the magnitude of the fluence rate 
correction Usc is small relative to the background U0. In  
the Rytov approach (U = U0 exp[UR]), the linearizedsc 
inverse problem is valid if the fluence rate correction UR 

sc 
is slowly varying, i.e., ( UR)2 vδµa/D. In general,sc 
both of these linearized approaches break down when optical 
property perturbations are large. With the Born approach, 
this can easily be seen by noting that the derivation of 
equation (43) assumed small optical property perturbations 
[246]. When attempting to measure absolute optical properties 
of tissue, the specified background is an initial guess of 
these properties, which is often significantly different from 
the true properties. To improve image reconstruction, 
nonlinear approaches for the inverse problem are required. 
Jacobian-based nonlinear schemes in essence solve linear 
problems again and again, updating the perturbations δµa 

and δD iteratively, and then comparing calculated fluence 
rates with the measured fluence rates until they become 
sufficiently close. 

Here, we will discuss a Born iterative method (BIM) and 
a distorted Born iterative method (DBIM) presented by Yao 
et al [182]. Figure 10 is a schematic illustrating the steps for 
these two methods. First, µa and D are initialized, and the 
corresponding Green’s function, G0, for the photon diffusion 
equation (equation (44)) is determined. The forward problem 
is then solved; typically by using finite elements or finite-
difference numerical methods. To quantify the agreement 
between calculated fluence rate Uc(rd) and the measured 

fluence rate Um(rd), an objective function χ2 is constructed: 

NM 2
Um(rd, rs)i − Uc(rd, rs)i 

χ2 = 
σ i 

. (57) 
i=1 

σ i 

measurement error for the ith source–detector pair. When 
χ2 falls below some pre-defined convergence criterion ε, the 
iteration procedure is stopped. If the iteration procedure is 
not stopped, then the optical properties are updated. Updated 
optical properties are derived via the solution to an inverse 
problem which has been outlined already for the linearized 
prolem in section 2.10.1 (i.e., equation (52)). 

The difference between the two methods is that the DBIM 
method calculates a new Green’s function at every iteration, 
while the BIM method always uses the same Green’s function 
(see figure 10). The DBIM usually converges faster than the 
BIM, but it is also less robust to noise than the BIM [182]. 
Equivalent methods using the Rytov approach, i.e., the Rytov 
iterative method and the distorted Rytov iterative method, are 
also utilized. 

Another useful nonlinear reconstruction approach 
employs a gradient-based iterative scheme rather than 
explicitly building the Jacobian and solving equation (52) 
[171, 189, 190]; in this case, the gradient of the objective func-

Here NM is the number of measurements and is the 

∂χ2 

tion χ2 (equation (57)) with respect to µa and D (e.g., ∂χ
2 

, )
∂µa ∂D  

is determined to establish a search direction to minimize χ2 

directly. A line search is performed to find the optical prop-
erties that minimize χ2 along this search direction, and these 
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new optical properties are then used for the next iteration. The 
search direction is established using the nonlinear conjugate 
gradient method (see [171] for details). This process repeats 
until χ2 has converged within a desired tolerance. Since the 
gradient-based approach does not involve direct inversion of 
the Jacobian matrix (time- and memory-consuming computa-
tional process), it is computationally less intensive than the 
Jacobian-based iterative methods under many conditions. 

Public software packages are available that utilize the 
iterative methods described above for image reconstruction. 
Both the gradient-based and Jacobian-based approaches can 
be employed in the well-known DOT reconstruction package 
time-resolved optical absorption and scattering tomography 
(TOAST) [171]. NIRFAST is another software package 
written in the MATLAB environment that uses the Jacobian-
based approach [117]. 

2.10.4. Nonlinear analytical inversion. The exact fluence 
rate solution to equation (11) can be written as an infinite 
series. For example, taking the Born approach, the series 
is generated by replacing U with U0 + Usc in equation (45) 
and then substituting equation (45) in for  Usc in an interative 
fashion, we obtain: 

U(rd, rs) = U0(rd, rs) + G0(rd, r)F (r)U0(r, rs) d
3 r 

+ G0(rd, r)F (r)G0(r, r )F (r )U0(r , rs) d
3 r d3 r 

+ · · · . (58) 

Here, F(r) ≡ (−vδµa(r) + δD(r) rG0(rd, r) ·  r)/D0. 
Equation (58) truncated at first order is the Born 

approximation. Inclusion of higher order terms in the series 
leads to more accurate results, but numerically evaluating the 
higher order terms is more computationally expensive [246]. 
However, for special geometries, symmetry properties of the 
fluence rate can be exploited for all of the higher order terms 
in a similar manner to the method described for the linear term 
in section 2.10.2. This scheme speeds up the reconstruction 
with higher order terms. Schotland and co-workers have 
derived an exact analytic inversion formula for the fluence rate 
written as an infinite series. For details about this approach, 
see [251, 209]. 

2.11. Fluorescence diffuse optical spectroscopy and 
tomography 

The use of extrinsic near-infrared fluorescent dyes has gained 
attention recently, in part because of their potential to target 
specific tissues and in part because of their potential to provide 
information about tissue type and tissue micro-environment. 
Some researchers in the biomedical optics field recognized 
the potential of fluorescence early on [14, 204–252] and 
set about developing theoretical formalisms to understand 
these fluorescence signals in the multiple scattering limit; 
these theories have provided a framework to quantitatively 
assess the potential of fluorescent contrast agents and to use 
fluorescence for diagnosis. Proper inversion of fluorescent data 
to derive contrast agent concentration (or fluorophore lifetime 

information), however, is more complication than DOS/DOT. 
It requires an understanding of the transport of excitation light 
and the transport of fluorescent light. Thus, most generally, a 
set of coupled equations for both diffuse light waves must be 
set up and solved. 

Fluorescence diffuse optical spectroscopy (FDOS) is a 
fluorescence analog of NIRS/DOS. Much of the theory for this 
relatively simple problem is fully developed (see, for example, 
[254, 256, 260]), and these theories have been applied in 
contexts such as photodynamic therapy [267, 268]. Similarly, 
the potential for contrast agents has stimulated the development 
and use of fluorescence diffuse optical tomography (FDOT) 
for imaging molecular-targeting probes in small animals 
[269–271], for sentinel lymph node tracking in animals and 
humans [272, 273], for imaging tumors in human breast 
[26, 274, 275], and for monitoring blood flow in human brain 
[276–279]. The feasibility of FDOS and FDOT in humans has 
thus been demonstrated. 

In a related vein, phosphorescence lifetime spectroscopy 
and tomography have been introduced as a unique means 
to measure tissue parameters such as the partial pressure of 
oxygen [280–282]. Bioluminescence tomography of tagged 
molecules has been utilized to track physiological processes 
such as gene expression [283], and the autofluorescence from 
various components of tissue components has been studied in 
oncological contexts [284–287] and in neuro-imaging [288]. 
All of these applications require knowledge of the diffuse light 
transport problem. 

2.12. Diffuse correlation tomography 

Image reconstruction with temporal correlation functions, i.e., 
diffuse correlation tomography (DCT), employs essentially the 
same theoretical techniques as DOT for CW light, because 
the underlying mathematical models are formally similar. 
In general, such reconstruction schemes permit imaging of 
spatially heterogeneous dynamics. The inverse problem, in 
this case, must reconstruct the homogeneous and spatially 
varying blood flow index, BFI(r) = BFI0 + δBFI(r), 
absorption, µa(r) = µa0 + δµa(r), and scattering, D(r) = 
D0 + δD(r). Quite often the changes in BFI dominate the 
problem, making it reasonable to assume that δµa(r) = 
δD(r) = 0 or in the case of hybrid instrumentation [76] to  
include them as inputs for the reconstructions. 

The key difference between reconstruction with correla-
tion functions versus reconstruction with the CW photon flu-
ence rate is the correlation time dependence of G1. A simple 
practical approach selects a particular time τ = τ ∗ for recon-
struction of BFI from measured G1. Zhou et al developed 
a model for estimating the reconstructed image noise in DCT 
from the DCS noise information at each source–detector pair; it 
was found that the time τ ∗ that minimizes the DCT noise satis-
fies the relation G1(r, τ  ∗ ) = G1(r, 0)e−1 [78]. This approach 
thus optimized data selection for DCT by considering both 
the experimental noise and ill-posedness of the tomographic 
problem. 
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2.13. Metabolic rate of oxygen extraction 

An important physiological parameter to monitor is the local 
metabolic rate of oxygen extraction. This quantity depends on 
the oxygen extraction fraction, i.e., the difference in oxygen 
saturation between the arterial and venous ends, and on 
blood flow. The cerebral metabolic rate of oxygen extraction 
(CMRO2) has been studied extensively in the context of the 
brain and a wide range of models have been developed to 
estimate CMRO2 from measurable quantities under different 
regimes [289–292]. 

A relatively simple model permits changes in CMRO2 

(rCMRO2) to be calculated using a synthesis of rCBF, Hb 
and THC [76, 290–292]. In this case, a compartmentalized 
model of the vasculature is assumed and an equation that 
relates the measurable quantities is derived using Fick’s 
law: CMRO2 = OEF × CBF × Ca [293]. OEF is the 
normalized oxygen extraction fraction, i.e., the difference 
between oxygen concentrations in arterial (Ca) and venous 
ends of the vasculature. Our goal is to estimate OEF 
(or changes thereof) with optical data. Since NIRS/DOS 
measures a mixture of arteriole, capillary and venuole blood 
oxygen saturation and does not separate venous from arterial 
saturations, this task is non-trivial. We refer to this mixed 
signal as ‘tissue blood oxygen saturation’ (StO2). 

A compartmental model relates microvascular blood 
oxygen saturation to the percentage of blood in the venous 
and arterial components of the vasculature [77, 294]. We write 
StO2 as a mixture StO2 = k1 × SaO2 + k2 × ScO2 + k3 × SvO2. 
Here, SaO2, ScO2 and SvO2 are the arteriolar, capillary and 
venous saturations, respectively, and k1, k2 and k3 are the 
respective weights of each compartment to the total blood 
volume (k1 + k2 + k3 = 1). A standard simplification is 
to represent ScO2 as a weighted average of the arterial and 
venous saturations; ScO2 = k4 × SaO2 + k5 × SvO2 where 
k4 + k5 = 1. The system can then be reduced to a two-
compartment model [65, 66, 76, 77, 295] to estimate rCMRO2: 

rCMRO2 = rOEF × rCBF 

SaO2 − StO2 γblSaO2bl = rCBF 
SaO2bl − StO2bl γ SaO2 

SaO2 − StO2 SaO2bl≈ rCBF. (59)
SaO2bl − StO2bl SaO2 

StO2 = HbO2/(THC) is the microvascular blood oxygen 
saturation measured by NIRS/DOS. Sub-script ‘bl’ (bl) is  
used to indicate baseline values of a parameter. Baseline 
StO2 (StO2bl) and THCbl are ideally measured but are often 
estimated from the literature values. Here γ is the percentage 
of blood in the venous compartment and if we assume that it 
remains constant over time, it divides out of our measures of 
rOEF. Thus, rCMRO2 can be directly calculated from optical 
measurements of rOEF and rCBF. 

3. Breast cancer imaging and spectroscopy 

Approximately one in eight women in the United States 
will develop breast cancer, and, about 30% of these women 
will ultimately die of the disease [296]. Thus even 

modest improvements in breast cancer screening (detection), 
diagnosis, and therapy monitoring can have huge impact in 
women’s health. While existing clinical modalities have 
reduced the morbidity and mortality rates of breast cancer, 
no single diagnostic modality is suitable for the plethora 
of management problems that arise in the clinic. For 
example, accurate detection and characterization of tumors 
is required for screening and diagnosis, whereas predictions 
about treatment efficacy are important for therapy monitoring. 
X-ray mammography, a routine screening modality, has high 
false negative rate (i.e. missing cancers) in women under 
50 years of age [297] and cannot be used too frequently 
due to the ionizing nature of x-ray radiation. Techniques 
such as ultrasound and magnetic resonance imaging (MRI) 
are sometimes employed in addition to x-ray mammography, 
but they have limitations such as high cost, low throughput, 
limited specificity (MRI) and low sensitivity (ultrasound). 
Most of these imaging modalities rely on the anatomical 
differences between cancer and healthy tissues. On the 
other hand, positron emission tomography (PET) relies on 
functional tumor contrast such as glucose metabolism and 
is recommended for assessing metastatic status. However, 
frequent measurements with PET pose problems due to its 
expense and the requirement of radioactive isotope injection. 
Thus new methods are needed to detect cancers earlier 
for treatment, to detect cancers missed by mammography 
[298–300], to reduce the false positive rate [301, 302] and to 
monitor tumor progression during cancer therapy. 

Near-infrared diffuse optical tomography and spec-
troscopy are tools that rely on functional processes for contrast 
and therefore have potential to enhance sensitivity and speci-
ficity of breast cancer detection/diagnosis. Diffuse optical 
techniques are attractive, because they provide physiological 
information directly related to tumor vascularity and oxygena-
tion, while utilizing inexpensive, non-ionizing, rapid, portable 
and non-invasive instrumentation. 

A variety of instrumentation and algorithmic strategies 
have been developed for optical mammography and 
tumor monitoring. Instruments range from hand-held 
remission systems [303–308], to tandem-scanning systems 
[309–314] to full three-dimensional tomographic systems 
[106, 111, 315–320]. These instruments generally differ with 
respect to measurement geometry (e.g., remission, parallel-
plate, ring/cone), detection type (e.g., CW, FD, TD), 
wavelength implementation (e.g., broadband versus discrete 
wavelengths) and source/detector numbers. Analysis 
algorithms vary too, ranging from analytic solutions in 
the homogeneous semi-infinite geometry to full fledged 3D 
tomographic reconstruction; algorithm choices must carefully 
consider clinical trade-offs in time and space against increased 
spectral- and spatial-content, and detection complexity for 
improved data fidelity. 

3.1. Diffuse optical mammography based on endogenous 
contrast 

3.1.1. Endogenous properties of normal breast tissue. An 
understanding of normal breast optical properties is desirable, 
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even if one’s ultimate goal is to probe cancer. Recent 
diffuse optical spectroscopic research on normal tissues has 
demonstrated sensitivity to tissue composition [321–328], 
which can change significantly with age or hormonal status. 
The subcutaneous breast tissues consist of adipose, glandular 
and fibrous stroma, and the blood supply is typically richest 
in the glandular areas [329]. Total hemoglobin concentration 
is thus expected to be larger in breasts with high glandular 
content and smaller in breasts with high adipose content. 
Since verification of actual breast composition for individual 
subject is difficult, we rely on surrogate markers such as body 
mass index (BMI) or mammographic parenchymal patterns for 
consistency checks. A significant inverse correlation between 
THC and BMI has been found, wherein high BMI is an 
indication of high adipose tissue content [320, 321, 323, 330]. 
Mammographic parenchymal patterns can be derived from 
the x-ray attenuation characteristics of fat (radiolucent) and 
epithelial and stromal tissues (radiodense) [331]. Cubeddu and 
co-workers have found that water and lipid content correlated 
well with the mammographic parenchymal pattern, which is 
an indicator of the composition of adipose and fibrous tissue 
content [330]. 

The observation that optical measurements of absorption 
and scattering can provide physiologically relevant informa-
tion about breast tissue composition [323] has been extended in 
a new direction by Lilge and co-workers. Based on parenchy-
mal pattern classification studies of x-ray mammography, it 
was found that women with dense tissue in more than 60–75% 
of the breast are at 4–6 times greater risk of breast cancer 
than others [331]. Using a principal components analysis 
of a broadband optical spectroscopy measurement, Lilge and 
co-workers have found agreement between the mammographic 
assessment of tissue density (high versus low) and optical mea-
surements with 90% accuracy [332–334]. 

3.1.2. Breast cancer detection and characterization. Tissue 
properties accessible to DOT and DOS techniques are 
demonstrably different in tumors compared with normal 
tissues [213, 305, 309, 313, 315, 318, 320, 324, 325, 335–343]. 
Among various physiological parameters available to DOT 
and DOS, most groups have reported high THC contrast in 
malignant tumors [320, 324, 336, 337, 339, 343–347]. Since 
the malignant growth of tumors is often accompanied by 
sustained angiogenesis to supply oxygen and nutrient [348], 
THC might reasonably be expected to be higher in the 
cancers compared with normal tissues. Indeed, a positive 
correlation between microvessel density and THC has been 
found, providing further insight about the microscopic origin 
of THC contrast [336, 347, 349]. The rapid growth of many 
tumor cells can also give rise to an increase in number density of 
subcellular organelles (e.g., mitochondria, nucleolus), which 
in turn affect tissue light scattering coefficients. Mean 
size and volume fraction of the nucleus and nucleolus 
measured by microscopy have indeed been correlated with 
light scattering observations by DOT [350], and some groups 
have reported tumor-to-normal contrast in tissue scattering 
parameters [122, 341, 344, 345, 347, 350]. 

Information about tumor oxygenation status is important, 
especially for predicting the efficacy of cancer therapies 
[351–353]. However, while it has been hypothesized that 
malignant cancer would exhibit low oxygenation due to 
hyper-metabolism [305], its manifestation in macroscopic 
DOT measurements has not been apparent. Some 
groups have observed a decrease of StO2 in the tumor 
[305, 343, 354–357] whereas others observed no difference 
[122, 320, 340–342, 358, 359] or even an increase [344]. This 
discrepancy may be due to dependence of cancer oxygen 
metabolism on the cancer stage, type, biochemical pathways 
or differences in oxygenation accuracy sensitivity among 
systems. 

The spatial locations of tumors based on optical contrast 
have been compared with x-ray mammograms/ultrasound 
[313, 320, 336, 350, 360, 361], and MRI [122, 362, 363]. Since 
optical and other imaging measurements were performed with 
different compression geometries, new image coregistration 
schemes [364] and algorithms [340, 365, 366] have been 
developed for quantitative comparisons between different 
imaging modalities. It was demonstrated that the spatial 
locations of optical tumor contrast agree with those identified 
by MRI and/or PET, and the extracted tumor physiological 
contrast parameters from optics have been shown to be 
correlated with PET parameters [366]. 

Ultimately, characterization of a new imaging modality 
can be established through computation of receiver operating 
characteristic (ROC) curve [367, 368]. Let us suppose that 
there is a parameter (X) from new imaging modality whose 
value seems to be higher for malignant lesions and lower 
for benign lesions. (Note: depending on the test, one 
can easily substitute ‘healthy’ or ‘non-diseased’ state with 
‘benign’.) For each value of the threshold value (Xthreshold), 
all the lesions under consideration can be grouped into 
the following four categories. Some lesions are indeed 
malignant and correctly predicted to be malignant by the new 
modality (true positive; TP); some lesions are malignant, but 
incorrectly predicted to be benign (false negative; FN); some 
lesions are benign, and correctly predicted to be benign (true 
negative, TN); and some lesions are benign, but incorrectly 
predicted to be malignant (false positive; FP). These quantities 
can be expressed as rates by dividing by the total number of 
true malignant lesions or true benign lesions: for example, 
true positive rate TPR = TP/(TP + FN) and false positive 
rate FPR = FP/(TN + FP). The ROC curve is constructed 
by plotting true positive rate on the horizontal axis and false 
positive rate on the vertical axis at different Xthreshold. A perfect 
test establishes a threshold which separates diseased and non-
diseased subjects completely, i.e., the true positive rate is 1 
and the false positive rate is 0. A useless test is one in which 
diseased and non-diseased states have the same probability 
(i.e., 50/50 chance) regardless of the threshold; in this case 
the ROC curve has slope of unity. Thus, a larger ‘Area under 
ROC curve’ (AUC) implies a better test/method. AUC of 50% 
corresponds to an ROC slope of unity (i.e., a useless test). 
Chance et al [305] used a threshold based on a combination of 
relative THC and StO2 (derived by DOS) of tumors compared 
with the tissue from the contralateral breast and obtained 
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Figure 11. (a) Tumor-to-normal ratio of total hemoglobin 
concentration (rTHC) of 10 benign and 41 malignant lesions. 
(b) Receiver-operating-characteristic curve for rTHC showing true 
positive rate for malignant lesions versus false positive rate for 
benign lesions. (Reprinted with permission from [122]. Copyright 
2009 SPIE.) 

95% AUC to discern cancer from normal tissue. Poplack et 
al [369] achieved 88% AUC for differentiating cancer from 
normal tissue, and 76% AUC for differentiating malignant 
cancer from benign lesions using rTHC derived from 3D DOT 
images for a subset of subjects with lesions larger than 6 mm; 
their AUC decreased when smaller lesions were included in 
the data set. In recent work from our laboratory [122], we 
have extracted the optical parameters from 3D reconstructed 
images based on MRI-guided region-of-interest selection. As 
seen in figure 11, there is a clear distinction between benign 
and malignant lesions in tumor-to-normal ratio of THC with 
AUC higher than 90%. Similar trends were seen in tumor-to-
normal contrast of HbO2 and the tissue scattering coefficient. 
While AUCs of DOS/DOT are relatively high, showing the 
potential of DOS/DOT for differentiating malignant tumors 
from healthy or even benign tumors, the optical methodology 
needs more assessment since the number of subjects is still low 
compared to other imaging modalities. 

At this point in time, these findings do not represent 
a final assessment of DOT performance. Most often, each 
study focused on demonstration of a particular methodology. 
Discrepancies among groups can be a function of method, 
subject groups (e.g., lesion size, percentage of benign and 
malignant lesions, etc) and lack of large-scale, blinded clinical 
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trials. Clearly much work remains, but promise has been 
demonstrated. 

3.2. Optical mammography based on exogenous contrast 

DOT can be conducted concurrently with injection of 
exogenous contrast agents. With the use of exogenous 
contrast dyes tumor contrast can be improved as a result 
of tissue-dependent spatial distributions of the dyes and 
dye lifetimes [24, 25]. Currently, ICG is the only FDA-
approved compound suitable for DOT, having an absorption 
and fluorescence spectra in the NIR window. ICG has been 
demonstrated to enhance absorption of human breast cancer 
in vivo [335, 370, 371]. 

In principle, fluorescence signals can provide greater 
detection sensitivity and specificity compared with absorption 
signals. Fluorescence signals also provide access to new 
information about tissue micro-environment, such as pO2, pH  
and intracellular calcium concentration [372, 373]. 

Sevick-Muraca and co-workers have demonstrated 
fluorescence imaging using ICG in canine breast cancer [258] 
and in realistic breast phantoms [374]. In our laboratory, we 
have recently demonstrated the first 3D fluorescence diffuse 
optical tomography (FDOT) of in vivo human breasts and 
breast cancer [26]. In figure 12, one example of FDOT is given. 
Endogenous optical signals and fluorescence signals from ICG 
injection were measured from a 46-year-old pre-menopausal 
female diagnosed with invasive ductal carcinoma. Selected 
slices from 3D DOT reconstructions of endogenous optical 
properties (i.e., THC, StO2, µ ) and 3D FDOT reconstruction s 
of ICG concentration exhibit large contrast. In a volume 
that was confirmed to be the tumor region by Gd uptake 
and radiology reports, the reconstructed THC, µ and ICGs 
concentrations were higher and StO2 somewhat lower than 
the surrounding tissue. When we take 3D isosurface images 
of THC, µ and ICG concentration contrast with iso-values s 
set to three standard deviations above their means. The iso-
surfaces of the three contrasts overlay quite well, and the 
volumetric differences may be due to real tissue physiology 
variation. Other groups have now started to report more cases 
of in vivo FDOT in human patients with enhancement of tumor 
contrast [274, 275]. 

3.3. Therapy monitoring 

Neoadjuvant (i.e., pre-surgical) chemotherapy is an important 
therapeutic approach for women with locally advanced breast 
cancer that can increase long-term survival. Typically, such 
breast cancers are large (e.g., larger than 5 cm) and many 
anticipated responses to drugs are vascular in nature. For 
treatment optimization, it is desirable to monitor tumor 
responses during this process. For example, alterations in 
tumor biology and physiology can be seen early following 
cytotoxic chemotherapy and can be a marker of tumor 
response. Dynamic contrast enhanced MRI (DCE-MRI) 
has been used to monitor the change in both tumor 
size and vascularity following pre-operative (neoadjuvant) 
chemotherapy in patients with locally advanced breast cancer 
[375–377]. Results demonstrate that even before clinical 
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Figure 12. A case of 3D optical tomography of breast with malignant cancer is shown with both endogenous (relative total hemoglobin, 
relative blood oxygen saturation and relative tissue scattering) and exogeneous contrast images (relative Indocyanine Green concentration 
measured from fluorescence) (left). On the top right, a parallel-plane DOT instrument and measurement geometry are illustrated. The 
isosurface diagram on the bottom right shows the volumetric extent of the observed tumor for each optically derived parameter. (Reprinted 
with permission from [26]. Copyright 2007 Optical Society of America.) 

or imaging evidence of tumor shrinkage are measurable, 
changes in tumor vascularity can be seen through blunting 
of the dynamic enhancement curve following intravenous 
administration of gadolinium contrast agents. Furthermore, 
positron emission tomography (PET) has found that metabolic 
changes of cancer due to cancer therapy can precede 
morphological changes by up to eight days [378, 379]. DCE-
MRI and PET, however, are expensive and are not practical for 
frequent monitoring. 

The feasibility of applying diffuse optical techniques in the 
context of cancer therapy monitoring has been demonstrated 
successfully in imaging instruments [340, 349, 380, 381] and 
with hand-held probes [84, 324, 382]. Thus far, tumor size 
and/or properties (e.g., THC, HbO2, water) detected by diffuse 
optical methods have correlated well with patient response to 
chemotherapy (i.e., complete, partial or none) [380–382]. 

3.4. Outlook: optical mammography 

The field of diffuse optics, as applied to breast cancer 
imaging and monitoring, is rapidly evolving. Innovative 
instrumentation and reconstruction algorithms have been 
developed and combined to improve image fidelity, and these 
factors continue to improve over time. In addition, more 
statistics from in vivo breast cancer data provide insight 
into the biological issues and guidance for more directed 
instrumentation and algorithm development. 

Spatial resolution and detectability are two major concerns 
about optical mammography. In general, these factors depend 
on the size and contrast of the heterogeneities we investigate. 
To date, a few groups have demonstrated that the tumors of 

order 1 cm are readily detectable with excellent sensitivity 
and specificity based on, for example, total hemoglobin 
concentration contrast [122, 305, 369]. Tumor sensitivity 
and specificity decrease as the lesion size becomes smaller 
[369], with 4–7 mm being the state-of-the-art resolution 
demonstrated in tissue phantoms at tumor-to-normal ratios of 
2× to 4× [250]. The resolution of a DOT system depends on 
the many factors, such as the number of sources and detectors, 
the field of view covered by the optodes and optode spacings, 
the tissue volume to be reconstructed, the depth of target 
(e.g., tumor), the target-to-background contrast, the presence 
of a priori spatial or spectral information and fundamentally 
on the physics of photon propagation in tissues [229]. While 
the current level of DOT resolution poses some barriers for its 
use as a stand-alone imaging modality for cancer screening, 
cancer detectability is not necessarily limited by resolution and 
can be utilized in complementary fashion with other imaging 
modalities in tumor detection and diagnosis. Strategies to 
further improve detectability and/or resolution are (1) to find 
other optical contrast related to tumoral physiological changes, 
(which may even occur before angiogenic changes) (2) to use 
anatomical constraints given by other imaging modalities to 
improve DOT resolution and (3) to enhance tumor-to-normal 
contrast based on molecular-targeted (fluorescent/absorption) 
probes. 

In the search for optical contrast to enhance differentiation 
between tumor and normal tissues, research groups are 
employing broader wavelength ranges to explore water, 
lipid and collagen concentrations, bound water fraction and 
refractive index [311, 312, 347, 357, 359, 383–385]. Some 
of the most recent investigations have found that water 
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concentration is higher in tumors compared with normal tissues 
[311, 312, 347, 357, 359], that lipid concentration is lower in 
tumors compared with normal tissues [311, 359], that the 
bound water fraction [383] and refractive indices [385] may 
provide novel tumor contrast as well. In addition, using 
diffuse correlation spectroscopy, experimenters have found 
that blood flow in breast cancer is larger than in normal breast 
tissues [84, 86]. 

Several groups have incorporated concurrent optical 
measurements with other imaging modalities. The multi-
modal approach can potentially overcome structural resolution 
limitations of DOT, using the spatial information provided 
by other imaging modalities to constrain the DOT inverse 
problem. This multi-modal approach also provides extra 
physiological information for the other imaging modalities. 
Thus far advances have been made in three fronts: 
concurrent measurements with MRI [335, 370, 386–390], 
3D x-ray mammography [213, 391, 392] and ultrasound 
[339, 346, 349, 381, 393–395] 

The most effective clinical role for diffuse optical 
tomography in the screening, diagnosis and treatment 
monitoring of breast cancer has yet to be determined. It 
is clear, however, that DOT and DOS provide exquisite 
functional information directly related to tumor patho-
physiology (e.g., metabolic activity, angiogenesis, and blood 
flow/concentration), and complementary to structural and 
functional information provided by conventional imaging. 
Furthermore, advances in diffuse optical tomography of breast 
are critical for exploitation of the advances of molecular 
imaging [24, 269, 270], an emerging field of medicine 
with promise of new generation optical contrast agents. 
Photo-acoustic, optical mammography was also recently 
reported [396]. 

4. Optical monitoring of cerebral hemodynamics 

4.1. Clinical relevance of diffuse optics for cerebral 
hemodynamics 

The ability to measure cerebral hemodynamic responses 
to stimuli has important implications in fundamental 
neuroscience, clinical modeling and the clinic. A key 
concept in the field concerns the coupling between functional 
stimulation and regional changes in cerebral blood flow (CBF). 
This phenomenon is often referred to as activation flow 
coupling (AFC). AFC has been known for over a century but is 
still poorly understood [397–400]. Since most neuro-imaging 
methods rely on AFC as an indicator of neuronal activity, 
a detailed characterization of AFC under normal conditions 
improves understanding of normal as well as pathological brain 
physiology, and it permits us to relate hemodynamic quantities 
to neuronal activity. 

Hemodynamics play other crucial roles in the brain. 
Cerebral well being is dependent on adequate and continuous 
delivery of oxygen and on the clearance of the by-products 
of oxygen consumption, e.g., carbon dioxide. In a 
simplistic picture, oxygen-saturated red blood cells (RBCs) 
are pumped through the arterial network to smaller vessels 

and into the microvasculature. Tissues are perfused by the 
microvasculature. Oxygen exchange occurs by diffusion at the 
microvascular level and the by-products are cleared, along with 
oxygen depleted RBCs, on the venous side (see section 2.13). 
In general, this phenomena is tightly autoregulated by a variety 
of processes, including changes in the vascular resistance 
[401], to maintain constant blood perfusion in spite of changes 
in local pressures and other factors (see figure 15 inset). 
In brain, local perfusion pressure (i.e., ‘cerebral perfusion 
pressure’ (CPP)) is defined as the difference between the mean-
arterial pressure (MAP) and the intracranial pressure (ICP). It 
is very difficult to monitor cerebral autoregulation in clinical 
settings. ICP can be monitored by invasive probes [402], but 
in many populations, clinicians prefer not to accept the risks 
of invasive probes; in this case MAP and neurologic signs are 
utilized as surrogate markers for ICP. 

Microvascular CBF is particularly difficult to measure at 
the bedside. To date many attempts have been made to measure 
CBF, all with unique advantages and disadvantages. Below, 
we list some of the major modalities employed in the clinic; 
research only modalities, which are very promising but not yet 
widely utilized are not included in the list [403]: 

(i) Laser speckle techniques such as laser Doppler flowmetry 
(LDF) rely on physical principles similar to those of 
DCS [50]. These techniques can measure microvascular 
CBF. However, practical problems in detection and overly 
simplified modeling largely restrict the use of LDF to 
the single scattering and limit its uses to about ∼0.5 mm  
below the tissue surface (see section 1). Therefore, the 
skull must be removed to access the brain, and clinical 
applications are limited to intraoperative measurements 
[404–406]. Recent, developments now permit penetration 
up to ∼5 mm in skeletal muscles [407], but the technology 
is not yet useful for non-invasive, transcranial monitoring. 
Another variant of the method, laser speckle flowmetry 
(LSF) using a CCD camera, has recently been introduced 
to examine cerebral hemodynamics in rodents [408, 409]. 
It has not yet been widely commercialized, however, 
and its application in humans is limited to measurements 
during open-skull surgery [406]. 

(ii) Doppler ultrasound uses the frequency shifts in an 
ultrasound beam to image blood flow. However, due 
to technical issues only the proximal portions of the 
intracranial arteries can be insonated. Thus far the 
ultrasound method has only been used to measure blood 
flow velocity through large vessels, i.e., macrovascular 
blood flow velocity [410, 411]. Furthermore, since 
velocity changes predict CBF variation only if vessel 
diameters do not change, transcranical Doppler ultrasound 
(TCD) has limited utility in important clinical applications 
such as stroke evaluation [412], with its success arising 
in patients with proximal arterial occlusions [413]. 
Nevertheless, TCD remains a primary clinical modality 
for serial monitoring of CBF at the bedside. 

(iii) Arterial-spin labeling MRI (ASL) [414–416] and flow-
sensitive alternating inversion recovery MRI (FAIR) 
[417, 418] are two modalities of magnetic resonance 

imaging (MRI) sensitive to perfusion/flow that have 
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been used extensively in the brain. Additional MRI 
modalities are available for perfusion measurements, 
but they require bolus injections. Although these 
MRI methods offer a ‘full-head’ imaging capability and 
can readily be co-registered with the high-resolution 
anatomical information of MRI and other functional MRI 
modalities (e.g., blood oxygen level dependent, BOLD), 
their use in clinical settings is limited. For example, the 
presence of strong magnetic fields makes them difficult 
to use in intensive care units, and their low throughput 
relegates their use to a single-shot measurement where 
the patients are transferred into the magnet for one 
∼30–60 min observation. Furthermore, the instruments 
and instrument time are expensive. Some difficulties also 
arise from patient specific problems; for example, it is 
sometimes difficult to hold infants still, and some patients 
are claustrophobic. 

(iv) Xenon computed tomography (xenon CT) is used in the 
clinic for measurements of ‘full-head’ maps of cerebral 
blood flow [419, 420]. The modality dynamically scans 
the head using a CT system while the patient inhales 
xenon gas. The method is gaining acceptance as a 
complementary modality in some intensive care units, i.e., 
in preference over MRI and PET modalities. As in the 
case of MRI, however, the use of xenon CT is limited 
to few time points, even though quasi-portable variants 
are available to reduce patient transport issues. Finally, 
the instrument and the xenon gas are quite expensive, 
and xenon gas is also known to alter CBF which makes 
quantification more difficult. 

(v) Positron emission tomography (PET) is a diagnostic 
modality that offers direct measurements of a variety 
of physiological parameters including blood flow [421], 
glucose metabolism [422] and oxygen metabolism 
[421]. However, use of radioactive materials limits its 
applicability in many clinical settings such as the intensive 
care unit [423]. PET shares problems with MRI and 
xenon CT as per expense, availability, patient discomfort 
and limitations for long-term monitoring. Finally, PET 
requires injection and/or inhalation of chemicals and uses 
radioactive materials. 

Clearly, an optimal method for hemodynamic monitoring 
has yet to be developed. A strong need exists for 
an inexpensive, continuous, non-invasive instrument for 
measurement of CBF and the technologies described in this 
review offer a great deal of promise along these lines. Diffuse 
optical tomographic and spectroscopy (i.e., DOT and DOS) 
methods have been demonstrated to measure blood volume, 
blood oxygenation and changes thereof, in research and 
clinical settings; in addition, through some maneuvers, it is 
also possible to employ DOS/DOT for the measurement of 
blood flow. DOS/DOT has been particularly successful in 
infants [144, 424–430]. The development of DCS has had 
even more impact, however, because it permits clinicians to 
measure several hemodynamic parameters independently with 
non-invasive probes (i.e., the hemoglobin concentrations and 
the blood flow), thus permitting estimation of changes in 
oxygen metabolism. 

The primary advantages of diffuse optics for monitoring 
cerebral hemodynamics in the clinic are as follows: 

(i) The technique is non-invasive and involves no risk to the 
patient (e.g., no ionizing radiation, no gases to be inhaled 
or drugs to be injected). 

(ii) The technique samples and reports results in real time. 
(iii) The technique can track changes over long periods (hours 

to days), in contrast to single-time-point modalities (e.g., 
MRI, PET, xenon CT). 

(iv) The technique can sample more than one spatial location, 
permitting examination of regional differences in the 
brain. 

(v) The technique can be employed at the bedside; critically 
ill patients need not be moved. 

(vi) The technique is applicable to measurements patients of 
all ages, from pre-mature born infants to adults. 

(v) The instrumentation is relatively inexpensive and the per-
measurement costs are minimal. 

Diffuse optical measurements also have limitations: 
relatively short penetration beyond the skull/scalp, relatively 
coarse spatial resolution, limited structural/morphological 
information which makes partial volume effects more difficult 
to account for and difficulties with the assignment of absolute 
optical properties. Furthermore, as with any new modality 
proposed for clinical use, diffuse optical monitors must 
demonstrate clinical utility in large, controlled trials before 
mainstream acceptance is assured. For applications in 
neurology, portable devices that monitor hemodynamics in 
large tissue volumes are popular due to the relative simplicity of 
the instrumentation and analysis algorithms, and due to simple, 
comfortable probe heads. Several topographic (2D) and 
tomographic (3D) imagers are used now to map hemodynamic 
changes locally or globally [431, 432], and various approaches 
ranging from dense probe designs to utilization of secondary 
data have been considered to optimize the spatial resolution 
[135, 433]. Given these pros and cons, we now consider 
clinical applications at the present state of diffuse optics 
technology. 

4.2. Selected translational results 

Optical imaging—ranging from microscopy methods to 
diffuse optics—has found a myriad of applications in brain 
imaging [431, 432]. It is beyond the scope of this review to 
describe this wide-ranging field. Here we limit our discussion 
to those translational applications wherein diffuse optical 
methods are used in the clinic. 

Broadly speaking, two groups of studies have been 
employed: (1) those using commercial devices [432] 
and (2) those using state-of-the-art research devices and 
algorithms [432]. 

Thousands of commercial instruments are currently in 
use with a rapidly increasing number of studies being 
published as a result [432]. Unfortunately, some of these 
studies have been done without state-of-the-art instrumentation 
and/or algorithms, and over the years, the lack of optimized 
methodology has led to some debate over the utility of 

25 



0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

20 

150 

100 

Rep. Prog. Phys. 73 (2010) 076701 T Durduran et al 

200 

rC
B

F
 (

%
) 

CO
2
 ON 

rCBF(DCS) 
rCBF(LDF)
∆EtCO

2

 0  2  4  6  8 10 12 14 16 

10150 

0100 

50 –10 

C
on

ce
nt

ra
tio

n 
(µ

M
) 

E
tC

O
 (

m
m

H
g)

2 

(a) 
(b) Minutes 

200 20 200 20 

10 

(d) 

Finger TappingrCBF 
rCMRO

2 

∆HbO
2 

∆Hb 

50 

rC
B

F
 (

%
) 

Finger TappingrCBF 
rCMRO

2 

∆HbO
2 

∆Hb 

C
on

ce
nt

ra
tio

n 
(µ

M
) 

rC
B

F
 (

%
) 150 

0 100 

–1050 –10(c) 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 

Figure 13. (a) Schematic showing placement of probes used for hypercapnia (frontal) and sensorimotor (side) studies. For the frontal 
probe, a laser Doppler flowmetry (LDF) probe was placed mid-way the source and detector fibers to record scalp blood flow. (b) Increased 
CO2 breathing (hypercapnia) results in significant increases in end-tidal CO2 (EtCO2) and blood flow in brain (rCBF(DCS)) but only a 
negligible amount in scalp blood flow (rCBF(LDF)). (c)–(d) Hemodynamic response to finger tapping when the probe is placed (c) away  
from the contralateral sensorimotor cortex and (d) when its placed on the contralateral sensorimotor cortex. (Reprinted with permission 
from [66]. Copyright 2004 Optical Society of America.) 

(particularly) NIRS/DOS [434–436]. We believe that 
NIRS/DOS and related techniques offer a great deal of promise 
and with improvements in technology and improvements in 
physical understanding about photon propagation through 
tissues and its modeling, the utility of NIRS/DOS will rapidly 
become more apparent. Commercial systems are, indeed, 
crucial for the clinical penetration of the technology, but until 
large-scale clinical trials have been performed, instrumentation 
needs to be handled as research tools. At this point, at 
least three [432] devices have the USA Food and Drug 
Administration’s approval for use in patient populations. 

Amongst many potential applications, NIRS/DOS has 
been utilized for cerebral monitoring of adults with traumatic 
brain injury (TBI) and subarachnoid hemorrhage (SAH) 
[437–442], ischemic stroke [80, 276–279, 443–450] sleep 
apnea and other sleep disorders [451–454], intraoperative 
brain monitoring [455, 456] and in neonates and children 
[430, 457–459]. This list is not exhaustive; it is meant to give 
a ‘flavor’ of the field. Over the years, NIRS/DOS has been 
utilized for a very wide range of applications, but unfortunately 
largely for feasibility demonstrations. 

4.2.1. Hemodynamics of healthy brain. Figure 13(a) shows 
a schematic and data from two studies conducted in our 
laboratory [65, 66]. Here we have combined NIRS/DOS and 
DCS methods in a hybrid instrument [65, 77]. For NIRS/DOS, 
three, amplitude modulated (70 MHz, ‘frequency-domain’) 
lasers operating at 690, 785 and 830 nm were employed as 

light sources. A photomultiplier tube (PMT) was used as a 
detector and its output was fed to a radio-frequency, homodyne, 
I&Q demodulation electronics box which calculated the 
relative amplitude and phase [460]. NIRS/DOS data were 
analyzed using the ‘differential pathlength factor’ (DPF, see 
section 2.8.2) formulation [143]. For DCS, a long coherence 
length, continuous-wave laser was used as a source. Eight 
photon-counting, fast avalanche-photodiodes (APDs) and a 
multi-channel autocorrelator board was used. DCS data 
were analyzed using a semi-infinite medium solution (see 
section 2.9.3) [65, 76, 77]. The fiber optics from the two 
devices were mounted on the same probe and were time shared; 
data were acquired in an interlaced sequence by utilizing 
optical switches. 

Figure 13(b) shows data from a hypercapnia experiment 
wherein we have measured the CBF response to increased 
carbon dioxide (CO2) breathing. We measured CBF in five 
subjects at rest, and during 4–6 min periods of increased 
cerebral carbon dioxide induced by breathing a 6% CO2 gas 
mixture. In healthy subjects, hypercapnia causes a well-
defined increases in CBF [461]. We observed a sustained 
increase in mean CBF of 35.4 ± 9.6%, and an accompanying 
increase in EtCO2 of 14.7 ± 4.7 mmHg. This relative rate 
corresponds to a 2.4 ± 0.4% CBF increase per mmHg of 
EtCO2, a number well within the literature values (i.e., 2– 
3.6%/mmHg). During this investigation we also placed a laser 
Doppler probe on the scalps of a subset of volunteers. The 
probe enabled us to directly compare CBF measured by DCS 
with scalp flow measured by laser Doppler flowmetry (LDF) 
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Figure 14. (a)–(b) Morphological MRI scans showing location of fiducial markers indicating the location of NIRS/DOS probe which is 
then overlaid onto BOLD and ASL scans to define ROIs. As shown in (c), an MRI compatible NIRS/DOS probe was used for simultaneous 
data acquisition. (d) Group averaged responses from simultaneous ASL, BOLD and NIRS/DOS studies. Temporal evolution of NIRS/DOS 
measures of THC and HbO2 agree with ASL and Hb agrees with BOLD. Note how ASL, THC and HbO2 maxima are earlier than 
BOLD and Hb maxima. Hb curve is shown inverted. (Reprinted with permission from [471]. Copyright 2006 Elsevier.) 

during activation. Figure 13(b) shows these measurements for 
one subject, along with measured EtCO2. Note that the scalp 
flow signal is small compared with CBF measured by DCS 
and largely unchanged with changes in EtCO2 (right vertical 
axis). These studies demonstrate the DCS signal does not arise 
from changes in scalp blood flow, but some contamination is 
inevitable. 

Figures 13(c) and (d) show data from an experiment where 
the subject was asked to carry out a task that would stimulate 
the sensorimotor cortex [66]. First, we localized the hand 
sensorimotor cortical area contralateral to the dominant hand 
according to the 10–20 system [462]. The probe (figure 13(a)) 
was placed and secured over this region. For the activation 
period, the subject was instructed to tap index and middle 
fingers against the thumb at 3 Hz. A blocked design of fifteen 
such stimuli was used. In order to illustrate the local nature 
of the observed response, we have also taken data where the 
whole process was repeated with probe placed ∼2 cm frontal 
to the sensorimotor cortex. Figure 13(c) shows the results of 
one such study. None of the observed quantities show any 
changes that are correlated with the stimuli despite the fact 
that stimuli were presented during the time period shown by 
vertical bars. Figure 13(d) shows the population averaged 
results from seven subjects; a robust change correlated with 
the activation was observed in all quantities. Mean changes 
observed were 39±10% for rCBF, 12.5±2.8 µM for HbO2, 
−3.8 ± 0.8 µM for Hb, 8.3 ± 2.3 µM for THC and 
10.1 ± 4.4% for rCMRO2. rCBF changes are well within 
the range of values determined by MRI [463, 464], [H2 

15O] 
PET [465], [133Xe] [466] and [11CH3] PET [467] for similar 
measurement stimuli, i.e., 21–60%. Mean oxy-, deoxy- and 
total-hemoglobin changes agree quantitatively with increases 
reported by BOLD of 2–4% [463, 468]. The increase in 
CMRO2 is within the range of values (9–29%) from hybrid 
MRI measurements [463]. The ratio of rCBF to rCMRO2 is 
also agreement with data reported by hybrid MRI techniques 
[463, 469] which range from two to four. 

Overall, these results demonstrate the ability of 
NIRS/DOS and DCS to probe local changes in cerebral 
hemodynamics. 

4.2.2. Diffuse optics versus fMRI. Since NIRS/DOS and 
DCS both employ fiber optics to deliver and detect light, they 
are readily adaptable for use concurrently in the MRI magnet 
using MRI compatible probes and long optical fibers. This 
permits cross-validation studies, as well as utilization of MRI 
derived spatial information for diffuse optical data analysis. 
In a series of papers, Boas and co-workers have compared 
NIRS/DOS with BOLD and ASL-MRI; in so doing, they have 
also developed models to describe the physiological origin 
of the BOLD signal, to account for partial volume effects in 
NIRS/DOS signals and to derive composite models to estimate 
rCMRO2 [470–475]. 

Here we highlight one study [471] that compares the 
temporal properties of NIRS/DOS signals with BOLD and 
ASL-MRI. As shown in figure 14, the temporal evolution 
of NIRS/DOS determined THC and HbO2 agree with 
ASL-MRI and Hb agrees with BOLD. Notice how ASL-
MRI derived CBF, THC and HbO2 maxima arise earlier 
than BOLD and Hb maxima. Hb and BOLD are 
strongly correlated while THC and BOLD exhibit a weaker 
correlation, in agreement with biophysical models for the 
BOLD signals. It has long been assumed that NIRS/DOS 
measures of THC (or blood volume) would correlate with 
CBF under many circumstances. These results explicitly 
demonstrate strong correlation between these signals. 

4.2.3. Longitudinal bedside monitoring. One of the most 
promising applications of diffuse optics is at the bedside 
for longitudinal monitoring of cerebral hemodynamics. To 
demonstrate this idea and to test the feasibility of hybrid 
NIRS/DOS-DCS measurements on a critically ill population 
of acute, ischemic stroke patients, we have induced orthostatic 
stress by changes in head-of-bed positioning as shown in 
figure 15 [80]. Our hypothesis was that in response to this 
challenge, the impaired cerebral autoregulation would lead 
to larger changes in cerebral hemodynamics in the infarcted 
hemisphere by comparison with the ‘healthy’, contralateral 
hemisphere. 

To this end, diffuse optical measurements were obtained 
from patients with acute hemispheric ischemic stroke (n = 17, 

27 

~ 1.2 
~ 1.0 
';;' 0,8 
g1 0 .6 
~ 0.4 -
() 0.2 
~ 0.0 
= -0,2 
~ -0.4 
o -0,6 · 
z -0.8 +--r---.---.-..:.µ.u;..I -,-~~~ 

0 2 4 6 8 10 12 14 16 18 
Time (s) 

d 



Rep. Prog. Phys. 73 (2010) 076701 T Durduran et al 

0o 0o30o 15o –5o 

0 6 12 18 24 30 
–10 

–5 

0 

5 

10 

∆T
H

C
(µ

M
) 

Left ∆THC 
Right ∆THC 

–150 

–25 

100 

225 

350 

rC
B

F
(%

)

Left rCBF 
Right rCBF 

Min 

Figure 15. (Top) Cerebral autoregulation implies a range of cerebral perfusion pressure (CPP) values where CBF is kept constant. As 
shown in the inset, impairment causes CBF to depend passively on CPP. Head-of-bed positioning was used to induce orthostatic changes in 
CPP. Schematic showing placement of probes where one is placed on the infarcted hemisphere and the other on contralateral, ‘healthy’ 
hemisphere. (Bottom) Changes in THC and rCBF are significantly larger on the infarcted hemisphere (right) which is presumably due to 
impaired cerebral autoregulation. (Reprinted with permission from [80]. Copyright 2009 Optical Society of America.) 

mean age 65 years) with probes placed on the forehead near 
the frontal poles (figure 15 (top, right)). CBF and hemoglobin 
concentrations were measured sequentially for 5 min each at 
HOB positions: 30◦, 15◦, 0◦ , −5◦ and 0◦ and normalized 
to their values at 30◦ . Figure 15(bottom) shows continuous 
CBF data taken over 25 min from a representative subject 
with acute ischemic stroke. A clear differentiation is observed 
between two hemispheres; this differentiation was statistically 
significant over the whole population. In contrast, when an 
age-matched group with ‘vascular risk factors’ was studied, 
i.e., risk factors such as cigarette smoking, high blood pressure, 
etc, we did not observe any hemispherical differentiation. 
Interestingly, in ∼25% of subjects, we have observed that CBF 
was not maximized at −5◦; rather it was minimized at this 
HOB angle. This paradoxical response was also observed in 
traumatic brain injury patients [476]. The effect was likely 
a result of a substantial increase in intracranial pressure, a 
parameter that is not routinely monitored in ischemic stroke 
patients. 

This example illustrates how diffuse optical instrumenta-
tion can be deployed at the bedside of critically ill-patients, 
and how it may be promising for use as a tool to optimize pa-
tient care based on cerebral hemodynamic measurements in 
real time. 

4.2.4. Full head, 3D tomography in neonates. Amongst 
numerous applications of NIRS/DOS to neonatal studies, few 
groups have reported three-dimensional, tomographic imaging 
of the whole head [457, 477–481]. As discussed in previous 
sections, 3D tomography with NIRS/DOS has mostly been 
limited to less absorbing tissues such as the breast. New 
results, while still very preliminary, demonstrate the feasibility 
of whole-head imaging in neonates by taking advantage of 
their smaller head circumferences and thinner skulls. When 

combined with other modalities such as ultrasound, MRI or CT, 
this approach could provide valuable physiologic information 
in addition to the mostly morphological information available 
via other modalities. Figure 16 (from [477]) shows a photo 
of the probe on a subject and coronal sections of images of 
blood volume and blood oxygen saturation as it compares 
with an ultrasound image from a 34-week gestational age 
infant. In general, 3D scans such as this one show a left/right 
symmetry between hemispheres, except in the presence of a 
condition such as a hemorrhage. The images shown are from 
an infant who was diagnosed with a left-sided intraventricular 
hemorrhage which is also visible on the ultrasound image. 
A clear increase in blood volume is evident on the left 
hemisphere, consistent with the presence of the hemorrhage. 
In the blood oxygen saturation image, a small region of 
significantly low oxygen saturation (10% versus 62% on 
the contralateral side) that is apparent; it is more lateral 
and superficial than both the ultrasound and blood volume 
images. This observation may be attributed to the presence 
of an ischemic penumbra surrounding hemorrhagic lesions, 
or it may be due to issues with optical image reconstruction. 
Nevertheless, the authors reported data from ∼40 infants 
showing the feasibility of 3D tomography in neonates. This 
type of approach may become more common in the future with 
improved probe designs, detectors and newer reconstruction 
algorithms. 

5. Other applications 

Due to space constraints, we have chosen to focus on breast 
and brain applications. Other applications include, but 
are not limited to, imaging and monitoring in pre-clinical 
and clinical oncology [482], monitoring of muscle diseases 
and physiology [432, 483], photo-dynamic therapy planning 
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Figure 16. (Left) Placement of probes on an infant. (Right) Coronal sections showing (a) blood volume, (b) blood oxygen saturation and 
(c) the corresponding ultrasound image. (Reprinted with permission from [477]. Copyright 2007 Springer Science and Business Media.) 

[484, 485], in-surgery monitoring [455] and guidance 
[272, 486], dermatology [487] and tomography of finger 

joint physiology and disease [488, 489]. The biomedical 
optics field has, more broadly, also been branching into many 
other clinically exciting directions with tools ranging from 
optical coherence tomography to photo-acoustic tomography 
and microscopy to optical projection tomography. Interested 
readers will find more information about these subjects 
in [490–494]. 

6. Conclusion 

In this review, we have outlined the physical and algorithmic 
foundations of near-infrared (NIRS) or diffuse optical (DOS) 
spectroscopy, diffuse correlation spectroscopy (DCS) and 
diffuse optical tomography (DOT). We have showcased their 
applications in two subfields: optical mammography and 
cerebral hemodynamics. These subfields were chosen because 
they are, arguably, the two areas with the largest amount of 
diffuse optics research activity. The field has now evolved to 
a point wherein substantial effort is oriented toward clinical 
application. In the near future, improved understanding of 
photon propagation in tissues, better access to algorithms 
and computational resources, new developments in laser and 
detector technologies, and increasing amounts of clinical data 
will enable these developments. 
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