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Near-field diffraction tomography with diffuse photon density waves
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An angular spectrum algorithm is presented for fast, near-field diffraction tomographic imaging with diffuse
photon density waves in highly scattering media. A general relatishspace is derived that connects the
spatial variations of the optical properties of heterogeneities to the spatial spectra of the measured scattered
diffuse photon density waves. The theory is verified experimentally for situations when boundary effects can
be neglected. We further describe how to reconstruct absorption and scattering properties simultaneously, and
how to incorporate boundary conditions into this angular spectrum algorithm for a turbid medium of finite size
(e.g., the slab mediumLimitations and potential improvements of the near-field diffraction tomography are
also discussed.

PACS number(s)87.10.+e42.25.Fx, 42.30.Wb, 42.62.Be

[. INTRODUCTION fraction tomography16,17], it is possible to rapidly recon-

Optical radiation was used to image breast tumors by th&fruct thin slice and spherical objects whose absorption
shadowing effect as early as the 19pDs However, recent and/or scattering parameters differ from the background ho-
advances in light generation and detection, along with immogeneous scattering mediy20]. Our image reconstruc-
provements in our theoretical understanding of near-infraretion algorithm, based upon diffraction tomography technique
(NIR) light propagation in tissue-like highly scattering turbid (called angular spectrum algorithm in this papés rapid,
media have opened new possibilities for optical imaging opermitting object localization and characterization-it000
the interior of thick biological tissud&]. In highly scatter- volume-element samples on sub-second computational time
ing media such as biological tissue, light propagation is descales. Such an angular spectrum algorithm has recently at-
scribed adequately within the diffusion model of photontracted the attention of many researchers in photon migration
transport[3-5]. It has been shown by several investigatordield [18,19]. In this paper we provide a more complete dis-
that diffuse photon density waves, which are created insideussion of the results reported in those earlier papers, and we
highly scattering media by an intensity modulated lightorovide a detailed analysis of this algorithm incorporating
source, obey a Helmholtz wave equation with a complefhe effects of finite boundaries. We first derive the general
wave numbef6,7]. In spite of complexities resulting from integral solution of the total and scattered photon density
strong tissue scattering, diffusing photons offer many attragvaves in a heterogeneous turbid medium within the first or-
tive features for imaging thick tissue. These features includder Born approximatioriSecs. II, Ill, and V). These ses-
noninvasiveness, low cost, and unique optical contrast arfons are largely reviews, but are included for completeness
spectroscopic signatures with clinical and physiological reland clarity. We next derive a relationknspace between the
evance[8,9]. spatial spectrum of the heterogeneity function and the spatial

The goal of diffuse optical imaging is to reconstruct a lowspectrum of the measured scattered diffuse photon density
resolution map of heterogeneous absorption and scatteritiggve (Sec. V A). Experimental results are presented to
variations from the measurements of diffuse photons on ¥erify the feasibility of the angular spectrum algorithm for
sample surface. Image reconstruction entails solving the ifnage reconstruction. We then describe a method to recon-
verse problem. Most quantitative optical image reconstrucstruct the absorption and scattering properties simultaneously
tion algorithms such as the algebraic reconstruction techvith this algorithm. Some limitations and potential improve-
nique (ART), the simultaneous iterative reconstructionments of the diffraction tomography are discussed in Sec. VI.
technique(SIRT) [10], the Newton-Raphson technique com-Finally, we illustrate how to incorporate boundary conditions
bined with finite element numerical meth¢til—13, the into the angular spectrum algorithm for a turbid medium of
conjugate gradient descent techniji4], and singular value finite size, in particular, the slab medium and the semi-
decomposition(SVD) [15], rely on iterative schemes in a infinite medium(Sec. VII).
least-square sense. The optical image reconstruction there-
fore requires a significant amount of computational resources
and time.

Recently, we showed that by using the techniques of dif-

II. PHOTON DIFFUSION EQUATION
IN HETEROGENEOUS MEDIA -A
PERTURBATION APPROACH

Light transport in highly scattering turbid media is often
*Present address: Department of Electrical Engineering and Convell described by photon diffusiof2]. Consider a light
puter Science, Massachusetts Institute of Technology, Cambridgepurce atrg with its intensity sinusoidally modulated at
MA 02139. Electronic address: xingde@mit.edu modulation frequencyf, e.g., the source term iS(r,t)
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Scattere properties. The goal of optical tomography is to reconstruct
the map of these heterogeneous optical properties from mea-
surements of the scattered wave.

/ In a heterogeneous medium we write the optical proper-
./ ,’ ties (u, anduy) as the sum of background optical properties
—/?\— 1 ( '\ (a0, M) and the variations relative to the background
\ Sy, Suy), ie.,
Source \ N (Oma :“s)
> Ha(r)= paot Spa(r), (4)
Background ()= pig+ Sug(r). (5)

FIG. 1. In the presence of optical inhomogeneities, the sphericgtonsider the case of weak optical inhomogeneities where
wave fronts of the background wave are distorted and the scatter < a0 and Sul<ul,. The optical inhomogeneities in-
wave is generated. The total photon density wave is the sum of ﬂi' guceagl weak ;S)ertu?%.ation to the background wave, i.e
background wave and the scattered wave. |(Dsc(r) |<|CI>0(r) | Substituting Eqs(4) and (5) into Eq. (1)
and keeping only the zeroth and first order terms in optical

_ —iwt _ —iwt _ _ H _ . ) .
=S(rje "“'=Mee ' 5(r—ry, wherew=2xf is the angu- . ,hary variations as well as in the scattered wave, we find

lar source modulation frequentl, is the source strength

representing the number of photons emitted per second. Con- v S (1)

sider steady-state photon diffusion in which the photon flu-  (y2+ ké)d)(r)= 14+ = S(r)—Tapdr)
ence®(r,t) has the same time dependence as the source, Do Ko

i.e., ®(r,t)=d(r)e ', It is straight forward to show that

the photon fluencé (r) satisfies the photon diffusion equa- ~Tsdr), ®)
tion [3-5]:

where we have introduced the heterogeneity functions
V.- DVO(r)—vpa® () +iod(r)=—vS(r). (1) TapsN gnd TN repre:-senting the perturbations due to the
absorption and scattering variations. They are
Here the common time dependence expgt) of the flu-
enced(r) and the sourc&(r) are omittedw is the speed of __ Vv
light in( t)he turbid medil;S(m;I)=v/3,ug is photon diﬁ:fusion Tand 1) = D_o(DO(r)é'ua(r)' )
coefficient;u, andu, are respectively the optical absorption

and reduced scattering coefficients. 3D0k§ ) V[Spi(r)]
In a homogeneous medium, the absorption and scattering Tsc(") =~ Po(1) dus(r) = ——————-VPq(r).
coefficients f1o0 andug,) are constant, and the above equa- Kso )

tion reduces to a simple Helmholtz equation:

, Note thatSu.(r)/ ui,S(r) is zero as long as the source is
(V24 ko) Po(1) = = BugoS(r). @ outside the ithom(S)(z:Jeneit@which is generally the case in
Here the wave numberk, is complex and k practic_e), and therefore we can .drop this term from(.E)q.
—[3ul(— iwly)]Y2 witholm(k )>0 to ensure tr?at In addition we assume, for simplicity, that the scattering var-
Fsot fao 0 ies slowly in space so that the terffuly+ dud(r)]/

the photon density goes to zero at a large distance. , .
In an optically heterogeneous turbid medium, the spheri"—‘_so’vq)f)(r) can be neglected. We thus have the following

cal wave fronts of the background wave are distorted by'MPlified equation for the total photon density walvér)
inhomogeneities. As illustrated in Fig. 1, the total photonVithin the first order Born approximation
density waveb(r) is the sum of the background watbg(r)

and the scattered wae,(r) (V2+ kg)db(r)z — DLS(r)—T(r), 9)
0

D(r)=Po(r) + P (r). 3) .
where T(r) =T,,(r) + Ts(r) and the heterogeneity func-
The background waveé,(r) represents the photon density tions T,,4r) and T¢(r) are given by
wave in a homogeneous turbid medium for an arbitrary ge-

ometry; the scattered wave is produced by optical inhomo- v

geneit)i/es in an otherwise hompogeneous )r/negium with the TabS(r):_D_o®°(r)5“a(r) (10)
same geometry as the background wave. The scattered wave

is determined by characteristics of the inhomogeneity such 3Dokg

as its size, shape, position, and its absorption and scattering TsdN)=— Do(r) dpug(r). (11)

We see that the heterogeneity functions can be treated as
The continuous-wavéCW) case is a special case whese=0 equivalent “source” terms, which give rise to the scattered
and the frequency domain analysis can be readily applied to the C®mponent®(r) of the total diffuse photon density wave
case. D(r).
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lll. TOTAL DIFFUSE PHOTON DENSITY WAVE

IN HETEROGENEOUS TURBID MEDIA — THE Detegilon Z  Detection Plane
GREEN'S FUNCTION APPROACH (Scanning) =T ;;_—,37_—;;_—,7—/ DX, Y, Zg)
- , , e e
We will take a Green’s function approach to derive the AT or
total and therefore the scattered photon density wave in a —— -7 “
heterogeneous highly scattering medium. Consider the - ®| (opject Pse(P; 9, Zg)
Green’s function in turbid media which satisfies
Y
2 2 Ny — ’
+ =— .
(VZHko)G(r, 1) or.r’) (12) Source Fiber

Using the Green’s theorem, we obtain an integral expression X

for the total optical density wavé(r) FIG. 2. lllustration of 2D geometry which we consider for the

image reconstruction algorithm based upKrpspace spectrum

) ab(r") —o(r) aG(r,r")
an’ an’

q)(r):DLf S(r’)G(r,r’)d3r’+f T(r’)G(r,r’)d3r’ analysis. The scattered wave,(Xx,y,zq) (or its spatial Fourier
0Jv v component®.(p,q,zy) is determined at the detection plame
=z4 by scanning the detector over a square region. Without losing
+ J' dA’. generality we assume the optical heterogeneities are located below
S the detection plane a&=z;. A point source can be placed any-
where in the turbid medium. In practice the point source and the
(13) detection plane are either on the opposite side of the heterogeneities
The first term on the right-hand side of E&3) is a volume (tra_nsrnission)or_ bc.’th on the same side of the heterogeneities
. le_ssmn). In this fl_gure the point source happe_ns to be placec_i at' the
gives us the background wave. The second term is a vqun%'gm of our coordinate system for demonstration of a transmission
integral of the heterogeneity function over the entire turbid" easurement geometry.
me_d|um and it dete_r_mmes the perturbatlpn resulting fr_om th y definition: the difference between the total photon den-
optical heterogeneities. The third term is a surface mtegrSity waved(r) and the background wavk(r)] is
over the closed surface of the entire turbid medium. It takes 0
into account the boundary effects on the total photon density
wave, and it includes contributions to the total photon den- q’sc(r)=<b(f)—¢o(r)=J T(r'")Go(r,r"Hd3’. (14)
sity wave from both the background wave and the scattered v
wave on the boundaryn’ in the surface term denotes the
surface normal pointing outward. For an infinite heteroge- V. IMAGE RECONSTRUCTION ALGORITHM
neous medium, this surface term is zero since the enclosure AND EXPERIMENTAL RESULTS
surface of an infinite medium is at infinity. Therefore the
scattered wave can be simply separated from the backgroundThe scattered wave depends on the heterogeneity func-
wave. For a finite turbid medium, however the separation dfon. In practice the scattered wave can be obtained from
the background wave component from the scattered waveeasurements and knowledge of the background wave.
component in the surface term is generally difficult. It isGiven the scattered wave, how can one obtain the heteroge-
advantageous therefore to remove the surface integral froneity function and thu$u,(r) and dus(r)? The approach
the total photon density wave by choosing an appropriatee take here employs the angular spectrum analysis of the

Green’s function. We will consider this complicatéget  scattered wave. In this approach we relate the spatial spec-
more realistic)case at the end of this paper. We will starttrum of the scattered wave to the spatial spectrum of the

with a simple case - the infinite geometry case. heterogeneity function. The analysis involves forward and
inverse Fourier transforms following the conventions given
IV. SCATTERED WAVE IN INFINITE HETEROGENEOUS in Appendix A.

TURBID MEDIA

As shown in Fig. 1, in the presence of optical heteroge- A. The angular spectrum algorithm

neities, the total photon density wave consists of the back- The experiment we consider for the angular spectrum al-
ground wave and the scattered wave, and the scattered way@ithm has a two-dimension&D) planar geometry. As
carries the information of the optical inhomogeneities. For ashown in Fig. 2, the scattered wadg(r) is determined at
infinite geometry, the surface integral in Et3) disappears. a planez=z4 from a set of measurements in that plane.
The background wave in this case is given by the first terrequation(14) tells us that the scattered wadg(r) is the
(volume integral of the sourceh the right-hand side of Eq. convolution of the heterogeneity functiofn(r) with the

(13). For an infinite geometry, the Green’s function isGreen’s functionGy(r,r’). In order to reveal the relation
Go(r,r")=exp(iko|r—r’|)/4m|r—r’|. Using this Green's between the scattered wave and the heterogeneity function in
function and considering a point sourcerat i.e., S(r') K space, we first expand the Green’s function in terms of
=Myd(r' —rg, we can readily show that the scattered waveplane waves in two dimensions, i.e.,
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Go(ry,r’ +o0 . )
o) @.dro= | [ dpdaindpazge e, )

:f+wf dpdq’cb(p,q’zd12’)e*iZW[P(Xd7X’)+Q(yd7y’)]
—o and comparing Eq(l7) and Eq.(19), we then obtain the

o i relation between the spatial spectrum of the scattered wave
:f f dpdoz_eim\zdﬂ’\ g 12mP(xg—x")+alya—y")l and the spatial spectrum of the heterogeneity function at any
—o m given spatial frequencyp(q), i.e.,
(15) .
. . . (Dsc(p!qlzd):j dZIGO(p!qazd1Z,)T(pvq12’)- (20)
where {,q) are the 2D spatial frequencies with respect to -

thex-y coordinates. In the second line of the above equation,

we have employed the Weyl expansion of the Green’s func- Wi.thout losing generality,.we assume _the optical'hetero—
tion[21], i.e. geneities ardelowthe detection plane. This assumption en-

ables us to remove the absolute value sign in the Weyl ex-
i pansion in Eq(16) sincezy—2z'>0. We also assume the
Go(p.q,2q4,2' )= =—e'mza=2'l, (16) heterogeneities are localized between the detection plane at
2m z=z4 and a plane at=z,. Thus we need consider only the
interval between4=z,, z=z,4) for the integral in Eq(20).
where m=[k§—(2m)*(p?+q*)]"? and Imm)>0. The Dividing the turbid medium between the planezatz, and
derivation of the Weyl expansion of the Green’s function ighe detection plane into slices, we can rewrite(£6) in the

given in Appendix B. following form of discretized summation
Note that Eq(15) is theangular spectruntepresentation

of the Green'’s function, a solution of the wave equation with . N R .
a point source atx(,y’,z’). At any point inside the half d(p.0,29)= >, AZT(p,0,2)Go(P,0.24.2)
space to the righor left) of the source, there are eigen-plane =1
waves in thex-y plane whose amplitudes and phases vary N Azl '
with the distance from the sourtg;—z’'|. Because of the => — (p,g,zj)em@2), (21)
large positive imaginary part of, the amplitude decays ex- =1 2m
;)rgrrl]er;'ﬂzllyé O\Le;rcseuspé?ri.pglrgﬁgd\;::\llzg d\;\i:ﬁmé LS‘;{% fr e\ivhere in the se.cor?d line we subst_itute the Greenfs function
quencies §,q) (and therefore a large imaginary partnof ~ Go(P.0.24,2;) with its Weyl expansiofEq. (16)]; Az is the
will have negligible amplitudes. This is the characteristic dif-discretized step size along thelirection andN is the total
ference between diffuse photon density waves and ordinaﬂ“mb?r of slices in the direction. Ideally the dlscretlzat_|on
diffractive electromagnetic waves in lossless dielectric meStep SizeAz needs to be as small as possible. In practice we
dia. These plane waves will be scattered by optical inhomdzh00seAz to be a few random walk stefise., ~1/u).
geneities and their resulting amplitudes and phases will carry Equation(21) implies that at any given spatial frequency
information about the absorption and/or scattering charactetP.d), the heterogeneity functions at different degth can
istics of the inhomogeneities. be thought of as the “source terms” for the scattered wave.
If we substitute the angular spectrum representation of thEhe plane waves arising from different slices propagate
Green's functioEq. (15)] into the volume integral of the along thez direction to the detection plane. During the
scattered wave given by Ed4), after simple algebraic ma- Propagation these plane waves experience different ampli-
nipulation and interchanging the order of integrations, wdude attenuation and phase shifts which are given by
obtain the following representation, known as #rgular €™~ %)/m, wherem=[kj—(27)%(p?+q%)]*? is a com-
spectrumrepresentation of the scattered wave plex number with Imih)>0; the scattered wave detected at
the detection plane=z, is thus a sum of plane waves origi-
+o , nating from the heterogeneity functions at different depths.
(Dsc(rd)zf f ) dpdqe 2m(PXatave) In Fig. 3 we illustrate this concept. In this figure we consider

two nonzero heterogeneity functiorig;(p,q=0,2) and
' A A / T,(p,q=0,2) corresponding to plane waves along xrgt-
Xf d2'Go(p.0.24,2)T(P.G.Z),  (17) rection in thex-z plane(i.e.,y=0) with a spatial frequency
p at depthz, andz,. The perturbations from these two slices
where T(p,q,z') is the 2D spatial spectrufffourier trans- Propagate to the detection plane with a phase shift and am-
form) of the heterogeneity function, i.e., plitude attenuation facta@™@~%)/m. At the detection plane
the perturbations from these two slices add up to make a

- +oo _ CL scattered wavé (p,g=0,zy) at the same spatial frequency
1 — ’ ' VAL 2m(px’ +qy’) sc

T(p,q,2") f ﬁw dx'dy'T(x',y’,z")e'™Px Tay), p. )

(18) In K space the propagation of the perturbafigp,q,z;)
at different depthgy—z; is weighted by the amplitude at-

Taking the 2D Fourier transform of the scattered wavéenuation and phase shift given by the Weyl expansion of the
d(ry) in the detection plane at=z,4, i.e., Green’s functionGy(p,q,zq4,z;)=ie™@~%)/(2m). Recall
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two slices
X
T, Y
2 < Spatial Freq p
% D
N
/?\ 4
T
2x
P
1
z, 2, Detection Plane Z4
Hetero. Function T at Slice 1 Hetero. Function T at Slice 2
Propag Delay Propagation Delay
,\ /\ /\ and attenuation /\ /\ and attenuation
\/ \/ \/’ exp[im (z4-z) Vm == \/ \/ expl i m(z4-z;) Ym
X 20
Detected Scattered wave /\ /\ 1
— at detection plane |

with the same Frequency p \ ] ‘ ] ‘

FIG. 3. The heterogeneity functioits and T, with spatial frequency from two slices propagate to the detection plane=aty where
they add up to make the scattered wdxg in K space at the same spatial frequepcy

m=[k3— (27)%(p?+q?)]*2 with Im(m)>0, therefore the F(l)r spatial frequenciegp(q) with the range of0, 1.6)
- 2 -, lot the amplitude and phase of the Weyl expan-
amplitude and phase of the Weyl expans@y{p,q,z4,2;) cm =, we p ., i .
depend on the spatial frequenqy,q) at a given dedptfid ston (Afelm(Zd “Im) in Figs. 4(3)"."”0' 4(b)assuming the_
—Z;. The amplitude decays more quickly as the spatial fredepth iszg—z;=1 cm. In calculating the backg]r(l)/gnd dif-
0 we

quencies g,q) increase, and the Green’s function effectivelyfusé wave wave numbeko=[(—vpqo+iw)/D
acts as a low pass filter K space. choose background optical propertjgs,=0.02 cm™* and

Vo
WoN -

\og Amp. of exgflzez)m
i
Prose of exgfimlzezfm

10° T T T T =

£ N g
= =
~ 10 I N ~
N A < £
5 < (p.q)=(0.1, 0.1) cm ~
S -4 < 1T =
£ 10 . 7
g ™y =
S 1070k N 1 E
: g ;
g 107f o1 .
= (p,q)=(0.5, 0.5) cm™ ~ o
g .,-10 . 2
E 10 3 4 éo

0 1 2 3 4 5

Depth z4—z; (cm) Depth z4—z; (cm)
(c) (d)

FIG. 4. (a) and(b) respectively show the amplitude attenuation and phase shift associated with the Weyl expatsipace versus
spatial frequenciesp(q). Note in(a) the z axis is the log of the amplitude ef"?¢=%)/m; in (b) the z axis is the phase &™@~%)/m in
degrees(c) and (d) show the amplitude attenuation and phase shift versus the Zjepth for given spatial frequencie®.1, 0.1)em™?!
(solid lines)and (0.5, 0.5)cm™* (dashed lines).
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nlo=8.0 cni’l, and a 140 MHz modulation frequency. The ?(p,q,z b1
resultant wave number |&,|~1.1 cm 1. We find that the o
amplitude attenuates by 7 orders of magnitude when the — A
spatial frequenciesp(q) increase from0, 0)cm™? to (1.6, L Uge(pid,24)
1.6) cm 1. In practice the maximum spatial frequency is

' Detection

determined by the Nyquist sampling frequency, iByax Source *
Plane

=1/2Ax~0.833 cm! for a scanning step sizeAx
=0.6 cm. In Figs. 4(cand 4(d), we also plot the amplitude
attenuation and phase shift versus depth for given spatial —
frequencies, i.e.(0.1, 0.1)cm™! and(0.5, 0.5)cm™*. The
amplitude attenuates exponentially and the phase shift in- Z=0 Zoy 2224
creases linearly as we consider the perturbation from deeper
slices. Again as already shown in Fidc} the amplitude FIG. 5. The heterogeneities are considered to be thin, which
attenuates much faster at spatial frequen@es 0.5)cm ™! locate within a thin slice &= z,,; in parallel to the detection plane.
than at(0.1, 0.1)cm™t. At any given depthzg—zj), those The heterogeneity function within this thin slice is approximately
plane waves with sufficiently large spatial frequencigs|) uniform and the heterogeneity function is zero elsewhere.
have negligible contribution to the scattered wave, and there-
fore carry less information about the inhomogeneities. tions, a CW DPDW is not sufficient to separate the absorp-
tion and scatterinfisee Sec. VI(A)].

Consider next a case where the optical heterogeneities are
located within a “thin” slice az=z,;,; (see Fig. 5). If the

2D photographic images have been used by radiologistice thicknessAz is less than a few transport mean free
for many years. In order to acquire 2D photographic-typ§ath-lengths [ 1/(ul+ 1a0)], the heterogeneity function
projectionimages, we make a “thin” slice approximation by within this thin slice is approximately uniform, therefore Eq.
replacingz; on the left hand side of E¢21) with the esti-  (22) provides a quite accurate relation between the heteroge-
mated slice position of the object. We then drop the surReity function and the scattered waveKispace, and optical
over allother z's and obtain the following simple relation at properties of the heterogeneity can further be deduced quite
any given spatial frequencyp(q) in K space between the accurately. For thicker objectse., thickness>4 mm), the
heterogeneity function at depth=z,,; and the measured average over the size of the object weighted by the sum of

B. 2D projection imaging

scattered wave at the detection plarezy: exponential amplitude and phase factel8~%)/m pro-
. vides only an approximate relation between the heterogene-
(D, Zop i) = Psc(P.0:2q) ity function and the scattered wave. However we find that the
" obj AZAGo(Dﬂ,Zd,Zobj) relative optical properties of multiple objects can still be re-
constructed with an reasonable accuracy.
2m Obviously the image reconstruction involves only 2D for-

=& —im(zg—2op)) f . . .
iAz(I)SC(p’q’Zd)e ¢ Ten. (22) ward and inverse Fourier transforms, and no iterative

schemes are needed; therefore this angular spectrum algo-

This “thin” slice approximation may be adequate since we'lthm is very rapid.

are often interested in early tumors whose size will be of the

order of slice thickness of 0.5 cm, and thus can be con- C. A priori depth information and perspectives of 3D imaging
sidered thin. As we discussed at the end of Seé),\plane From the derivation we notice that in principle, this
waves inK space with large spatial frequencigs() are P p'e,

attenuated quickly as they propagate within the turbid mediﬁgpace spectrum analysis algorithm should work well when

The largest detectable spatial frequencies are determined optical heterogeneities are confined within a thin slice.

the sensitivity and signal-to-noise ratio of the detection sys: N .reconstruct|on thgn prowdes a 2'.:) pho'togr_aphlc projec-
tem. tion image of the optical properties givanpriori informa-

. o A tion about the depth of the heterogeneity. Since the hetero-
~ When the heterogeneity functionknspace,T(p,d,Zob))s  geneity function (therefore the optical properties of the
is determined by Eq(22), we can then take the inverse peierggeneitiess related to the scattered wave via the Weyl
2D Fourier transform off(p,q,z,p;) to obtain the tumor expansion of the Green's function, and since the amplitude
function T(x,y,zop;) in the realx-y space at the depth and phase of the Weyl expansion depend upon the dgpth
of the heterogeneityz=z,,;. We derive a 2D photo- —z;, an incorrect depth estimate produces incorrect values
graphic image of the optical properties using E@€) of the reconstructed optical properties. This type of errors is
and (11); for example, Sua(X,Y,Zobj) = Tans(X:¥:Zop))/  intrinsic to the angular spectrum approach. However, rough
[—v/Do®Po(X,Y,Zepj)] for absorbing objects, and estimation of the depth information can be tolerated if it is
5,ug(x,y,zobj)=Tsc(x,y,zobj)/[3D0k§/v(I)O(x,y,zobj)] for  desirable to reconstruct contrast images of multiple objects.
scattering objects. Note that for a purely absorbing or scat- Equation(22) reveals how the heterogeneity function and
tering object, either a frequency domdimodulation fre- hence the reconstructed optical properties of the heterogene-
guencyf #0) or a continuous-wavieCW, f=0) DPDW can ities vary with the estimated depth. Choice of a too small
be employed to extract the absorption or scattering variatiomtepth underestimates the optical properties and a too large
but for objects having both absorption and scattering variadepth overestimates the optical properties. Figuresbi@ays
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2.0

o
-
»

depth estimate for contrast image can be tolerated in this
case.

The image quality is also affected by the choiceaof
priori depth. Recall the heterogeneity function and the scat-
tered wave irk space is coupled to each other via the Weyl
expansion[see Eq.(22)]. The factore '™a~Zb)/m in-
creases exponentially with theyt-2z,p;). The noise(nu-

- . . 00 . . . merical and experimenjatan be amplified at greater depths
) 1 2 3 4 0 1 2 3 4 (24— 2Zopj)- A series of reconstructed images with different
Depth 2q=2uj (cm) Depth 2,2 (cm) depths are shown in Fig. 7. In this example an absorbing

FIG. 6. (a) shows the reconstructed absorption coefficient versu§pherlcal O_bJECt is a2, 1, 3)cm and the scattered wave is
the depth estimation. The data pointanare normalized by the Measured in the plane z+5 cm over a %9 et square
absorption reconstructed at the depth where the object iszg.g., With steps of 0.6 cm. The imagés)—(f) are reconstructed
~Z5;=2 cm. (b) shows the ratio of reconstructed absorption of With assumptions of the deptiay(-z,p,)) to be respectively
two spherical objects versus the depth estimation. Although thé, 3, 2, 1, 0 cm. We find that the image quality gets worse
ratio is only approximately reconstructéelg., the true ratio is 2), (€.9., noisierjat greater depths. The depth-dependent noise
the ratio is relatively insensitive to the depth estimate. and themonotonicvariation of the image sharpness make it

difficult to estimate the true object depth from image sharp-
the reconstructed absorption coefficient of a spherical objef€sS: For a spatially extended object, however, a choice of a
versus the estimated def-z,p;. In this case, we have a shall_ow dept.h is oﬁen suff|C|ent. tp reconstruct fairly well the
spherical object of 0.5 cm radius 2 cm below the detectiofPatial margins of inhomogeneities.
plane, i.e.zq—Zop;=2 cm. The true optical property varia- _ In order to obtain be_tter 3D information with this diffrac-
tions of the spheres with respect to the background af®n tomography technique, one can use a secondary local-
S1,=0.02 cm ! and 6u.=0. We find that the recon- ization scheme to deduce the obj_ect depth. An example
structed absorption increases as the estimated object de uld be to scan the phased—arrgy In two qrthogonal planes
increases. In Fig. 6(b), we plot the ratio of the reconstruct ,23]. Alternatively as shown in Fig. 8, 'f. we take two
absorption coefficients of two spherical absorbing objectQIanar measurements. alqng .tWO different dlrequons of the
(SS% 51u"S%) versus the estimated depth. One sphere O§ame.sample, the prOjectlon image 1 from the flrst measure-

- 1 . P ment in one planéplane 1)will provide the depth informa-

Ot =0.04 cm = anddug =0 cm s at(2, 1, 3)em a7n1d tion for the projection image 2 from the second measurement
the other sphere afu,»,=0.02 cm™* anddus,=0 cm

. in the other planéplane 2).

is at(1,—1, 3)cm. Two spheres have the same & cm

in radius)and they are chosen to to be at the same depth, D. Experimental results

e.g., 2 cm below the detection plane. Therefore any depth '

estimate is either correct or incorrect for both objects at the To demonstrate the experimental feasibility of this algo-
same time, and we do not have to take into account tHghm, we have performed amplitude and phase measure-
additional complexity shown in Fig.(®). We find that the ments in a parallel-plane geomeiyig. 2) within a tank
ratio of the reconstructed absorption coefficients is not serfilled with 50 liters 0.75% Intralipid 4,0=0.020 cm!,
sitive to the depth estimation, and therefore the incorreqtl,=7.3 cni'). We used a rapid homodyne detection sys-

©
S
Rotio 841/ Ojter
o o

o
=]
&

Reconstructed 8u,(cm™")
o
o

o
=3
=]

‘ L]
® ®) L ]

1]
Z;z:th =2cm Zdepth =4 cmu Zdepth=3cm
@ (b) (©)
Zdepth=2cm Zdepth=1cm Zdepth=0cm
(d) (e) ®

FIG. 7. lllustration of the dependence of reconstructed images on the estimated depth. The detection piang isnatand an

absorbing object shown i@) is at(2, 1, 3)cm, which is 2 cm below the detection plat®.through(f) are the images reconstructed with
an estimated depth at, respectively, 4 cm, 3 cm, 2 cm, 1 cm, and O cm.
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Detection plane 2 For image reconstruction, we first take the 2D Fourier
[ 'J—L FEREEEEEN transform of the scattered wade,(r4) measured at the de-
Image 2 tection planez=z,. Using Eq.(22) along witha priori in-

formation about the slice depth, we then obtain the hetero-
geneity function inK space 'i'(p,q,zobj) in the plane

o
l % containing the slice a=z,;. During this step, an “m-cut”
Source 1 —>./—_ q 5 filter is used to neglect high spatial frequency components
i\_ ~ !_ ~ mager |- g with Im(m)>3.5Im(k,) in the heterogeneity function
| | Object _ § 'T'(p,q,zobj) [25]. We then take 2D inverse Fourier transform
I 0 - = of T(p,q,zypj) With respect to spatial frequency,()) to
I . — obtain the heterogeneity functidi(x,y,z,p;) in real space.
— —/?\— = Finally we divide the heterogeneity functidifx,y,z,;) by
Source 2 the background fieldPy(X,Y,z,p;) in the plane containing

the slice atz=z,,; to obtain a spatial map of the recon-

jection ima_ges _reconstructed from two measurement§ along two or- Tabs(XaYrZobj)/[_U/Doq)o(xiyrzobj)]- The homogeneous
thogonal dlrectlops. Image 1 from the measurement in plane 1 pr_?)'ackground fieldDo(X,y,Zop;) is calculated using the best
vides the depth information for image 2 from the measurement Nstimated optical properti(Jes,ugo=0.017 e and Méo
plane 2. =7.21 cm™ 1) by fitting the background wav@,(ry) mea-

_ ) sured in the detection plare=z4 to the exact solution of
tem based upon in-phase/quadrafl@ demodulation tech-  pppw's [e.g., ®y(r) =v M expike|r— r4)/4mDg|r—r4].
niques[20,24]. A block diagram and details of the experi-The reconstructed images of the slice are shown in Fig. 9.
mental setup are given in referef@@]. The complete reconstruction based upon forward and inverse

The experimental geometry is shown in Fig. 2. The SOUrCeET cajculations takes less than 0.2 second CPU time on Sun
position was fixed and taken to be the origin of our Coord'Sparclo workstation. The reconstructeg/ position was
nate system. As shown in Fig. 2, we “made” the detectiorypqoyt at—1.80,—0.25)cm, close to the true-y position at
plane by scanning a single detection fiber over a square rg=1 g —0.3) cm. Inaccuracies in the position measurements
gion from(—4.65, —4.65, 5.0)cm t0(4.65, 4.65, 5.06m in might account for the discrepancy. The reconstructed absorp-

a plane az4=5.0 cm in steps of sizAx=Ay=0.3 cm.  {jon coefficient is well above the background noise level and
The amplitude and phase of the DPDW was recorded at eagfyse to the true value. e @' =0.125+0.018 cm !
, €. ;=0.125+0. :

.. . . a,ob
position for a total of 1024 points. Each data point take§e yncertainty corresponds to 1 mm uncertainty in the slice

about half second. We directly measured the amplitude ang, estimation. Errors in our estimate of background opti-
phase in thélomogeneoumedium to obtain the background ¢4 hroperties, the refractive index mismatch between the
wavePo(rg). _ _ o . object (~1.46) and background medium-(.33) and our

In this experiment, an absorbing slice with dimensiongnapijity to detect high spatial frequency components in the

1'5X1'5X0'4,C,m3 was submerged in the turbid medium gqatered wave also contribute to the inaccuracy in recon-
(0.75% Intralipid)at position (1.6, —0.3, 3.0)cm. The  gtrycted absorption properties.

slice was made of resin plus Ti@nd absorbing dye. TiO
particles(from Sigma)cause the scattering and the absorbing
dye (900NP from Zenecajauses the absorption. The absorp-
tion coefficient of the slice was, opj=0.12 cm1; its scat-
tering coefficient was about the same as that of the back-
ground, i.e.,~7.3 cm . The scattered wav@®(r,) was
obtained by subtracting the background wdvgrg) from The angular spectrum algorithm provides an approximate
the measuredotal) signal®(rg). relation between the heterogeneity function and the scattered

VI. SIMULTANEOUS RECONSTRUCTION
OF ABSORPTION AND SCATTERING,
AND EXTRACTION OF BACKGROUND
OPTICAL PROPERTIES

| 9.30 cm |

o
o

8
(Y
)

Nosarglion Coeff (g™

9.30 cm

Slice

0
o
®

@) ()

FIG. 9. (a) shows the exact-y position of a thin absorbing slicé&) shows the surface plot of the reconstructed absorption variation
(65 using the angular spectrum algorithim). illustrates the reconstructed 2D photographic image of this slice. Agreement between the
reconstructed position and the exact position as showa) tan be readily found.
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wave within the framework of the first order Born approxi- ——

mation. In addition to this first order approximation, it also

requires knowledge of the background optical properties

The resultant images are 2D photographic-type images. |

this section, we consider the possibility of simultaneous re- Thm.s“ce ‘ . .
construction of the absorption and scattering coefficients

and we explore methods to extract the background optice - b )

. . b c
properties from a single measurement on a heterogeneous @ _ ( ) _ © _
sample. FIG. 10.(a) shows a thin slice object &k, —1, 3)cm. The slice

is 0.3 cm thick with its X1 cn? surface in parallel to the detec-
tion plane atzy=5 cm. The scattered waves at two modulation
frequencies(70 MHz and 140 MHz)n the detection plane at

So far, we have assumed that we have either purely ab-5 cm are calculated using finite difference method over a 9.3
sorbing inhomogeneities or purely scattering inhomogenex9.3 cn¥ region withx-y steps of 0.3 cm(b) and (c) show the
ities, but not a mixture. We introduce a dual modulatiorebsorption and scattering images reconstructed simultaneously us-
frequency approach as a means to reconstruct the absorptiog the dual modulation frequency approach. The reconstructed po-

Absorption lmage‘ Scattering Image

A. Absorption and scattering

and scattering coefficients simultaneously. sition of the slice is close to its true position and the reconstructed
When both absorption and scattering variations ar@bsorption and scattering properties are close to their true values.

present, the heterogeneity function is See Sec. VIA for details.
Dokg Figs. 10(b)and 10(c). The reconstructed absorption and scat-

v 3
T(N==5-Po(r)dualr)+ Do(r)dus(r).  (23)  tering coefficients are Su,=0.025 cmi! and Su.
0 =3.32 cm L. We find that this approach provides simulta-
Within a “thin” slice approximation, the heterogeneity func- neous estimates of the absorption and scattering coefficients
tion T(r) in the plane atz=z,y,; can be obtained using the Wwith a reasonable accuracy.
angular spectrum algorithm. Dividing(r) by the back-
ground waved(r) in the plane az=z,,;, we obtain the B. Extraction of background optical properties
following quantity, denoted bl (w), which is a function of

Spa, 6us, as well as the modulation frequensy i.e.,

T(r)
Dy(r)

v

Image reconstruction requires knowledge of the optical
properties of the homogeneous background medium. For ex-
ample, the complex spatial frequenrryz[ké—(27-r)2(p2

=—3ulodua(r) +92)]1%?in Eq.(22) depends on the background photon den-
Zopj sity wave numbek,, andk, in turn depends upon the ab-

30 sorp'tion an(_j scat_tering coefficient.s of the background turbid
—3pgo+Fi _} Sul(r). (24) ~medium. Itis derivable to determine the background optical

v properties from a single data set measured on a heteroge-
. o, ) neous medium. One simple approach is to fit the heteroge-
Note that the scattering variatidu appears along with the heoys data set with a homogeneous model and thus estimate
modulation frequency, whiléu, does not. Therefore, if we the average values of the bulk optical properties. We find
measure the scattered wave at two different modulation frenat the results by this approach are generally unsatisfactory.
guenciesw; and w,, the difference between the two the re-Figure 11(b)shows the total photon density wa®ér) (the

Flw)=

+

constructed=(w;) andF(wy) will only be related t@Sug:  amplitude, for exampldyom the absorbing slice experiment
3 ) where the detector was scanned along a line symmetrically
oW~y ) i itti i
F(wy) — F(wy) =i Sl (25) W!th respect to the source. When fitting all the data points
v with a simple homogeneous model, the resultant absorption

, _ ~ and scattering coefficients afd{=0.012 cm* and u )"
dus can be determined from E5). Then by substituting —g 27 ¢cm2, while the expected values for 0.75% Intralipid
the resultantu, into Eq.(24), we can then determine the are 1,0=0.020 cm® anduly=7.30 cm L.

absorption variatiou . We can improve the results by considering the symmetry
To demonstrate the feasibility of this approach, we simulyf gur detection scheme. Our scanning geonseg Fig. 2)
taneously reconstruct the absorption and scattering coeffs mijrror symmetric with respect to the source. In Figall
cients of a generic slice using simulated data. The simulatioge project the 3D geometry into 2D to re-emphasize this
geometry is similar to the experimental geometry shown ifnjrror symmetry. If the medium is homogeneous, the data
Fig. 2. A 1X1x0.3 cnf slice of u,=0.04 cm* and g should be symmetric with respect to source; if the medium is
=12.0 cm ' is placed at (1,4,3) cm. The source is at heterogeneous, the left-right symmetry will be broken. This
(0,0,0) cm and the homogeneous background has opticafoken symmetry enables us to identify the data points that
properties 0fu,0=0.02 cm * and u,,=8.0 cnm . Note are substantially perturbed by the inhomogeneities. Since the
that the slice has both absorption and scattering variatioqghase of diffuse photon density waves is not as sensitive to
with respect to the homogeneous background. The total anlde absorption variation as the amplitude, we use only the
background diffuse photon density waveszgt5 cm are amplitudes of the photon density waves for identifying the
calculated forf =70 MHz andf =140 MHz using the finite most perturbed data points. If the left-right difference in am-
difference method. The reconstructed images are shown pilitude signals is greater than the system noise level, we call
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\ P ——— Here n’ is the surface normal pointing outward from the
% scattering mediuma=[(1—Res1)/(1+Re¢s) Jv/2Dy Where
< IR e Ress is the effective reflection coefficiehtUsing this zero
o 20} Py o ] partial current boundary condition in E@.3), we obtain a
3 5h o % ] general solution for the total diffuse photon density wave
T —x & e s ®(r) in a finite turbid medium:
® < 10f* %
I—-Heterogeneity —— — —— ———- 5L, ; . ; : v
——————— e 4 -2 0 2 4 @(r)z—f S(r’)G(r,r’)d3r’+fT(r’)G(r,r’)d3r’
Detector Detector Position (cm) Dolv \Y
(@ (b)
aG(r,r")
3 30 T T T T —f@(r’) aG(r,r’)+— dA’. (27)
2 * % . S an’
5 o = 251 % ]
E g 561 :' Y How is the scattered wave related to the heterogeneity
195, 0 o ?;1 . . function in this case? As we discussed at the end of Sec. Ill,
; 4 = 150 f . the surface term depends on the total photon density wave
- s e 10_’.' . ®(r), and therefore the surface term includes both a back-
N R = st ground wave component and a scattered wave component.
4 -2 0 2 a4 4 -2 0 2 =4 Analytic separation of the background wave component from
Detector Position (cm) Detector Position (cm) the scattered wave component in the surface term is gener-
(© (d ally not feasible though perturbative approaches may be used

FIG. 11. (a) shows a 2D version of the experimental geometryapproximately.
in Fig. 2. The detector scans along a line from left to right sym- The approach we take here is to find an appropriate
metrically with respect to the sourd®) shows the raw data mea- Green’s function so that the surface term is zero by requiring
sured on a heterogeneous medium by scanning the detector along a
line from left to right.(c) shows the most perturbed data points for
which the left and right differences are greater than the noise level  ,G(r,r’)+
of our detection systelfe.g., 2.5 mV in this case)d) show the rest on’
data points after the most perturbed data points are filtered out. The
background optical properties can then be obtained by fitting thBlote that this boundary condition, as we discussed in Sec.
data points shown ifd) to a homogeneous model. I, is naturally satisfied for an infinite turbid medium. By

requiring the Green’s function to satisfy H@8), we then

those data points the most perturbed data péBee Fig. have the total photon density waddr):

11(c)]. We then exclude these perturbed data points, and fit

the rest of data pointéboth amplitude and phas#& a ho- v , 3 , 3
mogeneous moddisee Fig. 11(d)]. We find that resultant @(r)—D—OfVS(r )G(r,r")dr +fVT(r )G(r,r)d°r’,
optical properties are indeed improved, e.gu,;'é (29)
=0.015 cm ! andu/i"'=7.23 cm . The inaccuracy de-

creases from~40% to~25% in u,o and from~18% to  from which we can obtain the scattered wevg(r)

~2% in ul. This symmetry technique is similar to the
phased-array technigue in detection heterogené¢i@ls Al-
though biological tissue is in general microscopically inho-
mogeneous, we speculate that this symmetry technique
might work to a certain degrees for tissues with rather ho- Qur task is to find the appropriate Green's function which
mogeneous macrostructures such as breast tissue. Further &xtisfies Eq(12) and the boundary condition given by Eq.
perimental investigations would be required to test the appli2g). We expect the Green’s function for a finite medium to

aG(r,r") ]
—— =0, r ison the surface.(28)

@Sc(r):cp(r)—cbo(r):fVT(r')G(r,r')di*r'. (30)

cability of this technique tn vivo studies. include the Green’s function in an infinite medi@y(r,r'),
and an additional terr@,(r,r’) which results from backre-
VIl. SLAB AND SEMI-INFINITE GEOMETRIES flections at the boundaries, i.e.,

The total photon density wavk(r) for a turbid medium
with boundariesvas given by Eq(13). On the surface of the G(r,r")=Go(r,r")+Gy(r,r’), (31)
turbid medium, the diffuse photon density wave satisfies the
zero partial currentboundary conditiori26]
°The exact expression &.; was derived by Haskell, Tromberg
and their co-worker$26]. An approximate expression offered by
1+ Rgs 2Dg 9D (r) D (r) Groenhuis and co-workef27], is in agreement with the exdr;
1-Ru; v on’ =0— on’ =—a®d(r), within 10%. The approximate expression Rg¢;=—1.440n 2
+0.710n 1+0.668-+0.0636nwhere the relative index of refraction
for r on the surface. (26)  N=niy rurbia/Moutair -

d(r)+
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air 4" z . , 0Gh(p,0,2,2' =2,)
™ petector Za aGy(p,q,2,2' =24) - 97’
Scattering =—(a+ im)éo(pqulr =2y), (36)
Medium * p—— ]
A dGy(p,q,2,2' =2

X aGp(p,q,z2,2" =2z4) + n(P iZ, @

Air Z )
=—(a+im)Gqy(p,q,z2,2' =2y), (37)

FIG. 12. A slab geometry is considered for the boundary prob-
lem. The slab is infinite long but has a finite thickness, eg., - . imlz— g’
—Zy. One surface of the slabgis at planez, and another surf;?:e WhereQO(p’q’Z’Z’)=(|/2m)elm‘z #lis given by the Weyl
is at planez=z4. The turbid medium is between these two planesexp"’msmr[See Eq(16)]. .
and outside the slab is nonscattering media such as air. This slab The general solution d&,(p,q,z,z") has the form of
geometry is quite suitable for a compressed breast configuration in
clinical studies. Gin(p,q,2,2') =A™ +Be M7, (38)

The first term represents the wave which is reflected by the
lower surface atz=z, and then propagatderward along

+z direction, i.e., the “transmission” component; the sec-
ond term represents the wave which is reflected bypper
surface atz=zy4 and then propagatdsackwardalong —z
direction, i.e., the “reflection” component. Coefficiends
and B can then be solved using the boundary conditions
given by Eqs(36) and(37). After some algebra, we find that

whereGy(r,r')=exp(ko|r—r'|)/4m|r—r'|. Gy(r,r’) is re-
quired to satisfy the homogeneous Helmholtz equation

(V2+k5)Gn(r,r')=0, (32)
and the following boundary condition:

IGy(r, 1’ aGy(r,r’
(1) wGo(r.1') + o(r, ") ,

aGp(r,r')+
an’ an’

Azfleimz_'_fzefimz' B=f3e‘mz+ fAefimz' (39)

for r on the boundaries. (33)

wheref,, f,, f3, andf, are given by

A. Slab geometry fl:%(a2+ m?)e M+ 20),

Boundaries of arbitrary shapes are, in general, difficult to
incorporate into the solution of the photon diffusion equation fo _ ‘
[Eq. (13)]. Here, we consider a slab geometry shown in Fig. fo=— E(aﬂm)ze'm(z“_zo), (40)
12. Within the slab is the scattering medium and outside the
slab is air. This slab geometry is to approximate the com- f
pressed breast configuration, which is suitable for clinicakgz__°(a+im)2eim(zdfzo), f4:_0(a,2_|_ m?)e!m(@a+20),
breast lesion diagnosis. B

Suppose the two surfaces of a slab turbid medium are at (41)

z=7, and z=z4 as shown in Fig. 12. Again we use the
angular spectrum representation of the Green’s functioith
Gy(r,r'), i.e., .
i . .
fo=gm.  B=(a+im)?eME %) —(q—im)%e Mt
Gh(r,r’)=f J dpdqGy(p,q.z,z)e 2miP—xal=yOl, (42)
(34)
Finally, for a slab geometry, the Fourier component of

Substituting this equation in E6B2), we find for any given total Green’s functiorG(p,q,z,z’) in K space is

spatial frequenciesp(q), Gh(p,q,z,z’) satisfies the follow-

ing one-dimensional homogeneous Helmholtz equation: é(p,q,z,z’)=éo(p,q,z,z’)+Gh(p,q,z,z’)

7 :foeim|zfz’\+fleim(z+z’)+f2efim(zfz’)
—+m?| Gy(p,q,2,2')=0, 35 o o
7zt enPazz) (35) +F4emE2) 4 f gmiMEr), (43)

where m=[k§—(27r)2(p2+q2)]1’2 and Im@m)>0. The Using G(p,q,z,2'), the relation between the scattered
boundary conditions given by E3) for a slab geometry wave @sc(p,q,zd) and the heterogeneity function

SAhOWH in F|g 12 can be rewritten for the angular Spectrun’?\'(p,qlzobj) for a slab geometry within “thin” slice approxi_
Gn(p,q,z,2") as mation is
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S L o simply because we lose photons through the finite bound-
S S AR T e aries. When we use the Green'’s function of an infinite me-
dium to reconstruct the image for a slab geometry, the over-
estimate of the Green’s function is responsible for the nosier

_.. .' . | image structuregartifacts)in Fig. 13(c). The overestimated
Thin Stice infinite Green’s function also results in smaller reconstructed
= - optical properties, e.g., the reconstructed value by using the

@ () fel wrong infinite Green’s function gy, ong=0.0056 cm*
rec

FIG. 13. (a) shows the position of a 0.3 cm thick, 1.0 is about 4_1t|mes as small a§ the Valuﬁ‘e},slab
X 1.0 cn? absorbing slice &L, —1, 3) cm in a slab turbid medium. =0.0240 cm * reconstructed by using the appropriate slab
The two surfaces of the slab are respectively at plards cm  Green’s function. We see that the appropriate Green'’s func-
andz=5 cm. The source is at origin at one of the slab surface (tion for a slab geometrjEq. (43)] produces cleaner images
=0 cm) and the detector scans at the other surfae& (cm).  and more accurate optical properties than the Green’s func-
The reconstructed absorption image using the “slab” Green’s function which is only suitable for an infinite meditjq. (16)].
tion [Eq. (43)]is shown in(b). The reconstructed absorption image
using thewrong “infinite” Green’s function[Eq. (16)]is shown in

(c).

B. Semi-infinite geometry

As an extension of the above derivation, we can easily

- obtain the Fourier component of the total Green’s function

?(p,q,zobj)%q)f&p—’q’zd) (44) G%¢"(p,q,z,z') for a semi-infiniteturbid medium. Alterna-

AzG(p,q,Zopj) tively we can start with the Green’s function for a slab ge-
ometry[Eq. (43)], then move the lower boundary of the slab
The 2D inverse Fourier transform &{p,q,z,p,;) gives the in Fig. 12 to the negative infinity, i.ezo— —. Note that
heterogeneity functio(x,y,z,p;) in real x-y space. The Im(m)>0 and therefore all terms in E(43) with e™'™%
optical properties of the inhomogeneities can then be opanish wherzo— —o. The Fourier component of the total
tained, e.g., for absorbing objects, we haye,(X,Y,Zp)) Green’s functiorG%¢™{p,q,z,z’) for asemi-infinitemedium
=Tabs(x,y,zobj)/[—v/DOCDg'ab(x,y,zob,-)]; and for scatter- at any spatial frequencieg,q) in K space is thus
ing objects, we have Sud(X,Y,Zop)) =Tsd(X,Y:Zob))/ o , ) o ,
[SDOkg/UCD(S)Iab(X,y,Zobj)]_ Gsem(p,q,z,z’)=f0e'm|z‘z \+f2emb—|m(z+z ). (45)
Using the appropriate Green’s functipq. (43)] for a

slab geometry, we reconstructed a 2D optical image of Here, the coefficients, and f3°™ are given by

slice embedded in a slab turbid medium. The slab geometry _ .

is shown in Fig. 12 where the two surfaces are at planes ¢ _ psemi_ _ 0‘+'mezimzd (46)
=0 andz=5 cm, respectively. The source is at the origin. 2m’ 4 %a—im '

A 1.0x1.0 cnf slice of 0.3 cm thick is atl,—1,3)cm [see
Fig. 13(a)]and the detection plane is at the top surface of th&he first term on the right hand side of E45) represents
slab =5 cm). The slice has a higher absorption coeffithe Green’s function in an infinite medium, and the second
cient than the background medium but shares the same scirm represents the wave, which is reflected by the boundary
tering coefficient with the background, €.ggaob; atz=z,4 and propagates backward along the negattliesc-
=0.04 cm ! and Msobj=8-0 cmi' for the slice ang,y  tion. For arbitrary boundaries the solution of the Green's
=0.02 cm~ ! andul,=8.0 cm ! for the background. The function are in general difficult to obtain.
total and background diffuse photon density waves at the top
surfacez=5 cm are calculated using the finite difference C. Re-emission geometry
method. . . .

The reconstructed absorption image using the appropriate In the preceding discussions the source and the detector

: ; : . ~were assumed to be on the opposite sides of the inhomoge-
Green's functionEq. (43)]for the slab geometry is STSCW” n neity. This configuration is called transmissifgee Fig.

il?).oi-i(()b)(’;r;? d \/tvr;]?CﬁgogztsrzCttgdthgb;;ggg?end&f ;i;laﬁ’ 14(a)]. It is suitable for two-plate soft compression geometry
e ] : in breast cancer studies, with the source placed on one plate
. 0.0200 cm - For comparison, we a!so recc.)nstr'ucted & nd the detector scanned over the other plate. Interestingly,
|mage7of the sllce using _therongGreen S functhn,_l._e., the ihe derivation is not limited to this transmission configura-
Green SGo(r, 1), which is only correct f°F . |n_f|n|te ME- tion. Recall that dependence of the angular spectrum algo-
d|_um [Eq. (16)]. The resultant ab§9rpt|on IMage 15 Shown iNishm o the source position is implied in the heterogeneity
Fig. 13(c). We found that the position of the slice can be we Linction [see Eqs(10) and (11)]. The relation between the

rﬁco_nstructe% by usin?:_diff(i;ent Gri_enr;s_functions. How;"beﬁeterogeneity function and the scattered wave measured at
the image shown in Fig. 13(c), which is reconstructed bype getection plangsee Eq(22)]does not explicitly depend
using thewronginfinite Green’s function, has more artifacts , yhe source position. The light source and the detector can

the}n tr;]at_skr:ov;/nbin Fig.' 1]?'(b)‘. which .is rt;conrs]tructed ,b3be placed on the same side or on the opposite sides of the
using theright slab Green’s function. Notice that the Green sobject without affecting the conclusion of the above deriva-

function for a slab geometi\G(p,q,z,2’)| is smaller than  tion. Hence, we can apply the algorithm equally well to an-
the Green’s function for an infinite geomet@y,(p,q,z,z')| other geometry—the re-emission geomdsge Fig. 14(b)]
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FIG. 14. (a) shows the transmission geometry. The source is at the origin and the detector scans in azplape (&) shows the
re-emission geometry where the source is at the center of the detection @arg atc) illustrates a spherical absorbing objectat1,
2) cm embedded within a slab turbid medium. The two surfaces of the slab zye Gtcm andzy=4.0 cm, respectively. For both
transmission and re-emission geometries, the scattered waves in the detection plane am are calculated using the exact DPDW
solution for a slab geometry over ax9 cn? region with x-y steps of 0.6 cm. The reconstructed images for the re-emission and
transmission geometries are showiidpand(e), respectively. The two images look similar. We also found that the reconstructed absorption
coefficients are also about the same under both geometries.

[28,29]. In the re-emission configuration, the detector scarmnfiguration, both the source and detector are placed on the
in the plane which contains the source. This could be necewp surface of the slab, i.e., in a planezagt4 cm. The
sary, for example, in brain function studies. The re-emissioscattered wave is calculated over & ® cnt region with
geometry could also be useful for studies of large densey steps of 0.6 cm. The source is placed at the center of the
breast tissues in which fewer photons pass through the tissigguare scanning region in the detection plane, i.€0, & 4)

In the transmission geometry, we measure the scattereth. The reconstructed image for the re-emission geometry is
wave propagatingorward away from the source; in the re- shown in Fig. 14(d). For comparison we also reconstruct the
emission geometry, we measure the scattered wave propagatage of the same object for the transmission geometry. In
ing backwardtowards the source. For a re-emission geomthis case the source is at the oridn0, O)cm, on the lower
etry and within a thin slice approximation, the relation of thesurface of the slab, with all other configurations kept the

heterogeneity functioﬁ(p,q,zobj) in K space with the mea- Same as in the re-emission geometry. T_he _image is shown in
sured scattered wave in the plarrez, is given by the same Fig. 14(e). We see that the image quality in these two con-

equation as for the transmission geom¢ky. (22)]. Here,
we rewrite the relation for the re-emission geometry:

qA)sc(piind)
AzG(p,a,24,Z0p))

T(P,0,Zon) = (47)

figurations is about the same. The ratio of the reconstructed
absorption coefficient for the re-emission geometry to that
for the transmission geometry &uy . _enf Stta trans™ 1-1.
The finite object sizéas opposed to a “thin” slicemight
contribute to the small difference in the reconstructed ab-

sorption.

where an appropriate Green’s function for an infinite me-

dium [Eqg. (16)] or a slab mediuniEq. (43)] has been as-

sumed.

VIIl. SUMMARY

Simulations have shown the applicability of the algorithm We have presented a full exposition of our recent work
to the re-emission geometry. Consider an absorbing spheridhlat employs the angular spectrum algorithm for optical dif-

inhomogeneity of 0.5 cm radius @, 1, 2)cm embedded in
an otherwise homogeneous slab turbid medsee Fig.
14(c)]. The two surfaces of the slab arezg@t0 cm and

fraction tomography with diffuse photon density waves. The
image reconstruction becomes practically easy for thin het-
erogeneities wherein the heterogeneity function of interest is

z4=4.0 cm, respectively. The absorption and scattering cgproportional to the scattered wave measured at the detection

efficients of the sphere arg,=0.04 cm! and u.

plane, i.e.ﬁ'(p,q,zobj)oc(I)SC(p,q,zd). We have shown that

=8.0 cm ! while the background optical properties arealthough this relation is accurate only for thin inhomogene-

ao=0.02 cm™?

andul,=8.0 cm ! . For the re-emission ities, it provides an approximate short cut for fast, 2D pro-
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jection imaging of spatially extended objects. The recon- I (n) LI, (0)

struction is very rapid, requiring only a forward and inverse U S .

Fourier transform, e.g., it takes less than 0.2 second on m ' m
Sparc10 workstation to reconstruct an image-d000 pix- 2". ; 2”@ 4

els. For spatially extended objects, although the recon " —e—f=—0 o™ - Re(n)
structed optical properties are not accurate, the ratio of thi * =2z “2n

reconstructed optical properties of multiple objects are close ™. ]....- -

to the true ratio. In this sense we say twttrastimage can

still be obtained by using this algorithm. The feasibility for (a) (b)

using this algorithm for image reconstruction of absorbing

and scattering inhomogeneities has been experimentally FIG. 15. There are two poles for the integral aver Eq. (B6).
demonstrated20]. We have also shown that the absorptior{a): for z>0 the singularity is ah=—m/27 and the integral is
and scattering properties can be reconstructed simultgone along the lower close cury®): for z<0 the singularity is at
neously using the angular spectrum algorithm with scattere@=m/27 and the integral is done along the upper close curve.
wave measured at two different modulation frequencies. AUappeENDIX B: THE WEYL EXPANSION OF GREEN'S

thors perceive that the angular spectrum algorithm could po- FUNCTION
tentially apply for breast cancer imaging given that boundary
matching is employed to reduce the boundary effa6f. Consider an infinite turbid mediunm,, and n, are re-

The method could also be used for differential imaging obpectively the absorption and scattering coefficients. The
the preferential accumulation of an exogenous contrast ageB@teen’s functionGy(r,r') satisfies the following equation:
in biological tissue$31]. b, o , )

We have extended the theory to other geometries includ- (VE+ ko) Go(r,r')=—a(r,1’), (B1)
ing the slab and the semi-infinite geometry for both transmis- -~ . 2 )
sion and re-emission configuration. The theory was con\{i/here I(,O_.[(_v“a°+'w)/.[)°]. with Im(ko)>0; Do
firmed in simulation experiments. =v/(3ugp) is the photon diffusion coefficient. The solution

of the Green’s function ig32]
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The Green’s function is related to its Fourier transform by

U.S. Army under Grant No. DAMD17-97-1-727A.G.Y.). (B3)
where we assume’=0 without losing generality and

APPENDIX A: CONVENTIONS USED IN THIS PAPER (p,g,n) are the spatial frequencies. Plugging B2B) into

REGARDING FOURIER TRANSFORM Eq. (B2) and using the integral expression for th&unction

The conventions regarding the forward and inverse FOLLEq' (A3)], we have

rier transforms are as follows. Consider a functi¢r) in . 5 s 5 o o
one dimension: f J fGo(p,q,n)[ko—(Zw) (p*+g°+n9)]
Forward Fourier transform:
Xe—iZ-n(px+qy+nz)dp dq dn

F(p)=f f(x)e'?™Pdx; (A1) =—f f fe’izw(p”qy*”z)dp dgdn. (B4)

Without a rigorous proof, we can obtain the Fourier trans-
form of the Green’s function just by looking at both sides of
the above equation, i.e.,

0= [ Fare 2dp W) ] 1
G 1 Yn = = 1
AP s D)k (2m
and thes function is therefore given by (BS)

wherem=[k3— (27)?(p?+g?)]"? and Im(n)>0. Eq.(B3)
can then written as

) e—i27rnz
| . e [apagenmmen [ 5T,
Using these conventions, we eliminate the fActor outside ol 1) Pada (2m)%n?—m?

the integral of forward and inverse Fourier transforms. (B6)

Inverse Fourier transform:

5(p):f el2m™Pqx 5(x)=f e 27PXdp.  (A3)
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The integral over spatial frequenoycan first be done by  fore, we choose the pole in the lower half Bpigcd5(a)],
“pole” structure analysis. There are two poles in the integrak.g.,n=—m/2# [recall Im(m)>0, which gives Imi)<0].
over n as shown in Fig. 15. Far>0, we require Img) Note that the integral is along the clockwise direction which
<0 to ensure the convergence of the integral avéthere-  gives us an extra minus sign. The resultant integral is

efianz _ e*iZ'?TnZ n=—m2x | )
f m mrdn=—2mi m = me'mz. (B7)
(2w)z(n+ﬁ)(n—ﬁ) (277)2(n—2?)

Similarly, for z<0 we require ImiG)>0. Therefore we choose the pole in the upper half ggage 15(b)], e.g.n=m/27.
The integral is along the counter-clockwise direction so there is no extra minus sign in this case. The resultant integral is thus

e—i27rnz e—ianz n=mi2m | )
j m mrdn=2mi T = 7me (B8)
(2w)z(n+ﬂ)(n—ﬁ) (277)2(n+2—ﬂ_)

Combining Eqs(B7) and (B8), we have the general expression for the integral mver

efizfrrnz i iz
—_ AiM{z
f (2m)? 2_mzdn 2me . (B9)

Substituting this equation into E(B6), we then end up with the Weyl expansion of the Green'’s function:

Go(r)=J fdp dq e*iz”(p”qy)l—eimh‘, (B10)
2m
wherem=[k3— (2)?(p?+g?)1*? and Im{n)=>0.

The Weyl expansion represents the superposition of elementary harmonic waves amdhyedirections g~ '27(Px+ay)y.
the harmonic waves exponentially attenuate in zttérection away from the plane=0 which contains the source. The
harmonic waves and the attenuation fatedF!%/2m are so combined that the double integral in(Bd.0) over all the spatial
freqlijencies #,q) yields the elementary damped spherical wave on the left-hand side ofBEQ@), i.e., Gy(r)
="/ (4r).
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