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temperature differences exist between the day and 
night faces of the planet, consistent with a model 
in which very little horizontal energy transport 
occurs in the planetary atmosphere. Furthermore, 
it indicates that the opportunities for direct 
extrasolar planetary observations are better than 
previously thought, because useful data can be 
obtained even in cases where the planetary orbit is 
not so fortuitously aligned that the system exhibits 
transits or eclipses. 
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Brownian Motion of an Ellipsoid 
Y. Han,1 A. M. Alsayed,1 M. Nobili,2 J. Zhang,1 T. C. Lubensky,1* A. G. Yodh1 

We studied the Brownian motion of isolated ellipsoidal particles in water confined to two 
dimensions and elucidated the effects of coupling between rotational and translational motion. By 
using digital video microscopy, we quantified the crossover from short-time anisotropic to long-
time isotropic diffusion and directly measured probability distributions functions for displacements. 
We confirmed and interpreted our measurements by using Langevin theory and numerical 
simulations. Our theory and observations provide insights into fundamental diffusive processes, 
which are potentially useful for understanding transport in membranes and for understanding the 
motions of anisotropic macromolecules. 

Brownian motion (1), wherein small 
particles suspended in a fluid undergo 
continuous random displacements, has 

fascinated scientists since before it was first 
investigated by the botanist Robert Brown in the 
early 19th century. The origin of this mysterious 
motion was largely unexplained until Einstein's 
famous 1905 paper (2) that established a relation 
between the diffusion coefficient of a Brownian 
particle and its friction coefficient. One year later 
(3), Einstein extended the concept of Brownian 
dynamics to rotational and other degrees of free-
dom. The subsequent study of Brownian motion 
and its generalizations has had a profound impact 
on physics, mathematics, chemistry, and biology 
(4). Because direct detection of translational 
Brownian motion is relatively easy, many exper-
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iments elucidating the ideas of translational diffusion 
have been carried out. On the other hand, the direct 
visualization of rotational Brownian motion has 
not been an easy task, and fundamental concepts 
about motions of anisotropic macromolecules 
remain untested. For this contribution, we used 
digital video microscopy to study the Brownian 
motion of an isolated ellipsoid in suspension and 
thus directly observed the coupling effects 
between rotational and translational motion. 

Particle anisotropy leads to dissipative cou-
pling of translational to rotational motion and to 
physics first explored by F. Perrin (5, 6). A 
uniaxial anisotropic particle is characterized by 
two translational hydrodynamic friction coeffi-
cients, ga and gb, respectively, for motion par-
allel and perpendicular to its long axis. If a 
particle's rotation is prohibited, it will diffuse 
independently in directions parallel and perpen-
dicular to its long axis with respective diffusion 
constants of Da = kBT/ga for a either a or b, 
where kB is Boltzmann’s constant and T is the 
temperature. In general, ga is less than gb (7), 
and consequently Da is greater than Db. If  

rotation is allowed, rotational diffusion, charac-
terized in two dimensions by a single diffusion 
coefficient, Dq, and associated diffusion time, tq = 
1/(2Dq), washes out directional memory and leads 
to a crossover from anisotropic diffusion at short 
times to isotropic diffusion at times much longer 
than tq. Figure 1, A and B, presents numerical  
simulations (8) that illustrate this behavior. Our 
experiments, which were restricted to two 
dimensions (2D), provide explicit verification of 
this behavior and some of its extensions. In 
addition, we show that a fundamental property of 
systems with dissipatively coupled translation and 
rotation is the existence of non-Gaussian proba-
bility density functions (PDFs) for displacements 
in the lab frame. 

Micrometer-sized PMMA (polymethyl meth-
acrylate) uniaxial ellipsoids (9) were under strong 
quasi–two-dimensional confinement in a thin 
glass cell. The choice of 2D rather than 3D for 
these studies substantially simplified the experi-
mental imaging tasks as well as the data 
acquisition time and storage requirements. The 
choice also ensured that the measured effects 
would be large by virtue of the much larger 
friction anisotropy in 2D compared with 3D. 
The local cell thickness was ~1 mm. It was mea-
sured to within 0.1 mm resolution by comparing 
the Michel-Levy chart (10) to the reflected 
interference colors produced by the two inner 
surfaces under white light illumination on the 
microscope (Fig. 1D). To avoid interactions 
between ellipsoids, we made the solution very 
dilute. The Brownian motion of a single ellipsoid 
in water was recorded by a charge-coupled de-
vice (CCD) camera on a videotape at 30 frame/s. 
From the image analyses, we obtained data sets 
consisting of a particle's center-of-mass positions 
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x(tn) = [x(tn), y(tn)] in the lab frame and its 
orientation angles q(tn) relative to the x axis at 
times tn = n(1/30) s, as shown in Fig. 1F. The 
orientational resolution is 1°, and spatial reso-
lutions are 0.5 pixel = 40 nm along the particle's 
short axis and only 0.8 pixel along its long axis 
because of the superimposed small tumbling 
motion. We define each 1/30-s time interval as a 
step. During the nth step, the particle's position 
changes by dx(tn) =  x(tn) − x(tn−1) and its angle 
by dq(tn) =  q(tn) − q(tn−1).  From  the data set, we  
extract an ensemble of particle trajectories start-
ing at different times t0 and ending a time t later. 
The total positional and angular displacements 
in these trajectories are, respectively, Dx(t) =  
x(t + t0) − x(t0) and  Dq(t) =  q(t + t0) − q(t0). 

We first consider the statistical properties of 
q(t), which, as pointed out by Perrin (6), are 
independent of translational motions. We 
measured data from a 30-min trajectory of a 2.4 

mm–by–0.3 mm–by–0.3 mm ellipsoid confined in 
an 846-nm-thick cell (Fig. 2A). The inset shows 
that the mean-square angular displacement 
〈[Dq(t)]2〉 equals 2Dqt, where the average 〈 〉  is 
over all trajectories with different starting times 
t0. The mean-square angular displacement has 
diffusive behavior over the entire range of 
observable times with a rotational time of tq = 
1/(2Dq) = 3.1 s. Over the time scales we can 
observe, this diffusive behavior is independent 
of q0. The PDF for Dq(t) was measured to be 
Gaussian with variance 2Dqt, and the angles q(t) 
were measured to be uniformly distributed in 
[0,2p]. 

We now turn to the statistics of translational 
motion whose full understanding is facilitated 
by the consideration of decomposing the 
displacement dxn into its components d x̃ni 
relative to the body frame or dxni relative to 
the fixed lab frame. As shown in Fig. 1C, the 

Fig. 1. (A and B) 10,000-step 2D random walk trajectories for an ellipsoid with Da = 0.99 and  Db = 0.01  
during tq and 100tq, respectively. tq is the time for the ellipsoid to diffuse 1 rad. (A Inset) 10,000-step 
trajectory for a sphere with Da = Db = 0.5  during  tq. The initial positions are represented by a green 
ellipse and a sphere. At step times long compared with tq, the coarse-grained 100-step black trajectory in 
(B) is similar to that of the random walk of a spherical particle in fig. S1. (C) Representation  of an  
ellipsoid in the x-y lab frame  and the  x̃- ỹ body frame. The angle between two frames is q(t). The 
displacement dx can be decomposed as (dx, dy) or (dx̃, dỹ). (D) True interference color in the reflection 
mode of the microscope. (E) Ellipsoid image in the transmission mode. (F) A typical 20-s experimental 
trajectory with step 1/30 s. Da/Db = 4.07. Orientations are further labeled with a rainbow color scale. For 
example, the purple parts of the trajectory reflect a higher mobility along the y direction, and the red 
parts reflect a higher mobility along the x direction. 

two are related via a rotation, d x̃ni = Rijdxnj, 
where the Einstein summation convention on 
repeated indices is understood and Rij = 

cosqn sinqn is the rotation matrix with −sinqn cosqn 

qn = [q(tn−1) +  q(tn)]/2. In practice, choosing 
qn = q(tn−1) or  qn = q(tn) has little effect on our 
results because q barely changes during 1/30 s. 
We can construct total body-frame displace-
ments by summing over displacements in each 
step, x̃ðtnÞ ¼ ∑n d x̃k , and from ˜ ) we  can  k¼1 x (tn 

construct body-frame displacements for trajec-
tories of duration t at starting time t0 via Dx̃ (t) =  
x̃ (t + t0) − x̃ (t0). 

Mean-square displacements (MSDs) in the 
body frame and in the lab frame were averaged 
over all trajectories with different initial angle 
q0 ≡ q(t0) (Fig. 2A). They are all diffusive with 
〈[D x̃ (t)]2 〉 = 2Dat, 〈[D ỹ (t)]2〉 = 2Dbt, and  
〈[Dx(t)]2〉 = 〈[Dy(t)]2〉 = (Da + Db)t ≡ 2 Dt. The  
full average 〈 〉 for any observable A can be viewed 
as an ensemble average of trajectories at fixed 
q0 followed by a second average over all q0: 〈A〉 = 

1[〈A〉q0 ]av = 2p ∫0
2pdq0〈A〉q0 . 

A particle with a given initial angle will 
diffuse more rapidly along its long axis than 
along its short axis. As time progresses, 
however, memory of its initial direction is lost, 
and diffusion becomes isotropic. Thus, averages 
over trajectories at fixed q0 should exhibit a 
crossover from early-time anisotropic to late-
time isotropic diffusion. Our measurements with 
q0 = 0 of the time-dependent diffusion co-
efficients Dxx(t) =  〈[Dx(t)]2〉0/(2t) and  Dyy(t) =  
〈[Dy(t)]2〉0/(2t) =  〈½DxðtÞ�2〉p/(2t) provide direct 

2 

verification of this crossover (Fig. 2B): At t << tq, 
Dxx equals Da and Dyy equals Db, whereas for 
t >> tq, Dxx equals Dyy equals D. 

The anisotropic-to-isotropic crossover was 
calculated in 3D by Perrin (6) and is mentioned 
in qualitative terms in a 3D simulation (11). We 
calculate the properties of this transition in 2D 
within the Langevin formalism and compare 
them with experiment. Because our time scales 
are much larger than the momentum relaxa-
tion times of a micrometer-sized particle in 
water (I/grot ~ m/g ~ 10−7 s), we can ignore in-
ertial terms. The Langevin equations for dis-
placement and angle in the lab frame in the 
presence of external forces described by a 
Hamiltonian H are 

∂H
∂txi ¼ −Gij ðqÞ þ xiðtÞ ð1aÞ

∂xj 
∂H

∂t q ¼ −Gq þ xq ð1bÞ
∂q 

where i = x,y for 2D and Gij = gij 
−1 is the mo-

bility tensor, which can be expressed in terms of 
the unit vector n(t) ≡ n[q(t)] specifying the direc-
tion of the local anisotropy axis as Gij(t) =  Gbdij + 
DGni(t)nj(t) =  Gdij + DGMij[q(t)]/2, where G = 
(Ga + Gb)/2, DG = Ga − Gb, and  Mij(q) =  
cos 2q sin 2q 

. xq(t) and  xi(t) are ran-sin 2q −cos 2q 
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dom noise sources with zero mean and respec-
tive variances, 〈xq(t)xq(t′)〉 = 2kBTGqd(t − t′) =  
2Dqd(t − t′) and  〈xi(t)xj(t′)〉q(t) =2kBTGij[q(t)]d(t − t′), 
dictated by the Einstein relation or equivalently 
by the requirement that thermal equilibrium be 
reached at long times. We retain H in Eq. 1 even 
though the external forces are zero in our 
experiments to emphasize that the mobilities Gij 

and Gq relating velocity and angular velocity to 
force and torque, respectively, determine the 
variances of the random noise sources. xq(t) 
obeys Gaussian statistics at all times, as does xi(t) 
for a fixed angle q(t). The average 〈A〉q0 of any 
measurable quantity is equivalent to the average 
of A over both xi(t) and  xq(t) at  fixed  q0. 

Because there are no external forces in our 
experiments, we can set ∂H/∂x = 0 and  ∂H/∂q = 0.  
Equation 1b for q(t) is simply the Langevin equa-
tion for 1D diffusion. It yields a time-independent 
diffusion coefficient Dq = 〈[Dq(t)]2〉/(2t), a 
Gaussian PDF for Dq(t) with variance 2Dqt, 

inDq(t)〉and consequently 〈cosnDq(t)〉 = Re〈e = 
−n2Dqtcosnq0e . From this we can calculate (8) the  

time-dependent displacement diffusion tensor 
for fixed q0: 

Dijðt,q0Þ ¼ h½DxiðtÞ�½DxjðtÞ�iq0 
=ð2tÞ 

DD t4ðtÞ ¼ Ddij þ Mijðq0Þ ð2Þ 
2 t 

−nDqt ′ where DD ≡ Da − Db and tn(t) ≡ ∫0 
tdt′e = 

(1 − e−nDqt )/(nDq). Dxx(t,0) and Dyy(t,0) 
quantitatively match experimental results for 
q0 = 0 as shown in Fig. 2B, with Da, Db, and  Dq 

equal to their values obtained from Fig. 2A. The 
average of Dij(t, q0) in Eq. 2 over initial angles q0 

yields Dxx = Dyy = D , in agreement  with  the  
MSDs of x and y in Fig. 2A. The 3D counterpart, 
Dxx = Dyy = Dzz = (Da + Db + Dc)/3, is widely 
used in dynamic light scattering (12). 

Unlike spheres, anisotropic particles have 
anisotropic friction coefficients that are respon-
sible for the coupling of translation and rotation. 

This coupling leads to nontrivial mixed correla-
tion functions such as 

inq〉=t〈DxiDxje ¼ 
nÞ inq0 − n2Dqt½2D þ DDAð ðtÞ=2 e ð3Þij 

i2q 1 −i −i2qwhere A(n) ij(t) =  e t(4+4n) + e t(4−4n)−i −1 
1 i 

. Equation 3 is obtained from our
i −1 

Langevin formalism (8). Experimental results 
agree well with these theoretical predictions and 
deviate from the theoretical dashed curves 
obtained assuming translational and rotational 
motion are decoupled (Fig. 2C). 

Transforming Eq. 1a into the body frame 
at ∂H/∂x = 0, we obtain 

∂t x̃i ¼ x̃ iðtÞ ¼ Rij½qðtÞ�xjðtÞ ð4Þ 

The probability distribution of x̃ i(t), which can 
be calculated directly from its definition and the 
properties of xi(t), is a Gaussian with zero mean 

˜and variance 〈x̃ i x j〉 = 2kBTG̃ 
i jd(t − t′), where G̃ 

i j  is 
a q(t)-independent diagonal matrix with com-

˜ ˜ponents Gxx  = Ga and Gyy  = Gb. Thus,  〈(D x̃i)
2〉 

equals 2Dit, where  Di = (Da, Db), in agreement 
with the experimental data in Fig. 2A. Because x̃ i 
is Gaussian, the PDF for body-frame displace-
ments D x̃i (t) is Gaussian at all times: 

2x
−1 

fD˜ ðx,tÞ ¼ pffiffiffiffiffi e 2s
2 
i ðtÞ ð5Þ xi 2psiðtÞ 

where si 
2(t) = 2Dit. Our measurements confirm 

this behavior in fig. S1. For our quasi-2D 
sample, the ellipsoid's friction and diffusion 
tensors are different at different heights within 
the cell (13). Therefore, the PDF of D x̃i should 
be an average of Gaussian PDFs with 
different variances. However, the interfer-
ence color from the ellipsoid changed very 
little throughout the course of our experiment; 

from this result we estimate that the ellipsoid 
remains within 50 nm of the midplane of the 
cell and that the non-Gaussian effects are too 
small to be observable as is confirmed by our 
measurements. 

Although the statistics of displacements in the 
body frame are Gaussian, those in the lab frame 
are not because of coupling between translation 
and rotation (14). Prager (15) calculated the 
non-Gaussian concentration for averaged initial 
angles in a particular geometry in three dimen-
sions. The lab-frame noise, xi(t) =  Rij 

−1[q(t)] x̃ i(t), is 
a nonlinear function of the independent noises 

˜xq(t) and  x i(t). Thus, although its probability 
distribution is Gaussian for fixed q(t) and thus 
fixed xq(t), its distribution averaged over xq(t) is  
non-Gaussian, as is that for Dxi(t). At short 
times, the lab- and body-frame displacements 
are equal, and the PDF for Dxi(t) is Gaussian 
because that for D x̃ i(t) is. Directional infor-
mation is lost at times greater than tq. Therefore, 
at long times, Dx(t) is a sum of displacements 
from ~t/tq statistically independent steps, and 
the central limit theorem implies that its PDF is 
Gaussian. Thus at fixed q0, we expect deviation 
from Gaussian behavior to vanish at t = 0 and 
t = ∞ and to reach a maximum at times of 
order tq. 

The simplest manifestations of non-Gaussian 
behavior are the nonzero values of the fourth- or 
higher-order cumulants of lab-frame displace-
ments, which can be calculated (8) from our  
Langevin theory. For example, the fourth 
cumulant of Dx(t) for fixed initial orientation is 

Cð4Þ 4 2 2ðtÞ ¼ h½DxðtÞ� i −3h½DxðtÞ� iq0 q0 q0 n1 2 2¼ ðDDÞ 3½tqt − tqt4ðtÞ− t4ðtÞ �þ
2 o 
½tqt4ðtÞ− tqt16ðtÞ− 3t4ðtÞ2 cos4q0 
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pffiffi 
Fig. 2. (A) MSDs along  a, b, x, and  y axes. (Inset) Angular MSD. All curves respectively, over time interval tq. Symbols, experiment; error bars º t. Solid 
have diffusive behavior (º t), and corresponding diffusion coefficients D = curves, Eq. 2 when q0 = 0. (C) Mixed correlations of translational displacementspffiffi 
MSD/(2t) shown in the figure are from best fits. (B) Diffusion coefficients D in and orientation. Symbols, experiment. Error bars º t. Solid curves, theo-
the lab frame. The initial orientation of each trajectory was chosen to be along retical results from Eq. 3 for n = 2. Dashed curves, reference uncorrelated 
the x axis (q0 = 0), so that Dxx and Dyy change from Da and Db to D , averages 〈Dx2〉〈cos2q〉/t, 〈Dy2〉〈cos2q〉/t, and  2〈DxDy〉〈sin2q〉/t = 0.  
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This function vanishes as t2þs2 , where  s2 > 0, as  
t → 0 and grows linearly in t as t → ∞. The  
non-Gaussian parameter, 

Cð4ÞðtÞ 
pðt; q0Þ ¼  q0 

2 23h½DxðtÞ� iq0 

Cð4ÞðtÞq0¼ ð7Þ
23½2 Dt þ DDt4ðtÞcos2q0 

vanishes with ts2 for t → 0 and  as  t−1 as t → ∞. 
The angle-averaged non-Gaussian parameter, 

ð4Þ
C ðtÞ DD2 tq½t − t4ðtÞ� pðtÞ ¼ ¼ ð8Þ2 2 t22〉3〈½DxðtÞ� 8D 

2 
t→0 ðDa =Db − 1Þ �! ð9Þ22ðDa =Db þ 1Þ 

C(4)(t) =  〈[Dx(t)]4〉 − 3〈[Dx(t)]2〉2where , ap-
proaches a constant as t →0 and vanishes as t−1 

as t → ∞. Because statistics in the body frame 
are Gaussian, the body-frame non-Gaussian 
parameter pb(t) is zero. 

Equations 7 and 8 are confirmed numerically 
in Fig. 3A. Experimental measurements of both 
p(t,q0) and  p (t) have poor statistics at large t be-
cause their errors grow as t3/2 . Nevertheless, we 
were able to extrapolate to the t → 0 limit  of  
p (t) in seven samples with different aspect 
ratios and to confirm Eq. 9 in the Fig. 3A inset. 
Figure 3A confirms our qualitative expectations 
about the non-Gaussian parameter p in different 
frames and for different types of averages, 
specifically: (i) In the ensemble with fixed q0, 
the non-Gaussian parameter vanishes for t << tq 

and t >> tq and reaches a maximum when t ~ tq; 
(ii) in the ensemble that averages over q0, the  
non-Gaussian parameter is a maximum at t = 0  

and vanishes for t >> tq; and (iii) larger Da/Db 

causes larger non-Gaussian effects. 
It is clear from Eqs. 6 to 9 that non-Gaussian 

behavior originates in particle anisotropy and 
vanishes when DD vanishes. Thus, non-Gaussian 
effects for anisotropic particles diffusing in 3D 
with stick boundary conditions should be small 
because 1 < Da/Db = gb/ga <  2 when 1 <  a/b < ∞ 
(5, 7). For some small molecules, the slip 
boundary condition is more appropriate (16, 17) 
and gb/ga diverges (11) even in 3D. Under quasi-
2D conditions with stick boundary conditions, 
however, Da/Db increases with aspect ratio and 
finally saturates (13) at a value much larger than 
2. In summary, non-Gaussian effects are strong 
when Da >> Db, i.e., for particles with a high 
aspect ratio confined in quasi-2D (in our case, 
Da/Db reaches about 4) or for some molecules 
with slip boundary conditions. 

Lastly, we consider the lab-frame PDF for 
Dx(t). The expectation is that these PDFs at 
fixed q0 will be non-Gaussian and exhibit 
maximum deviations from Gaussian behavior 
at times of order tq. We have verified  that this is  
the case within our statistical errors, but the 
deviations are very small. The lab-frame PDF 
averaged over q0 shows more striking devia-
tions from Gaussian behavior (8), particularly 
as t → 0: 

2x Z −
2p 2s2ðqÞt→0 dq e 

fDxðxÞ ¼ hd½x − DxðtÞ�i ! pffiffiffiffiffi 
0 2p 2psðqÞ 

ð10Þ 
where s2(q) =  sa 

2cos2q + sb 
2sin2q with si 

2 = 
2Dit. The physical meaning of Eq. 10 is ap-
parent. When t → 0, the orientation q does not 
change during the displacement. Those Dx with 
the same q0 follow a Gaussian distribution with 
s = s(q0) because the hydrodynamic drag co-
efficient g(q0) is a constant. Averaging Gaussian 
PDFs with different q0 over [0,2p] yields a non-
Gaussian PDF as shown in Eq. 10. 

REPORTS 

Experimental angle-averaged PDFs of lab-
frame displacement are shown (Fig. 3B) at time 
intervals of t = 0.1 s. The system's isotropy is 
confirmed by fDx(x) =  fDy(x). Interestingly, there 
are more tiny and large steps and fewer middle-
sized steps than there are in a Gaussian 
distribution (fig. S2). This PDF agrees with Eq. 
10 very well with no free parameters. We mea-
sured the PDFs of 15 samples with different as-
pect ratios at different confinements. All agreed 
with Eq. 10. When Da/Db < 2.5, the measured 
non-Gaussian PDF becomes indistinguishable 
from a Gaussian distribution. 

The most common experimental probes 
typically measure only second moments, from 
which diffusion coefficients can be extracted, 
that provide no information about non-Gaussian 
behavior. For example, dynamic light scattering 
(12, 18) and nuclear magnetic resonance (NMR) 
(19) measure q0-averaged translational diffusion 
coefficients of anisotropic constituents; and 
NMR (19), fluorescence depolarization (20), 
electric birefringence (21), dichroism (22), and 
depolarized dynamic light scattering (19) mea-
sure rotational diffusion coefficients. In principle, 
some of these probes, light scattering in particu-

C(4)(t) t→0lar, could provide a measure of ! 
3(DD)2t2/2 and higher moments, but we are not 
aware of any such measurements. Certainly, the 
non-Gaussian effects would be very small, 
especially for particles in 3D where Da/Db < 2.  

Our observations using digital video micros-
copy of the Brownian motion of an isolated 
ellipsoid in two-dimensions provide exquisitely 
detailed information about the diffusive prop-
erties of anisotropic objects and the subtle 
interplay between orientational and translational 
motions. Besides providing us with new insights 
about a fundamental phenomenon, these obser-
vations and underlying theory are potentially 
useful for research on diffusion of anisotropic 
molecules in membranes (16), on the hydrody-
namics and kinetics of ensembles of anisotropic 
particles, and on anisotropic molecules that 
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Fig. 3. (A) Non-Gaus-
sian parameters as a 
function of t. Symbols,  
simulation in the lab 
frame for an ellipsoid 
with Da, Db, and  Dq from 
Fig. 2A. Error bars º 
t3/2. Curves, theoretical 
predictions for p(t,0) and 
p(t,p/2) in Eq. 7 and p (t) 
in Eq. 8. Dashed line, 
pb(t) = 0 in the body 
frame. (Inset) p (t = 0) for  
ellipsoids with different 
aspect ratios and confine-
ments. Symbols, experi-
ments; curve, theoretical 
prediction of Eq. 9. The double arrows in the figure and the inset indicate 
equivalent points for which PDFs are shown in (B). (B) Lab-frame  PDFs  for  Dx(t) 
and Dy(t) at  t = 0.1  s. Measured  fDx(x) (open  circles) and  fDy(x) (open squares) 

www.sciencemag.org SCIENCE 

agree with the theory (solid dark curve) of Eq. 10 with no free parameter (sa = pffiffiffiffiffiffiffiffi 
2Dat, with  Da from the fit of Fig. 2A). Dashed curve, best Gaussian fit; light 

curve, simulation. 
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experience slip boundary conditions and thus 
have a large ratio of ga to gb. 
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a-Hydroxy and a-Amino Acids 
Under Possible Hadean, Volcanic 
Origin-of-Life Conditions 
Claudia Huber1 and Günter Wächtershäuser2*† 

To test the theory of a chemoautotrophic origin of life in a volcanic, hydrothermal setting, we explored 
mechanisms for the buildup of bio-organic compounds by carbon fixation on catalytic transition metal 
precipitates. We report the carbon monoxide–dependent formation of carbon-fixation products, 
including an ordered series of a-hydroxy and a-amino acids of the general formula R-CHA-COOH 
(where R is H, CH3, C2H5, or  HOCH2 and A is OH or NH2) by carbon fixation at 80° to 120°C, catalyzed by 
nickel or nickel,iron precipitates with carbonyl, cyano, and methylthio ligands as carbon sources, with 
or without sulfido ligands. Calcium or magnesium hydroxide was added as a pH buffer. The results 
narrow the gap between biochemistry and volcanic geochemistry and open a new gateway for the 
exploration of a volcanic, hydrothermal origin of life. 

The theory of a volcanic, hydrothermal, 
chemoautotrophic origin of life postulates 
a locally and temporally coherent, evolv-

able system of autocatalytic, synthetic carbon-
fixation pathways, catalyzed by inorganic transi-
tion metal precipitates (1–4) and generating low 
molecular weight organic compounds from 
highly oxidized precursors. Here, this system 
of pathways is termed “pioneer metabolism.” In 
accordance with the principle of metabolic con-
tinuity, the theory assumes a step-by-step evolu-
tionary changeover by evolution of ligand 
feedback from racemic ligands of the inorganic 
transition metal precipitates to homochiral metal-
loenzymes of extant organisms (3, 4). In a con-
tinuing effort to establish an experimental 
grounding for this hypothesis, we experimentally 
explored the viability of volcanic, hydrothermal 
carbon-fixation pathways using CO and CN– as 
carbon sources. 
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Technische Universität München, Lichtenbergstraße 4, 
D-85747 Garching, Germany. 2Weinstraße 8, D-80333 
München, Germany. 

*Present address: 209 Mill Race Drive, Chapel Hill, NC 
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†To whom correspondence should be addressed. E-mail: 
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We chose Ni or Ni,Fe precipitates as catalytic 
transition metals because of the catalytic roles of 
these biometals (as sulfide or hydroxide com-
plexes) in our previous experiments (5, 6); (Ca, 
Mg)(OH)2 as source for hydroxy ligands and for 
buffering against acidification; Na2S or CH3-SNa 
as sources for sulfido or methylthio ligands; and 
CO and KCN as sources for carbonyl and cyano 
ligands in accordance with extant [Fe,Ni]- and 
[Fe,Fe]-hydrogenases (7). 

The reaction conditions are listed in Table 
1. Unless stated otherwise, the experiments were 
carried out in a slurry with 10 ml of H2O and  
13C-labeled KCN (8). The alkaline pH range is 
in agreement with the pH requirement of peptide 
synthesis (6). The range of reaction temper-
atures was chosen in agreement with previous 
experiments (5, 6) and within the range of growth 
temperatures of hyperthermophiles. The CO gas 
pressure of 1 bar was chosen as in previous 
experiments (5, 6) and combined with a reaction 
time of 10 days (run 1). In other runs, the re-
action time was shortened (and product yields 
increased) by an increase of CO gas pressure. 
The pH was measured at the end of the reaction. 
Products in the supernatant were analyzed after 
freeze-drying by gas chromatography–mass spec-
troscopy (GC-MS). 

a-Hydroxy and a-amino acids as main 
products (Table 1) constitute ordered series de-
fined by the general formula R-CHA-COOH, 
where R is H, CH3, CH3-CH2, or HO-CH2 and 
A is OH or NH2. Temperature increase corre-
lates positively with product yield and with the 
ratio of amino acids to hydroxy acids. The 
replacement of H2O by D2O leads to deuterated 
products. With 13C-labeled KCN, we discrimi-
nated cyano ligands from CO (and, optionally, 
methylthio) ligands as the carbon source. The 
resulting isotopomers revealed a rich and 
complex system of pathways involving all-
cyano, all-noncyano, and combined cyano/non-
cyano ligands, as exemplified by ratios of 
12C3:

13C3 isotopomers for lactate and alanine. 
The contribution by noncyano pathways corre-
lates positively with a decrease in CO gas 
pressure and an increase in temperature. This 
multiplicity of pathways may facilitate metabol-
ic evolution and a stepwise changeover from a 
Ni-dependent use of CO and/or cyano ligands 
without energy coupling to a sole use of 
CO2 with energy coupling. We also detected 
a-hydroxy-n-valeric acid (run 4, 0.005 μmol), 
a-hydroxy-i-valeric acid (runs 4 and 5, trace 
amounts), and a-amino-n-valeric acid (run 4, 
trace amount). The progressive chain elongation 
suggests long-chain a-hydroxy or a-amino acids 
as primordial lipids. 

Added 15N-NH3 enters the amino acids, 
which suggests the participation of a pool of 
ammonia. The replacement of KCN in run 3 
by glycine and alanine generated a-hydroxy 
acids at very low rates. This means that a-
amino and a-hydroxy acids are mainly com-
petitive products and, to a minor extent, con-
secutive products. The detection of glycine 
amide by high-performance liquid chromatogra-
phy (HPLC)–MS (8) suggests carboxamides as 
intermediates between CN and COOH groups. 
The detection of pyruvate (runs 3, 4, 5, and 10) 
having a similar isotopomer ratio as lactate and 
alanine suggests a-keto and a-imino groups as 
intermediates. 

Acetate, propionate, and butyrate (in varying 
isotopomer ratios) have been detected with yields 
decreasing in that order. The detected ethylene 
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