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Geometric frustration in buckled colloidal 
monolayers 
Yilong Han1,2*, Yair Shokef1*{, Ahmed M. Alsayed1 , Peter Yunker1 , Tom C. Lubensky1 & Arjun G. Yodh1 

Geometric frustration arises when lattice structure prevents simultaneous minimization of local interaction energies. It leads 
to highly degenerate ground states and, subsequently, to complex phases of matter, such as water ice, spin ice, and 
frustrated magnetic materials. Here we report a simple geometrically frustrated system composed of closely packed 
colloidal spheres confined between parallel walls. Diameter-tunable microgel spheres are self-assembled into a buckled 
triangular lattice with either up or down displacements, analogous to an antiferromagnetic Ising model on a triangular lattice. 
Experiment and theory reveal single-particle dynamics governed by in-plane lattice distortions that partially relieve 
frustration and produce ground states with zigzagging stripes and subextensive entropy, rather than the more random 
configurations and extensive entropy of the antiferromagnetic Ising model. This tunable soft-matter system provides a 
means to directly visualize the dynamics of frustration, thermal excitations and defects. 

Geometric frustration arises in physical and biological systems1 that 
range from water2 and spin ice3 to magnets4,5, ceramics6 and high-
transition-temperature superconductors7. The essence of this phe-
nomenon is best captured in the model of Ising spins arranged on a 
two-dimensional (2D) triangular lattice and interacting antiferro-
magnetically8,9; two of the three spins on any triangular plaquette 
within this lattice can be antiparallel to minimize their antiferromag-
netic interaction energy, but the third spin is frustrated because 
it cannot be simultaneously antiparallel to both neighbouring spins 
(Fig. 1a). Such frustration leads to materials with many degenerate 
ground states and extensive entropy proportional to the number 
of particles in the system. Consequently, small perturbations can 
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Figure 1 | Ising ground state. a, Three spins on a triangular plaquette 
cannot simultaneously satisfy all antiferromagnetic interactions. b, For 
colloids confined between walls separated by a distance of the order 1.5 
sphere diameters (side view), particles move to opposite walls in order to 
maximize free volume. c, d, Ising ground-state configurations wherein each 
triangular plaquette has two satisfied bonds and one frustrated bond. 
c, Zigzag stripes generated by stacking rows of alternating up/down particles 
with random sidewise shifts; all particles have exactly 2 frustrated 
neighbours. d, Particles in disordered configurations have 0, 1, 2 or 3 
frustrated neighbours (red hexagons). 

introduce giant fluctuations with peculiar dynamics. Traditionally, 
these phenomena have been explored in atomic materials by 
ensemble averaging techniques, such as neutron and X-ray scattering, 
muon spin rotation, nuclear magnetic resonance and measurements 
of heat capacity and susceptibility5. More recently, artificial arrays of 
mesoscopic constituents have been fabricated to probe geometric 
frustration at the single-‘particle’ level. Examples include 
Josephson junctions10, superconducting rings11, ferromagnetic 
islands12–14 and recent simulations15 of charged colloids in optical 
traps. But observations in these model systems have been limited 
to the static patterns into which these systems freeze when cooled. 
Thus many questions about frustrated systems remain unexplored, 
particularly those associated with single-particle dynamics. For 
example, how, when and why do individual particles change states 
to accommodate their local environments, and what kinetic mechan-
isms govern transitions to glassy phases? 

Here we report the static and dynamic properties of a self-
assembled colloidal system analogous to Wannier’s antiferromag-
netic Ising model8. Densely packed spheres between parallel walls 
form an in-plane triangular lattice with out-of-plane up and down 
buckling16–26. The up–down states of the spheres produced by buck-
ling are analogous to up–down states of Ising spins (Fig. 1b). Nearest-
neighbour excluded volume interactions between particles favour 
opposite states for neighbouring particles, as do the antiferromag-
netic interactions between neighbouring spins in the Ising model. In 

10–14contrast to engineered mesoscopic systems , however, our col-
loidal system facilitates easy tuning of the effective antiferromagnetic 
interaction through changes in the diameter of temperature-sensitive 
microgel spheres27. The colloidal system also permits direct visualiza-
tion of thermal motion at the single-particle level. In the limit of weak 
confinement, or weak interaction strength, system properties closely 
follow those predicted for the antiferromagnetic Ising model, but in 
the limit of strong confinement, they do not. For strong interactions, 
the lattice deforms to maximize free volume, and the collective nature 
of the free-volume-dominated free energy characteristic of most 
soft-matter systems becomes important. We understand these effects 
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theoretically in terms of tiling of the plane by isosceles triangles. The 
tiling scheme identifies a ground state consisting of zigzagging stripes 
with subextensive entropy. Interestingly, in contrast to Ising-model 
predictions, first measurements of single-particle ‘spin-flipping’ sug-
gest that flipping dynamics depend not only on the number of near-
est-neighbour frustrated ‘bonds’, but on how these bonds are 
arranged. Thus we begin to explore connections between frustrated 
soft matter and hard materials such as frustrated antiferromagnetic 
media. (Unless otherwise specified, we use ‘antiferromagnetic Ising 
model’ to refer to antiferromagnetic spins on a rigid triangular lattice; 
we will, however, also discuss this model on a deformable lattice.) 

Experimental system 
For walls separated by distances of the order of 1.5 sphere diameters, 
the particles maintain in-plane triangular order but buckle out-of-
plane (Fig. 2a, d). This buckling minimizes system free energy, 
F 5 U 2 TS, where U is internal energy, T temperature and S entropy. 
The bare interaction potential between our weakly charged27 particles 
was measured to be short ranged and repulsive28, that is, nearly hard 
core. Thus the dominant contribution to the free energy is entropic. 
Spheres will move apart to minimize internal energy and to maximize 
their free volume and entropy resulting from it. This effect gives rise 
to multi-body effective interactions between spheres which, for low 
volume fractions, can be well approximated by a two-body repulsive 
entropic potential with range of the order of the interparticle spa-
cing29. At high volume fraction, many-body contributions to the 
potential may become important. The effective repulsion causes 
spheres to move to the top or bottom wall, and nearest neighbours 
maximize free volume by moving to opposite walls (Fig. 1b). Buckled 
colloidal monolayers were first observed more than two decades 

16–18 ago , and the antiferromagnetic analogy was then suggested17,30 

(note that ref. 30 includes the experimental work reported in ref. 
16). However, to date, few quantitative measurements have been 
performed on this system class, and the themes explored by most 
early work centred on structural transitions exhibited by colloidal 
thin films as a function of increasing sample thickness17–20,22–24, rather 
than their connection to frustrated antiferromagnets. The use of 
temperature-sensitive diameter-tunable NIPA (N-isopropyl acryla-
mide) microgel spheres27 also distinguishes our experiments from 
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earlier work. By varying temperature we change particle size and 
sample volume fraction and, therefore, vary the strength of the effec-
tive antiferromagnetic interparticle interactions. 

Samples were prepared at low volume fraction near the melting 
point to produce 2D crystal domains with ,104 spheres covering an 
area of the order of 60 mm2. Video microscopy measurements were 
carried out far from grain boundaries on an ,32 mm2 central area 
(,2,600 spheres) within the larger crystal domain. Particle motions 
were observed by microscope, recorded to videotape using a CCD 
camera and tracked by standard image-processing techniques31. In  
most colloid experiments, the important thermodynamic control 
variable is particle volume fraction. The present experiment achieved 
substantial variation in sphere diameter using small changes in tem-
perature, which altered thermal energies by less than 1%. Here we 
monitor and report temperature rather than volume fraction because 
the interactions between spheres contain a soft ‘tail’ that introduces 
some ambiguity into the assignment of a geometric diameter to the 
particles. Below 24 uC, the system is jammed and no dynamics are 
observed. Above 27.5 uC, the in-plane crystals melt. Our primary 
measurements of the frustrated states probe five temperatures from 
24.7 uC to 27.1 uC in 0.6 uC steps. In this range, the hydrodynamic 
diameter of the nearly-density-matched particles decreases linearly 
with increasing temperature from 0.89 mm to 0.76 mm (see 
Supplementary Fig. 1), whereas the average in-plane particle separa-
tion remains constant (see Supplementary Table 1). The measured 
in-plane structures are crystalline. To reach thermal equilibration, 
the sample was annealed near the melting point before the temper-
ature was slowly decreased. (Here ‘annealed’ means that the sample 
was left to evolve for several hours near the melting point to relieve 
possible unbalanced pressure and provide time for defects to move to 
produce higher quality crystals.) Slow cycling through this temper-
ature range produced no hysteresis. 

Antiferromagnetic order 
The images in Fig. 2a, d show roughly half of the spheres as bright 
because they are in the focal plane of the microscope; the other half, 
located near the bottom plate, are slightly out-of-focus and appear 
dark. A histogram, based on image brightness, showing the degree to 
which particles are ‘up’ or ‘down’ is given in Supplementary Fig. 2. 

c 

f 

Figure 2 | Buckled monolayer of colloidal spheres. Shown are data from an triangular lattice, that is, particles that do not have exactly six nearest 
area of 32 mm2 at T 5 24.7 uC (a–c) and 27.1 uC (d–f). a, d, Bright spheres, neighbours. Thermally excited triangles with three spheres up/down are 
up; dark spheres, down. b, e, Labyrinth patterns obtained by drawing only labelled by red/green. These snapshots are taken from Supplementary 
the frustrated up–up (red) and down–down (green) bonds. Movies. 
c, f, Corresponding Delaunay triangulations. Blue dots mark defects in the 
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The histogram is bimodal, but clearly a range of ‘up’ and ‘down’ is 
evident in this classical system. The continuous brightness profile was 
discretized into two ‘Ising’ states with si 5 61 (here si refers to the 
state of particle i). The brightness cut-off was chosen near the interior 
minimum so that half the particles are up and half are down. Shifting 
this cut-off changed structural and dynamical analyses very little 
(that is, by a few per cent) for shifts of a few per cent in up/down 
cut-off. The nature of the frustrated states can be exhibited in differ-
ent ways in processed images. One way focuses on the ‘bonds’ 
between particles. We refer to pairs of neighbouring particles (i 
and j) in opposite states (sisj 5 21) as satisfied bonds (that is, sat-
isfying the effective antiferromagnetic interaction), and to up–up or 
down–down pairs (with sisj 5 1) as frustrated bonds. Images show 
that the frustrated bonds form a nearly single-line labyrinth (Fig. 2b) 
at low temperature that then nucleates into domains (Fig. 2e) at high 
temperature. Local antiferromagnetic order is alternatively charac-
terized by the average number of frustrated bonds per particle, ÆNfæ. 
In the limit of weak interactions, an Ising system chooses a comple-
tely random configuration with half of the six bonds satisfied and half 
frustrated, leading to ÆNfæ 5 3. In the limit of strong interactions, on 
the other hand, each triangular plaquette has one frustrated bond 
(Fig. 1a), a third of the bonds are frustrated, and ÆNfæ 5 2. ÆNfæ is a 
linear rescaling of the density of excited triangles (3 up or 3 down) in 
Fig. 2c, f, which ranges from 0 in the Ising ground state to 0.5 for a 
random configuration. We find that ÆNfæ decreased from approxi-
mately 2.5 to 2.1 in the temperature interval 27.1–24.7 uC. Detailed 
statistics of the different local configurations are presented in 
Supplementary Table 1. 

We first consider the static properties of the frustrated samples. In 
particular, we aim to identify similarities and differences between the 
colloidal system and the Ising model. As the temperature is lowered to 
increase particle diameter, ÆNfæ is observed to approach 2. This beha-
viour is expected in the Ising-model ground state. However, the vast 
majority of Ising ground-state configurations are disordered. The 
colloidal monolayers, by contrast, condense into stripe phases. The 
stripes are not straight, as could be produced by higher-order inter-
particle interactions32. Rather, they bend and form zigzag patterns22–26 

(see Fig. 2a and configuration statistics in Supplementary Table 1). In 
this colloidal zigzag-striped phase, we measured spatial correlations 
C(i 2 j) 5 [Æsisjæ 2 Æsæ2]/[Æs 2æ 2 Æsæ2] over separations ji 2 jj, along the 
principal lattice directions, of up to 20 particles, and found that they 
decay exponentially in magnitude with alternating sign (Supple-
mentary Fig. 4). C(i 2 j) is positive for i 2 j even and negative for 
i 2 j odd. In contrast, C(i 2 j) averaged over the Ising ground state 
is positive when i 2 j is an integer multiple of 3. Furthermore, for 
zigzagging stripes each particle has exactly two frustrated neighbours 
(Fig. 1c), whereas in the fully disordered Ising ground state Nf can be 0, 
1, 2 or 3 (Fig. 1d) and only the average ÆNfæ is 2. These observations 
suggest that fluctuations in Nf, that is, Var(Nf) 5 ÆNf

2æ 2 ÆNfæ2, might 
be a useful measure for distinguishing the zigzag-stripe phase 
observed here from the disordered Ising ground state. Figure 3 plots 
the behaviour of Var(Nf) as a function of ÆNfæ for the Ising model and 
for data obtained both from experiments and from hard-sphere 
Monte Carlo simulations (see Supplementary Information). Results 
from experiment and simulation agree at both low and high volume 
fraction and differ from those of the Ising model, especially at high 
volume fraction when interactions are strong. Three length scales 
affect the physics in this problem: sphere diameter, wall separation, 
and lattice constant. Therefore, two length ratios can be varied. The 
simulations showed explicitly (Fig. 3, Supplementary Fig. 5) that the 
frustration behaviours as functions of sphere diameter for different 
plate separations were similar as long as the plate separation did not 
exceed approximately two particle diameters22,23 . 

Zigzagging stripes 
Ideal geometrically frustrated systems, such as the antiferromagnetic 
Ising model, are highly degenerate with extensive entropy at zero 
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Figure 3 | Fluctuation in the number of frustrated bonds per particle as a 
function of its average. Experiments quantitatively agree with hard-sphere 
simulations at different plate separations, h, normalized by the average in-
plane lattice constant, L. Simulations collapse onto a single curve and deviate 
significantly from the behaviour in the Ising model. 

temperature. However, in real materials, subtle effects—for example 
anisotropic interactions9, long-range interactions32, boundary condi-
tions33 and lattice distortions34–36—relieve frustration. Our partially 
ordered zigzag-stripe phase at high volume fraction is an example of 
frustration relief by lattice distortion. In the colloidal monolayer the 
triangular packing is self-assembled, and the particles are not forced to 
remain at fixed positions on the lattice26. This deformability and the 
fact that the free volume of the system is a collective function of all 
particle positions breaks the mapping to simple Ising models with 
pair-wise-additive nearest-neighbour interactions. In fact, the posi-
tions of the colloidal particles may be thought of as comprising a 
planar structure that crumples between the two confining planes. 
This ‘crumpling’ leads to deformations of the planar triangular lattice 
with satisfied bonds (projected onto the plane) on average 3–4% 
shorter than frustrated bonds (see Supplementary Table 1). This dif-
ference is consistent with the notion that each pair of neighbouring 
particles prefers to be separated by the same fixed distance in three 
dimensions (3D), whether or not their connecting bond is satisfied. 

A simple tiling argument demonstrates why the colloidal system 
ground-state configurations of stripes and zigzags pack better than 
the disordered Ising configurations (Fig. 4). The tiling model shows 
explicitly that maximal volume fractions of stripe and zigzag phases 
are the same (see Supplementary Information). Each triangular pla-
quette in the Ising ground state contains two satisfied bonds and one 
frustrated bond. Thus, when spheres are close-packed in 3D, the 
equilateral triangle defined by each such triplet of neighbouring part-
icles is tilted, and when projected onto the 2D plane, it deforms into 
an isosceles triangle with two short sides along the satisfied bonds and 
one long side along the frustrated bond (Fig. 4a, b). Subsequently, 
close-packed configurations of the buckled spheres in 3D are 
described by tilings of the plane by isosceles triangles. Figure 4c shows 
the configurations of isosceles triangles for different numbers of fru-
strated bonds (Nf) in the basic hexagonal cell. By summing up the 
angles around the central vertex, one immediately sees that for 
Nf 5 0, 1, 3, the triangles cannot close-pack. Only the two configura-
tions with Nf 5 2 enable tiling the plane with isosceles triangles, or, 
equivalently, close-packing of the buckled spheres in 3D. 
Configuration 2b corresponds to a bend in a stripe, and 2c to a stripe 
continuing along a straight line. Both have the same maximal volume 
fraction, thus corroborating observations of zigzagging stripes in the 
experiments and simulations. 

Experiments and simulations suggest a possible preference for the 
stripes to form straight segments rather than to bend easily and thus to 
generate randomly zigzagging configurations (Fig. 2a). Zigzagging 
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Figure 4 | Tiling the plane with isosceles triangles. a, Close-packed spheres 
are separated by one particle diameter d in 3D. This distance projected on the 
2D plane remains d for a frustrated bond (sisj 5 1), but is reduced topffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
x~ (d2{(h{d)2) for a satisfied bond (sisj 5 21). b, Viewed from above, 
each plaquette in the lattice tends to deform to an isosceles triangle with one 
long side (d) along the frustrated bond and two short sides (x , d) along the 
satisfied bonds. The angle larger than p/3 is marked in red. c, All possible in-
plane local particle configurations appearing in the Ising ground state. The 
isosceles triangles can tile the plane without extra space only for Nf 5 2. The 
‘white space’ for Nf 5 0, 1, 3 corresponds to additional excluded volume. 
d, e, Tilings corresponding to striped and disordered Ising ground-state 
configurations, respectively, of Fig. 1c, d. 

stripes can be viewed as a random stack of ordered lines of alternating 
up and down particles (Fig. 1c); thus straight and zigzagging stripes are 
analogous to the face-centred cubic (f.c.c.) lattice and the random 
hexagonal-close-packed (r.h.c.p.) structure20 in 3D. Straight and 
zigzagging stripes have the same maximal volume fraction in the 
close-packed limit. However, for smaller volume fractions there may 
be an order-by-disorder effect5,37, giving a small free volume advantage 
of straight stripes over zigzagging ones, similar to the free volume 
advantage38 of f.c.c. over r.h.c.p. in 3D. Indeed, stripes in Fig. 2a persist 
in the same direction for several particle diameters and the sample 
appears more ordered than the random zigzag stripes of Fig. 1c. 

Instead of an extensive entropy at zero temperature8, wherein S 
scales linearly with the number of particles in the system (N), the 
buckled system has subextensive entropy. The number of zigzagging 
striped configurations grows exponentially with the linear dimension 
of the system (there are two possible ways of placing one row relativepffiffiffiffi 
to its predecessor in Fig. 1c); hence the entropy scales39 as N . 
Alternatively, a non-branching single-line labyrinth is dictated byffiffiffiffi ffiffiffiffi 

between the various energy minima. Like the glassy behaviour of an 
Ising model on a deformable lattice43,44, the slow dynamics we 
observe at low temperature is a consequence of the absence of local 
zero-energy modes in the bulk. 

Our system permits direct visualization of ‘spin flipping’ and the 
motions of thermal excitations and defects in frustrated systems (see 
Supplementary Movies). Thermal excitations labelled as coloured 
triangles in Fig. 2c, f were typically found to be generated/annihilated 
in pairs owing to the flipping of a particle shared by the two triangles. 
Well-isolated thermal excitations, on the other hand, appear to be 
more stable. To quantify these effects, we first extract the full time 
trajectory, si(t), of each particle i from the movies. In Fig. 5b we plot 
the single-particle autocorrelation function C(t) 5 [Æsi(t)si(0)æ 2 
Æsiæ2]/[Æsi 

2æ 2 Æsiæ2], averaged over all particles not at lattice defects. 
As the temperature is lowered, the correlation function develops a 
stretched exponential form, C(t) 5 exp[2(t/t)b]. The measured 
relaxation time t exhibits a dramatic increase as the particles swell 
at low temperature, whereas the extracted stretching exponent b 
decreases, indicating slow dynamics similar to those found in 
glasses45. 

To further explore the dynamics of different local configurations 
(defined in Fig. 5a), Fig. 5c shows the measured flipping rate fr of 
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should be flipped for the system to rearrange from one zigzag-stripe 
configuration to another. Subextensive ground-state entropy also 
appears in related models emulating systems with glassy dynamics40. 
Similar zigzag stripes have been observed in superconducting arrays 
in external fields41 and in microscopic Ising models42. 

Dynamics 
Taken together, these observations have interesting consequences for 
the ground-state dynamics of frustrated systems. The Ising ground 
state has a local zero-energy mode, as shown in configuration 3c in 
Fig. 5a: the central particle can flip without changing the energy of the 
system, thus rapidly relaxing spin correlations via a sequence of such 
single spin flips, even at zero temperature. For buckled spheres, on 
the other hand, the close-packed configurations have only particles 
with Nf 5 2, and, moreover, even a particle with Nf 5 3 in an excited 
configuration has to cross an energy barrier in order to flip. Thus 
frustration relief creates a ‘glass-like’ medium having energy barriers 
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Figure 5 | Single-particle dynamics. a, Local configurations are labelled by 
their value of Nf and an index a, b, c indicating the precise geometrical 
arrangement of the frustrated neighbours for Nf 5 2, 3, 4. Symmetry under 
rotation and inversion reduces the 27 possible configurations to the 13 given 
here. b, Single-particle autocorrelation functions plotted versus decay time. 
Lines are fits to stretched exponentials C(t) 5 exp[2(t/t)b], with t and b 
given in the inset. c, Flipping rates for the different local environments. 
Configurations 7n and 5n are defects in the in-plane lattice, with 7 and 5 
nearest neighbours. 
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single particles with a fixed neighbour structure. We measured the 
probability p that a particle flips between consecutive images given 
that the Ising states of its neighbours remained unchanged. The time 
intervals of dt 5 1/30 s between frames were short enough that p was 
typically small (0.36 at most) and the flip rate could be approximated 
by fr 5 p/dt. At high temperature, the behaviour is similar to that of 
an Ising model undergoing Glauber dynamics: fr / exp(2DE/kBT), 
where the energy difference DE is proportional to the difference in Nf 

before and after flipping. As the volume fraction is increased by low-
ering the temperature, particle dynamics slow by 1–2 orders of mag-
nitude and, more interestingly, significant differences develop 
between different geometrical configurations with the same Nf. 
Such phenomena may not appear in the simple Ising model where 
the Hamiltonian depends only on Nf. 

Defects in the underlying lattice can strongly affect the properties 
of frustrated systems. However, detailed knowledge about the role of 
defects in frustrated systems is very limited. Our experiments permit 
direct visualization of defects nucleating, annihilating and diffusing 
(Supplementary Movies). By comparing trajectories containing dif-
ferent numbers and types of defects, initial studies suggest that 
defects, namely particles that do not have exactly six nearest neigh-
bours, have enhanced in-plane diffusion (Supplementary Fig. 6) and 
slower flipping dynamics than those averaged over particles with six 
nearest neighbours. 

Outlook 
We have presented experimental measurements of single-particle 
statics and dynamics in a geometrically frustrated system. Other 
experimental systems offering ‘single-spin’ resolution are based on 
lithography10–12. An attractive feature of the lithographic systems is 
that any underlying lattice can be created. Colloidal suspensions in 
2D, by contrast, will self-assemble into triangular lattices unless an 
external potential is applied, and because the colloidal system is 
entirely self-assembling, it possesses a comparatively rich phenom-
enology originating from lattice deformability. The colloids also offer 
the possibility of dynamical studies; the lithography-based arrays, by 
contrast, are frozen in place. 

The 2D colloidal frustrated ‘antiferromagnet’ we have studied pro-
vides an ideal platform for future study of the properties of frustrated 
and glassy systems. Sample dynamics and structure can be microscop-
ically imaged, and the system can be perturbed and manipulated with 
laser tweezers and other tools. It thus offers hope for deeper insights 
into the interplay between frustration relaxation and order—for 
example the formation of phases with lower entropy than the anti-
ferromagnetic Ising ground state—and into the connections between 
glassy dynamics, frustration and subextensive yet system-size-
divergent entropy. Further experiments to address these issues are 
readily envisaged. For example, potential energy landscapes for the 
particles can be created using laser tweezers of varying periodicity and 
strength (including rigid lattices), enabling experimenters to explore 
the role of lattice deformability in the dynamics and the creation of 
structure. Optical or magnetic traps can be used to flip and to move 
individual spins, and video microscopy can be used to probe the 
resulting system’s responses. Boundaries affect frustration, but they 
are not well studied; such effects could be created by changing sample 
cell geometry or by fixing particles to the boundary. Gravity, external 
fields, and surface treatment can be used to mimic the effects of 
applied magnetic fields on frustrated magnetic systems. Defects affect 
frustration but have not been explored at the single-particle level; such 
effects can be studied by doping with particles having different shapes 
and interaction potentials. In the theoretical arena, it will be interest-
ing to consider possible modifications to the rigid-lattice Ising model 
that generate a zigzagged-stripe ground state. This should allow a 
fuller exploration of the relation between buckled colloidal systems 
and the compressible Ising model, including the possibility of gen-
erating order-by-disorder via thermal fluctuations. It should also 

enable the study of glassy dynamics arising from subextensive zero-
temperature entropy. 
Note added in proof: Blunt et al.46 have recently measured motions of 
excitations in a molecular system which may be mapped onto the 
triangular-lattice antiferromagnetic Ising model. 
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