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Near-feld diffraction tomography with diffuse photon density waves 
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An angular spectrum algorithm is presented for fast, near-feld diffraction tomographic imaging with diffuse 
photon density waves in highly scattering media. A general relation in K space is derived that connects the 
spatial variations of the optical properties of heterogeneities to the spatial spectra of the measured scattered 
diffuse photon density waves. The theory is verifed experimentally for situations when boundary effects can 
be neglected. We further describe how to reconstruct absorption and scattering properties simultaneously, and 
how to incorporate boundary conditions into this angular spectrum algorithm for a turbid medium of fnite size 
~e.g., the slab medium!. Limitations and potential improvements of the near-feld diffraction tomography are 
also discussed. 

PACS number~s!: 87.10.1e, 42.25.Fx, 42.30.Wb, 42.62.Be 
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I. INTRODUCTION 

Optical radiation was used to image breast tumors by
shadowing effect as early as the 1920s @1#. However, recen
advances in light generation and detection, along with 
provements in our theoretical understanding of near-infra
~NIR! light propagation in tissue-like highly scattering turb
media have opened new possibilities for optical imaging
the interior of thick biological tissues @2#. In highly scatter-
ing media such as biological tissue, light propagation is
scribed adequately within the diffusion model of phot
transport @3–5#. It has been shown by several investigat
that diffuse photon density waves, which are created in
highly scattering media by an intensity modulated lig
source, obey a Helmholtz wave equation with a comp
wave number @6,7#. In spite of complexities resulting from
strong tissue scattering, diffusing photons offer many att
tive features for imaging thick tissue. These features inc
noninvasiveness, low cost, and unique optical contrast 
spectroscopic signatures with clinical and physiological 
evance @8,9#. 

The goal of diffuse optical imaging is to reconstruct a l
resolution map of heterogeneous absorption and scatt
variations from the measurements of diffuse photons o
sample surface. Image reconstruction entails solving the
verse problem. Most quantitative optical image reconst
tion algorithms such as the algebraic reconstruction te
nique ~ART!, the simultaneous iterative reconstructi
technique ~SIRT! @10#, the Newton-Raphson technique co
bined with fnite element numerical method @11–13#, the 
conjugate gradient descent technique @14#, and singular value
decomposition ~SVD! @15#, rely on iterative schemes in 
least-square sense. The optical image reconstruction t
fore requires a signifcant amount of computational resou
and time. 

Recently, we showed that by using the techniques of 

*Present address: Department of Electrical Engineering and C
puter Science, Massachusetts Institute of Technology, Cambr
MA 02139. Electronic address: xingde@mit.edu 
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fraction tomography @16,17#, it is possible to rapidly recon
struct thin slice and spherical objects whose absorp
and/or scattering parameters differ from the background
mogeneous scattering medium @20#. Our image reconstruc
tion algorithm, based upon diffraction tomography techniq
~called angular spectrum algorithm in this paper!, is rapid, 
permitting object localization and characterization in ;1000 
volume-element samples on sub-second computational 
scales. Such an angular spectrum algorithm has recentl
tracted the attention of many researchers in photon migra
feld @18,19#. In this paper we provide a more complete d
cussion of the results reported in those earlier papers, an
provide a detailed analysis of this algorithm incorporat
the effects of fnite boundaries. We frst derive the gen
integral solution of the total and scattered photon den
waves in a heterogeneous turbid medium within the frst
der Born approximation ~Secs. II, III, and IV!. These ses
sions are largely reviews, but are included for completen
and clarity. We next derive a relation in K space between th
spatial spectrum of the heterogeneity function and the sp
spectrum of the measured scattered diffuse photon de
wave ~Sec. V A!. Experimental results are presented
verify the feasibility of the angular spectrum algorithm f
image reconstruction. We then describe a method to re
struct the absorption and scattering properties simultaneo
with this algorithm. Some limitations and potential improv
ments of the diffraction tomography are discussed in Sec
Finally, we illustrate how to incorporate boundary conditio
into the angular spectrum algorithm for a turbid medium
fnite size, in particular, the slab medium and the se
infnite medium ~Sec. VII!. 

II. PHOTON DIFFUSION EQUATION 
IN HETEROGENEOUS MEDIA –A 

PERTURBATION APPROACH 

Light transport in highly scattering turbid media is oft
m-well described by photon diffusion @2#. Consider a light
ge, source at r s with its intensity sinusoidally modulated a
modulation frequency f, e.g., the source term is S(r, t) 
4295 © 2000 The American Physical Society 
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FIG. 1. In the presence of optical inhomogeneities, the sphe
wave fronts of the background wave are distorted and the scat
wave is generated. The total photon density wave is the sum o
background wave and the scattered wave. 

5S(r) e2 ivt5M0e2 ivtd(r2 r s), where v52p f is the angu-
lar source modulation frequency,1 M0 is the source strengt
representing the number of photons emitted per second. 
sider steady-state photon diffusion in which the photon 
ence F(r, t) has the same time dependence as the so
i.e., F(r, t)5F(r) e2 ivt . It is straight forward to show tha
the photon fuence F(r) satisfes the photon diffusion equa
tion @3–5#: 

fŁ—DfF~r !–2vmaF~r !1 ivF~ r !52vS~r !. ~1! 

Here the common time dependence exp(2 ivt) of the fu-
ence F(r) and the source S(r) are omitted. v is the speed of
light in the turbid medium; D5v/3m8 is photon diffusions 

coeffcient; ma and m8 are respectively the optical absorptios 
and reduced scattering coeffcients. 

In a homogeneous medium, the absorption and scatte
coeffcients (ma0 and ms80) are constant, and the above equ
tion reduces to a simple Helmholtz equation: 

~¹21k0
2!F0~r !523ms80S~r !. ~2! 

Here the wave number k0 is complex and k0 

s80(2ma01 iv/v)#1/25@3m with Im(k0).0 to ensure tha
the photon density goes to zero at a large distance. 

In an optically heterogeneous turbid medium, the sph
cal wave fronts of the background wave are distorted
inhomogeneities. As illustrated in Fig. 1, the total pho
density wave F(r) is the sum of the background wave F0(r) 
and the scattered wave Fsc(r) 

F~r !5F0~r !1Fsc ~ r !. ~3! 

The background wave F0(r) represents the photon densi
wave in a homogeneous turbid medium for an arbitrary 
ometry; the scattered wave is produced by optical inho
geneities in an otherwise homogeneous medium with
same geometry as the background wave. The scattered 
is determined by characteristics of the inhomogeneity s
as its size, shape, position, and its absorption and scatt

1The continuous-wave ~CW! case is a special case where v50 
and the frequency domain analysis can be readily applied to the
case. 
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properties. The goal of optical tomography is to reconst
the map of these heterogeneous optical properties from 
surements of the scattered wave. 

In a heterogeneous medium we write the optical prop
ties (ma and m8) as the sum of background optical properts 

(ma0 , ms80) and the variations relative to the backgrou
(dma , dm8), i.e.,s

ma ~r !5ma01dma ~r !, ~4! 

m8~r !5m 8~r !.s s801dms ~5! 

Consider the case of weak optical inhomogeneities wh
dma!ma0 and dm8!ms80 . The optical inhomogeneities ins 
troduce a weak perturbation to the background wave, 
uFsc(r) u!uF0(r) u. Substituting Eqs. ~4! and ~5! into Eq. ~1! 
and keeping only the zeroth and frst order terms in opt
property variations as well as in the scattered wave, we 

v dm8~r !
2 s 

~¹21k0 !F~r !52  11 S~r !2Tabs~r !F GD0 ms80 

2Tsc ~r !, ~6! 

where we have introduced the heterogeneity functions 
Tabs(r) and Tsc(r) representing the perturbations due to t
absorption and scattering variations. They are 

v 
Tabs~r !52  F0~r !dma ~r !, ~7!

D0 

23D0k0 f@dms8~r !# 
Tsc ~r !5 r !dm8~r !2 ŁfF0~ 

v 
F0~ s r !. 

ms80 
~8! 

Note that dm8(r)/ ms80S(r) is zero as long as the source s 
outside the inhomogeneity ~which is generally the case i
practice!, and therefore we can drop this term from Eq. ~6!. 
In addition we assume, for simplicity, that the scattering v
ies slowly in space so that the term f@ms801dm8(r) #/s 

ms80ŁfF0(r) can be neglected. We thus have the followi
simplifed equation for the total photon density wave F(r) 
within the frst order Born approximation 

v2 ~¹21k0!F~r !52  S~r !2T~r !, ~9!
D0 

where T(r) 5Tabs(r) 1Tsc(r) and the heterogeneity func
tions Tabs(r) and Tsc(r) are given by 

v 
Tabs~r !52  F0~r !dma ~r ! ~10!

D0 

3D0k0
2 

Tsc ~ r !5 
v 

F0~r !dms8~r !. ~11! 

We see that the heterogeneity functions can be treate
equivalent ‘‘source’’ terms, which give rise to the scatte
component Fsc(r) of the total diffuse photon density wav
F(r). 
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III. TOTAL DIFFUSE PHOTON DENSITY WAVE 
IN HETEROGENEOUS TURBID MEDIA — THE 

GREEN’S FUNCTION APPROACH 

We will take a Green’s function approach to derive 
total and therefore the scattered photon density wave 
heterogeneous highly scattering medium. Consider 
Green’s function in turbid media which satisfes 

2 ~¹21k0!G~ r, r 8!52d~r, r 8!. ~12! 

Using the Green’s theorem, we obtain an integral expres
for the total optical density wave F(r) 

v 
F~ r !5 E S~r 8!G~r, r 8!d3r 81E T~r 8!G~r, r 8!d3r 8

D0 V V 

]F~r 8! ]G~ r, r 8! 
1E FG~r, r 8! 2F~r 8! GdA8. 

S ]n8 ]n8 

~13! 

The frst term on the right-hand side of Eq. ~13! is a volume 
integral of the light source over the entire turbid medium
gives us the background wave. The second term is a vo
integral of the heterogeneity function over the entire tur
medium and it determines the perturbation resulting from
optical heterogeneities. The third term is a surface inte
over the closed surface of the entire turbid medium. It ta
into account the boundary effects on the total photon den
wave, and it includes contributions to the total photon d
sity wave from both the background wave and the scatt
wave on the boundary. n8 in the surface term denotes th
surface normal pointing outward. For an infnite hetero
neous medium, this surface term is zero since the enclo
surface of an infnite medium is at infnity. Therefore t
scattered wave can be simply separated from the backgr
wave. For a fnite turbid medium, however the separatio
the background wave component from the scattered w
component in the surface term is generally diffcult. It
advantageous therefore to remove the surface integral 
the total photon density wave by choosing an appropr
Green’s function. We will consider this complicated ~yet 
more realistic! case at the end of this paper. We will st
with a simple case - the infnite geometry case. 

IV. SCATTERED WAVE IN INFINITE HETEROGENEOUS 
TURBID MEDIA 

As shown in Fig. 1, in the presence of optical hetero
neities, the total photon density wave consists of the b
ground wave and the scattered wave, and the scattered 
carries the information of the optical inhomogeneities. Fo
infnite geometry, the surface integral in Eq. ~13! disappears.
The background wave in this case is given by the frst t
~volume integral of the source! on the right-hand side of Eq
~13!. For an infnite geometry, the Green’s function 
G0(r, r 8)5exp(ik0ur2 r 8u)/4pur2 r 8u. Using this Green’s
function and considering a point source at r s , i.e., S(r 8) 
5M0d(r 82r s), we can readily show that the scattered wa
e 
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FIG. 2. Illustration of 2D geometry which we consider for t
image reconstruction algorithm based upon K-space spectrum
analysis. The scattered wave Fsc(x,y,zd) ~or its spatial Fourier

component F̂ (p,q,zd) is determined at the detection planezsc 

5zd by scanning the detector over a square region. Without lo
generality we assume the optical heterogeneities are located b
the detection plane at z5zd . A point source can be placed an
where in the turbid medium. In practice the point source and
detection plane are either on the opposite side of the heterogen
~transmission! or both on the same side of the heterogeneities ~re-
emission!. In this fgure the point source happens to be placed a
origin of our coordinate system for demonstration of a transmis
measurement geometry. 

@by defnition: the difference between the total photon d
sity wave F(r) and the background wave F0(r)] is 

Fsc ~r !5F~ r !2F0~r !5E T~r 8!G0~ r, r 8!d3r 8. ~14! 
V 

V. IMAGE RECONSTRUCTION ALGORITHM 
AND EXPERIMENTAL RESULTS 

The scattered wave depends on the heterogeneity f
tion. In practice the scattered wave can be obtained f
measurements and knowledge of the background w
Given the scattered wave, how can one obtain the heter
neity function and thus dma(r) and dm8(r)? The approachs 
we take here employs the angular spectrum analysis o
scattered wave. In this approach we relate the spatial s
trum of the scattered wave to the spatial spectrum of
heterogeneity function. The analysis involves forward a
inverse Fourier transforms following the conventions giv
in Appendix A. 

A. The angular spectrum algorithm 

The experiment we consider for the angular spectrum
gorithm has a two-dimensional ~2D! planar geometry. As
shown in Fig. 2, the scattered wave Fsc(r) is determined at
a plane z5zd from a set of measurements in that pla
Equation ~14! tells us that the scattered wave Fsc(r) is the 
convolution of the heterogeneity function T(r) with the 
Green’s function G0(r, r 8). In order to reveal the relatio
between the scattered wave and the heterogeneity functi
K space, we frst expand the Green’s function in terms
plane waves in two dimensions, i.e., 

Detecti 
Fiber 

(Scann· _ 
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X 

or 

Object 
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G0~rd ,r 8! 

2 i2p[ p(xd2x8)1q(yd2y8)]ˆ5 E1` E dpdqG0~ p,q,zd ,z8!e 
2` 

i 
imuzd2z8u 2 i2p[ p(xd2x8)1q(yd2y8)]5 E1` E dpdq e e , 

2` 2m 

~15! 

where (p,q) are the 2D spatial frequencies with respect
the x-y coordinates. In the second line of the above equa
we have employed the Weyl expansion of the Green’s fu
tion @21#, i.e., 

i 
imuzd2z8uĜ 

0~ p,q,zd ,z8!5 e , ~16!
2m 

2 21q2)#1/2where m5@k02(2p)2(p and Im(m).0. The 
derivation of the Weyl expansion of the Green’s function
given in Appendix B. 

Note that Eq. ~15! is the angular spectrum representation
of the Green’s function, a solution of the wave equation w
a point source at (x8,y8,z8). At any point inside the hal
space to the right ~or left! of the source, there are eigen-pla
waves in the x-y plane whose amplitudes and phases v
with the distance from the source uzd2z8u. Because of the
large positive imaginary part of m, the amplitude decays ex
ponentially versus the perpendicular distance uzd2z8u away 
from the source point. Plane waves with large spatial 
quencies (p,q) ~and therefore a large imaginary part of m) 
will have negligible amplitudes. This is the characteristic d
ference between diffuse photon density waves and ordi
diffractive electromagnetic waves in lossless dielectric m
dia. These plane waves will be scattered by optical inho
geneities and their resulting amplitudes and phases will c
information about the absorption and/or scattering chara
istics of the inhomogeneities. 

If we substitute the angular spectrum representation o
Green’s function @Eq. ~15!# into the volume integral of the
scattered wave given by Eq. ~14!, after simple algebraic ma
nipulation and interchanging the order of integrations, 
obtain the following representation, known as the angular 
spectrum representation of the scattered wave 

1` 

rd!5 E E  dpdqe2 i2p(pxd1qyd) 

2` 
Fsc ~ 

ˆ ˆ3 E dz8G0~ p,q,zd ,z8!T~ p,q,z8!, ~17! 

where T̂(p,q,z8) is the 2D spatial spectrum ~Fourier trans-
form! of the heterogeneity function, i.e., 

1` 
i2p(px81qy8)T̂~ p,q,z8!5 E E  dx8dy8T~x8,y8,z8!e . 

2` 

~18! 

Taking the 2D Fourier transform of the scattered w
Fsc(rd) in the detection plane at z5zd , i.e., 
o 
n, 
c-

s 
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e 

1` 
2 i2p(pxd1qyd)Fsc ~ dpdqF̂ sc ~ p,q,zd!e , ~19!rd!5 E E  

2` 

and comparing Eq. ~17! and Eq. ~19!, we then obtain the
relation between the spatial spectrum of the scattered w
and the spatial spectrum of the heterogeneity function at
given spatial frequency (p,q), i.e., 

` 
ˆ ˆ ˆF p,q,zd!5 E dz8G0~ p,q,zd ,z8!T~ p,q,z8!. ~20!sc ~ 

2` 

Without losing generality, we assume the optical hete
geneities are below the detection plane. This assumption e
ables us to remove the absolute value sign in the Weyl
pansion in Eq. ~16! since zd2z8.0. We also assume th
heterogeneities are localized between the detection plan
z5zd and a plane at z5z0. Thus we need consider only th
interval between (z5z0, z5zd) for the integral in Eq. ~20!. 
Dividing the turbid medium between the plane at z5z0 and 
the detection plane into slices, we can rewrite Eq. ~20! in the 
following form of discretized summation 

N 

ˆ ˆ ˆF p,q,zd!5 ( DzT~ p,q,zj !G p,q,zd ,zj !sc ~ 0~ 
j 51 

N 
iDz

ˆ im(zd2zj )5 ( T~ p,q,zj !e , ~21! 
j 51 2m 

where in the second line we substitute the Green’s func
Ĝ 

0(p,q,zd ,zj ) with its Weyl expansion @Eq. ~16!#; Dz is the 
discretized step size along the z direction and N is the total 
number of slices in the z direction. Ideally the discretization
step size Dz needs to be as small as possible. In practice
choose Dz to be a few random walk steps ~i.e., ;1/m8).s 

Equation ~21! implies that at any given spatial frequen
(p,q), the heterogeneity functions at different depth zj ’s can 
be thought of as the ‘‘source terms’’ for the scattered wa
The plane waves arising from different slices propag
along the z direction to the detection plane. During th
propagation these plane waves experience different am
tude attenuation and phase shifts which are given

2eim(zd2zj )/m, where m5@k02(2p)2(p21q2)#1/2 is a com-
plex number with Im(m).0; the scattered wave detected
the detection plane z5zd is thus a sum of plane waves orig
nating from the heterogeneity functions at different dep
In Fig. 3 we illustrate this concept. In this fgure we consi
two nonzero heterogeneity functions T̂1(p,q50,z1) and 
T̂2(p,q50,z2) corresponding to plane waves along the x di-
rection in the x-z plane ~i.e., y50) with a spatial frequency
p at depth z1 and z2. The perturbations from these two slic
propagate to the detection plane with a phase shift and
plitude attenuation factor eim(zd2zj )/m. At the detection plane
the perturbations from these two slices add up to mak

ˆscattered wave F (p,q50,zd) at the same spatial frequencsc 
p. 

In K space the propagation of the perturbation T̂(p,q,zj ) 
at different depths zd2zj is weighted by the amplitude a
tenuation and phase shift given by the Weyl expansion o
Green’s function Ĝ 

0(p,q,zd ,zj )5 ieim(zd2zj )/(2m). Recall 
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they add up to make the scattered wave F in K space at the same spatial frequency p. 

FIG. 3. The heterogeneity functions T1 and T2 with spatial frequency p from two slices propagate to the detection plane at z5zd where 
ˆ 

sc 

two slices 
X 

Detection Plane zd 

Hetero. Function Tat Slice 1 

Propagation Delay 
and attenuation 

exp[ i m (zd•z1) Ym + 

Detected Scattered wave 
at detection plane 

with the same Frequency p 

Hetero. Function T at Slice 2 

Propagation Delay 
and attenuation 
 
an-

f-fr
ly
2m5@k02(2p)2(p21q2)#1/2 with Im(m).0, therefore the

amplitude and phase of the Weyl expansion Ĝ 
0(p,q,zd ,zj ) 

depend on the spatial frequency (p,q) at a given depth zd 
2zj . The amplitude decays more quickly as the spatial 
quencies (p,q) increase, and the Green’s function effective
acts as a low pass flter in K space. 
For spatial frequencies (p,q) with the range of ~0, 1.6! 
cm21, we plot the amplitude and phase of the Weyl exp
sion (;eim(zd2zj )/m) in Figs. 4~a! and 4~b! assuming the
depth is zd2zj51 cm. In calculating the background die-

k05@(2vma01 iv)/D0#1/2fuse wave wave number we 
choose background optical properties ma050.02 cm21 and
 
FIG. 4. ~a! and ~b! respectively show the amplitude attenuation and phase shift associated with the Weyl expansion in K space versus
spatial frequencies (p,q). Note in ~a! the z axis is the log of the amplitude of eim(zd2zj )/m; in  ~b! the z axis is the phase of eim(zd2zj )/m in 
degrees. ~c! and ~d! show the amplitude attenuation and phase shift versus the depth zd2zj for given spatial frequencies ~0.1, 0.1! cm 
~solid lines! and ~0.5, 0.5! cm21 ~dashed lines!. 

21 
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large 
ms8058.0 cm21, and a 140 MHz modulation frequency. T
resultant wave number is uk0u;1.1 cm21. We fnd that the
amplitude attenuates by ;7 orders of magnitude when th
spatial frequencies (p,q) increase from ~0, 0! cm21 to ~1.6, 
1.6! cm21. In practice the maximum spatial frequency 
determined by the Nyquist sampling frequency, i.e., qmax 
51/2Dx'0.833 cm21 for a scanning step size Dx 
50.6 cm. In Figs. 4~c! and 4~d!, we also plot the amplitud
attenuation and phase shift versus depth for given sp

21 21frequencies, i.e., ~0.1, 0.1! cm and ~0.5, 0.5! cm . The 
amplitude attenuates exponentially and the phase shif
creases linearly as we consider the perturbation from de
slices. Again as already shown in Fig. 4~c!, the amplitude
attenuates much faster at spatial frequencies ~0.5, 0.5! cm21 

21than at ~0.1, 0.1! cm . At any given depth (zd2zj ), those 
plane waves with suffciently large spatial frequencies (p,q) 
have negligible contribution to the scattered wave, and th
fore carry less information about the inhomogeneities. 

B. 2D projection imaging 

2D photographic images have been used by radiolog
for many years. In order to acquire 2D photographic-t
projection images, we make a ‘‘thin’’ slice approximation b
replacing zj on the left hand side of Eq. ~21! with the esti-
mated slice position of the object. We then drop the s
over all other zj ’s and obtain the following simple relation 
any given spatial frequency (p,q) in  K space between th
heterogeneity function at depth z5zob j and the measure
scattered wave at the detection plane z5zd : 

ˆ 
T̂~ p,q,zob j!5 

Fsc ~ p,q,zd! 

DzĜ 0~ p,q,zd ,zob j! 

2m 
5 F̂ 

sc ~ p,q,zd!e2 im(zd2zob j). ~22!
iDz 

This ‘‘thin’’ slice approximation may be adequate since 
are often interested in early tumors whose size will be of
order of slice thickness of ;0.5 cm, and thus can be co
sidered thin. As we discussed at the end of Sec. V~A!, plane 
waves in K space with large spatial frequencies (p,q) are 
attenuated quickly as they propagate within the turbid me
The largest detectable spatial frequencies are determine
the sensitivity and signal-to-noise ratio of the detection s
tem. 

When the heterogeneity function in K space, T̂(p,q,zob j), 
is determined by Eq. ~22!, we can then take the inver
2D Fourier transform of T̂(p,q,zob j) to obtain the tumor
function T(x,y,zob j) in the real x-y space at the dept
of the heterogeneity z5zob j . We derive a 2D photo
graphic image of the optical properties using Eqs. ~10! 
and ~11!; for example, dma(x,y,zob j)5Tabs(x,y,zob j)/ 
@2v/D0F0(x,y,zob j)# for absorbing objects, an
dm8(x,y,zob j)5Tsc(x,y,zob j)/@3D0k0

2/vF0(x,y,zob j)# fors 
scattering objects. Note that for a purely absorbing or s
tering object, either a frequency domain ~modulation fre-
quency f Þ0) or a continuous-wave ~CW, f 50) DPDW can 
be employed to extract the absorption or scattering varia
but for objects having both absorption and scattering va
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FIG. 5. The heterogeneities are considered to be thin, w
locate within a thin slice at z5zob j in parallel to the detection plane
The heterogeneity function within this thin slice is approximat
uniform and the heterogeneity function is zero elsewhere. 

tions, a CW DPDW is not suffcient to separate the abs
tion and scattering @see Sec. VI~A!#. 

Consider next a case where the optical heterogeneitie
located within a ‘‘thin’’ slice at z5zob j ~see Fig. 5!. If the
slice thickness Dz is less than a few transport mean fr
path-lengths @1/(ms801ma0)#, the heterogeneity function
within this thin slice is approximately uniform, therefore E
~22! provides a quite accurate relation between the heter
neity function and the scattered wave in K space, and optica
properties of the heterogeneity can further be deduced q
accurately. For thicker objects ~i.e., thickness .4 mm), the 
average over the size of the object weighted by the sum
exponential amplitude and phase factors eim(zd2zj )/m pro-
vides only an approximate relation between the heterog
ity function and the scattered wave. However we fnd that
relative optical properties of multiple objects can still be 
constructed with an reasonable accuracy. 

Obviously the image reconstruction involves only 2D fo
ward and inverse Fourier transforms, and no itera
schemes are needed; therefore this angular spectrum 
rithm is very rapid. 

C. A priori depth information and perspectives of 3D imaging 

From the derivation we notice that in principle, th
K-space spectrum analysis algorithm should work well w
the optical heterogeneities are confned within a thin sl
The reconstruction then provides a 2D photographic pro
tion image of the optical properties given a priori informa-
tion about the depth of the heterogeneity. Since the he
geneity function ~therefore the optical properties of th
heterogeneities! is related to the scattered wave via the W
expansion of the Green’s function, and since the amplit
and phase of the Weyl expansion depend upon the depzd 
2zj , an incorrect depth estimate produces incorrect va
of the reconstructed optical properties. This type of error
intrinsic to the angular spectrum approach. However, ro
estimation of the depth information can be tolerated if i
desirable to reconstruct contrast images of multiple obje

Equation ~22! reveals how the heterogeneity function a
hence the reconstructed optical properties of the heterog
ities vary with the estimated depth. Choice of a too sm
depth underestimates the optical properties and a too 
depth overestimates the optical properties. Figure 6~a! shows 

Source 

Z:O Z obj Z:Zd 

Detection 
Plane 
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FIG. 6. ~a! shows the reconstructed absorption coeffcient ver
the depth estimation. The data points in ~a! are normalized by the
absorption reconstructed at the depth where the object is, e.zd 

2zob j52 cm.  ~b! shows the ratio of reconstructed absorption
two spherical objects versus the depth estimation. Although
ratio is only approximately reconstructed ~e.g., the true ratio is 2!
the ratio is relatively insensitive to the depth estimate. 

the reconstructed absorption coeffcient of a spherical ob
versus the estimated depth zd2zob j . In this case, we have 
spherical object of 0.5 cm radius 2 cm below the detec
plane, i.e., zd2zob j52 cm. The true optical property varia
tions of the spheres with respect to the background
dma 

21 
s50.02 cm and dm850. We fnd that the recon

structed absorption increases as the estimated object 
increases. In Fig. 6~b!, we plot the ratio of the reconstru
absorption coeffcients of two spherical absorbing obje

rec/dm rec)(dm versus the estimated depth. One spherea1 a2 

dma150.04 cm21 and dms8150 cm21 is at ~2, 1, 3! cm and 
21the other sphere of dma250.02 cm and dms8250 cm21 

is at ~1,21, 3! cm. Two spheres have the same size ~0.5 cm 
in radius! and they are chosen to to be at the same de
e.g., 2 cm below the detection plane. Therefore any d
estimate is either correct or incorrect for both objects at
same time, and we do not have to take into account
additional complexity shown in Fig. 6~a!. We fnd that the
ratio of the reconstructed absorption coeffcients is not 
sitive to the depth estimation, and therefore the incor
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depth estimate for contrast image can be tolerated in 
case. 

The image quality is also affected by the choice oa 
priori depth. Recall the heterogeneity function and the s
tered wave in K space is coupled to each other via the W
expansion @see Eq. ~22!#. The factor e2 im(zd2zob j)/m in-
creases exponentially with the (zd2zob j). The noise ~nu-
merical and experimental! can be amplifed at greater dept
(zd2zob j). A series of reconstructed images with differe
depths are shown in Fig. 7. In this example an absor
spherical object is at ~2, 1, 3! cm and the scattered wave 
measured in the plane at z55  cm over a 939 cm2 square 
with steps of 0.6 cm. The images ~b!–~f! are reconstructed
with assumptions of the depth (zd2zob j) to be respectively
4, 3, 2, 1, 0 cm. We fnd that the image quality gets wo
~e.g., noisier! at greater depths. The depth-dependent n
and the monotonic variation of the image sharpness make
diffcult to estimate the true object depth from image sha
ness. For a spatially extended object, however, a choice
shallow depth is often suffcient to reconstruct fairly well t
spatial margins of inhomogeneities. 

In order to obtain better 3D information with this diffra
tion tomography technique, one can use a secondary lo
ization scheme to deduce the object depth. An exam
would be to scan the phased-array in two orthogonal pla
@22,23#. Alternatively as shown in Fig. 8, if we take tw
planar measurements along two different directions of 
same sample, the projection image 1 from the frst meas
ment in one plane ~plane 1! will provide the depth informa-
tion for the projection image 2 from the second measurem
in the other plane ~plane 2!. 

D. Experimental results 

To demonstrate the experimental feasibility of this alg
rithm, we have performed amplitude and phase meas
ments in a parallel-plane geometry ~Fig. 2! within a tank 
flled with 50 liters 0.75% Intralipid (ma050.020 cm21, 
ms8057.3 cm21). We used a rapid homodyne detection s
 
th 
FIG. 7. Illustration of the dependence of reconstructed images on the estimated depth. The detection plane is at z55 cm and an
absorbing object shown in ~a! is at ~2, 1, 3! cm, which is 2 cm below the detection plane. ~b! through ~f! are the images reconstructed wi
an estimated depth at, respectively, 4 cm, 3 cm, 2 cm, 1 cm, and 0 cm. 

• 
real 

Zdepth = 2 cm 

(a) 

Z depth = 2 cm 

(d) 

Zdepth = 4 cm 

(b) 

Zdepth = 1 cm 

(e) 

Zdepth = 3 cm 

(c) 

Zdepth = O cm 

(I) 

https://dma250.02
https://dma150.04
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FIG. 8. Illustration of how to obtain a 3D image from two pr
jection images reconstructed from two measurements along tw
thogonal directions. Image 1 from the measurement in plane 1
vides the depth information for image 2 from the measuremen
plane 2. 

tem based upon in-phase/quadrature ~IQ! demodulation tech-
niques @20,24#. A block diagram and details of the expe
mental setup are given in reference @20#. 

The experimental geometry is shown in Fig. 2. The sou
position was fxed and taken to be the origin of our coo
nate system. As shown in Fig. 2, we ‘‘made’’ the detect
plane by scanning a single detection fber over a squar
gion from ~24.65, 24.65, 5.0! cm to ~4.65, 4.65, 5.0! cm in 
a plane at zd55.0 cm in steps of size Dx5Dy50.3 cm. 
The amplitude and phase of the DPDW was recorded at 
position for a total of 1024 points. Each data point ta
about half second. We directly measured the amplitude
phase in the homogeneous medium to obtain the backgroun
wave F0(r d). 

In this experiment, an absorbing slice with dimensio
1.531.530.4 cm3 was submerged in the turbid mediu
~0.75% Intralipid! at position (21.6, 20.3, 3.0! cm. The 
slice was made of resin plus TiO2 and absorbing dye. TiO2 
particles ~from Sigma! cause the scattering and the absorb
dye ~900NP from Zeneca! causes the absorption. The abso
tion coeffcient of the slice was ma,ob j50.12 cm21; its scat-
tering coeffcient was about the same as that of the b
ground, i.e., ;7.3 cm21. The scattered wave Fsc(r d) was 
obtained by subtracting the background wave F0(r d) from 
the measured ~total! signal F(r d). 

Detection plane 2 

1 111~1111111 I L 
1 1 Image 2 

I 
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For image reconstruction, we frst take the 2D Fou
transform of the scattered wave Fsc(r d) measured at the de
tection plane z5zd . Using Eq. ~22! along with a priori in-
formation about the slice depth, we then obtain the het

geneity function in K space T̂(p,q,zob j) in the plane 
containing the slice at z5zob j . During this step, an ‘‘m-cut’’
flter is used to neglect high spatial frequency compone
with Im(m).3.5 Im(k0) in the heterogeneity function
T̂(p,q,zob j) @25#. We then take 2D inverse Fourier transfo
of T̂(p,q,zob j) with respect to spatial frequency (p,q) to
obtain the heterogeneity function T(x,y,zob j) in real space.
Finally we divide the heterogeneity function T(x,y,zob j) by  
the background feld F0(x,y,zob j) in the plane containing
the slice at z5zob j to obtain a spatial map of the reco
structed absorption variation, e.g., dma(x,y,zob j) 
5Tabs(x,y,zob j)/@2v/D0F0(x,y,zob j)#. The homogeneous
background feld F0(x,y,zob j) is calculated using the bes
estimated optical properties (ma050.017 cm21 and ms80 
57.21 cm21) by ftting the background wave F0(r d) mea-
sured in the detection plane z5zd to the exact solution o
DPDW’s @e.g., F0(r) 5vM0 exp(ik0ur2 r su)/4pD0ur2 r su]. 
The reconstructed images of the slice are shown in Fig
The complete reconstruction based upon forward and inv
FFT calculations takes less than 0.2 second CPU time on
Sparc10 workstation. The reconstructed x-y position was 
about at ~21.80, 20.25! cm, close to the true x-y position at 
~21.6, 20.3! cm. Inaccuracies in the position measureme
might account for the discrepancy. The reconstructed abs
tion coeffcient is well above the background noise level 

rec 21close to the true value, e.g., dm 50.12560.018 cm .a,ob j 
The uncertainty corresponds to 1 mm uncertainty in the s
depth estimation. Errors in our estimate of background o
cal properties, the refractive index mismatch between 
object (;1.46) and background medium (;1.33) and our
inability to detect high spatial frequency components in 
scattered wave also contribute to the inaccuracy in re
structed absorption properties. 

VI. SIMULTANEOUS RECONSTRUCTION 
OF ABSORPTION AND SCATTERING, 

AND EXTRACTION OF BACKGROUND 
OPTICAL PROPERTIES 

The angular spectrum algorithm provides an approxim
relation between the heterogeneity function and the scatt
tion 
en the 
FIG. 9. ~a! shows the exact x-y position of a thin absorbing slice. ~b! shows the surface plot of the reconstructed absorption varia
(dm rec) using the angular spectrum algorithm. ~c! illustrates the reconstructed 2D photographic image of this slice. Agreement betwea 

reconstructed position and the exact position as shown in ~a! can be readily found. 
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wave within the framework of the frst order Born appro
mation. In addition to this frst order approximation, it a
requires knowledge of the background optical propert
The resultant images are 2D photographic-type images
this section, we consider the possibility of simultaneous
construction of the absorption and scattering coeffcie
and we explore methods to extract the background op
properties from a single measurement on a heterogen
sample. 

A. Absorption and scattering 

So far, we have assumed that we have either purely
sorbing inhomogeneities or purely scattering inhomoge
ities, but not a mixture. We introduce a dual modulat
frequency approach as a means to reconstruct the abso
and scattering coeffcients simultaneously. 

When both absorption and scattering variations 
present, the heterogeneity function is 

v 3D0k0
2 

T~r !52  F0~ r !dma ~r !1 F0~r !dm8~r !. ~23!
D0 v s 

Within a ‘‘thin’’ slice approximation, the heterogeneity fun
tion T(r) in the plane at z5zob j can be obtained using th
angular spectrum algorithm. Dividing T(r) by the back-
ground wave F0(r) in the plane at z5zob j , we obtain the
following quantity, denoted by F(v), which is a function of

8 , as well as the modulation frequency v, i.e.,dma , dms 

T~ r ! 
F~v!5 523ms80dma ~r !UF0~r ! 

zob j 

3v 
1 23ma01 i dm8~ r !. ~24!F Gv s 

Note that the scattering variation dm8 appears along with thes 
modulation frequency, while dma does not. Therefore, if we
measure the scattered wave at two different modulation
quencies v1 and v2, the difference between the two the r
constructed F(v1) and F(v2) will only be related to dm8 :s 

3~w22v1 ! 
F~v2 !2F~v1 !5 i dm8 . ~25! 

v s 

dm8 can be determined from Eq. ~25!. Then by substitutings 

the resultant dm8 into Eq. ~24!, we can then determine ths 
absorption variation dma . 

To demonstrate the feasibility of this approach, we sim
taneously reconstruct the absorption and scattering co
cients of a generic slice using simulated data. The simula
geometry is similar to the experimental geometry shown
Fig. 2. A 13130.3 cm3 slice of ma50.04 cm21 and m8s 
512.0 cm21 is placed at (1,21,3) cm. The source is a
(0,0,0) cm and the homogeneous background has op

21 21properties of ma050.02 cm and ms8058.0 cm . Note
that the slice has both absorption and scattering varia
with respect to the homogeneous background. The total
background diffuse photon density waves at zd55 cm are 
calculated for f 570 MHz and f 5140 MHz using the fnite
difference method. The reconstructed images are show
-
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FIG. 10. ~a! shows a thin slice object at ~1, 21, 3! cm. The slice 
is 0.3 cm thick with its 131 cm2 surface in parallel to the detec
tion plane at zd55 cm. The scattered waves at two modulat
frequencies ~70 MHz and 140 MHz! in the detection plane at zd 

55 cm are calculated using fnite difference method over a
39.3 cm2 region with x-y steps of 0.3 cm. ~b! and ~c! show the 
absorption and scattering images reconstructed simultaneousl
ing the dual modulation frequency approach. The reconstructed
sition of the slice is close to its true position and the reconstru
absorption and scattering properties are close to their true va
See Sec. VI A for details. 

Figs. 10~b! and 10~c!. The reconstructed absorption and s
tering coeffcients are dma50.025 cm21 and dm8s 
53.32 cm21. We fnd that this approach provides simul
neous estimates of the absorption and scattering coeffc
with a reasonable accuracy. 

B. Extraction of background optical properties 

Image reconstruction requires knowledge of the opt
properties of the homogeneous background medium. Fo

2 2ample, the complex spatial frequency m5@k02(2p)2(p 
1q2)#1/2 in Eq. ~22! depends on the background photon de
sity wave number k0, and k0 in turn depends upon the ab
sorption and scattering coeffcients of the background tu
medium. It is derivable to determine the background opt
properties from a single data set measured on a hete
neous medium. One simple approach is to ft the heter
neous data set with a homogeneous model and thus est
the average values of the bulk optical properties. We 
that the results by this approach are generally unsatisfac
Figure 11~b! shows the total photon density wave F(r) ~the 
amplitude, for example! from the absorbing slice experime
where the detector was scanned along a line symmetri
with respect to the source. When ftting all the data po
with a simple homogeneous model, the resultant absorp

f i t  
s80 

f i t  and scattering coeffcients are m 50.012 cm21 and ma0 
56.27 cm21, while the expected values for 0.75% Intralip

21are ma050.020 cm21 and ms8057.30 cm . 
We can improve the results by considering the symm

of our detection scheme. Our scanning geometry ~see Fig. 2! 
is mirror symmetric with respect to the source. In Fig. 11~a!, 
we project the 3D geometry into 2D to re-emphasize 
mirror symmetry. If the medium is homogeneous, the d
should be symmetric with respect to source; if the medium
heterogeneous, the left-right symmetry will be broken. T
broken symmetry enables us to identify the data points 
are substantially perturbed by the inhomogeneities. Since
phase of diffuse photon density waves is not as sensitiv
the absorption variation as the amplitude, we use only
amplitudes of the photon density waves for identifying 
most perturbed data points. If the left-right difference in a
plitude signals is greater than the system noise level, we

■ 
Thin Slice 

Absorption Image Scattering Image 

(a) (b) (c) 

https://ms8057.30
https://ma050.02
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FIG. 11. ~a! shows a 2D version of the experimental geome
in Fig. 2. The detector scans along a line from left to right s
metrically with respect to the source. ~b! shows the raw data mea
sured on a heterogeneous medium by scanning the detector a
line from left to right. ~c! shows the most perturbed data points 
which the left and right differences are greater than the noise 
of our detection system ~e.g., 2.5 mV in this case!. ~d! show the rest
data points after the most perturbed data points are fltered out
background optical properties can then be obtained by ftting
data points shown in ~d! to a homogeneous model. 

those data points the most perturbed data points @See Fig. 
11~c!#. We then exclude these perturbed data points, an
the rest of data points ~both amplitude and phase! to a ho-
mogeneous model @see Fig. 11~d!#. We fnd that resulta

f i t  optical properties are indeed improved, e.g., ma0 
21 2150.015 cm and ms80 

f i t57.23 cm . The inaccuracy de
creases from ;40% to ;25% in ma0 and from ;18% to 
;2% in ms80 . This symmetry technique is similar to th
phased-array technique in detection heterogeneities @23#. Al-
though biological tissue is in general microscopically inh
mogeneous, we speculate that this symmetry techn
might work to a certain degrees for tissues with rather 
mogeneous macrostructures such as breast tissue. Furth
perimental investigations would be required to test the ap
cability of this technique to in vivo studies. 

VII. SLAB AND SEMI-INFINITE GEOMETRIES 

The total photon density wave F(r) for a turbid medium
with boundaries was given by Eq. ~13!. On the surface of th
turbid medium, the diffuse photon density wave satisfes
zero partial current boundary condition @26# 

11Re f  f  2D0 ]F~r ! ]F~r ! 
F~r !1 50→ 52aF~r !,

12Re f  f  ]n8 ]n8v 

for r on the surface. ~26! 
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(d) 
Here n8 is the surface normal pointing outward from t
scattering medium, a5@(12Re f  f  )/(11Re f  f  )#v/2D0 where 
Re f f  is the effective refection coeffcient.2 Using this zero
partial current boundary condition in Eq. ~13!, we obtain a
general solution for the total diffuse photon density wa
F(r) in a fnite turbid medium: 

E S~r 8!G~r, r 8!d3r 81Ev 
D0 

r, r 8!d3T~ r 8!G~F~ r !5 r 8 
V V 

F~r 8!FaG~r, r 8!1
]G~r, r 8!G2E dA8. ~27! 

y 
-

g a 
r 
vel 

he 
he 

S ]n8 

How is the scattered wave related to the heterogen
function in this case? As we discussed at the end of Sec
the surface term depends on the total photon density w
F(r), and therefore the surface term includes both a ba
ground wave component and a scattered wave compo
Analytic separation of the background wave component fr
the scattered wave component in the surface term is ge
ally not feasible though perturbative approaches may be 
approximately. 

The approach we take here is to fnd an appropr
Green’s function so that the surface term is zero by requi

]G~r, r 8! 
aG~r, r 8!1 50, r is on the surface. ~28! 

]n8 

Note that this boundary condition, as we discussed in 
III, is naturally satisfed for an infnite turbid medium. B
requiring the Green’s function to satisfy Eq. ~28!, we then 
have the total photon density wave F(r): 

 ft 
v E S~ r 8!G~ r, r 8!d3r 81E T~r 8!G~r, r 8!d3F~r !5 r 8, D0 V V

~29! 

from which we can obtain the scattered wave Fsc(r)

 

E T~r 8!G~r, r 8!d3r 8. ~30!Fsc ~ r !5F~ r !2F0~r !5-
V 

ue 
o-
 ex-
li-

e 

Our task is to fnd the appropriate Green’s function wh
satisfes Eq. ~12! and the boundary condition given by E
~28!. We expect the Green’s function for a fnite medium
include the Green’s function in an infnite medium G0(r, r 8), 
and an additional term Gh(r, r 8) which results from backre
fections at the boundaries, i.e., 

G~r, r 8!5G0~r, r 8!1Gh~r, r 8!, ~31! 

2The exact expression of Re f  f  was derived by Haskell, Tromber
and their co-workers @26#. An approximate expression offered b
Groenhuis and co-workers @27#, is in agreement with the exact Re f  f  

within 10%. The approximate expression is Re f  f  521.440n22 

10.710n2110.66810.0636n where the relative index of refractio
n5nin,turbid /nout,air . 

https://fit57.23
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FIG. 12. A slab geometry is considered for the boundary p
lem. The slab is infnite long but has a fnite thickness, e.g.zd 

2z0. One surface of the slab is at plane z5z0 and another surface
is at plane z5zd . The turbid medium is between these two plan
and outside the slab is nonscattering media such as air. This
geometry is quite suitable for a compressed breast confgurati
clinical studies. 

where G0(r, r 8)5exp(ik0ur2 r 8u)/4pur2 r 8u. Gh(r, r 8) is re-
quired to satisfy the homogeneous Helmholtz equation 

2 ~¹21k0 !Gh~r, r 8!50, ~32! 

and the following boundary condition: 

]
aGh~r, r 8!1 

Gh~r, r 8

]n8 

! ]
52FaG0~r, r 8!1 

G0~r, r 8

]n8 

!G , 

for r on the boundaries. ~33! 

A. Slab geometry 

Boundaries of arbitrary shapes are, in general, diffcu
incorporate into the solution of the photon diffusion equat
@Eq. ~13!#. Here, we consider a slab geometry shown in 
12. Within the slab is the scattering medium and outside
slab is air. This slab geometry is to approximate the c
pressed breast confguration, which is suitable for clin
breast lesion diagnosis. 

Suppose the two surfaces of a slab turbid medium a
z5z0 and z5zd as shown in Fig. 12. Again we use t
angular spectrum representation of the Green’s func
Gh(r, r 8), i.e., 

2 i2p[ p(x2x8)1q(y2y8)]ˆGh~ r, r 8!5E E dpdqGh~ p,q,z,z8!e , 

~34! 

Substituting this equation in Eq. ~32!, we fnd for any given
spatial frequencies (p,q), Ĝ 

h(p,q,z,z8) satisfes the follow-
ing one-dimensional homogeneous Helmholtz equation: 

]2 
2 ˆ1m Gh~ p,q,z,z8!50, ~35!F G 

]2z 

where m5@k0
22(2p)2(p21q2)#1/2 and Im(m).0. The 

boundary conditions given by Eq. ~33! for a slab geometry
shown in Fig. 12 can be rewritten for the angular spect
Ĝh(p,q,z,z8) as  

Air t n 

Scattering 
Medium 

Air 

z 
• Detector 

Source 

L--------?X 

Zo 
b-

s 
lab 
 in 

to 
n 
g. 
e 
-

al 

 at 
 
n 

]Ĝ 
h~ p,q,z,z85z0 !ˆaGh~ p,q,z,z85z0 !2 

]z8 

52~a1 im!Ĝ 
0~ p,q,z,z85z0!, ~36! 

]Ĝ p,q,z,z85zd! 
aĜ 

h~ p,q,z,z85zd!1 
h~ 

]z8 

ˆ52~a1 im!G0~ p,q,z,z85zd!, ~37! 

where Ĝ 
0(p,q,z,z8)5( i /2m)eimuz2z8u is given by the Weyl

expansion @see Eq. ~16!#. 
The general solution of Ĝ 

h(p,q,z,z8) has the form of 

ˆ p,q,z,z8!5Aeimz81Be2 imz8Gh~ . ~38! 

The frst term represents the wave which is refected by
lower surface at z5z0 and then propagates forward along 
1z direction, i.e., the ‘‘transmission’’ component; the se
ond term represents the wave which is refected by the upper 
surface at z5zd and then propagates backward along 2z 
direction, i.e., the ‘‘refection’’ component. Coeffcients A 
and B can then be solved using the boundary conditi
given by Eqs. ~36! and ~37!. After some algebra, we fnd th

imz1 f 2e2 imz imz1 f 4e2 imzA5 f 1e , B5 f 3e , ~39! 

where f 1 , f 2 , f 3 , and f 4 are given by 

f 0 2 im(zd1z0)f 15 ~a21m2!e ,
b 

f 0 im(zd2z0)f 252  ~a1 im!2e , ~40!
b 

f 0 f 0im(zd2z0) im(zd1z0)f 352  ~a1 im!2e , f 45 ~a21m2!e ,
b b 

~41! 

with 

i 
im(zd2z0)2~ 2 im(zd2z0)f 05 , b5~a1 im!2e a2 im!2e .

2m 
~42! 

Finally, for a slab geometry, the Fourier component
total Green’s function Ĝ (p,q,z,z8) in  K space is 

Ĝ ~ p,q,z,z8!5Ĝ 
0~ p,q,z,z8!1Ĝ 

h~ p,q,z,z8! 

imuz2z8u1 f 1eim(z1z8)1 f 2e2 im(z2z8)5 f 0e

im(z2z8)1 f 4e2 im(z1z8)1 f 3e . ~43! 

Using Ĝ (p,q,z,z8), the relation between the scatter
wave F̂ (p,q,zd) and the heterogeneity functiosc 

m T̂(p,q,zob j) for a slab geometry within ‘‘thin’’ slice approxi
mation is 
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FIG. 13. ~a! shows the position of a 0.3 cm thick, 1
31.0 cm2 absorbing slice at ~1, 21, 3! cm in a slab turbid medium
The two surfaces of the slab are respectively at planes z50 cm
and z55 cm. The source is at origin at one of the slab surfacz 
50 cm) and the detector scans at the other surface (z55 cm).
The reconstructed absorption image using the ‘‘slab’’ Green’s fu
tion @Eq. ~43!# is shown in ~b!. The reconstructed absorption ima
using the wrong ‘‘infnite’’ Green’s function @Eq. ~16!# is shown in 
~c!. 

ˆ 
T~ p,q,zob j!' 

sc ~ 
. ~44! 

F p,q,zd!
ˆ 

DzĜ ~ p,q,zob j! 

The 2D inverse Fourier transform of T̂(p,q,zob j) gives the 
heterogeneity function T(x,y,zob j) in real x-y space. The
optical properties of the inhomogeneities can then be 
tained, e.g., for absorbing objects, we have dma(x,y,zob j) 

slab(x,y,zob j)#; and for scatter-
ing objects, we have dms8(x,y,zob j)5Tsc(x,y,zob j)/ 

slab(x,y,zob j)#. 

5Tabs(x,y,zob j)/@2v/D0F0 

@3D0k0
2/vF0 

Using the appropriate Green’s function @Eq. ~43!# for a 
slab geometry, we reconstructed a 2D optical image 
slice embedded in a slab turbid medium. The slab geom
is shown in Fig. 12 where the two surfaces are at planz 
50 and z55 cm, respectively. The source is at the orig
A 1.031.0 cm2 slice of 0.3 cm thick is at ~1,21,3! cm @see 
Fig. 13~a!# and the detection plane is at the top surface of
slab (z55 cm). The slice has a higher absorption coe
cient than the background medium but shares the same
tering coeffcient with the background, e.g., maob j 

21 2150.04 cm 8 58.0 cm for the slice and ma0and msob j 
21 2150.02 cm and ms8058.0 cm for the background. Th

total and background diffuse photon density waves at the
surface z55 cm are calculated using the fnite differen
method. 

The reconstructed absorption image using the approp
Green’s function @Eq. ~43!# for the slab geometry is shown 

recFig. 13~b!, and the reconstructed absorption is dma,slab 
21 th50.0240 cm , which is close to the expected value dma 

50.0200 cm21. For comparison, we also reconstructed 
image of the slice using the wrong Green’s function, i.e., the
Green’s G0(r, r 8), which is only correct for the infnite me
dium @Eq. ~16!#. The resultant absorption image is shown
Fig. 13~c!. We found that the position of the slice can be w
reconstructed by using different Green’s functions. Howe
the image shown in Fig. 13~c!, which is reconstructed
using the wrong infnite Green’s function, has more artifac
than that shown in Fig. 13~b!, which is reconstructed
using the right slab Green’s function. Notice that the Green
function for a slab geometry uĜ (p,q,z,z8)u is smaller than
the Green’s function for an infnite geometry uĜ 

0(p,q,z,z8)u 

■ 
Thin Slice 

(a) 

Slab Medium 
Slab Green's Function 

(b) 

Slab Medium 
Infinite Green's Function 

(c) 
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simply because we lose photons through the fnite bou
aries. When we use the Green’s function of an infnite m
dium to reconstruct the image for a slab geometry, the o
estimate of the Green’s function is responsible for the no
image structures ~artifacts! in Fig. 13~c!. The overestimate
infnite Green’s function also results in smaller reconstruc
optical properties, e.g., the reconstructed value by using

rec 21wrong infnite Green’s function, dm 50.0056 cm ,a,wrong 
recis about 4 times as small as the value dma,slab 

50.0240 cm21 reconstructed by using the appropriate s
Green’s function. We see that the appropriate Green’s fu
tion for a slab geometry @Eq. ~43!# produces cleaner image
and more accurate optical properties than the Green’s f
tion which is only suitable for an infnite medium @Eq. ~16!#. 

B. Semi-infnite geometry 

As an extension of the above derivation, we can ea
obtain the Fourier component of the total Green’s funct
Ĝ semi(p,q,z,z8) for a semi-infnite turbid medium. Alterna-
tively we can start with the Green’s function for a slab 
ometry @Eq. ~43!#, then move the lower boundary of the sl
in Fig. 12 to the negative infnity, i.e., z0→2`. Note that 

2 imz0Im(m).0 and therefore all terms in Eq. ~43! with e 
vanish when z0→2`. The Fourier component of the tot
Green’s function Ĝ semi(p,q,z,z8) for a semi-infnite medium 
at any spatial frequencies (p,q) in  K space is thus 

ˆ semi imuz2z8u1 f 4 
semi 2 im(z1z8)G ~ p,q,z,z8!5 f 0e e . ~45! 

semiHere, the coeffcients f 0 and f 4 are given by 

i 
f 05 ,

2m 

a1 imsemi 2imzd.f 4 52 f 0 e
a2 im 

~46! 

The frst term on the right hand side of Eq. ~45! represents
the Green’s function in an infnite medium, and the sec
term represents the wave, which is refected by the boun
at z5zd and propagates backward along the negative z direc-
tion. For arbitrary boundaries the solution of the Gree
function are in general diffcult to obtain. 

C. Re-emission geometry 

In the preceding discussions the source and the det
were assumed to be on the opposite sides of the inhom
neity. This confguration is called transmission @see Fig. 
14~a!#. It is suitable for two-plate soft compression geome
in breast cancer studies, with the source placed on one 
and the detector scanned over the other plate. Interesti
the derivation is not limited to this transmission confgu
tion. Recall that dependence of the angular spectrum a
rithm on the source position is implied in the heterogen
function @see Eqs. ~10! and ~11!#. The relation between th
heterogeneity function and the scattered wave measure
the detection plane @see Eq. ~22!# does not explicitly depend
on the source position. The light source and the detector
be placed on the same side or on the opposite sides o
object without affecting the conclusion of the above deri
tion. Hence, we can apply the algorithm equally well to 
other geometry–the re-emission geometry @see Fig. 14~b!#
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FIG. 14. ~a! shows the transmission geometry. The source is at the origin and the detector scans in a plane at z5zd . ~b! shows the 
re-emission geometry where the source is at the center of the detection plane at z5zd . ~c! illustrates a spherical absorbing object at ~2, 1, 
2! cm embedded within a slab turbid medium. The two surfaces of the slab are at z050 cm and zd54.0 cm, respectively. For both
transmission and re-emission geometries, the scattered waves in the detection plane at zd54 cm are calculated using the exact DPD
solution for a slab geometry over a 939 cm2 region with x-y steps of 0.6 cm. The reconstructed images for the re-emission
transmission geometries are shown in ~d! and ~e!, respectively. The two images look similar. We also found that the reconstructed abs
coeffcients are also about the same under both geometries. 

Transmission Re-emission 

(a) (b) 
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@28,29#. In the re-emission confguration, the detector sc
in the plane which contains the source. This could be ne
sary, for example, in brain function studies. The re-emiss
geometry could also be useful for studies of large de
breast tissues in which fewer photons pass through the ti

In the transmission geometry, we measure the scatt
wave propagating forward away from the source; in the re
emission geometry, we measure the scattered wave prop
ing backward towards the source. For a re-emission geo
etry and within a thin slice approximation, the relation of 
heterogeneity function T̂(p,q,zob j) in  K space with the mea
sured scattered wave in the plane z5zd is given by the same
equation as for the transmission geometry @Eq. ~22!#. Here, 
we rewrite the relation for the re-emission geometry: 

F̂sc ~ p,q,zd! 
T̂~ p,q,zob j!5 , ~47! 

DzĜ ~ p,q,zd ,zob j! 

where an appropriate Green’s function for an infnite m
dium @Eq. ~16!# or a slab medium @Eq. ~43!# has been as
sumed. 

Simulations have shown the applicability of the algorith
to the re-emission geometry. Consider an absorbing sphe
inhomogeneity of 0.5 cm radius at ~2, 1, 2! cm embedded in
an otherwise homogeneous slab turbid medium @see Fig. 
14~c!#. The two surfaces of the slab are at z050 cm and 
zd54.0 cm, respectively. The absorption and scattering
effcients of the sphere are ma50.04 cm21 and m8s 
58.0 cm21 while the background optical properties a

21 21ma050.02 cm and ms8058.0 cm . For the re-emissio
ns 
es-
n 

se 
ue. 
ed 

gat-
-

e 

-

 
cal 

o-

 

confguration, both the source and detector are placed o
top surface of the slab, i.e., in a plane at zd54 cm. The 
scattered wave is calculated over a 939 cm2 region with 
x-y steps of 0.6 cm. The source is placed at the center o
square scanning region in the detection plane, i.e., at ~0, 0, 4! 
cm. The reconstructed image for the re-emission geomet
shown in Fig. 14~d!. For comparison we also reconstruct
image of the same object for the transmission geometry
this case the source is at the origin ~0, 0, 0! cm, on the lower
surface of the slab, with all other confgurations kept 
same as in the re-emission geometry. The image is show
Fig. 14~e!. We see that the image quality in these two c
fgurations is about the same. The ratio of the reconstru
absorption coeffcient for the re-emission geometry to t

rec recfor the transmission geometry is dm /dm ;1.1.a,re2em a,trans 
The fnite object size ~as opposed to a ‘‘thin’’ slice! might 
contribute to the small difference in the reconstructed 
sorption. 

VIII. SUMMARY 

We have presented a full exposition of our recent w
that employs the angular spectrum algorithm for optical 
fraction tomography with diffuse photon density waves. T
image reconstruction becomes practically easy for thin 
erogeneities wherein the heterogeneity function of intere
proportional to the scattered wave measured at the dete
plane, i.e., T̂(p,q,zob j)}Fsc(p,q,zd). We have shown tha
although this relation is accurate only for thin inhomoge
ities, it provides an approximate short cut for fast, 2D p

https://ma050.02
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 of 
jection imaging of spatially extended objects. The rec
struction is very rapid, requiring only a forward and inve
Fourier transform, e.g., it takes less than 0.2 second 
Sparc10 workstation to reconstruct an image of ;1000 pix-
els. For spatially extended objects, although the rec
structed optical properties are not accurate, the ratio of
reconstructed optical properties of multiple objects are c
to the true ratio. In this sense we say that contrast image can
still be obtained by using this algorithm. The feasibility 
using this algorithm for image reconstruction of absorb
and scattering inhomogeneities has been experimen
demonstrated @20#. We have also shown that the absorpt
and scattering properties can be reconstructed sim
neously using the angular spectrum algorithm with scatte
wave measured at two different modulation frequencies. 
thors perceive that the angular spectrum algorithm could
tentially apply for breast cancer imaging given that bound
matching is employed to reduce the boundary effect @30#. 
The method could also be used for differential imaging
the preferential accumulation of an exogenous contrast a
in biological tissues @31#. 

We have extended the theory to other geometries inc
ing the slab and the semi-infnite geometry for both transm
sion and re-emission confguration. The theory was c
frmed in simulation experiments. 
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APPENDIX A: CONVENTIONS USED IN THIS PAPER 
REGARDING FOURIER TRANSFORM 

The conventions regarding the forward and inverse F
rier transforms are as follows. Consider a function f (x) in  
one dimension: 

Forward Fourier transform: 

F~ p!5E f ~x!ei2pxpdx; ~A1! 

Inverse Fourier transform: 

f ~x!5E F~q!e2 i2pxpdp; ~A2! 

and the d function is therefore given by 

d~ p!5E ei2pxpdx, d~x!5E e2 i2ppxdp. ~A3! 

Using these conventions, we eliminate the 2p factor outside
the integral of forward and inverse Fourier transforms. 
-
e 
 a 

n-
he 
se 

r 
g 
lly 
n 
ta-
ed 
u-
o-
ry 

f 
ent 

d-
s-
n-

 
-
by 
-

u-

FIG. 15. There are two poles for the integral over n in Eq. ~B6!. 
~a!: for z.0 the singularity is at n52m/2p and the integral is
done along the lower close curve; ~b!: for z,0 the singularity is at
n5m/2p and the integral is done along the upper close curve.

APPENDIX B: THE WEYL EXPANSION OF GREEN’S 
FUNCTION 

Consider an infnite turbid medium. ma0 and ms80 are re-
spectively the absorption and scattering coeffcients. 
Green’s function G0(r, r 8) satisfes the following equation:

2 ~¹21k0!G0~ r, r 8!52d~r, r 8!, ~B1! 

k05@(2vma01 iv)/D0#1/2where with Im(k0).0; D0 

5v/(3ms80) is the photon diffusion coeffcient. The solutio
of the Green’s function is @32# 

ik0ur2 r8ue 
G0~r, r 8!5 . ~B2! 

4pur2 r 8u 

The Green’s function is related to its Fourier transform

G0~r !5E E E Ĝ 
0~ p,q,n!e2 i2p(px1qy1nz)dp dq dn, 

~B3! 

where we assume r 850 without losing generality and
(p,q,n) are the spatial frequencies. Plugging Eq. ~B3! into 
Eq. ~B2! and using the integral expression for the d function 
@Eq. ~A3!#, we have 

E E E Ĝ 
0~ p,q,n!@k2

02~2p!2 ~ p21q21n2 !# 

3e2 i2p(px1qy1nz)dp dq dn 

52E E E e2 i2p(px1qy1nz)dp dq dn. ~B4! 

Without a rigorous proof, we can obtain the Fourier tra
form of the Green’s function just by looking at both sides
the above equation, i.e., 

1 1 
Ĝ 

0~ p,q,n!5 5 , 
2p!2 21q21n 2 2p!2 22m2 ~ ~ p 2!2k0 ~ n 

~B5! 

2where m5@k02(2p)2(p21q2)#1/2 and Im(m).0. Eq. ~B3! 
can then written as 

2 i2pnze 
G0~r !5E E dp dq e2 i2p(px1qy) E dn,

2~ 2p!2n22m 
~B6! 

Im (n) 

m 
21t 

--=::.:==±::i;:::•=-Re (n) 
• • \ m / 

\.:.~~ ... ·······''/ 
(a) 

Im (n) 

(b) 
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The integral over spatial frequency n can frst be done by
‘‘pole’’ structure analysis. There are two poles in the integ
over n as shown in Fig. 15. For z.0, we require Im(n) 
,0 to ensure the convergence of the integral over n. There-
m
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ce
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se
fore, we choose the pole in the lower half space @Fig. 15~a!#, 
l e.g., n52m/2p @recall Im(m).0, which gives Im(n),0]. 
Note that the integral is along the clockwise direction wh
gives us an extra minus sign. The resultant integral is 
ral is thus 

e 
 

2 i2pnz 2 i2pnze e n52m/2p iE dn522p i 5 eimz . ~B7!m m m 2m 
~2p!2S n1 D S n2 D ~2p!2S n2 D2p 2p 2p 

Similarly, for z,0 we require Im(n).0. Therefore we choose the pole in the upper half space @Fig. 15~b!#, e.g., n5m/2p. 
The integral is along the counter-clockwise direction so there is no extra minus sign in this case. The resultant integ

2 i2pnz 2 i2pnze e n5m/2p iE dn52p i 5 e2 imz . ~B8!m m m 2m 
~2p!2S n1 D S n2 D ~ 2p!2S n1 D2p 2p 2p 

Combining Eqs. ~B7! and ~B8!, we have the general expression for the integral over n: 
2 i2pnze i 

imuzuE e .dn5 ~B9!
2 ~2p!2n22m 2m 

Substituting this equation into Eq. ~B6!, we then end up with the Weyl expansion of the Green’s function: 

i 
2 i2p(px1qy) imuzuG0~r !5E E dp dq e e , ~B10!

2m 

2where m5@k02(2p)2(p21q2)#1/2 and Im(m).0. 
The Weyl expansion represents the superposition of elementary harmonic waves in the x and y directions (e2 i2p(px1qy)); 

the harmonic waves exponentially attenuate in the z direction away from the plane z50 which contains the source. Th
harmonic waves and the attenuation factor ieimuzu/2m are so combined that the double integral in Eq. ~B10! over all the spatial
frequencies (p,q) yields the elementary damped spherical wave on the left-hand side of Eq. ~B10!, i.e., G0(r) 
5eik0r /(4pr ). 
ns. 

hys. 
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