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Abstract: We introduce and demonstrate use of a novel, diffuse optical 
tomography (DOT) based breast cancer signature for monitoring progres-
sion of neoadjuvant chemotherapy. This signature, called probability of 
malignancy, is obtained by statistical image analysis of total hemoglobin 
concentration, blood oxygen saturation, and scattering coeffcient dis-
tributions in the breast tomograms of a training-set population with 
biopsy-confrmed breast cancers. A pilot clinical investigation adapts this 
statistical image analysis approach for chemotherapy monitoring of three 
patients. Though preliminary, the study shows how to use the malignancy 
parameter for separating responders from partial-responders and demon-
strates the potential utility of the methodology compared to traditional DOT 
quantifcation schemes. 
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1. Introduction 

An increasingly popular treatment protocol for breast cancer is neoadjuvant chemotherapy, 
which involves administration of chemotherapy drugs prior to surgical removal of the tumor tis-
sue [1]. The treatment goal is to reduce the tumor size and eliminate or reduce micro-metastases 
before surgery. During treatment, it is desirable to observe the effects of particular drug regi-
mens on tumor physiology which, in turn, could potentially permit early determination of the 
effectiveness of the chemotherapy regimen. For this reason, neoadjuvant chemotherapy mon-
itoring is an active area of research in clinical medicine [2–4], including optical imaging and 
monitoring [5–10]. 

Diffuse Optical Tomography (DOT) is an evolving biomedical optics technique that readily 
provides full three-dimensional (3D) images of tissue hemoglobin concentration, blood oxygen 
saturation, and optical scattering coeffcients in breast tissue. Recently, we developed a statisti-
cal image analysis technique for DOT [11] and applied it to a breast cancer data set [12]. The 
statistical approach derives a probability of malignancy signature for normal and cancerous tis-
sues based on a collection of optical parameters within each subject and across the full subject 
population. Specifcally, the approach converts 3D DOT reconstructions of total hemoglobin 
concentration, blood oxygen saturation, and tissue scattering coeffcient into a single 3D DOT-
based probability of malignancy image, which, in turn, enables volumetric segmentation of the 
tissue into ‘normal’ and ‘cancerous’ regions. 

In this contribution we explore application of this statistical image analysis technique 
for monitoring the evolving tumor physiology of three subjects undergoing neoadjuvant 
chemotherapy. Our investigation acquires and employs DOT images of chemotherapy-patient 
breasts, along with probability of malignancy training set data. We show how to adapt these 
statistical imaging concepts to the chemotherapy monitoring problem; we measure longitudi-
nal changes in tumor-region probability of malignancy during chemotherapy, and we compare 
these variations to those of clinical radiology. Finally, we fnd, in this limited data set, that the 
novel statistical image analysis scheme appears useful for prediction of chemotherapy response 
during the course of therapy, especially when compared to more traditional DOT quantifcation 
schemes. Thus, the results from this pilot study suggest that the probability of malignancy ap-
proach to DOT data holds potential to provide useful quantitative information about therapeutic 
effects during neoadjuvant chemotherapy. 

2. Study populations 

2.1. The training data set 

Optical tomograms were collected on a population of 30 biopsy-confrmed lesions (i.e., the 
training set), and logistic regression was used to generate an optimized weighting vector for 
computation of tissue probability of malignancy based on optically measured total hemoglobin 
concentration, blood oxygen saturation, and reduced scattering coeffcient [11]. Our training 
population consisted of 30 subjects with Invasive Ductal Carcinoma (IDC) and with or without 
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an associated Ductal Carcinoma In Situ (DCIS); the demographic details of this population are 
described in Table 1. Note, we have matched the diagnosis in the training set to that of the 
test set (available from pre-therapy biopsy, Section 2.2). We also compared results utilizing a 
training subset of only the post-menopausal subjects (N=14) and utilizing an expanded training 
set with a few more additional diagnoses (N=35). While small differences were found, our 
major conclusions were not changed by these choices of training set data. The results from 
the full training data set (N=35) (i.e., the training set employed in Ref. [11]) are given in the 
appendix (Section A.3). 

Table 1. Demographic breakdown of cancers used to derive the probability of malignancy 
in this study. 

Diagnosis # Age BMI Tumor Size 
[yrs] [kg/m2] [cm3] 

IDC 8 44±11 27.4±6.2 2.9±1.2 
IDC & DCIS 22 49±10 27.5±7.0 1.8±0.97 

30 48±10 27.5±6.7 2.1±1.1 

IDC: Invasive Ductal Carcinoma; DCIS: Ductal Carcinoma In Situ; BMI: Body Mass Index. Numeric data 
is given as mean ± standard deviation. 16 subjects were pre-menopausal and 14 were post-menopausal. 
The tumor size reported here is the longest dimension recorded in clinical radiology reports. These sub-
jects are a subset of the population described in [12] with selection criteria described in [11]. 

2.2. The test data set 

We applied the probability of malignancy weighting scheme to data from three new subjects 
who were imaged by DOT during neoadjuvant chemotherapy. The subjects received four cycles 
of Adriamycin with Cyclophosphamide and then three or four cycles of Taxane every two to 
three weeks. Two subjects (1 and 2) were post-menopausal at the beginning of therapy. Subject 
3 was peri-menopausal when therapy began and was post-menopausal after therapy. The frst 
DOT measurements were made prior to or within the frst chemotherapy cycle, and subsequent 
measurements were made at various time points thereafter. 

The subjects were imaged with standard clinical techniques (Subject 3, X-Ray mammogram 
and ultrasound) or were recruited into a research study with serial MR imaging (Subjects 1 and 
2). Optical imaging was performed opportunistically throughout the course of patient treatment. 
Details for each subject are given in the appendix (Section A.1). 

We determined the tumor region, or tumor volumetric mask, in two ways. The primary tech-
nique, presented in the main text, derived a tumor mask at each time point for the test subjects 
by (1) identifying the tumor location (e.g., from MRI), (2) identifying the nearby local max-
imum in the probability of malignancy distribution, P(M ), and then (3) creating the tumor 
mask by use of a region growing algorithm [12] based on P(M ). This algorithm gave tumor 
dimensions that were constrained by the maximum size of the tumor as extracted from radiol-
ogy reports (i.e., pre-therapy size) and by the size corresponding to tissue boundaries at 25% 
of the local maximum in P(M ). A second approach, presented in the appendix (Section A.2), 
derived a single tumor mask from data at the frst time point using the same region growing 
algorithm based on the tissue attenuation coeffcient [12]; this mask was then held constant for 
all chemotherapy time points. This second approach essentially makes an assumption that the 
tumor is in roughly the same geometrical position for each serial image (see Section A.2). In 
both approaches, we determined the healthy tissue as any region of the breast excepting the 
tumor, excepting a 2 cm penumbra around the tumor, and excepting all tissues within 1 cm of 
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the breast compression plates. Note, as will be seen later in the paper (and appendix), use of 
one or the other of these two methods of segmentation did not signifcantly modify our major 
conclusions. 

Several approaches could be used for normalization, and it is not a priori clear which ap-
proach is optimal. This is especially true since chemotherapy affects both normal and tumor 
tissue, i.e., it produces changes in optically measured physiological properties of both tissue 
types [13]. Here, for example, we have chosen to normalize the tissue optical properties in each 
subject to data taken from the patient’s healthy tissue at the frst time point. Then we follow the 
patient’s probability of malignancy parameter over the treatment time course. The differences 
between subjects with complete versus incomplete responses to chemotherapy were thus char-
acterized. For completeness, we also examined the effects of a second normalization approach, 
i.e., normalization to healthy tissue optical properties at each time point. 

Finally, systematic errors were minimized, and tissue changes due to chemotherapy empha-
sized, by choosing a test data set such that only those subjects imaged in similar geometries 
throughout the course of their chemotherapy were selected (i.e., same compression plate sepa-
rations, breast positioning, etc.). 

3. Method 

Broadly, the data processing procedure can be broken down into several distinct steps: (1) Iden-
tifcation of the cancer signature from the training set data (Section 3.1); (2) Normalization of 
time course data in a new (test) subject using logarithmic and Z-Score transformations (Sec-
tion 3.2); (3) Calculation of probability of malignancy images for new (test) subjects at each 
accessible imaging time point during neoadjuvant chemotherapy (Section 3.3). A schematic of 
this process is provided in Fig. 1. 

3.1. Training data set 

A detailed explanation of the technique to derive a probability of malignancy for each voxel 
of the 3D tomogram of the cancer-bearing breast can be found in Ref. [11]. Note, we have 
matched the diagnosis in the training set to that of the test set (using information available 
from pre-therapy biopsy). Briefy, we identifed ‘normal’ breast tissue in each subject and log-
transformed each reconstructed parameter (total hemoglobin concentration, Hbt ; blood oxy-
gen saturation, StO2; and reduced scattering coeffcient, µ ′) in each tissue voxel. The log-s 
transformed data were then normalized using healthy-tissue averages to derive a ‘Z-Score’ for 
each parameter in each tissue voxel (e.g., the difference of tissue voxel property “Ln(X)” and 
its corresponding mean in the healthy-tissue region was determined, and the result was then 
divided by the standard deviation of “Ln(X)” in the healthy region). For example, the ‘Z-Score’ 
for total hemoglobin is 

Ln [Hbt ] −hLn[Hbt ]iHzHbt = . (1)
σ [Ln[Hbt ]]H 

Here, the subscript index H specifes the healthy tissue region. Notice, the denominator is 
the standard deviation (σ ) of the log-transformed voxel data in the patient’s healthy tissue. We 
note that inter-subject variations in healthy tissue (due to age, body mass index, menopausal 
status, etc.) are signifcantly reduced in these normalized data [11]. The statistical approach 

′employs these Z-scores for total hemoglobin (zHbt ), scattering (zµ ), and blood oxygen satura-s 
tion (zStO2). 

The ‘Malignancy Parameter’ (M ) at each position (~r) within the breast is defned as 

′ ~ M (~r) = [zHbt (~r) , zStO2 (~r) , zµ (~r) , 1] · β (2)s 
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Fig. 1. Data processing fow chart for a single subject with multiple measurements while 
undergoing neoadjuvant chemotherapy. The weighting vector (~β , defning a ‘signature of 
malignancy’) is derived from a population of 30 biopsy confrmed cancers (blue boxes, Sec-
tion 3.1). It essentially provides a weighting for each optical parameter per its importance 
for malignancy. Data is then normalized with logarithmic and Z-Score transformations for 
each subject across multiple time points designated by τ, red boxes, Section 3.2) using the 
mean (hLn[X(0)]iH ) and standard deviation (σ [Ln[X(0)]]H ) of healthy tissue from the ear-
liest available time-point (τ = 0) during the process. This normalized data is combined with 
~β to produce a probability of malignancy for each patient and at each time point (purple 
boxes, Section 3.3). 

where the last term in the data vector accounts for effects due to parameters not considered 
in the current analysis (see Refs. [14, 15]). Logistic regression is then applied to optimize the 
weighting vector (~β ). That is, from M , we compute a tissue (voxel) probability of malignancy 
using the probability of malignancy function, P(M ), i.e., 

1 
P(M (~r)) = , (3)

1 + e−M (~r) 

~and we optimize β such that the difference between healthy (P(MH )∼0) and malignant 
(P(MM) ∼1) tissues in our training set is maximized. The resultant weighting vector (~β ) was 
tested for generalizability using a leave-one-out protocol in a population of 35 biopsy confrmed 
lesions [11]. For the present study, to maximize connections between test and training sets we 
utilized the ~β derived from a subset of our total population (diagnosis of IDC or DCIS+IDC, 
N=30) (hβzHbt i = 0.93, hβzStO2 i = −0.42, βzµ ′ = 3.62, hβ0i = −5.67).

s 

3.2. Normalization for serial imaging (test set) 

Chemotherapy affects both healthy and tumor tissue, changing the optically derived physi-
ological properties [13]. We therefore choose to modify our previously described procedure 
[11] slightly by using parameters extracted from healthy tissue measured at a pre- or early-
chemotherapy time point for the Z-scores (see Eqn. (4)). In one subject, we lacked a pre-
chemotherapy time point; in this case we utilized healthy-tissue obtained at the frst available 
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time point, taken between the frst and second chemotherapy cycles, in order to derive the 
Z-scores. This choice of Z-score healthy-tissue-normalization emphasizes changes in physio-
logical properties during the course of chemotherapy by comparing to pre-/early-chemotherapy 
healthy-tissue rather than comparing to the difference between tumor- and healthy-tissue at each 
time point. (For completeness, however, we also investigated the latter normalization scheme 
(see Section 4).) 

As an example, we normalize total hemoglobin concentration (Hbt ) in a single tissue voxel 
according to the formula: 

Ln[Hbt (τ)] −hLn[Hbt (τ = 0)]iHzHbt (τ) = . (4)
σ [Ln[Hbt (τ = 0)]]H 

Here, zHbt is the Z-Score total hemoglobin concentration. Again, the subscript index H speci-
fes the healthy tissue region. Time points are designated by τ; τ = 0 is the baseline measure-
ment. Notice, the denominator is the standard deviation (σ ) of the log-transformed hemoglobin 
data in the patient’s pre-/early-chemotherapy healthy-tissue. (Note, parameters, i.e., ~β , are de-
rived from the various training sets using the approach in our previous work, Ref. [11].) 

3.3. Application to serial chemotherapy imaging 

We employed the optimized weighting vector, ~β (Section 3.1), to generate a 3D malignancy 
parameter map for each time point with Z-scores normalized by healthy-tissue at a pre-/early-
chemotherapy time point (e.g., Eqn. (4)). We then calculated a 3D probability of malignancy 

1 + e−M (r,τ) 

tomogram from the malignancy parameter tomogram, i.e., 

M (~r,τ) = ′ ~[zHbt (~r,τ), zStO2(~r,τ), zµ (~r,τ), 1] · β ,s (5) 

P(M ) = P(M (~r,τ)) = 
1 

~ 
(6) 

where~r is the spatial position of each voxel and other variables were previously defned. Using 
a 3D region growing algorithm [12] based on a tumor location defned by clinical imaging, we 
can readily identify the spatial extent of the tumor in DOT images. We performed this spatial 
segmentation at each time point (Section 2.2) based on P(M ). As noted earlier (Section 2.2), 
we also utilized the spatial mask derived from the frst time point to segment the healthy and 
tumor tissue at all time points (see appendix, Section A.2). Both techniques led us to similar 
primary conclusions, but we use the per-time-point region approach in the main text, because 
this scheme accounts better for uncontrolled changes in geometry. 

Several metrics can be used to extract comparative information from this data, and while 
quantitatively different, they lead to similar conclusions. A metric that captures both changes 
in tumor volume and magnitude of P(M ) essentially sums P(M ) over the tumor region or 
healthy region. We use these parameters, i.e., 

SH (τ) = ∑ P(M (~r,τ)) (7) 
Healthy Voxels 

SM (τ) = ∑ P(M (~r,τ)) , (8) 
Malignant Voxels 

for tracking the responses to chemotherapy and comparing responders to partial-responders. 

3.4. MRI segmentation 

Two subjects (1 and 2) also took part in a Dynamic Contrast Enhanced MRI (DCE-MRI) imag-
ing study, and these data were available to extract 3D tumor volumes. We utilized contrast 
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enhanced subtraction images taken approximately 10 minutes after injection of Gadolinium 
Diethylenetriamine Penta-acetic Acid (Gd-DTPA). Segmentation was accomplished by thresh-
olding image data at 3.5 times the signal level of fatty tissue, then smoothing the edges [16,17]. 
Artifacts (primarily at the skin-air boundary) were removed manually. 

4. Results and discussion 

The procedure described in the previous section produces a 3D map of the probability of ma-
lignancy at each time point during chemotherapy. Example slices through the center of the 
tumor in the malignancy maps of Subject 2 are shown in Fig. 2. Notice that the probability of 
malignancy in the tumor region decreases signifcantly over time; by the last time point (post-
chemotherapy, pre-surgery), the probability of malignancy has only a few scattered non-zero 
regions. This prediction was later validated by histology which determined that Subject 2 had 
complete pathologic response to chemotherapy. 

In Fig. 3 we show fractional changes in the summed malignancy parameter, Sd (τ) (where 
d = H, M), for the healthy and malignant tissues of each patient during neoadjuvant chemother-
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Fig. 2. Subject 2. Cranio-caudal slices through the center of a tumor located in the upper 
right of this image from a 3D reconstruction of Hbt and the probability of malignancy, 
P(M ), at three time points during neoadjuvant chemotherapy. Data shown was collected 
prior to the start of chemotherapy (top), after 4 cycles of Adriamycin + Cyclophosphamide 
(middle), and after an additional 3 cycles of Taxane (bottom). Gd-enhanced MRI subtrac-
tion images were collected ∼10 min. after injection. MRI images are scaled individually to 
improve visibility. Due to differences in equipment geometry, the optical and MR images 
were acquired in different planes. The tumor boundary is marked by black line contours 
in both the Hbt and P(M ) images. P(M ) was calculated from a training set of IDC and 
IDC+DCIS subjects (N=30). 
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apy. (Note, unless stated otherwise in the caption, dashed (solid) lines correspond to malignant 
(healthy) tissues.) Results using two training sets are shown. One training set had all subjects 
with IDC or IDC+DCIS (N=30); the other training set used only post-menopausal subjects with 
IDC or IDC+DCIS (N=14). Subjects 1 and 2 were complete responders as determined by MRI 
and pathology, and Subject 3 was a partial responder by ultrasound and pathology. We see that 
Subject 3, with a partial pathological response, exhibited a rise in SM (τ) over the course of her 
therapy, while in Subjects 1 and 2, SM(τ) fell with time. These data have limitations. Unfortu-
nately, Subject 3 left the study prior to acquisition of later time points, and Subject 1 did not 
join our study until after her frst dose of chemotherapy. Thus, even though Z-score variables 
are employed instead of absolute properties, these results should be interpreted with caution. 
With these caveats, the observations clearly reveal the potential utility of the probability of 
malignancy scheme for monitoring chemotherapy. 

We also performed the analysis described in Section 3.3 with a modifcation of the normal-
ization procedure (previously described in Section 3.2), in this case utilizing the healthy tis-
sue at each chemotherapy time point for normalization (i.e., hLn[Hbt (0)]iH → hLn[Hbt (τ)]iH ; 
σ [Ln [Hbt (0)]]H → σ [Ln[Hbt (τ)]]H in Eqn. (4)). The resulting changes in our calculated prob-
ability of malignancy during the course of chemotherapy are shown in Fig. 4. We were unable 
to discriminate between the partial and complete chemotherapeutic responses using the new 
normalization scheme in the same limited sample. These effects are possibly due to concurrent 
changes in healthy tissue as a result of the chemotherapy. Thus it appears desirable to normal-
ize using healthy tissue at an “early” time point, rather than serially at each time point in the 
chemotherapy process. 
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Fig. 3. Fractional change in Sd for healthy (d = H) and malignant (d = M) tissues. In 
calculating P(M ), data are normalized to healthy tissue at the frst optical measurement 
using a training set of subjects with IDC or IDC+DCIS (a, N=30) or post-menopausal 
subjects with IDC or IDC+DCIS (b, N=14). Tumor tissue (SM(τ)) is denoted with dashed 
lines and healthy tissue (SH (τ)) with solid lines. Subjects 1 and 2 were complete responders 
by pathology. Subject 3 was a partial responder by pathology. Note, Subject 1 did not 
have an optical measurement prior to beginning chemotherapy, and the τ = 0 time point is 
defned to be 100%. In panel b, Subjects 1 and 2 have very low SM (τ) and SH (τ) in both 
the tumor and healthy tissue at later time points, resulting in overlapping traces. 

We utilized DCE-MRI to measure tumor volume at each time point for Subjects 1 and 2 and 
then compared DCE-MRI data to our calculated SM (τ). In Fig. 5, the changes in these MRI 
volumes are directly compared to SM(τ). Both metrics showed similar changes over the course 
of therapy. This segmentation does not take into account the overall impression of the clinical 
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Fig. 4. Fractional change in Sd for healthy (d = H) and malignant (d = M) tissues. In cal-
culating P(M ), data are normalized to healthy tissue at the each optical measurement time 
point using a training set of subjects with IDC or IDC+DCIS (a, N=30) or post-menopausal 
subjects with IDC or IDC+DCIS (b, N=14). Tumor tissue (SM(τ)) is denoted with dashed 
lines and healthy tissue (SH (τ)) with solid lines. The legend is the same as Fig. 3; only the 
normalization scheme is changed. 

radiologist, leading to some discrepancy between the calculated volume and radiological im-
pression, e.g., Subject 2 has a complete response by pathology and radiology, but had a 1.6 cc 
segmented cancer volume at the end of treatment. (Note, Subject 3 was not imaged with MRI, 
and we are therefore unable to report changes in her tumor volume.) 

Subject 3 exhibited a partial response (∼1.6 and 0.2 cm residual cancer foci at surgery) to 
chemotherapy in both imaging (mammography and ultrasound) and pathology. Previous work 
has suggested that partial responders to chemotherapy may have signifcantly different optical 
signatures (e.g., Ref. [6,9,18–22]). Encouragingly, the results of the present pilot study based on 
tumor probability of malignancy trajectories are in line with these earlier contributions. Note, 
however, the results of the present study are suggestive but preliminary, because the population 
is small and the number of time points few. 

One of the advantages of multi-wavelength diffuse optical techniques is the simultaneous 
measurement of multiple physiologically relevant chromophores, providing the opportunity for 
multi-dimensional data analysis. We also extracted time courses of the response to chemother-

′apy for Hbt , StO2, and µs, but no obvious trend separating responding and partial-responding 
subjects was apparent in these data (Fig. 6). Several research groups have previously examined 
metrics for cancer detection or chemotherapy tracking combining multiple chromophores with 
hypothesis-driven [12, 23] or data-set derived [24–28] functions. Our study further illustrates 
the potential of optical metrics derived from multiple physiological parameters as a means to 
assess the effcacy of chemotherapy. 

Finally, the present work tracking tumor variation due to neoadjuvant chemotherapy is no-
table, in part because it applies a signature derived from DOT measurements of a population 
of known cancers in a completely different study. Thus the pilot study suggests that such sig-
natures may be robust, and points to the promise of using such signatures for tracking and 
modifying the course of chemotherapy treatment with relatively inexpensive and non-ionizing 
diffuse optical systems. It lays more groundwork towards use of Computer Aided Detection 
schemes based on DOT (i.e., DOT-CAD). 
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Fig. 5. Fractional change in predicted response to chemotherapy using tumor SM(τ) (nor-
malized to initial time point) and change in tumor volume measured by MRI relative 
to initial measurements. Results from DOT-CAD (SM(τ), solid lines) were calculated 
from a training set of IDC and IDC+DCIS subjects (N=30), normalized to the pre-/early-
chemotherapy time point. Note: MRI volumes were obtained by a simple segmentation 
of late contrast enhanced subtraction images and do not include the overall radiological 
impression (dashed lines). Subject 3 was not imaged with MRI during the course of her 
treatment. 
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′Fig. 6. Hbt , StO2, and µ as a function of chemotherapy cycle for Subjects 1-3. Dashed s 
(solid) lines denote the average value in malignant (healthy) tissue. The obvious trends 
found in this paper, utilizing the probability of malignancy approach, are not apparent in 
this un-normalized and un-weighted data. Masks were derived from region growing on 
P(M ) (Section 3.3, i.e., as in Fig. 2). 
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5. Conclusion 

We have introduced and demonstrated a statistical technique for automated analysis of tumor 
response to neoadjuvant chemotherapy. The method utilizes the probability of malignancy con-
cept; coeffcients of a malignancy parameter derived from a population of known cancers were 
applied in patients undergoing neoadjuvant chemotherapy to assess therapeutic response. The 
probability of malignancy in the tumor region differed signifcantly during the course of treat-
ment in two complete responders compared to the partial responder. Interestingly, clear dis-
tinctions between the responding and partially-responding patients were not evident in single 

′parameter (Hbt , StO2, µ ) analyses. Thus the multiparameter analysis of DOT data appears to s 
provide additional diagnostic merit that is not apparent in the univariate analysis of individual 
optical properties. 

In total, the pilot study suggests that variation of a composite cancer signature measured 
by diffuse optical tomography, i.e., the malignancy parameter, may be an effective means for 
monitoring the progression and effcacy of neoadjuvant chemotherapy. Further study of this 
approach is warranted. Clearly, the present work represents a proof of principle and will require 
more subjects for full validation of this preliminary result. 

A. Appendix 

In this section, we provide detailed demographic data and clinical time lines for each subject 
(Section A.1), and we also provide results for therapeutic responses that utilized constant tis-
sue segmentation derived from the initial measurement (Section A.2) and a somewhat larger 
training set (Section A.3). 

A.1. Detailed test subjects information 

Detailed information on each subject in the test data set is found in Table 2, Table 3, and Table 
4. Each subject underwent a slightly different time course of chemotherapy doses. We therefore 
made the decision to scale each time course according to the patient’s chemotherapy cycle, i.e., 
the number of chemotherapy doses she had received up to that point. 

Table 2. Subject 1. 

Subject 1, Age 51 yr., BMI 34.9 kg/m2 

Cycle Week Notes 
-1 Biopsy: IDC/DCIS 

0 0 Baseline MRI 
1.0 1.0 Chemotherapy Begins 
1.0 3.0 DOT Baseline 
2.0 6.0 DOT 
3.9 11.6 DOT 
3.9 11.6 MRI marked decrease in enhancement 
5.0 15.0 DOT 
7.9 23.9 MRI 
post 26.7 Surgical Pathology: complete response 

Timeline is zeroed at the beginning of chemotherapy. No metastatic carcinoma cells were found in axillary 
lymph nodes after surgery. IDC: Invasive Ductal Carcinoma; DCIS: Ductal Carcinoma In Situ. 8 total 
cycles of chemotherapy. 
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Table 3. Subject 2. 

Subject 2, Age 51 yr., BMI 24.3 kg/m2 

Cycle Week Notes 
0 0 Biopsy: IDC 
0 0 Baseline MRI 
0 0 DOT Baseline 

1.0 1.0 Chemotherapy Begins 
1.0 1.0 Biopsy: IDC, no change 
4.1 8.1 MRI: much less enhancement 
4.1 8.1 DOT 
7.0 16.7 MRI: complete response 
7.0 16.7 DOT 
post 20 Surgical Pathology: complete response 

Timeline is zeroed at the beginning of chemotherapy. No metastatic carcinoma cells were found in axillary 
lymph nodes after surgery. IDC: Invasive Ductal Carcinoma. 7 total cycles of chemotherapy. 

Table 4. Subject 3. 

Subject 3, Age 47 yr., BMI 22.1 kg/m2 

Cycle Week Notes 
0 -3 Biopsy: IDC/DCIS 
0 0 DOT Baseline 

1.0 1.0 Chemotherapy Begins 
3.9 5.9 DOT 
post 17.7 Surgical Pathology: 2 foci of IDC (1.6 and 0.2 cm) 

This subject did not have MRI exams during her course of treatment. Timeline is zeroed at the beginning 
of chemotherapy. No metastatic carcinoma cells were found in axillary lymph nodes after surgery. IDC: 
Invasive Ductal Carcinoma; DCIS: Ductal Carcinoma In Situ. 7 total cycles of chemotherapy. 

A.2. Constant tissue segmentation based on mask at initial time point 

An example of data segmentation utilizing a fxed tumor boundary mask from the frst time 
point is shown in Fig. 9. The discrepancies between P(M ) and the tissue segmentation are 
more signifcant than in the per-time point segmentation shown in Fig. 2. Sd (τ) for each region 
(d = H and d = M) is shown in Fig. 7 (normalized to healthy tissue at the frst optical data 
point) and Fig. 8 (normalized to healthy tissue at each time point). The subjects who responded 
completely to chemotherapy (1 and 2) can still be distinguished from the partially responding 
Subject 3. 

A.3. Expanded training set to include additional diagnoses 

In this section, we present results utilizing the entire (N=35) training set described in our pre-
vious work [11] (Table 5). This training set includes several subjects with invasive lobular 
carcinoma (ILC), a cancer which is not present in the test data set. Fig. 10 and Fig. 11 show the 
calculated probability of malignancy versus chemotherapy cycle using this expanded training 
set. The main results of the full analysis using all (N=35) training set subjects differ little from 
those presented in Fig. 3, as might be expected given the small number of additional training 
set subjects. Again, the normalization to healthy tissue at each time point does not appear to be 
effective in separating partial and complete responders (Fig. 11). 
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Fig. 7. Fractional change in Sd (τ) for healthy (d = H) and malignant (d = M) tissues 
versus chemotherapy cycle in three subjects, normalized to healthy tissue at the frst optical 
measurement training set of subjects with IDC or IDC+DCIS (a, N=30) or post-menopausal 
subjects with IDC or IDC+DCIS (b, N=14). Tumor tissue (SM(τ)) is denoted with dashed 
lines and healthy tissue (SH (τ)) with solid lines. Subjects 1 and 2 were complete responders 
by pathology. Subject 3 was a partial responder by pathology. Note that Subject 1 did not 
have an optical measurement prior to beginning chemotherapy. The SM(τ) and SH (τ) in 
Subjects 1 and 2 are overlapping. 
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Fig. 8. Fractional change in Sd (τ) for healthy (d = H) and malignant (d = M) tissues 
versus chemotherapy cycle in three subjects, normalized to healthy tissue at each optical 
measurement training set of subjects with IDC or IDC+DCIS (a, N=30) or post-menopausal 
subjects with IDC or IDC+DCIS (b, N=14). Tumor tissue (SM(τ)) is denoted with dashed 
lines and healthy tissue (SH (τ)) with solid lines. The legend is the same as Fig. 7. 
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Table 5. Demographic breakdown of cancers used to derive the probability of malignancy 
presented in Section A.3. 

Diagnosis # Age BMI Tumor Size 
[yrs] [kg/m2] [cm3] 

IDC 8 44±11 27±6.2 2.9±1.2 
IDC & DCIS 22 49±10 28±7 1.8±0.97 
DCIS 2 60±4.9 29±6.6 0.7±0.28 
ILC 2 62±3.5 22±2 1.4±0.35 
DCIS & LCIS 1 39 19 5 

35 49±11 27±6.5 2.1±1.2 

IDC: Invasive Ductal Carcinoma; DCIS: Ductal Carcinoma In Situ; ILC: Invasive Lobular Carcinoma; 
LCIS: Lobular Carcinoma In Situ; BMI: Body Mass Index. Numeric data is given as mean ± standard 
deviation. 16 subjects were pre-menopausal and 19 were post-menopausal. The tumor size reported here is 
the longest dimension recorded in clinical radiology reports. These subjects are a subset of the population 
described in [12] with selection criteria described in [11]. 
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Fig. 9. Subject 2. Cranio-caudal slices through the center of a tumor located in the upper 
right of this image from a 3D reconstruction of Hbt and the probability of malignancy, 
P(M ), at three time points during neoadjuvant chemotherapy. Data shown was collected 
prior to the start of chemotherapy (top), after 4 cycles of Adriamycin + Cyclophosphamide 
(middle), and after an additional 3 cycles of Taxane (bottom). MRI images are scaled in-
dividually to improve visibility. Note that the overall MRI contrast in chemotherapy cycle 
4 is greatly reduced compared to baseline. Due to differences in equipment geometry, the 
optical and MR images were acquired in different planes. The tumor boundary is marked 
by black line contours in both the Hbt and P(M ) images. P(M ) was calculated from a 
training set of IDC and IDC+DCIS subjects (N=30). 
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Fig. 10. Fractional change in Sd for healthy (d = H) and malignant (d = M) tissues. In cal-
culating P(M ), data are normalized to healthy tissue measured at the frst optical measure-
ment using a mixed diagnoses training set (a, N=35, Table 5) or post-menopausal subjects 
with mixed diagnoses (b, N=19). Tumor tissue (SM(τ)) is denoted with dashed lines and 
healthy tissue (SH (τ)) with solid lines. Subjects 1 and 2 were complete responders by 
pathology. Subject 3 was a partial responder by pathology. Note that SM(τ) and SH (τ) in 
both Subjects 1 and 2 were barely distinguishable, i.e., the dashed and solid lines overlap. 
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Fig. 11. Fractional change in Sd for healthy (d = H) and malignant (d = M) tissues. In 
calculating P(M ), data are normalized to healthy tissue measured at each each time point 
using a training set with mixed diagnoses (a, N=35, Table 5) or post-menopausal subjects 
with mixed diagnoses (b, N=19). Tumor tissue (SM(τ)) is denoted with dashed lines and 
healthy tissue (SH (τ)) with solid lines. The legend is the same as Fig. 10. 
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