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Abstract: We introduce, validate and demonstrate a new software 
correlator for high-speed measurement of blood fow in deep tissues based 
on diffuse correlation spectroscopy (DCS). The software correlator scheme 
employs standard PC-based data acquisition boards to measure temporal 
intensity autocorrelation functions continuously at 50 − 100 Hz, the fastest 
blood fow measurements reported with DCS to date. The data streams, 
obtained in vivo for typical source-detector separations of 2.5 cm, easily 
resolve pulsatile heart-beat fuctuations in blood fow which were previously 
considered to be noise. We employ the device to separate tissue blood fow 
from tissue absorption/scattering dynamics and thereby show that the origin 
of the pulsatile DCS signal is primarily fow, and we monitor cerebral 
autoregulation dynamics in healthy volunteers more accurately than with 
traditional instrumentation as a result of increased data acquisition rates. 
Finally, we characterize measurement signal-to-noise ratio and identify 
count rate and averaging parameters needed for optimal performance. 
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1. Introduction 

Blood fow is a clinical biomarker for tissue health because of its importance for oxygen deliv-
ery and clearance of metabolic byproducts, and Diffuse Correlation Spectroscopy (DCS) [1, 2] 
is emerging as the non-invasive optical method of choice to measure blood fow in tissues lo-
cated 1 − 3 cms below the surface [3–7]. Nevertheless, despite attributes such as suitability for 
bedside monitoring and sensitivity to tissue microvasculature [2, 3, 5, 8], as well as numerous 
clinical applications [6, 7, 9–26], the full potential of DCS as a clinical blood fow monitor will 
only be realized when several technical limitations [5, 27] are ameliorated. Methods to remove 
the confounding infuence of fow in superfcial tissues, for example, are under development 
but need more validation [22,28–32]. Similarly, methods for absolute calibration of blood fow 
have been developed and tested with some success [33–36], but more work is needed. 

A third limitation and opportunity for improvement concerns data throughput, e.g., measure-
ment time resolution and acquisition rate. Most DCS measurements of blood fow are slow, with 
measurement sampling rates ranging from 0.3 to 1 Hz. Thus DCS has only been used to mea-
sure fow variation over slow time scales, i.e., measurements every minute/hour [10,13,37,38], 
or measurements every day [39]. Indeed, fast cerebral blood fow (CBF) measurements 
(25−50 Hz) can enable new applications for DCS, such as monitoring cerebrovascular autoreg-
ulation dynamics [40,41] wherein beat-to-beat variability of both blood pressure and blood fow 
are used to characterize autoregulation. High temporal resolution measurements will also im-
prove identifcation of motion artifacts and thereby create potential for measuring tissue blood 
fow during exercise [42]. Finally, fast sampling increases measurement throughput and will 
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Fig. 1. (A) Schematic of DCS instrumentation in the semi-infnite geometry. Highly coher-
ent single mode laser light is used to illuminate the sample via optical fbers. Red blood 
cell motion (e.g., red disks to light red disks in time τ; blood fow F) causes fuctuations in 
the intensity of backscattered light that is collected a distance ρ away from the source, and 
is directed to single photon counting avalanche photo diodes (APDs). A correlator counts 
the arrival of digital TTL pulses generated by the APDs to compute the DCS autocorrela-
tion functions, (B) Sample intensity autocorrelation functions (g2(τ)) highlighting different 
fow rates. 

enable high spatial resolution imaging with fewer detectors. For example, photons collected 
from many (32 − 48) detector positions can be routed to a few (4 − 8) photon detectors via an 
optical switch. In these cases, besides the obvious cost advantages, fast sampling can reduce the 
imaging frame rate to seconds or less (rather than minutes), thus enabling dynamic imaging. 

In this contribution we report on the development of a novel software correlator optimized 
for continuous, high-speed monitoring of deep tissue blood fow based on diffuse correlation 
spectroscopy (DCS). This device uses the ‘shift-and-add’ method [43, 44] to directly compute 
the correlation function at a few (40), highly relevant delay times (1µs ≤ τ ≤ 250µs). Lever-
aging this data compression and other technological improvements, we demonstrate sustained 
blood fow measurement speeds up to 100 Hz with 8 simultaneous detection channels (and up 
to 1 kHz with 2 detection channels). To our knowledge, these experiments represent the fastest 
measurements of blood fow with DCS. The fast data streams easily resolve pulsatile heart-beat 
fuctuations in blood fow which were previously treated as noise, and they enable us to monitor 
cerebral autoregulation dynamics more accurately than with traditional instrumentation. 

The remainder of this paper is organized as follows. We frst provide context for our work 
with respect to traditional fow measurement devices and other software correlators. Next, we 
describe the software correlator instrumentation and validate its measurements in vivo with a 
hardware correlator. We then highlight the utility of the fast correlator for two in vivo applica-
tions. First, we measure the pulsatile arterial blood fow with DCS; in the process we separate 
the tissue blood fow components in the dynamical signal from tissue absorption/scattering 
components. Second, we measure cerebral autoregulation dynamics in healthy adults. Finally, 
we characterize the effect of averaging and photon count rate on measurement signal-to-noise 
ratio. 

2. Correlation methods: background and new features 

The fast data throughput improvements are best appreciated by comparison to traditional meth-
ods utilized for DCS measurements [2–5]. Briefy, DCS employs coherent near-infrared light 
to characterize moving particles (red blood cells) in tissue via temporal light intensity fuctu-
ations. Figure 1 shows a schematic of the typical DCS instrument. Laser light illuminates the 
tissue. An optical fber, placed on the surface ∼ 2 − 3 cms away from the source, collects light 
that has diffused through the tissue and directs it to a photon counting detector that generates 
an electrical Transistor-Transistor Logic (TTL) digital pulse for every detected photon. A cor-
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relator records the arrival of TTL pulses and uses the distribution of arrival times to quantify 
the temporal fuctuations of detected light intensity. Formally, the correlator calculates the nor-
malized intensity autocorrelation function (g2(τ)) from measurements of the photon intensity, 
g2(τ) ≡ hI(t)I(t + τ)i/hI(t)i2, where, I(t) is the detected intensity at time t, τ is the correla-
tion delay time, and hi represent time-averages. Blood fow is estimated by ftting the measured 
intensity autocorrelation function to mathematical models appropriate to the measurement ge-
ometry. 

The rapid adoption of DCS for clinical fow monitoring was aided by the availability of user-
friendly and convenient hardware correlators (e.g., Correlator.com, Bridgewater, New Jersey; 
ALB, Hessen, Germany), but this convenience also limited measurement speed. Traditionally, 
correlators employ embedded programming and a multi-tau algorithm [45–47] to compute the 
autocorrelation functions over a large range of delay times (from ∼ 1µs up to as much as 
1 ∼ 2s); this design follows from early dynamic light scattering (DLS) and diffusing wave 
spectroscopy (DWS) experiments in mostly non-biological samples [43–47]. DCS intensity au-
tocorrelation functions from deep tissue blood fow, however, typically decay at a much faster 
rates than in DLS experiments [3, 8], and exhibit other slow dynamics at heart rate frequencies 
(and even faster). Deep tissue g2(τ) most often decays to 1 at delay times of τ ∼ 250µs or less 
(see Fig. 1(B)). Thus, correlation data at delay times greater than ∼ 250µs does not offer sig-
nifcant information about tissue dynamics. Furthermore, the autocorrelation function at short 
delay times is more sensitive to photons that travel deep into tissue, i.e., the photons we care 
about [28,48,49], and blood fow changes can be estimated from DCS autocorrelation functions 
at a single delay-time [28]. Thus, many reasons exist for data-set reduction/compression, and by 
reducing the number of delay-times in the correlation function calculation, our data acquisition 
can be made more effcient and faster. 

Unfortunately, reconfguration of commercial correlators that are pre-optimized for general 
applications is nontrivial; reconfguration involves reprogramming of the embedded correla-
tor circuits with specialized equipment. Nevertheless, some precedence for fast blood fow 
measurements exists with hardware correlators, albeit with limitations. Of note is the work 
of Dietsche et. al. [50] who used a hardware correlator in the so-called ‘burst’ mode to mea-
sure blood fow at ∼ 40 Hz; the measurement was fast enough to detect pulsatile blood fow 
in the human arm and forehead at source-detector separations of 1.4 ∼ 1.9 cm. However, the 
measurements required either averaging of correlation functions from many (16− 32) detectors 
at a single point in space [50], or the use of a dual-mode correlator and 2 detectors gated at the 
pulse rate [51]. Importantly, burst mode correlators store rapidly acquired normalized intensity 
autocorrelation functions on an internal memory buffer which only has space for approximately 
1000 correlation functions [50]. Thus, they are designed for sustained high speed acquisition 
over short time intervals (∼ 20 s [50]) and cannot be easily used for continuous long-term 
monitoring. Moreover, data transfer interfaces and program drivers employed to transfer the 
correlation functions to a computer are not optimized for speed. Therefore, even though actual 
computation of correlation functions on the hardware correlator can be fast, programming over-
head issues result in blood fow measurements at speeds only as fast as 1 ∼ 2 Hz (for standard 
correlators). 

Computation of correlation functions in software rather than hardware, i.e., the software 
correlator, offers a fexible alternative approach that greatly facilitates optimization of the cor-
relation measurement for deep tissue blood fow with DCS. The software correlators also utilize 
digital counters to record TTL pulses from the photon counting detectors [43, 44, 52, 53]. In-
stead of computing the correlation function with embedded programming, however, high-level 
programs (e.g. LabVIEW, C++) control the counter readout and estimate the correlation func-
tion in the computer’s random access memory (RAM). Proof-of-principle measurements with 
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diffuse correlation spectroscopy via the Wiener-Khinchin theorem, i.e., the convolution of the 
measured temporal intensity and its time-reversed duplicate have been made with software 
correlators [52, 53]. These studies did not optimize the correlation function computations for 
measurement speed, and this approach requires a large buffer to store the stream of detected 
photon pulses each second, e.g., data sampling rates smaller than 2 µs would fll a typical com-
puter’s buffer in less than a second [52]. Thus, continuous blood fow monitoring over long time 
intervals with this approach is not practical (as was the case with the burst mode correlator). 

Our approach utilizes the ‘shift-and-add’ method [43, 44], to directly compute the correla-
tion function; this scheme is technically similar to that of hardware correlators. Importantly, we 
leverage several technical advances. First, we employ a data reduction/compression strategy, 
i.e., the correlation function is measured at only a few biologically relevant delay times (40 
delays; 1µs ≤ τ ≤ 250µs). Second, we employ an improved instrument design, i.e., the pho-
ton counters are directly connected to the computer’s PCI-bus, eliminating the need for USB-
software drivers. Finally, our software design substantially reduces data transfer overheads. The 
present contribution thus describes an approach to simplify and optimize computation of cor-
relation functions for deep tissue blood fow monitoring with DCS. Importantly, this fexible 
solution can be implemented/adapted to any existing DCS system with modest instrumentation 
upgrades. The design of this improved software correlator is described in detail below. 

3. Real-time software correlator: design and instrumentation 

Our real-time software correlator is implemented on a personal computer (Dell Inspiron, In-
tel core i5 − 4200M, Dual Core, 8GB RAM) using a dedicated 8 channel PCIe/PXIe6612 
counter/timer data acquisition board (National Instruments, Austin, TX) and a custom software 
program (LabVIEW, National Instruments, Austin, TX). As shown schematically in Fig. 1(A), 
a stream of digital TTL pulses generated by the photon counting APD is directed to an edge-
detecting photon counter on the PCIe6612 data acquisition board. The operation is diagrammed 
in Fig. 2(B). Briefy, the counter’s operations are synchronized by an internal timebase (set to 
80 MHz by default). At every clock-tick of the timebase, the counter seeks a TTL signal at its 
input terminal, and if the TTL pulse is present, then the counter increments and updates its in-
ternal count by 1. The photon counts are then transferred to an internal buffer at a user-defned 
sampling clock frequency ( fs = 1/Δt). By generating the sampling clock based on the data 
acquisition board’s built-in frequency generator, we ensure that counter timing/sampling is un-
affected by computer processing operations. The counter buffer (N(i)) is allowed to accumulate 
counts over a user-defned integration time (tint ), and then nint = fs × tint points of the buffer 
are transferred to the computer for calculation of the correlation function. Thus, N(i) represents 
the number of counts that have been accumulated through the ith sample interval in the counter 
buffer. 

Since the counter continuously accumulates photon counts, the quasi-instantaneous photon 
count during the small time interval at index i (i.e., n(i)) is calculated as n(i) = N(i+ 1) − N(i). 
The normalized intensity autocorrelation at delay time τ = Δn/ fs is then estimated from: 

hn(i)n(i+ Δn)i 
g2(Δn = τ fs) = (1)

hn(i)ihn(i)i 

where, hi represent time averages over navg = nint − Δn points. Notice, the smallest delay time 
in the computation of the autocorrelation function is (1/ fs) s, and the correlation function de-
tection frame rate is (1/tint) Hz. In our implementation of the software correlator, fs = 1 MHz, 
while tint can vary from 1 ms to 1 s. For a typical in vivo experiment, tint ∼ 40 ms. The custom 
software correlator computes the normalized autocorrelation function using Eq. (1) over 40 de-
lay times (1 µs to ∼ 125 µs) from 8 channels simultaneously. Real-time computation of the 
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Fig. 2. (A) Block diagram of experiment setup for in vivo studies. Long coherence length 
near-infrared light illuminates the tissue. Diffuse light is collected via a 4 × 1 bundle of 
single mode fbers 2.5 cms away on the surface for detection. Two detection channels are 
directed to a commercial hardware and two more to the custom software correlator. (B) 
Schematic operation of software correlator. TTL pulses generated by the APDs are counted 
using an 80 MHz internal counter time base. Accumulated photon counts are transferred 
to a counter buffer (N(i)) at a user defned sampling frequency ( fs = 1/Δt). N(i) denotes 
the ith sample in the counter buffer, i.e., the number of counts that have been accumulated 
through the ith sample interval. 

correlation function is ensured via buffered producer-consumer loops [54]. 
The high acquisition rate is in part due to more time-effcient software architecture. More-

over, computing the autocorrelation function over a relatively small range of delay times greatly 
simplifes the software operations; a smaller range of delay times permits use of the simpler 
single-tau correlator design wherein photons do not have to be temporally binned as in multi-
tau correlators [44]. More signifcantly, the smaller delay-time range permits smaller integra-
tion times. For example, from Eq. (1) one can infer that the minimum number of points, nint , 
required to estimate the correlation function is Δn + 1. Computation of the correlation func-
tion at large delay times, i.e., larger Δn, will necessitate larger nint (and consequently larger 
integration times, tint ) to ensure that nAvg � 1. As we have previously described, DCS intensity 
correlation functions decay to their minimum value at delay times < 200 µs, and measurements 
beyond these time scales are superfuous. 

We close this section with a note about timing and sampling considerations. In general, the 
temporal response time of the APD will limit the maximum number of photons that can be 
detected in one second, while the counter timebase (80 MHz) places a limit on the frequency 
of TTL pulses (i.e., photons), that can be counted. The most popular/common single photon 
counting APD used for DCS (SPCM-AQ4C, Excelitas, Quebec, Canada) has a temporal re-
sponse time of 25 ns, and a response ‘dead time’ of 50 ns. Thus the maximum photon count 
rate that the APD can detect is ∼ 13.3 MHz, which is suffciently small compared to the default 
counter timebase of 80 MHz. Nevertheless, the relative differences between the APD response 
time and the counter timebase are important design considerations for the software correlator. 

4. Experiments and results 

All blood fow measurements were carried out using a custom DCS instrument (Fig. 2(A)) [22, 
28]. Briefy, a continuous wave, long coherence length (> 5 m) fber coupled laser 
(785 nm, 80 mW, DL785-100-3O, CrystaLaser Inc., Reno, NV) was used to illuminate the 
sample via a multimode fber (200 µm diameter, OZ Optics, Ottawa, Canada). Remitted light 
that travelled through the sample is detected by a bundle of single mode fbers (5 µm diameter, 
OZ Optics, Ottawa, Canada) located 2.5 cms away from the source. Each detector fber directs 
light to a single photon counting APD (SPCM-AQ4C, Excelitas, Quebec, Canada). For compar-
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Fig. 3. Accurate estimates of blood fow with real-time software correlator. (A) Protocol for 
validating accuracy of blood fow measured with software correlator. For these validation 
experiments, the probe was placed on subject forearms, and an arm cuff was placed on the 
subject’s bicep on the same side of the probe. (B) Representative intensity temporal auto-
correlation functions estimated by the software correlator (40 delay times, solid blue line 
with solid blue markers) and a commercial hardware correlator (256 delay times, dashed 
red line) using an integration time of 1 s, under baseline conditions. (C) Dynamics of the 
tissue blood fow index, estimated by ftting the hardware (dashed red lines) and software 
(solid blue lines) correlator data to a diffusion model (Eq. (2), Appendix 1). Vertical dashed 
black lines bound the period of arm-cuff occlusion. 

ison studies, the outputs of the detectors were split between a commercial hardware correlator 
(Correlator.com, Bridgewater, NJ) and our custom software correlators. Correlation functions 
derived from the same source-detector separation were averaged. All in vivo experiments were 
approved by the Institutional Review Board of the University of Pennsylvania, and a total of 
eight subjects were recruited for this study. 

4.1. Software correlator provides accurate estimates of fow 

We frst demonstrate that the real-time software correlator accurately estimates blood fow in 
humans under baseline conditions and during an arm cuff ischemia (see Fig. 3(A)). For these 
validation experiments, a blood pressure cuff was placed around the subject’s bicep (on the 
same arm as the probe). With the subject lying supine on a comfortable bed, an optical probe 
with embedded sources and detector fbers (2.5 cm separation) was secured on the subject’s 
forearm. A commercial pulse oximeter (Rad-9, Masimo, Irvine, CA) monitored the subject’s 
heart rate, and the heart rate data was recorded on the computer. The integration times (alterna-
tively, the correlation function frame rate) of both hardware and software correlators were fxed 
at 1 s. After 10 minutes of baseline condition measurements, the blood fow in the arm was 
reduced for 3 minutes, by infating the blood pressure cuff to 180 mmHg using a Tourniquet 
system (Zimmer Inc., Warsaw, IN). The experiment concluded with 5 minutes of post-occlusion 
data, and 10 minutes of baseline data with the software correlator set to record at a frame rate 
of 10 Hz (i.e., increased from 1 Hz). 
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The accuracy of the software correlator for estimation of the intensity autocorrelation func-
tion is evident from representative intensity correlation curves in Fig. 3(B). The correlation 
function measured with the software correlator overlaps the ‘gold-standard’ hardware correla-
tor values. Note, both correlators average over the 2 detector channels, with an average photon 
count rate of ∼ 200 KHz. Also note, the correlation functions decay to a minimum value of 1 
at delay times of ∼ 200 µs, which is close to the maximum delay time used by the software 
correlator. Correlation measurements beyond these time scales are not useful. Thus, the soft-
ware correlator estimates fow from the intensity correlation functions at the delay times most 
sensitive to blood fow changes. We refer the interested reader to Fig. 10 in Appendix 3 for 
comprehensive comparisons of blood fow measured with the hardware and software correla-
tors from 8 subjects; differences in the blood fow indices measured by the two devices were 
not statistically signifcant (p = 0.13). 

Figure 3(C) shows the blood fow dynamics estimated from hardware and software corre-
lation data. The ∼ 100% reduction in blood fow, due to cuff-ischemia, is clearly monitored 
by the software correlator. Tissue blood fow indices were estimated by ftting the intensity 
correlation functions to a semi-infnite geometry solution of the correlation diffusion equation 
(Eq. (2), Appendix 1). For this representative subject, the baseline tissue optical properties were 
measured to be µa = 0.16 cm−1 and µ 0 = 4.28 cm−1, using a frequency domain diffuse opti-s 
cal spectroscopy instrument (Imagent, ISS Inc., IL, USA). These measurements also clearly 
demonstrate that 40 delay times between 1 µs and 125 µs are suffcient (more than suffcient) 
to accurately ft for a tissue blood fow index. 

4.2. High speed measurements of baseline blood fow reveals pulsatile fow dynamics 

We next demonstrate the ability of the real-time software correlator to measure high speed 
blood fow dynamics in human subjects under baseline conditions. Figure 4 displays the results 
of high-speed blood fow monitoring of baseline fow in the arm (i.e., using the last 10 minutes 
of data from the previous experiment, Fig. 3(A)). Figure 4(A), shows representative intensity 
autocorrelation functions measured with a total integration time of 1 s. The solid red line is the 
correlation function measured by the hardware correlator (1 curve obtained at an integration 
time of 1 s). The solid blue circles, represent the correlation function values obtained at dis-
crete delay times (i.e., 40 delay times between 1 µs to ∼ 250 µs) derived over the same time 
period with the high speed software correlator (data associated with 10 curves obtained at an in-
tegration time of 0.1 s each). In effect, the hardware correlator smears out the rapid fuctuations 
of the intensity correlation function. Figure 4(B) displays the blood fow index estimated us-
ing both the hardware (solid red line) and the high-speed software correlator (solid blue line), 
during the baseline period of 10 minutes; fow indices were determined by ftting the meas-
ured intensity autocorrelation functions to a semi-infnite geometry solution of the correlation 
diffusion equation (Eq. (2), Appendix 1). 

At frst glance, the blood fow index estimated using the high temporal resolution software 
correlator data appears to be very noisy. However, a more careful observation of the data, such 
as shown in the 15 s extracted time-window in Fig. 4(C), reveals signifcant temporal structure 
that corresponds to the pulsatile nature of tissue blood fow. The hemodynamics of the entire 
cardiac cycle is captured, including the ‘dicrotic notch’ which is the result of a brief increase 
in pressure (and thus fow) following closure of the aortic valve. The resolution of the dicrotic 
notch is particularly exciting, since it is rarely observed, i.e., it is seen only when using high 
quality high speed instrumentation such as arterial line tracings. Further, as is evident from the 
solid red line, the blood fow index estimated using the hardware correlator averages out these 
fuctuations. The cardiac pulsatility is further confrmed by frequency spectrum of the data 
shown in Fig. 4(D). We refer the interested reader to Fig. 11 in Appendix 3 for comparisons of 
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Fig. 4. Pulsatile blood fow measured with the real-time software correlator. (A) Data at 
discrete time points from 10 intensity temporal autocorrelation functions obtained with the 
software correlator (blue circles, 0.1 s integration time), and one intensity temporal au-
tocorrelation function measured by the hardware correlator over the same duration (solid 
red line, 1 s integration time). (B) Natural fuctuations in the tissue blood fow index un-
der baseline conditions as measured with the high speed software correlator (blue) and 
the lower speed hardware correlator (red). Blood fow indices were derived by ftting the 
measured intensity autocorrelation functions to a semi-infnite solution of the correlation 
diffusion equation (Eq. (2), Appendix 1) (C) ∼ 15 s extract of baseline blood fow fuctu-
ations, clearly demonstrating that the fuctuations in the blood fow index are a result of the 
pulsatile nature of blood fow. Notice, the entire cardiac cycle is clearly resolved, including 
the ‘dicrotic notch’, i.e., the second fow peak of smaller magnitude within the cycle, cor-
responding to aortic valve closure. (D) The frequency spectrum of the baseline blood fow 
indices measured with the software correlator, highlighting the heart rate as ∼ 0.9 Hz, 
with corresponding harmonics at 1.8, 2.7 and 3.6 Hz . 

the heart rates estimated with DCS, and a pulse oximeter from 8 healthy volunteers; statistically 
signifcant differences in the heart rate frequencies measured by the two devices were not found 
(p = 0.76). 

The clear resolution of pulsatile fow dynamics, and the entire cardiac cycle, is the frst sig-
nifcant physiological result of our paper. These fuctuations are often misconstrued as noise, 
and indeed, researchers have traditionally used integration times of 1 to ∼ 2.5 seconds, in order 
to average out these fuctuations. Insuffcient measurement speed, averages out useful informa-
tion including beat-to-beat variations in blood fow. Moreover, measurements at intermediate 
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Table 1. Baseline fuctuations in tissue optical properties over 10 minutes measured on 
forearm and brain of 3 healthy volunteers 

Subject# Absorption Coeffcient 
(µ0 ± Δµa) cm−1 

a 

Scattering coeffcient 
(µ 00 ± Δµ 0) cm−1 

s s
Forearm 1 0.415± 0.002 3.763 ± 0.068 

2 0.144± 0.002 4.928 ± 0.070 
3 0.184± 0.004 4.120 ± 0.090 

Brain 1 0.125± 0.002 6.310 ± 0.090 
2 0.096± 0.001 7.232 ± 0.067 
3 0.128± 0.002 8.599 ± 0.148 

sampling rates (e.g. 1 − 2 Hz) do not fully resolve pulsatile dynamics and can lead to aliasing 
artifacts. For clarity, we have shown fuctuations in the correlation functions, sampled at 10 Hz 
in this characteristic example. In practice, our in vivo data is sampled at 20 − 50 Hz; the meas-
ured photon count rates have an impact on the signal-to-noise of the measurements. We discuss 
these signal to noise considerations in a separate section. 

4.3. Fluctuations in DCS blood fow index are primarily due to changes in blood fow 

To elucidate the nature and origin of the fast blood fow index fuctuations more precisely, 
we carried out clarifying DOS and DCS experiments. In general, the DCS blood fow index 
depends parametrically on tissue blood fow and tissue absorption (µa) and scattering (µ 0) co-s 
effcients. As such, fuctuations in the tissue optical properties can also generate changes in 
the blood fow index. This relationship is quantitatively described by the DCS modifed Beer-
Lambert law [28] (see Appendix 2). Briefy, fuctuations in the intensity autocorrelation func-
tion defne the variation of a ‘DCS optical density’ (ΔODDCS(τ,ρ)). The changes in the DCS 
optical density, in turn, are related to a linear combination of a change in blood fow (ΔF), a 
change in absorption coeffcient (Δµa), and a change in scattering coeffcient (Δµ 0), via Eq. (3) s 
in Appendix 2. Thus, by independently measuring the scattering and absorption coeffcient 
changes, we can discern the fraction of the fuctuations in the DCS signal that are due to blood 
fow. 

Fig. 5. Fractional contributions of fow, scattering and absorption to changes in the DCS 
signal measured from the arm (Panel A) and the brain (Panel B) of three healthy subjects. 
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Accordingly, the baseline fuctuations in tissue optical properties (µa and µ 0), were monitored s 
(at ∼ 10 Hz) on the forearm and forehead of 3 volunteers, using a commercial frequency domain 
Diffuse Optical Spectroscopy instrument (Imagent, ISS Inc., IL), operating at 788 nm. Then, 
the high-speed software correlator was used to record the baseline fuctuations in the intensity 
autocorrelation functions from the same measurement spots. 

The intensity correlation data gives the variation in DCS optical density. The average de-
viation from baseline of tissue optical properties were calculated from 10 minutes of DOS 
data. Table 1 summarizes these tissue absorption (µ0 ± Δµa), and scattering (µ 00 ± Δµ 0) vari-a s s 
ations. The absorption and scattering contributions to the DCS optical density, respectively, 
are da(τ, ρ)Δµa and ds(τ, ρ)Δµ 0; they are readily estimated (see Appendix 2 for details) using s 
the measured fuctuations in optical properties (Table 1). Finally, the fractional absorption and 
scattering contributions to the DCS fuctuations were estimated from Eq. (3) in Appendix 2 
as ΔODDCS(τ,ρ)/da(τ, ρ)Δµa, and ΔODDCS(τ, ρ)/ds(τ,ρ)Δµ 0 respectively. Figure 5 displays s 
the results of these comparisons for the forearm and the brain. From this analysis, it is apparent 
that more than 90% of DCS fuctuations are driven by blood fow changes. This physiological 
fnding, is the second important result of this paper. Pulsatile variation in the DCS signal refect 
variations in blood fow. 

4.4. Real-time software correlator can estimate cerebral autoregulation dynamics 

We next explore the utility of the real-time software correlator in the context of a critical clin-
ical application wherein rapid acquisition of blood fow information is needed: measurement 
of cerebral autoregulation dynamics [41]. Briefy, cerebral autoregulation (CVAR) refers to the 
mechanism by which normal (i.e. healthy) brain maintains relatively constant cerebral blood 
fow (CBF) despite fuctuations in mean arterial blood pressure (MAP) [55]. Importantly, CVAR 
is often impaired after brain injury; in this scenario, CBF can vary in response to MAP varia-
tion [56, 57]. Moreover, the degree of CVAR impairment correlates with the initial severity of 
brain injury and is an independent predictor of outcome [41, 56, 58]. 

CVAR is typically measured using static or dynamic techniques [40] that rely on the detection 
of cerebral blood fow velocity, e.g., derived by trans-cranial Doppler ultrasound. Here, we 
showcase the potential for monitoring dynamic autoregulation with DCS using the high speed 
real-time software correlator. We employ a standard approach for measuring CVAR dynamics. 
In particular, we measure the time-dependent changes in CBF resulting from transient increases 
in cardiac output, i.e., following defation of blood pressure cuffs applied to the thigh [41]. 

Figure 6(A) details the protocol used to measure dynamic cerebral autoregulation [41] from 
one healthy volunteer. With the subject lying supine, the optical probe was placed on the sub-
ject’s forehead, over the frontal cortex. Two blood pressure (BP) cuffs were wrapped around the 
subject’s thighs, about 10 cm above the knee. The subject’s blood pressure was continuously 
monitored using a non-invasive fnger pressure monitor (Finometer Pro, Finapress Medical 
Systems, Netherlands), and cerebral blood fow was measured with the real-time software cor-
relator at a data acquisition rate of 20 Hz. After a 5 minute baseline measurement, the thigh 
cuffs were both infated and held at 30 to ∼ 40 mmHg above the subject’s baseline systolic 
blood pressure (here 170 mmHg) for a period of 4 minutes. At the end of the infation pe-
riod, both cuffs were rapidly defated by disconnecting the pressure pump. Two blood pressure 
manipulation trials were carried out, i.e., the thigh cuffs were infated and defated twice. The 
experiment concluded with 4 minutes of baseline measurements. Typically, cerebral hemody-
namics (i.e., CBF and BP) from multiple thigh cuff ‘trials’ on the same subject are averaged. 
Here, we showcase the speed and measurement fdelity of the real-time software correlator, by 
estimating cerebral autoregulation dynamics using measurements from a single trial. 

Cerebral blood fow (CBF) and blood pressure (BP) were continuously monitored through-
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Fig. 6. Dynamic cerebral autoregulation estimated using the high-speed software correlator. 
(A) Protocol for monitoring cerebral autoregulation dynamics with the real-time software 
correlator. Here, the probe is placed on the subject’s forehead over the frontal cortex. Two 
blood pressure cuffs were placed on the subject’s thighs, about 10 cms above the knees. (B) 
Unfltered measurements of relative cerebral blood fow (solid red lines) and blood pressure 
(solid blue lines) from a single bilateral thigh cuff defation. Vertical dashed black lines in-
dicate the time of cuff defation. All measurements were normalized to a 10 s pre-defation 
baseline. (Inset) ∼ 5s extract of the baseline period shows a phase difference between CBF 
and blood pressure. (C) Filtered relative cerebral blood fow (solid red lines) and blood pres-
sure (solid blue lines) changes due to a bilateral cuff-defation (dashed vertical black line 
at t = 0 s). The change in relative cerebrovascular resistance is also shown (solid magenta 
line). The two dashed vertical green lines denote the period of recovery of cerebrovascular 
resistance; a linear ft to this data is shown in the inset. 

out the experiment at a data acquisition rate of 20 Hz. The relative unfltered change in CBF 
(rCBF = CBF(t)/CBF0) and BP (rBP = BP(t)/BP0) from a single trial of blood pressure ma-
nipulation is displayed in Fig. 6(B). Here, time t = 0 (vertical dashed line) denotes the start of 
bilateral cuff defation, and the solid red and blue lines denote the pulsatile dynamics of CBF 
and blood pressure, respectively. Both CBF and BP are normalized to their values during the 
10 s pre-defation baseline period. The sudden cuff defation, causes a rapid increase in ve-
nous return and cardiac output; these effects produce a transient decrease in BP and CBF. This 
∼ 20% and ∼ 40% decrease in average BP and CBF is clearly evident, even in the unfltered 
measurements. Note that the high temporal resolution of the software correlation technique re-
veals a phase difference between CBF and blood pressure (see inset in Fig. 6(B)). Ultimately, 
it may be possible to use the dynamics of this phase shift as a biomarker of cerebral autoreg-
ulation [59–61]. We note however, that differences in pulse transit times to cerebral/peripheral 
vasculature may lead to ‘offsets’ in the phase-shift between the CBF and BP. Pulse transit times 
can potentially be measured by simultaneous blood fow and blood pressure recordings in the 
brain and arm. A more complete investigation of these issues is planned; for example, correc-
tion/calibration factors may need to be developed before the absolute value of the phase-shift 
can be utilized as a biomarker for cerebral autoregulation. 

#255500 

(A) 
Cerebral Blood Pressure @ 20Hz Finometer Pro 
Autoregulation Cerebral Blood Flow @ 20Hz Software Correlator 
Dynamics t--0-::--m--:-m_H-"g4 1..:..7-:C-0..:..:m~m.:..:;H:..:;g5q..:0:...:m:.:..:.:..:.m:.:..H3 ._1.:..:7~0:....:m.:..:.m:..:..:..:..:H:.5!gt.:0:....:..:..m:.:..:m.::H..'.l!gU Bilateral thigh Cuff 

..__s_m_i_n_s___._4_m_in_s_,1...4.:..:.:.m.;.;in.;.;s;..a._4.;..;.m.;.;i::.;n:.s ...J~5.:.m:.;;i::.;n:.sJ._T,..ime (min) 

(B) 
GI 

:E 2.5 
GI 
1/1 
Ill 
.c 2 
E 
,g 
8,1.5 
C 
Ill 
.c 
0 1 
~ :; 
Gi 0.5 
a: 

--Cerebral Blood Flow 1.s 
--Blood Pressure 

-10 -5 0 5 10 
Time (seconds) 

15 20 

(C) 2r-------.-~--~----
GI 

·= 3i 
_g 1.5 
E e -& 
C 
Ill .c 
(.) 

~ 0.5 

i 
--Blood Pressure 
--Cerebral Blood Flow 

&l --Cerebrovascular Resistance o~-----------------...J 
-10 -5 0 5 10 15 20 

Time (seconds) 



1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.000776 | BIOMEDICAL OPTICS EXPRESS 790 
Received 14 Dec 2015; revised 20 Jan 2016; accepted 21 Jan 2016; published 3 Feb 2016 

(C) 2016 OSA

Fig. 7. Comparison of measurement of cerebral autoregulation dynamics at different CBF 
measurement rates. (A) Reduced data rates were achieved by averaging/integrating high-
frequency software correlator intensity temporal autocorrelation functions (20 Hz, gray) 
to 0.5 Hz (blue, a common hardware correlator data rate), 1 Hz (red) and 2 Hz (green). 
Measurements at 0.5 and 1 Hz are highly averaged and capture the ∼ 20% baseline fuc-
tuation in CBF. The 1 Hz data rate identifes, but only poorly resolves the heart rate fuc-
tuations. None of lower frequency data can accurately capture the instantaneous decrease 
in CBF due to cuff defation. Note that this form of averaging is an accurate representa-
tion of data integration in the hardware correlators. (B) Reduced data rates achieved by 
down-sampling the high-frequency software correlator intensity autocorrelation functions. 
Down-sampled CBF data is quite noisy. 

In order to quantify dynamic cerebral autoregulation, the measured CBF and BP dynamics 
were frst fltered to remove heart rate effects using a low pass flter with a cutoff frequency 
set to 75% of the heart rate. The fltered autoregulation measurements from a single trial are 
displayed in Fig. 6(C), i.e., rCBF by solid red line and rBP by solid blue lines, respectively. 
Importantly, Fig. 6(C) also shows the change in cerebrovascular resistance (solid magenta line): 
rCV R = rBP/rCBF . The vertical dashed black line indicates the start of cuff defation. 

In combination, the changes in CBF, BP and CVR, describe the autoregulation process. The 
sudden decrease in BP and CBF is characterized by an almost instantaneous increase in vascular 
resistance, followed by a gradual return to baseline due to the autoregulation process. The rate 
of change of rCV R, drCV R/dt, can be estimated from the linear decrease in rCV R between 
the two vertical dashed green lines (see inset in Fig 6(B)). Finally, a rate of regulation can 
be calculated, ROR = (drCV R/dt)/ΔBP, wherein ΔBP is the maximum decrease in rBP from 
baseline. For this representative subject, the rate of regulation is 0.66 sec; i.e., a 66% change in 
resistance is required per second in order to autoregulate a 1% change in blood pressure. We 
emphasize that this entire analysis was carried out from a single trial without averaging. 

The utility of the real-time software correlator for measurements of cerebral autoregulation 
dynamics is evident from comparisons with lower speed CBF measurements of traditional hard-
ware correlators. We frst averaged (Fig. 7(A)) the intensity correlation functions acquired at 
20 Hz (gray lines) to CBF measurements at 0.5 Hz (blue lines), 1 Hz (red lines) and 2 Hz (green 
lines). For example, for every CBF measurement at 1 Hz, 20 intensity autocorrelation functions 
originally measured at 20 Hz were binned and averaged. This manner of averaging simulates in-
creased integration time in hardware correlators. A second approach, down-samples (Fig. 7(B)) 
the 20 Hz data to a lower data rate. 

Once averaged (or down-sampled), a blood fow index was estimated by ftting the averaged 
(or down-sampled) intensity autocorrelation function with the solution to the correlation diffu-
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sion equation (Eq. (2), Appendix 1). Figure 7(A) shows the effects of averaging on measure-
ment of cerebral autoregulation dynamics from a single trial. Unsurprisingly, the integrated 
CBF measurements at 0.5 Hz and 1 Hz completely average the pulsatile blood fow fuctua-
tions. At 2 Hz, the pulsatile fow is identifed, but is aliased and is therefore poorly resolved. 
When compared to the fltered autoregulation curves in Fig. 6(C), these averaged measurements 
exhibit greater baseline noise, appear to exhibit timing inaccuracies with respect to cuff defa-
tion (i.e. vertical dashed line), and do not show an instantaneous decrease in CBF due to cuff 
defation. These detrimental effects are clearly evident in the down-sampled data (Fig. 7(B)) 
wherein the fuctuations/noise in CBF measurements are sometimes indistinguishable from 
CBF changes due to the thigh cuff defation. In both cases, additional fltering (or averaging) 
can reduce the noise, but such averaging/fltering also temporally broadens the autoregulation 
‘signal’, in large part due to reduced temporal resolution. Note, an experiment with the hard-
ware correlator will be affected by averaging and (to a lesser extent) down-sampling, due to 
data transfer lags and software overheads. 

The best quality data is obtained by measuring CBF dynamics at the highest data rates pos-
sible, i.e., with the real-time software correlator. This observation highlights the value of the 
real-time correlator for continuous monitoring of autoregulation. The demonstration of instru-
mentation to monitor cerebral autoregulation dynamics in this manner is arguably the most 
important result of this paper. 

4.5. Signal-to-noise ratio considerations for fast blood fow measurements with DCS 

We conclude this paper with a discussion about signal-to-noise ratio (SNR) considerations for 
fast fow measurements with DCS. The ability of the real-time software correlator to detect high 
frequency fow dynamics (Fig. 4(A)) has been demonstrated. Ultimately however, the ability to 
discern meaningful fow information, i.e., blood fow index variation, will depend on the fdelity 
of measured autocorrelation functions, which, in turn, depends on the number of detected pho-
tons, i.e., the detected light intensity, and the amount of averaging i.e., measurement integration 
time. The precise dependence of the measurement SNR on light intensity and integration time 
can be ascertained using a photon correlation noise model adapted for diffuse light (i.e., DCS 
noise model) [62]. 

To confrm the accuracy of the DCS noise model at the short integration times permitted by 
our new software correlator, we systematically characterized correlation noise in a liquid tissue 
phantom. The liquid tissue phantom consisted of 21.7 ml/l of 30% Intralipid (Fresenius Kabi, 
Uppsala, Sweden) with 1.88 ml/l of India ink (Higgins, Black India 44201, MA) resulting in 
optical properties of µa = 0.16 cm−1 and µs 

0 = 4.32 cm−1. An optical probe with 1.5 cm source-
detector separation was placed on the liquid surface to simulate a semi-infnite geometry. The 
integration time was systematically varied as depicted in Fig. 8(A). Further, the photon count 
rate was also systematically varied using an attenuator on the source arm. 

Following the conventions of a previous DCS noise model [62], we defne ‘noise’ to be the 
standard deviation of the measured intensity autocorrelation function, σ(τ) (i.e., σ(τ) is the 
standard deviation of g2(τ) measured over the duration of the experiment). We then defne the 
SNR to be ζ (τ) = (g2(τ) − 1)/σ(τ). Here, we make the inherent assumption that fuctuations 
in the measured autocorrelation function are due to random noise (appropriate for these tissue 
phantom experiments). Figure 8 displays the result of the SNR characterization from the liquid 
phantom. In panels (B) and (D), we have plotted the measurement noise as a function of the 
integration time of the software correlator at delay times of 20 µs and 80 µs respectively, for 
three different photon detection signal levels - 20 kHz (blue circles), 50 kHz (red squares), and 
94 kHz (black diamonds). In each case, the measurements are ft to a DCS noise model [62]. In a 
similar vein, panels (C) and (E) show the corresponding measurements of signal-to-noise ratio. 
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Fig. 8. Estimation of signal-to-noise ratios due to data from a liquid phantom. (A) Sample 
intensity autocorrelation values measured at a delay time of 20 µs for different integration 
times. Lower integration times are more noisy, since averaging is reduced. Panels (B) and 
(D) plot the standard deviation of measured intensity autocorrelation functions versus inte-
gration time and photon count rates, at delay times of 20 µs and 80 µs respectively. Panels 
(C) and (E) plot the corresponding signal-to-noise ratios. All measurements are ft to a DCS 
correlation noise model [62](solid lines). 

For each condition examined in Fig. 8, the measured noise (dots) agrees well with the DCS 
noise model (solid lines). Thus, we confrm that the DCS noise model provides a theoretical 
framework that would allow an experimenter to pick the right photon count rates, integration 
times, and delay times to achieve a desired SNR. 

Figures 8(B) and (D) clearly show that the measurement noise decreases with increased 
averaging (increased integration times) and improved signal (increased detected photon count 
rates). Correspondingly, as is evident from Figs. 8(C) and (E), the signal-to-noise ratio increases 
with integration time and photon count rates. From these measurements, one can observe that 
a SNR of 1 at acquisition rates of 25 Hz (40 ms integration time), requires a photon count rate 
of ∼ 20 kHz. More realistic signal levels of ∼ 50 kHz will permit acquisition rates of ∼ 50 Hz 
at SNR of 1. 

More practically, this experiment and analysis enables us to estimate optimum operating pa-
rameters for fast in vivo measurements of blood fow. For in vivo experiments, we are interested 
in the ability of the correlator to resolve dynamics at particular frequencies. An obvious fre-
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Fig. 9. Optimization of experimental parameters to isolate heart rate with fast blood fow 
measurements. (A) Natural fuctuations in blood fow index acquired on the arm are plotted 
as a function of time for 19 kHz (solid blue lines) and 182 kHz (solid red lines) photon 
count rates and 5 ms integration times. (B) Corresponding frequency spectra of blood fow 
index dynamics show a clear peak at the heart rate frequency for the higher photon count 
rate data. (C) Scatter plot showing which photon count rates and integration times permit 
the identifcation of the heart rate in in vivo data. Red crosses indicate parameters where 
heart rate could not be identifed, while solid blue circles indicate parameters where heart 
rate was successfully identifed. 

quency of interest is that of the heart rate, especially because physiological perturbations in 
fow are oftentimes slower than the heart rate. With a setup similar to Fig. 2, we measured 
baseline blood fow dynamics, at integration times ranging from 1 ms to 100 ms, with photon 
count rates manipulated via laser attenuation. Data was collected for a total of 30 ∼ 40 s at each 
setting. 

Figure 9(A) shows the representative fuctuations in blood fow index over a period of 
30 seconds measured with a 5 ms integration time, at photon count rates of 19 kHz in blue 
and 182 kHz in red. Figure 9(B) shows the corresponding frequency spectra; a clear peak at 
∼ 1 Hz is visible in the measurements at 182 kHz indicating that the heart rate is well resolved 
at the high photon count rate, but not at the smaller signal levels. Figure 9(C) shows the result of 
the experiment wherein multiple integration times and photon count rates were tested on sim-
ilar data. The solid blue circles indicate the measurement parameters where the heart rate was 
clearly resolved, i.e., the maximum frequency component in the spectrum was between 0.8 Hz 
and 1.2 Hz. Red crosses, indicate parameters were the heart rate was not resolved. From these 
measurements, we conclude that photon count rates of ∼ 50 − 100 kHz are ideal for fast fow 
measurements over a large range of acquisition rates. Importantly, this experiment provides a 
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practical framework to select an appropriate data acquisition rate for accurate estimation of 
blood fow. 

5. Discussion 

Traditionally, blood fow has been measured with DCS at relatively slow data rates (0.5−1 Hz). 
Therefore fuctuations due, for example, to heart beats have often been considered as noise that 
should be averaged in the measured autocorrelation function (for example, Fig. 4(A)); this 
noise assignment, in turn, prompted the need for increased temporal averaging. Interestingly, 
although heartbeat oscillations are well recognized in the NIRS community [63–65], the DCS 
community has been comparatively slow to appreciate the full potential of fast blood fow 
measurements. 

The primary goal of the present contribution is to report development and testing of new, 
optimized instrumentation and software that fulflls an unmet clinical need for continuous fast 
measurements of blood fow with DCS. Aside from validating the accuracy of the software cor-
relator, the work provides a rigorous overview of timing and sampling considerations. Further, 
for the frst time, we have characterized the signal-to-noise characteristics of DCS at low inte-
gration times, and in the process we have validated the prevailing DCS noise models for fast 
measurements of blood fow. Critically, these characterization experiments provide a frame-
work for the identifcation of optimum data acquisition parameters. 

We demonstrated sustained/continuous blood fow measurements at speeds up to 100 Hz in 
vivo at typical source detector separations of 2.5 cm. Measurement speeds are limited only by 
the available photon count rates. To our knowledge, the results represent the fastest reported 
blood fow measurements achieved with DCS, using either hardware or software correlators. 
We have leveraged this high temporal resolution data to learn about new fow physiology, and 
to highlight new opportunities for monitoring of cerebral health. 

1. We showed that blood fow accounts for over 90% of the pulsatile DCS signal, thereby 
identifying the origin of the fuctuations in the pulsatile DCS signal in vivo. This discov-
ery was facilitated by the improved speed afforded by the software correlator. 

2. Our work shows that cerebral autoregulation dynamics can be studied using DCS. The 
high data rates afforded by the software correlator were critical for this application (see 
for example Fig. 7). This demonstration is important because cerebral autoregulation 
holds tremendous potential as a biomarker of brain injury, and the use of DCS for this 
application will permit non-invasive and real-time monitoring of brain injury. 

3. Our measurements of blood fow pulsatility clearly resolve features of the entire cardiac 
cycle including the dicrotic notch, demonstrating data quality akin to high speed arterial 
line tracings. Such high temporal resolution holds potential for measurements of compli-
ance in cerebrovascular circulation; for example, fow pulsatility measured on arm and 
the brain could reveal differences in arterial elasticity. Measurements of cerebrovascu-
lar compliance can potentially identify arterial stiffening or dissection, i.e., information 
indicative of diseases such as atherosclerosis, amyloidosis and stroke. 

The software correlator we have demonstrated is relatively easy to implement on a stan-
dard personal computer. When compared to the fastest DCS hardware correlators [50], our 
measurements are faster, can be sustained for longer durations, and do not require averaging 
over many detectors. With the new software correlator design, we adopt a slightly different ap-
proach compared to previous studies, i.e., we use direct computation of the autocorrelation with 
the shift-and-add method [44], instead of highly effcient fast Fourier transforms (FFT) [52,53]. 
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In general, the FFT approach can be fast for large data sets, i.e., when the autocorrelation func-
tion needs to be computed at hundreds of delay times. By limiting the autocorrelation function 
computation to 40 delay times, however, our software correlator easily removes this ineff-
ciency, is arguably faster, and is less memory intensive than the FFT approach. Moreover, we 
can readily adapt our correlator for a single delay time operation (which would remove all speed 
advantages offered by the FFT method) and use the DCS modifed Beer-Lambert law [28] to 
estimate blood fow dynamics. 

6. Conclusions 

We have reported the development of a new real-time software correlator for fast measurements 
of blood fow with Diffuse Correlation Spectroscopy. We validated the new device against gold-
standard commercial hardware correlators, and we established timing/sampling and intensity 
guidelines for measurements with suffcient signal-to-noise ratios. We also highlighted the po-
tential value for the new device by using it to separate pulsatile blood fow contributions to the 
fuctuating DCS signal and to monitor cerebral autoregulation dynamics in vivo. 

Appendix 1: solution to correlation diffusion equation 

Formally, the transport of the electric feld autocorrelation function (E(t)), G1(τ) ≡ 
hE*(t)·E(t + τ)i, is modeled by the Correlation Diffusion Equation (CDE) [2, 8]. The nor-
malized electric feld autocorrelation function (g1(τ) = G1(τ)/G1(0)) is related to the meas-
ured (normalized) intensity autocorrelation function (g2(τ)) via the Seigert relation [66]; 
g2(τ) = 1 + β |g1(τ)|2, and a tissue blood fow index (proportional to blood fow) can be esti-
mated by ftting g1(τ) to a geometry dependent solution of the Correlation Diffusion Equation. 
In the clinically relevant semi-infnite geometry, with illumination and detection at a single 
point separated by a distance ρ (e.g., Fig. 1), the solution to the CDE is given by [2, 8] 

rb exp(−κD(τ)r1) − r1 exp(−κD(τ)rb)g1(τ,ρ) = (2)
rb exp(−κD(0)r1) − r1 exp(−κD(0)rb) 

Here, κD(τ)
2 = [3µa(µa + µ 0)(1+2µ 02k0

2Fτ/µa)] and F is the blood fow index to be estimated. s s 
2 2r1 = (ltr 

2 +ρ2), rb = ((2zb + ltr)2 +ρ2), ltr = 1/(µa + µs 
0) and zb = 2ltr(1+Re f f )/(3(1− Re f f )) 

are constants dependent on the tissue absorption (µa) and scattering (µ 0) coeffcients. Re f f iss 
the effective refection coeffcient accounting for the refractive index mismatch between the 
tissue (n) and the medium (nout ), and k0 = 2πn/λ , is the magnitude of the light wave vector in 
the medium. 

Appendix 2: DCS modifed Beer-Lambert law 

We recently introduced a DCS modifed Beer-Lambert law [28], that allows rapid computation 
of changes in blood fow by solving a system of linear equations. In this approach a ‘DCS 

0Optical density’ is computed in the baseline (OD0
2(τ,ρ)−1)) and perturbed DCS(τ,ρ) ≡− log(g 

(ODDCS(τ, ρ) ≡ − log(g2(τ,ρ) − 1)) states, and the change in blood fow is determined from 
the change in DCS optical density (ΔODDCS(τ,ρ) = ODDCS(τ,ρ)−ODDCS 

0 (τ,ρ)) and the DCS 
Modifed Beer-Lambert law for fow: � � 

g2(τ,ρ) − 1
ΔODDCS(τ,ρ) = − log ≈ dF (τ,ρ)ΔF + da(τ,ρ)Δµa + ds(τ,ρ)Δµs 

0 . (3)0g2(τ,ρ) − 1 

Here, ΔF , Δµa and Δµ 0 are the changes in fow, absorption and scattering from their baseline s 
values of F0, µ0 and µ 00 respectively. The multiplicative weighting factors dF (τ,ρ), da(τ,ρ),a s 
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and ds(τ,ρ) are evaluated by computing the appropriate derivative of the DCS optical density 
for the baseline state, i.e., dF (τ,ρ) ≡ ∂ OD0 

DCS/∂ µa , and ds(τ,ρ) ≡DCS/∂ F , da(τ,ρ) ≡ ∂ OD0 

∂ OD0 [28].DCS/∂ µs 
0 

Notice that the relative contributions of blood fow, tissue absorption, and tissue scattering 
changes to the total DCS signal change can easily be determined with the DCS modifed Beer-
Lambert framework (e.g., blood fow changes are responsible for (dF ΔF/ΔODDCS) × 100 per-
cent of the signal change). 

Appendix 3: Validation of blood fow indices and heart rates estimated with software cor-
relator 

We found excellent agreement between the baseline blood fow indices measured with the hard-
ware and software correlators in 8 subjects (Fig. 10). Figure 10(A) shows the result of a lin-
ear regression analysis between the blood fow indices measured using the software correlator 
(BFIs, x-axis) and the hardware correlator (BFIh, y-axis). The regression line (solid red line) 
with slope of 0.967 and an excellent goodness of ft (R2 = 0.9729) clearly demonstrates that 
both instruments measure the same blood fow. Further, a Bland-Altman plot of the difference 
between the two blood fow indices versus their mean reveals no signifcant difference between 
the two techniques (p = 0.13, see Fig. 10(B)). Therefore, the software correlator technique does 
accurately measure the tissue blood fow index. 

Our hypothesis that temporal fuctuations in the DCS autocorrelation functions are the result 
of arterial pulsation was validated by comparing the frequency of these temporal fuctuations 
against the heart rate measured with a commercial pulse oximeter (Fig. 11). For each sub-
ject, the frequency spectrum of the blood fow index dynamics was computed; the frst peak 
in the spectrum was used to estimate the subject’s baseline/average heart rate (see for exam-
ple Fig. 4(C)). Figure 11(A) displays the result of linear regression analysis on the heart rate 
estimated using the software correlator (x-axis) versus the ‘gold-standard’ heart rate measure-
ment from a commercial pulse oximeter; a regression slope of 1 and a goodness of ft of 0.998 

Fig. 10. Comparisons of blood fow indices measured using software and hardware cor-
relators under baseline conditions from 8 subjects. (A) Scatter plot of blood fow indices 
estimated using the software correlator (BFIs, x-axis) and hardware correlator (BFIh, y-
axis). Solid blue circles represent each measurement, the dashed green line is a 1 : 1 line, 
and the solid red line is a line of linear regression line. The slope of the regression line is 
0.967 denoting good agreement between the two techniques. (B) Bland-Altman plot that 
represents the average (x-axis) and difference (y-axis) of the estimated blood fow indices. 
All measurements are within the 95% confdence lines (dashed horizontal black lines) in-
dicating good agreement between the techniques. 
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Fig. 11. Comparison of heart rates estimated using the software correlator (e.g. from fre-
quency spectrum in Fig. 4(C)) and a commercial pulse oximeter, under baseline conditions 
from 8 subjects. (A) Scatter plot of heart rate estimate estimated using the software cor-
relator (HRDCS, x-axis) and commercial pulse oximeter (HROximeter, y-axis). Solid blue 
circles represent each measurement, the dashed green line is a 1 : 1 line, and the solid red 
line is a line of linear regression line. The slope of the regression line is 1 denoting ex-
cellent agreement between the two techniques. (B) Bland-Altman plot that represents the 
average (x-axis) and difference (y-axis) of the estimated heart rates. All measurements are 
within the 95% confdence lines (dashed horizontal black lines) indicating good agreement 
between the techniques. 

show excellent agreement between the two measurements. This agreement is confrmed in a 
Bland-Altman analysis, Fig. 11(B), which clearly shows no signifcant difference between the 
two techniques (p = 0.76). 
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