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ABSTRACT: Deformation of a fluid interface caused by the presence 
of objects at the interface can lead to large lateral forces between objects. 
We explore these fluid-mediated attractive force between partially 
submerged vertical cylinders. Forces are experimentally measured by 
slowly separating cylinder pairs and cylinder triplets after capillary rise is 
initially established for cylinders in contact. For cylinder pairs, numerical 
computations and a theoretical model are found to be in good 
agreement with measurements. The model provides insight into the 
relative importance of the contributions to the total force. For small 
separations, the lateral force is dominated by the fluid pressure acting over the wetted cylinder surfaces. At large separations, the 
surface tension acting along the contact line dominates the lateral force. A crossover between the two regimes occurs at a 
separation of around half of a capillary length. The experimentally measured forces between cylinder triplets are also in good 
agreement with numerical computations, and we show that pairwise contributions account for nearly all of the attractive force 
between triplets. For cylinders with an equilibrium capillary rise height greater than the height of the cylinder, we find that the 
attractive force depends on the height of the cylinders above the submersion level, which provides a means to create precisely 
controlled tunable cohesive forces between objects deforming a fluid interface. 

■ INTRODUCTION 

Flow properties of granular materials can be greatly influenced 
by the presence of a small amount of fluid.1,2 This fluid-driven 
change in behavior can be quite dramatic and has important 
implications for industrial processing, mining, and construction 
as well as geological phenomena such as landslides. Never-
theless, an understanding of how local capillary-bridge-induced 
force distributions influence bulk flow properties and give rise 
to global deformation is lacking. 
Previous studies have explored how the global mechanical 

stability and flow response vary with liquid content,3−9 but 
relating the global response to microscopic details has proven 
challenging in 3D systems. While X-ray tomography provides 
detailed information about the 3D structure of the distribution 
of liquid inside the granular material,10 little progress has been 
made in 3D systems toward controlling where liquid resides 
throughout the granular material, making the systematic 
exploration of the relationship between grain-scale structure 
and large-scale flows challenging. 
In 2D rafts of floating particles, however, the fluid 

distribution is uniform, and fluid-mediated interactions have 
been characterized for a variety of particles.11−22 Additionally, it 
has recently been shown that the fluid distribution in a particle 
monolayer in a water−lutidine mixture can be controlled and 
uniform.23 In this article, we characterize the capillarity-induced 
interactions between vertical cylinders standing upright on a 
substrate in a pool of liquid. Here the fluid is distributed 
uniformly, as in rafts and monolayers. Furthermore, the 
strength of the attractive force can be tuned by varying the 
depth of the pool of fluid. Both the uniformity and tunability of 

the these forces in 2D systems may prove helpful in 
understanding the influence of local fluid−grain interactions 
on bulk-scale granular flow. 
Wetting and capillary interactions have long been stud-

ied.24−26 For vertical cylinders, one context is surface roughness 
and superhydrophobicity due to an array of micropillars.27−30 If 
the micropillars are long and flexible, then elastocapillary effects 
can lead to coalescence, which has important implications in 
nature as well as engineering and materials science.31−36 In this 
article, however, we will focus on a different context. Here the 
cylinders are rigid and are not anchored to the substrate on 
which they sit. As a result, the cylinders do not bend or deform 
but are free to move laterally in response to the fluid forces. 
In this latter context, Princen37 considered the wicking 

behavior of long, thin fibers and developed a model to estimate 
the capillary rise height of liquid between two rigid vertical 
cylinders as a function of their separation. Kralchevsky et 
al.38−40 solved the linearized Laplace equation to derive an 
analytical form for the lateral forces between floating colloidal 
particles in the limit of small deformations of the fluid surface. 
Velev et al.41 and Dushkin et al.42 used a torsion balance to 
experimentally measure the lateral forces between two partially 
submerged submillimeter-diameter vertical cylinders at separa-
tions greater than half a capillary length. Forces at these 
separations were shown to be similar to the predictions of 
Kralchevsky et al.,38−40 indicating that the small-deformation 
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approximation is reasonable at large separations. Cooray et al.43 

later achieved even better agreement with the experimental 
values by numerically solving the full nonlinear Laplace 
equation. However, all previous works38−43 characterizing 
these forces have been restricted to submillimeter-diameter 
cylinders of effectively infinite height as the cylinder height 
always exceeds the equilibrium capillary rise height. Further-
more, previous experimental works41,42 characterized only 
forces for separations larger than half a capillary length. The 
capillary attraction of vertical cylinders of finite height in the 
millimeter−diameter range has not been investigated exper-
imentally or theoretically. 
In this article, we explore the fluid-mediated attractions 

between rigid vertical cylinders of finite height and diameter 
larger than the capillary length. A custom-built apparatus 
permits the measurement of forces between several pairs of 
vertical cylinders as they are quasi-statically separated. We thus 
measure forces for separation as small as 80 μm. The fluid-
surface deformations are large at these small separations; 
therefore, the analytical form obtained from the linearized 
Laplace equation38−40 is not valid. However, we find reasonable 
agreement with an extension of the Princen model to calculate 
the lateral forces between vertical cylinders. Numerical 
computations are also shown to be in good agreement with 
experimental measurements. We observe that for cylinders of 
finite height at small separations the capillary rise of the fluid 
reaches the tops of the cylinders, thereby introducing a way to 
control the strength of cohesion between cylinders. Finally, we 
observe a velocity-dependent hysteresis consistent with the 

41observations of Velev et al. 

■ METHODS 
Experimental Setup. We measure the capillarity-induced 

attractive forces between pairs and triplets of vertical cylinders 
partially submerged in a fluid, as shown in Figure 1a. The cylinders are 

Figure 1. (a) Pair of R = 3.175 mm upright cylinders standing in 
mineral oil (dyed red) viewed from the side. (b) Final Surface Evolver 
output for a pair of cylinders with similar conditions to those in (a), 
also viewed from the side. (c) Final Surface Evolver state for a group of 
three cylinders. The capillary rise reaches the tops of the cylinders at 
small separations, causing the resulting cohesive force between to be 
set by h, the exposed height of the cylinders above the liquid reservoir. 

acetal dowel pins with density ρcyl = 1410 kg/m3, height H = 19.05 
mm, and radius R = 3.175 mm. The fluid is heavy-viscosity mineral oil 
with density ρ = 870 ± 10 kg/m3. The acetal−air−mineral oil contact 
angle, θc, is estimated to be θc = 20  ± 5° from numerous photographs 
of a single cylinder partially submerged in oil. Using the equation for 
capillary rise inside a cylindrical tube, hrise = 2γ cos θc,tube/(ρgrtube) 
along with a measured value of θc,tube = 25  ± 3°, the surface tension is 
estimated to be γ = 27.4 ± 0.7 dyn/cm from photographic 
measurements of capillary rise heights inside capillary tubes of both 
5 and 50 μL volumes. Most of the uncertainty in the surface tension 
measurement results from the uncertainty in the contact angle. The 

= (ρg/γ)−1/2capillary length of the oil is lc = 1.8 ± 0.2 mm. 
A custom-built apparatus, shown in Figure 2, is employed to 

measure oil-induced cohesive interactions between pairs and triplets of 
identical upright cylinders. The overall dimensions of the apparatus are 

56 cm × 71 cm. Two threaded rods are mounted to the surrounding 
liquid-tight box with only the freedom to rotate. This rotation is driven 
by a stepper motor at a constant rate, permitting the translational 
motion of the aluminum plate held by the threaded rods. Two force 
sensors mounted to the aluminum plate, one at each end, are sensitive 
to deflections perpendicular to the long axis of the plate. Equally 
spaced vertical cylinders are glued to a rod suspended from the 
aluminum plate. Neighboring cylinders attached to this rod have 
center-to-center separations of 4R, and all cylinder bases are about 1 
mm above the box floor, hence there is no static and sliding friction 
between the cylinders and the surrounding box. The suspended rod 
hangs between the aluminum plate and the force sensors and is 
oriented with its long axis parallel to the plate long axis. With oil in the 
surrounding box, this suspended rod is always partially submerged. 

Two rows of cylinders are glued to a stationary steel block, as shown 
in Figure 2, one for measuring the forces between pairs of cylinders 
and one for measuring the interactions between triplets of cylinders. 
The setup for pairwise measurements corresponds to the stationary 
block oriented such that the single white star is in the upper right 
corner, as shown in Figure 2. For each interacting pair, the line 
connecting the centers of the cylinders is parallel to the direction of 
driving, indicated by v in Figure 2. An example of the geometry for a 
single cylinder pair viewed from the side is shown in Figure 1b. For 
triplets, the stationary block is oriented such that the two white stars 
are in the upper right corner. Each cylinder attached to the suspended 
rod interacts with two cylinders on the stationary block, forming 
equilateral triangles when the two rows are in contact. An example of 
the geometry for a single cylinder triplet viewed from the side is 
depicted in Figure 1c. 

Cylinders are placed into contact after oil has been added to the 
surrounding box. Once capillary bridges have formed between the 
interacting sets of cylinders, the aluminum plate is then driven 
backward at 0.017 mm/s. The suspended rod resists this driving when 
capillary bridges are present and is therefore pushed against the force 
sensors, which are moving with the aluminum plate. The plate 
displacement, y, and the resulting force is measured as a function of 
time. This force is the sum of the individual capillary forces 
simultaneously acting on each of the cylinder pairs or triplets. Forces 
are measured with two Omega Engineering LCEB-5 mini-beam load 
cells, each with an error of 2.2 mN for a single measurement. Forces 
are recorded at 100 Hz and then temporally averaged with a window 
of 1.7 s, over which the cylinders move 0.029 mm, resulting in an 
uncertainty of 0.04 mN per sensor within an averaging window. 

Numerical Calculations. Numerical computations are performed 
using Surface Evolver,44,45 a finite element modeling software package. 
Once the configuration geometry is defined along with relevant 
physical parameters and constraints, Surface Evolver uses the method 
of gradient descent to iteratively evolve the fluid surface toward the 
minimum total energy state. The fluid surface is represented by 
triangular elements, the size and density of which can be adjusted in 
between evolution steps. 

For each computation, the configuration of upright cylinder pairs or 
triplets is defined by specifying the cylinder separations and exposed 
heights above the fluid. The undisturbed fluid resides in the z = 0  
plane, and the exposed cylinder height, h, is varied by adjusting the 
height of the cylinders above the z = 0 plane. The size of the 
surrounding box containing fluid is set to be 20R and is kept constant 
in all configurations. Constraints on the fluid−cylinder surface prevent 
the fluid from penetrating cylinder walls, and constraints at the edges 
of the box fix the fluid vertices to z = 0. An additional constraint is 
imposed at the fluid−cylinder surface to model the interactions 
between cylinders of finite height: the fluid vertices in contact with the 
cylinders are not allowed to exceed the exposed cylinder height. 

For a given exposed cylinder height, h (Figure 1a), configurations 
are defined with surface separations ranging from d = 0.01 to 10.0 mm, 
and a separate energy minimization is performed for each 
configuration. The treatment of each separation as an independent 
minimization is valid in the quasi-static limit of cylinder separation, 
which holds for slower separations speeds. Within a given 
configuration, the cylinder positions are fixed and only the fluid is 
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Figure 2. (a) Top-down view of the setup for measuring cohesive forces between cylinder pairs (single white star in the upper right corner of the 
stationary block, as shown) and cylinder triplets (the stationary block is rotated 180° so that the two white stars are located in the upper right 
corner). This schematic is not to scale: in the experiments, the entire apparatus measures 56 cm × 71 cm, each cylinder has a radius of R = 3.175 
mm, and there are 15 cylinder pairs and 16 cylinder triplets. Another row of cylinders is glued to a rod suspended from a plate attached to a motor. 
The suspended cylinders are 1 mm above the base of the surrounding box. A known amount of mineral oil is added to the surrounding container for 
each set of experiments. Initially, the cylinders attached to the suspended rod are moved into contact with the cylinders attached to the stationary 
block, allowing capillary bridges to form between them. The suspended cylinders are then pulled away from the stationary cylinders. Lateral capillary 
forces resist this motion, causing the suspended rod to come into contact with and exert a force on the force sensors. (b) Side view of the region 
enclosed by the dashed box in (a). 

allowed to evolve. The fluid is initially a flat surface in the z = 0 plane. 
After a few mesh refinements, each of which divides each fluid element 
into four new elements, and a few evolution iterations, each of which 
moves the fluid surface to a lower-energy configuration, the fluid 
begins to rise up between the cylinders. Triangle elements with area of 
less than 5 × 10−13 m2 are regularly removed from the mesh to prevent 
numerical instability of the gradient descent method. Once the fluid 
motion becomes small, indicating that the capillary rise has nearly 
reached the equilibrium rise height, the surface is further refined and 
evolved until the energy difference between successive iterations, ΔE, 
is on the order of 10−13 J and the relative energy change between 
successive iterations is ΔE/E ∼ 10−10. Examples of the minimized 
surfaces are depicted in Figure 1b for pairs and Figure 1c for triplets. 
Theoretical Model. We aim to develop a model for the lateral 

capillary forces between upright cylinders of finite height, such as those 
shown in Figure 3, that will provide insight into the origin and relative 
importance of various contributions to the total attractive force. To 
understand and characterize these lateral forces, we need to determine 
the region of the cylinder over which fluid forces are acting and then 

Figure 3. (a) Side view of a capillary bridge between two upright 
cylinders, where z2 is the equilibrium rise height for a fluid with 
contact angle θc between two cylinders, each of radius R with surface 
separation d. (b) View of the horizontal slice in the z = z2 plane. R2 is 
the radius of curvature of the fluid free surface in this horizontal plane, 
and α is the angle between the line connecting the centers of the 
cylinders and the line from the center of the cylinder to the contact 
line. 

integrate local lateral forces over this region to determine the total 
attractive force between two cylinders. 

Princen37 developed a model to estimate the capillary rise between 
two vertical cylinders of infinite height partially submerged in a fluid. 
This model assumes that the capillary rise height, z2, is much greater 
than the cylinder radius, R. In this regime, changes in the vertical 
curvature of the fluid are small, so fluid between the cylinders is treated 
as a perfectly vertical column wherein the horizontal cross section of 
the fluid at height z is equal to the cross section at z2 for all z. It follows 
from this assumption that the geometry of the system can be 
completely described by a horizontal cross section of the fluid, as 
shown in Figure 3b, and that the fluid radius of curvature in the 
vertical direction is infinite. This approach permits the hydrostatic 
pressure across the fluid interface to be described completely by the 
horizontal radius of curvature, R2, 

γ 

R z2 d( , )
= ρgz 

(1) 

where γ is the surface tension, ρ is the fluid density, g is the 
acceleration due to gravity, and z is the height from which the cross 
section is taken. 

We begin, as Princen did, by estimating the capillary rise height 
from the vertical force balance. The total vertical force must vanish at 
the equilibrium capillary rise height, so we solve the following equation 
for the capillary rise height, z = z2, at which the weight of the fluid 
between the cylinders is equal to the surface tension forces acting at 
the interfaces 

⎤
⎦ 

⎡
⎣⎢   

(2) 

where θc is the contact angle, A(z2, d) is the area of a horizontal cross 
section of the fluid, d is the separation between cylinder surfaces, z2 is 
the height from which the horizontal cross section is taken, and α(z2, 
d) is the horizontal angle between the line connecting the cylinder 
centers and a line from the center of a cylinder to the contact line on 
the surface of that cylinder; see Figure 3b. The left-hand side of eq 2 is 
an approximation of the weight of a fluid column between the 
cylinders in Figure 3a that reaches a height z2. The first term on the 
right-hand side describes the upward-directed surface tension force 
along the fluid−air−cylinder contact lines, and the second term 

π 

2 
R z d  θz ρg ( , )2 = 4γ α [ ]c − 4γ − θ − αcA z d  ( , )  2 cos2 2z d R z d( , )  ( , )2 2  
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corresponds to the downward-directed surface tension force resulting 
from the free surfaces. Expressions for A(z, d) and R2(z, d) can be 
determined from geometry.37 

We use eq 1 and the expression for R2(z, d) to determine α(z, d), 
which, when substituted into eq 2 along with expressions for A(z, d) 
and R2(z, d), yields a transcendental equation that can be numerically 
solved for the capillary rise height, z2: 

2⎛ γ ⎞ π 

⎝⎜ ⎠⎟ { c 2 c 20 = − θ + α( ,z d) + sin[θ + α(z d,  )]  
ρgz R 22 

γ
cos[θ + α(z d, )] + 2 {sin[α(z d, )] cos[θ + α(z d, )]c 2 2 c 2} ρgz R2 

− α(z d2, ) cos[θ ]} + sin[α(z d)] cos[α( 2, )] − α( 2,c 2, z d2 z d) (3) 

Unlike Princen, our cylinders have a finite height, h, above the liquid in 
which they are partially submerged. If the calculated z2 exceeds h, as it  
often tends to for small separations, then we set z2 = h. 
Using this capillary rise height, we can estimate the lateral attractive 

force between the cylinders. Both pressure and surface tension 
contribute to the total capillary-induced attractive force on one 
cylinder, which is given by 

z 
F (z d, ) = 2 ∫ 2 

ρgzR sin[α(z , d)] dztotal 2 
0 

z 
+ 2γR sin[θ ] sin[α(z d, )] + 2γ 

2 
sin[α(z , d) + θ ] dzc 2 ∫ c 

0 

(4) 

The first term is the pressure contribution, which acts over the 
cylinder−fluid contact area, the second term comes from the surface 
tension acting at the fluid−air−cylinder interface along the top of the 
capillary bridge, and the third term arises from the surface tension 
acting at the fluid−air−cylinder interface along the height of the 
cylinder. The model allows us to examine the relative importance of 
the independent force contributions, something we do not have access 
to from our other measurements or calculations. 
Note that we relax the z2 ≫ R assumption only after determining 

the rise height, z2. We allow the horizontal cross section to vary with z 
for the lateral force calculation while still assuming that each horizontal 
cross section can be treated independently and summed over to yield 
the total attractive force. Despite this technical inconsistency, we show 
in the Results and Discussion section that the total force from this 
model agrees well with experimentally measured and numerically 
computed forces. 
It is also important to note that the model breaks down for α(z, d) 

>  /2 − θc. Given that α(z, d) increases with d, there is a 
corresponding maximum d for which the model is valid. At α =  /2 
− θc, R2 = ∞ and z2 = 0. Here, the capillary pressure contribution to 
the vertical force is zero; therefore, the total surface tension 
contribution to the vertical force must also equal zero. Equivalently, 
both sides of eq 2 must equal zero independently. In this case, the free 
interface in Figure 3b becomes a straight line, and the second term on 
the right-hand side of eq 2 must be rewritten to have a finite value. 
The maximum d for which the model is valid, dmax = 2R[( /2 − θc) cos 
θc + sin θc − 1], is then given by setting the modified right-hand side 
of eq 2 to zero. For the parameters in our system, dmax = 3.3 mm ≈ 2l .c 
Therefore, comparisons with previous long-range asymptotic solutions 
are not possible. 

■ RESULTS AND DISCUSSION 
Interactions between Cylinder Pairs. For a given 

exposed cylinder height, five independent experiments each 
measure the force as a function of separation. Temporal 
averages are performed on data from each experiment 
separately, the result of which can be seen in the inset of 
Figure 4. For an individual experiment, the error associated 
with one cylinder pair is 0.05 mN, and the standard deviation of 
the forces measured from five experiments is 0.1 mN. We note 
that these uncertainties are about the same as those resulting 

Figure 4. Experimentally measured attractive forces between cylinder 
pairs (circles) as a function of separation for many exposed cylinder 
heights, h, as labeled. Each curve is the result of averaging five 
experimental trials together. Raw data and the resulting average curve 
for h = 16.3 mm are shown in the inset. The uncertainty in the depth 
measurements is ±0.7 mm, and forces for d < 80  μm are excluded 
because they cannot be measured reliably. Lines represent the result of 
a global fit of the model to the eight largest exposed cylinder heights. 

from the limitations of the force sensors discussed in the 
Experimental Setup part of the Methods section. 
Force curves for 12 different exposed cylinder heights, h, can 

be seen in the main plot of Figure 4. Note that the contribution 
from adjacent cylinder pairs is negligible as the forces in Figure 
4 fall to zero by d = 2 mm while the minimum surface-to-
surface separation between adjacent pairs is 2R = 6.4 mm. 
Because of the nature of the setup, we cannot reliably measure 
forces for separations smaller than 80 μm. While the cylinders 
are initially in contact, it takes a finite but small amount of time 
for the suspended rod to establish full contact with and 
subsequently push on the force sensors. Once this occurs, the 
forces quickly jump to a maximal value and then slowly 
decrease as the separation increases. As a result, we exclude 
force data for separations smaller than d = 80  μm, which is the 
separation at which this maximal force occurs. 
The capillary bridges reach the tops of the cylinders for small 

surface separations, causing the force to deviate from the 
infinite-height cylinder predictions at small separations. This 
effect causes the force to depend on the height of the exposed 
cylinder above the oil. Not surprisingly, the maximum attractive 
force is greater for larger exposed cylinder heights. Forces for all 
h values collapse at large separations, which is expected. The 
dependence of the forces on h arises when the equilibrium 
capillary rise height exceeds the cylinder height. At large 
separations, the capillary rise height never reaches the cylinder 
tops, causing the dependence on h to vanish. In the 
intermediate-separation regime, forces for larger cylinder height 
h collapse at lower d than corresponding forces for smaller h. 
This effect is also expected because the capillary bridge height 
will fall below h sooner for larger exposed cylinder heights. 
We perform a global fit of the model to the measured forces 

up to d = 1.5 mm for the eight largest h values and extract the 
surface tension and contact angle that best describe the data as 
well as the h value that best fits each of the eight data sets. The 
global fit is achieved using the interior-point algorithm for the 
constrained minimization of the sum of the squares of the 
difference between the data and the model. The contact angle 
and the surface tension are treated as global parameters, and the 
exposed cylinder heights are treated as local parameters. The 
resulting best-fit contact angle is θfit = 14.8 ± 4.0°, and the 
surface tension is γfit = 27.0 ± 0.7 dyn/cm, both of which are 
close to the experimentally measured values. The values for 
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each of the exposed cylinder heights, hfit, are within the 
uncertainty of experimentally measured values and have 95% 
confidence intervals of ±0.1 mm. Though the model is overly 
simplistic, it nevertheless agrees remarkably well with the 
experimental data in terms of both the fits and the values of the 
fitting parameters. Given the smaller bounds on the fit values 
for the exposed cylinder heights, we use the model fit 
parameters in all numerical computations. 
Fluid-mediated interactions between a pair of upright 

cylinders are also explored numerically using Surface 
Evolver.44,45 The minimized energy values as a function of 
separation are shown in Figure 5 for three values of exposed 

Figure 5. Surface energies as a function of cylinder separation 
determined using Surface Evolver, with best-fit parameters from the 
model. Each data point (circle) corresponds to one simulation. The 
simulation data for each exposed cylinder height is fit to a smoothing 
spline (solid lines), which is then differentiated to determine the force 
of attraction between cylinder pairs as a function of d, the separation of 
the cylinder surfaces. 

cylinder height. Each open circle is the result of an energy-
minimization calculation for a given surface separation, d, and 
exposed cylinder height, h. Smoothing splines are fit to each 
data set for a particular h and differentiated to obtain the 
attractive forces between the cylinders. There is a small though 
systematic underestimation of the Surface Evolver attractive 
forces when compared to the experimental values. This slight 
discrepancy is likely a result of the best-fit parameters from 
overly simplistic model, which are used in Surface Evolver 
computations. 
The model discussed in the Theoretical Model part of the 

Methods section divides the total attractive force into two 
contributions: a force due to hydrostatic pressure inside the 
fluid and a force due to surface tension along the air−fluid− 
cylinder interfaces. The resulting attractive force predictions are 
compared for three exposed cylinder heights in Figure 6. The 
corresponding experimental measurements and numerical 
computations are shown as well, and all are in reasonable 
agreement. The dashed line on the plot shows the result of the 
model for infinitely tall cylinders. Deviations from this line at 
small separations, d, are caused by the finite cylinder height, 
specifically when the equilibrium capillary rise height exceeds 
the cylinder height. Although the cylinder height does not 
explicitly enter into the model calculation, it is imposed by not 
allowing the capillary rise height to exceed the cylinder height. 
The resulting maximum fluid heights are consistent with those 
measured from the final states of Surface Evolver calculations, 
and the resulting force curves capture reasonably well the small-
separation behavior observed in experimental measurements as 
well as numerical calculations. 

Figure 6. Attractive forces between cylinder pairs: experimental 
measurements (circles), Surface Evolver energy derivatives (xs), and 
model calculations (lines) for three different liquid levels. The dashed 
line indicates force predicted by the model discussed in the 
Theoretical Model part of the Methods section for infinitely tall 
cylinders. Deviations from this line occur at small separations, d, 
because the capillary rise has reached the tops of the cylinders. 

The model provides insight into the relative importance of 
the force resulting from surface tension acting along the contact 
line as well as the force from the fluid pressure acting along the 
wetted surface. Figure 7 shows experimentally measured forces 

Figure 7. Experimental data for h = 16.3 mm shown (circles) along 
with the total predicted force from the model using best-fit parameters 
from the model (solid line). The total predicted force, given in eq 4, is 
the sum of three terms. The first term in eq 4 is the force contribution 
from the pressure inside the fluid (dashed line), and remaining two 
terms describe the surface tension force (dotted line). The force is 
dominated by pressure for small separations, and the surface tension is 
more important for large separations. There is a crossover in the 
dominant contribution to the total force around 0.5lc. The near-
plateau at small separations, d, is due to the finite height of the 
cylinders. In this entire region, the capillary rise height reaches the tops 
of the cylinders, so the increase in force here is caused only by an 
increase in the thickness of the capillary bridge as the separation 
between the cylinders decreases. 

for one exposed cylinder height, along with both the total force 
predicted by the model as well as the individual components 
that contribute to the total force. The pressure term dominates 
the force at small separations, there is a crossover at around d = 
0.5lc, and then surface tension dominates for d ≳ lc. One 
limitation of the model is that it breaks down for d > 2lc; thus 
we are unable to predict how these forces behave at very large 
separations. 

Interactions between Cylinder Triplets. To test pairwise 
additivity, we also measure the force required to pull one 
cylinder away from two neighbors, with all three initially in 
mutual contact. The setup is similar to the one depicted in 
Figure 2, the only difference being that the stationary block is 
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rotated 180° so that the two white stars are in the upper right 
corner. Forces are measured as a function of aluminum-plate 
displacement, y, using the same procedure as for pairs. For 
triplets, however, the surface separation, d, is not equivalent to 
y, though they are geometrically related through the equation d 

+ 2(31/2)Ry + y2]1/2= −2R + [4R2 . Figure 8a shows the final 
force curves, each of which is the average of five independent 
experiments, as a function of d for numerous exposed cylinder 
heights. 

Figure 8. (a) Force vs separation for a group of three cylinders for 
many exposed cylinder heights, h. (b) Experimental force data and 
Surface Evolver energy derivatives (using parameters from the model 
fit) show reasonable agreement for three different h values. 

Surface Evolver is used to numerically determine the 
minimum energy of a fluid surface disturbed by the presence 
of three upright cylinders. Energy minimizations are performed 
for numerous configurations, such as the one shown in Figure 
1c, each with fixed values of h and y. For each value of h, a  
smoothing spline is fit to corresponding energy data points and 
differentiated to obtain the attractive forces between cylinder 
triplets. Figure 8b shows reasonable agreement between 
differentiated Surface Evolver energies for three values of h 
and the corresponding experimental data. 
We can determine the importance of nonpairwise terms to 

the overall force by comparing the pairwise and triplet force 
data. The forces measured for each cylinder triplet have a 
contribution from the capillary bridges between two cylinder 
pairs as well as the liquid that rises up in the center of the 
triangle formed by the three cylinders. An example of these 
capillary bridges can be seen in the final state of a Surface 
Evolver energy minimization in Figure 1c as though viewed 
from the side, through translucent cylinders. 
We compare triplet forces with the expected forces for two 

interacting pairs in Figure 9. To make this comparison, we must 
account for the fact that the force sensors are measuring only 
the component of the force in the direction of the motion. For 
the measurements between cylinder pairs, the direction of the 
maximum force and the direction of motion are the same. For 
the triplets, however, these directions differ by the angle ϕ(d)/2 
= arctan(R/(d2 + 4Rd + 3R2)1/2), so we compare Ftriplet to 2Fpair 

Figure 9. Force vs separation data are shown for triplets (circles) for 
numerous exposed cylinder heights. Forces between triplets will have 
contributions from the two pairwise interactions acting in the 
directions ±ϕ(d)/2 = ± arctan(R/(d2 + 4Rd + 3R2)1/2) relative to 
the direction of separation as well as a contribution from a capillary 
rise that occurs in the middle of the three cylinders. Contributions 
expected from the two pairwise interactions (solid lines) account for 
nearly all of the measured triplet interactions. 

cos[ϕ(d)/2] in Figure 9. Forces between triplets are reasonably 
well described by the pairwise interactions, though the pairwise 
data falls off a bit faster in the 0.5 to 1 mm range. Discrepancies 
for low h may be due to the ±0.7 mm uncertainty in the depth 
measurements. The overall agreement indicates that the 
contribution from the lower capillary bridge in the center of 
the three cylinders is comparatively small and can be neglected. 
We expect that the capillary rise will be even smaller in the 
center of four or more cylinders and that, therefore, pairwise 
additivity is a reasonable approximation for arbitrary config-
urations of upright cylinders. 

Hysteresis between Cylinder Pairs. The contact angle 
dependence on the velocity of the contact line has long been 
observed in systems with relative motion between a solid and a 
fluid.46−60 The advancing contact angle, θA, measured when the 
fluid−solid contact area increases is always measured to be 
greater than the receding contact angle, θR, which is measured 
when the fluid−solid contact area decreases. θA is observed to 
increase with increasing speed, and θR has been observed to 
decease with increasing speed in some experiments, though the 
θR data tends to be more scattered. 
The experimental setup used to measure attractive forces 

between cylinder pairs, shown in Figure 2, is also used to 
characterize the hysteresis in these attractive forces. Cylinders 
are initially placed into contact, and after capillary bridges form 
between all 15 cylinder pairs, the aluminum plate is driven away 
from the stationary block to a distance of 6 mm. The aluminum 
plate remains static for 1 min, after which the plate is driven 
back to its original position at the same speed. Averages of at 
least five experiments for each of four different speeds are 
shown in Figure 10. For small separations, forces measured for 
increasing separation are always larger than the corresponding 
forces measured for decreasing separation. 
Given that the forces at large separations do not depend on 

the direction of driving, we expect that viscous drag and 
lubrication forces are negligible. We estimate the maximum 
drag force by Fdrag ∼  R2ηvmax/δz, where η ≈ 65 cP is the oil 
viscosity of the oil, R = 3.175 mm is the cylinder radius, vmax = 
0.136 mm/s is the maximum speed of driving, and δz ≈ 1 mm  
is the size of the gap between the base of the cylinders and the 
surrounding box floor. For our experimental conditions, Fdrag ∼ 
10−7 N. We estimate the maximum order of magnitude of the 
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Figure 10. Measured force vs separation for cylinder pairs at different 
speeds for h = 14.1 ± 0.7 mm. Direction-of-motion-dependent 
hysteresis is observed, the strength of which is dependent upon the 
speed of the motion. The top curves (circles) are measured when the 
cylinder separation is increasing, and the bottom curves (squares) are 
measured as the cylinders are pushed together. Lines represent the 
average of 5 to 15 experiments, and the size of the points is indicative 
of the uncertainty. In the inset, experimental data for the slowest speed 
is plotted along with six evaluations of the model. The best-fit force 
curves are shown as the solid lines. Both the contact angle and h are fit 
parameters for increasing separation data (circles). For the decreasing 
separation data, h is fixed and the contact angle is the only fit 
parameter. 

lubrication forces between they cylinders by Flub ∼ ηRHvmax/ 
dmin, where H = 19.05 mm is the maximum possible exposed 
cylinder height and dmin = 0.08 mm is the smallest separation 
for which we are able to measure forces. From this, we obtain 
that the maximum possible force due to lubrication is ∼0.007 
mN. Both viscous drag and lubrication are significantly smaller 
than the observed hysteresis and therefore do not account for 
the observed behavior. 
Our data are qualitatively consistent with previous work41 in 

which the forces between approaching submillimeter cylinders 
at a separation of 0.5lc were found to be 10−15% smaller than 
the corresponding forces between separating cylinders. We also 
observe forces measured during separation to be higher than 
those measured while pushing cylinders together, though the 
magnitude of this difference is speed-dependent. This hysteresis 
in the measured forces is also qualitatively consistent with what 
is known about contact angle hysteresis. The contact line is 
receding down the cylinder surface when the separation 
between cylinders is increasing. This reduces the contact 
angle and leads to an increased force. Similarly, the contact line 
is advancing up the cylinders when the cylinder separation is 
decreasing, causing an increase in the contact angle and leading 
to a decrease in the measured force. 
The hysteresis measurements for the slowest speed are 

compared to the model in the inset of Figure 10. In these 
experiments, the exposed cylinder height is measured to be h = 
14.1 ± 0.7 mm, and the static contact angle is estimated to be θ 
= 20  ± 5° from numerous photographs of a single cylinder in 
oil. The surface tension is measured to be γ = 28.6 ± 0.7 dyn/ 
cm using the procedure described in the Experimental Setup 
part of the Methods section. Using these experimentally 
measured values, we simultaneously fit the model to increasing 
separation data at speed v = 0.017 mm/s for two different liquid 
depths. Given the uncertainty in h, we allow both h and θ to 
vary in the fitting and find the best-fit contact angle to be θR,fit = 
24.2 ± 1.6° and the best-fit exposed cylinder height for the data 
shown in the inset of Figure 10 to be hfit = 12.7 ± 0.3 mm. We 

then fix the fit parameter hfit to find the best-fit contact angle for 
the decreasing separation cylinder data, θA,fit = 57.7 ± 3.4°. 
The best-fit model force curves are shown as the thick solid 

lines in the inset Figure 10, and curves from two intermediate 
angles, as well as one below θR,fit and one above θA,fit, are shown 
as dashed lines to give a sense of the model force dependence 
on the contact angle. The dark solid line is the result of the 
increasing separation data, and the fit captures the behavior of 
the experimental data well. The best fit of the model to the 
decreasing separation data, shown as the light solid line, does 
not describe the data well, which perhaps indicates that the 
decreasing cylinder separation forces cannot be described by a 
single contact angle. 
The speed dependence of the separating cylinder data can be 

seen in Figure 10. As the speed increases, the force curves 
become broader and the forces fall off more slowly, especially 
for the two fastest speeds. Comparing this data with the model 
behavior in the inset, we see that a smaller contact angle is not 
enough to account for the changes observed in the force curves, 
indicating perhaps that the quasi-static assumption is not valid 
at faster speeds. 

■ CONCLUSIONS 

In this article, we have characterized capillary-induced attractive 
forces between millimeter-sized cylinder pairs and triplets. 
Experimental measurements made with a custom-built 
apparatus are in reasonable agreement with numerical 
computations and a simple theoretical model. The model 
enables us to ascertain the surface tension and pressure 
contributions to the total force separately and therefore 
compare their relative importance. We find that, at small 
separations, the pressure term dominates the total force, and at 
large separations, the surface tension force dominates. 
The forces between triplets are reasonably well described by 

the pairwise interactions. While some small discrepancies 
between the triplet and scaled-pair forces were found, we expect 
that these will monotonically decrease as the number of 
cylinders is increased. Therefore, pairwise additivity is a 
reasonable approximation for descriptions of the forces in a 
system with similar physical parameters and an arbitrary 
number of cylinders. 
We also observed a velocity-dependent hysteresis of force 

measurements between cylinder pairs. For separations of less 
than 1 mm, forces measured while separating cylinders are 
always larger than the corresponding forces measured for 
approaching cylinders. This finding is qualitatively consistent 
with previous observations. The size of the hysteresis is 
observed to increase with increasing speed. We demonstrate 
that the simple model does not fit the data when the cylinder 
surfaces are approaching one another, which may suggest that a 
single contact angle is not enough to describe the data. We also 
show that the speed dependence of the separating cylinder data 
is not described by the model, perhaps indicating that the quasi-
static assumption is no longer valid for the faster speeds. 
Finally, we observe that when the capillary rise height is 

greater than the cylinder height, the attractive force between 
cylinders depends on the height of the cylinder above the liquid 
level. This effect can be employed to create a tunable cohesion. 
One benefit of such a force is that the liquid is distributed 
evenly throughout an array of cylinders or other particles so 
that the force of attraction is known everywhere. 
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