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Abstract: Resting-state functional connectivity analysis using optical neuroimaging holds the
potential to be a powerful bridge between mouse models of disease and clinical neurologic
monitoring. However, analysis techniques specific to optical methods are rudimentary, and
algorithms from magnetic resonance imaging are not always applicable to optics. We have
developed visual processing tools to increase data quality, improve brain segmentation, and
average across sessions with better field-of-view. We demonstrate improved performance using
resting-state optical intrinsic signal from normal mice. The proposedmethods increase the amount
of usable data from neuroimaging studies, improve image fidelity, and should be translatable to
human optical neuroimaging systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical functional neuroimaging holds promise to link mouse models of neurological disease
to the insights about human neuroscience gained from functional magnetic resonance imaging
(fMRI). A major analysis tool in this field is resting-state functional connectivity, which enables
mapping of distributed brain networks using correlated hemodynamics in the absence of tasks [1].
The ability to assess brain functional integrity without task- or stimulus-paradigms is well-suited
for both clinical populations [2] and preclinical mouse models [3]. Recently, resting-state
functional connectivity analysis has been adapted for use with optical intrinsic signal (OIS)
imaging [4,5] and for fluorescence imaging using voltage-sensitive dyes [6] and genetically-
encoded calcium indicators [7–9]. These techniques, in turn, are stimulating development of new
imaging biomarkers of neurologic disease in preclinical models [10–13].
While resting-state optical imaging algorithms are informed by fMRI, direct translation of

the entire fMRI processing stream is not possible. For example, concurrent anatomic imaging
and whole-brain coverage in MRI enables advanced brain segmentation techniques [14–17].
Furthermore, in MRI, once the cortical surface is identified and the data transformed to an atlas,
then analysis across subjects is relatively simple. Since every location in the brain is sampled
in every subject, the data can be averaged or concatenated. Conversely, no reliable structural
data exists in optical imaging with which to segment the data. For optical neuroimaging in mice,
the images consist of the dorsal surface of the brain as well as surrounding tissue (e.g., skull,
overlying veins, skin, and hair). In the existing literature, to segment the brain from these other
tissue types, a single imaging frame is viewed, and the region corresponding to brain is traced
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manually [4,5,8,18]. Analysis of functional signals is then performed on pixels judged to be
within the brain mask. One important limitation of this method is that it relies significantly on
operator judgement which, we hypothesize, causes unintended variability in border selection.
Additionally, this approach is limiting because it does not offer flexibility to remove individual
pixels within the larger field-of-view, for example to mask regions of low signal-to-noise due to
overlying venous sinuses or optical defects in the cranial window.
Lack of whole-brain coverage further complicates the process of combining data across

multiple scans. Since the imaged region may vary between subjects, or even sessions from the
same subject, an individual pixel might correspond to brain in one mouse but not in another. The
most common method to account for variation has been to perform the final analysis only on
the intersection of masks from all sessions (i.e., only on those brain areas that were imaged in
every session) [10,11,18,19]. The only advantage of this method is simplicity. If there is only
slight variation between sessions, then the number of pixels lost by taking the intersection may be
minimal, but for studies that include a large number of subjects, even with an ideal field-of-view,
the number of pixels lost can become substantial. Similarly, any session with a small field-of-view
must be excluded, or else it would corrupt the global analysis for the entire population.
In this contribution, we improve on existing methods by developing semi-automated optical

brain image segmentation techniques and averaging methods that tolerate heterogeneity in the
field-of-view between scans. Briefly, we first created automated pixel-wise quality control
metrics to exclude low quality pixels from the data analysis. Previously, systematic quality
control has been used to exclude entire imaging sessions [10,11], but to our knowledge it has
never been used on a pixel-wise basis. The initial mask created by this automated process
is then used as an initial condition for manual brain segmentation, which we show improves
unintended variation in segmentation. Secondly, we developed methods to combine these data
across imaging sessions and across subjects in a censored fashion. The new averaging approach
accounts for varying fields-of-view and brain masks, with the understanding that data in any
pixel may only be partially known. The success of these visual image processing algorithms are
demonstrated with resting-state OIS data from mice, but the same fundamental approach should
be applicable to task-based paradigms and for other optical modalities such as diffuse optical
tomography. Broadly, these techniques should permit an easier, standardized, and more thorough
analysis in functional studies that employ optical imaging techniques to study the brain and have
large sample size. Thus, they will improve study fidelity and aid the development of imaging
biomarkers.

2. Methods

Definitions of the variables used herein are supplied in Table 1, as well as at first use.

2.1. Optical intrinsic signal imaging system

The optical intrinsic signal (OIS) imaging system is similar to that described previously [4]
(Fig. 1(A)). Briefly, illumination is derived from a 470 nm LED (Thorlabs M470L3-C1).
Sequential images were acquired with a cooled, CCD camera (iXon 887, Andor Technologies).
Crossed polarizers were used to eliminate light signal from specular reflection. The system was
controlled with custom-written software using Matlab and the Andor software development kit.

2.2. Animal preparation and imaging

All procedures were approved by the institutional animal care and use committee (IACUC) at the
Children’s Hospital of Philadelphia. Male C57bl/6 mice (ages 8 to 13 weeks) were anesthetized
with a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg) through intraperitoneal injection.
After adequate anesthesia was achieved (usually after approximately 10 minutes), the animal was
held in place with ear bars and kept warm with a heating pad. The hair on the dorsal surface
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of the head was removed with a depilatory cream, and the scalp was cleaned with iodine and
ethyl alcohol. The scalp was incised and reflected to expose the skull from the olfactory bulb
(anteriorly) to the superior colliculus (posteriorly) with as much lateral exposure as possible.
Either the exposed skull was coated with a thin layer of mineral oil to create a smooth optical
interface, or a glass through-skull cranial window was placed using transparent dental cement
[20] (Fig. 1(B)). This procedure usually took about 10-15 minutes, and imaging began about
20-30 minutes after anesthetic injection.

Table 1. Definitions of variables.

Φ(x, y, t) Raw images of light intensity over time as captured by the camera.

Φ′(x, y, t) Detrended images of light intensity over time.

M(x, y) Mean value of each pixel’s time course.

S(x, y) Standard deviation of each pixel’s time course (after detrending).

BSAT (x, y) Boolean pixel mask for saturation,

where included pixels have a value of 1 and saturated pixels 0.

BSNR(x, y) Boolean pixel mask for signal-to-noise,

where included pixels have a value of 1 and low SNR pixels 0.

BLC(x, y) Boolean pixel mask for local correlation,

where included pixels have a value of 1 and low local correlation pixels 0.

B0(x, y) Combination Boolean mask using the three masks:

BSAT (x, y), BSNR(x, y), and BLC(x, y).

BM(x, y) Manual segmentation.

BG(x, y) Guided segmentation.

λ1 Masking parameter for SNR mask.

λ2 Masking parameter for correlation mask.

∆µa(x, y, t) Images of changes in the absorption coefficient over time.

L Optical pathlength.

g Spatial Gaussian smoothing kernel.

∆µ′a,i(x, y, t) Spatially-smoothed images of changes in the absorption coefficient over time.a

P(x, y) Number of pixels included in each pixel’s interpolation after smoothing.

BG2(x, y) Guided segmentation interpolated by smoothing.

Si(t) Global signal averaged over the segmented brain.a

βi(x, y) Regression coefficient at each pixel for the global signal.a

∆µ′′a,i(x, y, t) Images of changes in the absorption coefficient over time

after spatial smoothing and global signal regression.a

R(n,m) Matrix of correlation coefficients.

M(n,m) Boolean mask for correlation coefficient matrix.

F(n,m) Matrix of Fisher-transformed correlation coefficients.

aThe subscript i denotes the segmentation method.

Resting-state time series were acquired in 5 minute imaging runs. Three to six runs were
obtained sequentially in each mouse (15 to 30 minutes of total imaging time). Data from the
camera consists of a series of images of light intensity over time, Φ(x, y, t). The two-dimensional
images cover the dorsal surface of the mouse brain and surrounding tissue (Fig. 1(C)), with the x
direction indicating right-to-left and the y direction posterior-to-anterior. The field-of-view of
the camera was about 1.5 cm (sampled by 128 pixels for a pixel size of approximately 100 µm ×
100 µm) along both the x and y directions. Each 5-minute run consisted of 8928 frames sampled
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Fig. 1. Schematic of the optical intrinsic signal (OIS) imaging system. (A) Diagram of
system components and light path. (B) Cross-section of the mouse head during imaging. (C)
Schematic of the field-of-view demonstrating the goal of segmentation. The exposed brain
is shown in light gray, with surrounding hair and skin in dark gray. Major suture landmarks
are shown in red. Points used for the atlasing affine transformation are in yellow.

at 29.76 Hz. To highlight the utility of our statistical methods for wide variations in field-of-view,
we also utilized runs that were suboptimal for analysis; errors associated with suboptimal runs
include camera saturation and limited dental cement application.

2.3. Masking

Rather than performing a quality-control procedure to keep or eliminate entire runs, we developed
a pixel-wise masking procedure to remove pixels likely to contain data unrelated to neural
hemodynamics. This procedure was designed to ensure high data quality and to serve as a
guide for later brain segmentation. Masks were created to remove (1) saturated pixels, (2) low
signal-to-noise pixels, and (3) pixels whose data are uncorrelated with their neighbors. In each
case, the mask consists of a Boolean matrix of pixels, B, where a value of one indicates a pixel to
be kept for analysis, and zero indicates a pixel to be excluded.
First, if at any time, a pixel in the camera was saturated (bit depth 214), then the entire time

course for that pixel was excluded:

BSAT (x, y) =


1 if Φ(x, y, t)<214 for all t;

0 if Φ(x, y, t) ≥ 214 for any t.
(1)

In order to remove temporal drift, a linear trend was removed from every pixel (maintaining the
same mean). Specifically, let the mean value of each pixel be:

M(x, y) =
1
T

T∑
t=1
Φ(x, y, t). (2)

Then, each pixel’s data was fit to linear trend:

Φ(x, y, t) = a1(x, y) × t + a0(x, y). (3)

The trend was then removed:

Φ
′(x, y, t) = Φ(x, y, t) − [a1(x, y) × t + a0(x, y)] +M(x, y). (4)

For future use, we define the temporal standard deviation for each pixel:

S(x, y) =

√√√
1

T − 1

T∑
t=1
[Φ′(x, y, t) −M(x, y)]2. (5)
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To remove pixels with low signal-to-noise, we hypothesized that system noise should follow
a Poisson process with the standard deviation of each pixel increasing linearly roughly with
the square root of the mean intensity of each pixel. This expectation was borne out by visual
inspection of the data (see Results). So, the standard deviation data across each session was fit to
a linear relationship:

S(x, y) = b1
√

M(x, y) + b0. (6)

Pixels were considered to have good signal-to-noise if their standard deviation was within a
tolerance of this function; otherwise they were excluded:

BSNR(x, y) =


1 if S(x, y) ≤ λ1b1
√

M(x, y) + b0;

0 if S(x, y)>λ1b1
√

M(x, y) + b0.
(7)

For the present data, we employed a value of λ1 equal to
√
2, which was found to be a good

discriminator. This value was chosen based on visual inspection of the resulting masks.
Finally, we performed a correlation analysis of each pixel with each of its four neighboring

pixels: r(x−1,y), r(x+1,y), r(x,y−1), and r(x,y+1). For a pixel to be included, these correlation values
had to meet a minimum threshold (λ2):

BLC(x, y) =


1 if all r>λ2;

0 if any r<λ2.
(8)

Note that this method is similar to the fMRI metric regional homogeneity (ReHo) [21], although it
relies on correlation coefficients rather than Kendall’s coefficient of concordance. Our expectation
was two-fold. First, in pixels corresponding to regions in space where few photons entered
tissue and diffused (e.g., due to hair or overlying large vasculature), there would little correlation
between neighboring pixels. Secondly, along interfaces (e.g., brain-skin at the edge of the cranial
exposure), there would be less correlation between adjacent pixels. Note also, with the system’s
field-of-view, the pixel size of the camera is well above the speckle size for the incident light. For
our data, we found that λ2 of 0.1 was a good discriminator; again this value was chosen based on
visual inspection of the data and resulting masks.

2.4. Brain segmentation

Two methods were used for brain segmentation and then compared. The first method was what
has been used in prior literature. A false-color image of the mouse brain acquired by the camera
was viewed, and the brain was manually segmented from its non-neural surroundings by drawing
a border around the brain:

BM(x, y) =


1 if within manual segmentation;

0 if outside manual segmentation.
(9)

For the remainder of the manuscript, we refer to this method as manual segmentation.
For the new, second method, the three brain masks created above were combined to create one

mask per imaging session:

B0(x, y) = BSAT (x, y) × BSNR(x, y) × BLC(x, y). (10)

This combined mask was then applied to the same false-color image of the mouse brain. In this
way, the person performing the segmentation could see which pixels had been automatically
excluded. Using these masked pixels as a guide to where the brain/surrounding-tissue interface
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should be, further regions were excluded from the brain segmentation manually. Pixels eligible
for further processing needed to be within this segmentation and to pass the combined quality
metrics:

BG(x, y) =


1 if B0(x, y) = 1 and within manual segmentation;

0 if B0(x, y) = 0 or outside manual segmentation.
(11)

For the remainder of the manuscript, we refer to this method as guided segmentation.
Our hypothesis was that the guided segmentation would create more consistent brain segmen-

tations than the manual segmentation. To test this hypothesis, for each run, manual segmentation
and guided segmentation were both performed twice by one rater (BRW) and once by a second
rater (JPC). Both intra- and inter-rater agreement were quantified using three metrics. One
metric, the Dice coefficient is a common metric for measuring segmentation overlap; however,
it is relatively insensitive to error in settings of high overlap. We also employed the Jaccard
coefficient, which is similar to the Dice coefficient, but is more sensitive to error. Finally, since
the segmentation errors are entirely errors in the border, for a third metric we used the boundary
F1 score (Matlab function bfscore), which compares agreement between the segmentation border
contours. For all of these metrics, the possible values range between zero (no agreement) to
one (perfect agreement). Values for the metrics for both intra- and inter-rater comparisons are
presented as medians and interquartile ranges (IQRs). To judge improvement with the new
methodology, the value of each metric for manual segmentation was compared against that for
guided segmentation using paired t-tests.

2.5. Image processing

Further analysis beyond the raw images was performed separately with both segmentation
methods, with procedures similar to those in prior reports [4]. Intensity measures were converted
to relative absorption changes using the modified Beer-Lambert law:

∆µa(x, y, t) = −
1
L

ln
(
Φ(x, y, t)
M(x, y)

)
, (12)

where L is the optical path-length in tissue. Pixel time traces were then filtered to select
frequencies from 0.008 to 0.09 Hz (i.e., the low-frequency hemodynamic fluctuations responsible
for functional connectivity [1]). Data were then down-sampled to 1 Hz.

2.5.1. Spatial smoothing.

Each image of absorption change was then smoothed with a Gaussian kernel, g (5 × 5 pixel box,
1.3 pixel standard deviation, normalized to total value 1) [4]. In prior publications, which is
also the approach we adopt for our analysis of manually segmented data, this smoothing was not
affected by the segmentation:

∆µ′a,M(x, y, t) =
2∑

∆x=−2

2∑
∆y=−2

∆µa(x + ∆x,y + ∆x, t) × g(∆x,∆y). (13)

By contrast, for guided segmentation images processed with pixel-wise quality metrics, only the
masked pixels were included in the Gaussian smoothing:

∆µ′a,G(x, y, t) =
∑2
∆x=−2

∑2
∆y=−2 ∆µa(x + ∆x,y + ∆x, t) × g(∆x,∆y) × BG(x + ∆x, y + ∆y)∑2

∆x=−2
∑2
∆y=−2 g(∆x,∆y) × BG(x + ∆x, y + ∆y)

. (14)
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With this method, the number of pixels whose values are included in each smoothed pixel is:

P(x, y) =
2∑

∆x=−2

2∑
∆y=−2

BG(x + ∆x, y + ∆y). (15)

A pixel was included in the final analysis if either: (1) it had itself passed the quality metrics, or
(2) its value could be interpolated through the smoothing algorithm by using at least ten pixels
(out of 24 neighboring pixels within the 5 × 5 pixel smoothing box) that had passed the quality
metrics:

BG2(x, y) =


1 if BG(x, y) = 1 or P(x, y) ≥ 10;

0 if BG(x, y) = 0 and P(x, y)<10.
(16)

Thus, after Gaussian filtering, we effectively had a new composite image mask with some of the
gaps from masking filled in by interpolation.

2.5.2. Affine transform.

From a representative image for each session, two landmarks were manually located: the lambda
(at the midline sagittal junction of the cerebrum and superior colliculus) and the midline sagittal
junction of the cerebrum and the olfactory bulb (Fig. 1(C)). Using these references, all sessions
were affine transformed without shear (i.e., translation, rotation, and one stretch parameter were
allowed to vary) to a common atlas space. Both brain masks (manual and guided) for each mouse
were correspondingly transformed.

2.5.3. Global signal regression.

A global signal was then created by averaging over all pixels within the brain segmentation:

SM(t) =
∑X

x=1
∑Y

y=1 ∆µ
′
a,M(x, y, t) × BM(x, y)∑X

x=1
∑Y

y=1 BM(x, y)
, (17)

and

SG(t) =
∑X

x=1
∑Y

y=1 ∆µ
′
a,G(x, y, t) × BG2(x, y)∑X

x=1
∑Y

y=1 BG2(x, y)
. (18)

The global signal was regressed from all pixels before further analysis:

βi(x, y) =
T∑

t=1
Si(t) × ∆µ′a,i(x, y, t); (19)

∆µ′′a,i(x, y, t) = ∆µ
′
a,i(x, y, t) − βi(x, y) × Si(t); (20)

where the subscript, i, corresponds to either manual, M, or guided, G, segmented data.

2.6. Functional connectivity analysis and statistics

For simplicity of analysis, the data series ∆µ′′a (x, y, t) is reshaped to be a N-by-T matrix, ∆µa(n, t),
wherein there are N pixels and T time-points. Additionally, for simplicity we drop the prime
superscripts (as all data forward will have undergone spatial smoothing and global signal
regression) and the subscript denoting the segmentation method (since the methods below apply
to either segmentation). Without loss of generality, each pixel’s time series was scaled to
zero-mean and unit-variance.
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2.6.1. Correlation matrix and masking.

With this procedure, we created the matrix of correlation coefficients:

R(n,m) = ρ(∆µa(n, t),∆µa(m, t) =
1
T

T∑
t=1
∆µa(n, t) × ∆µa(m, t). (21)

Since correlation coefficients between pixels are of interest only if both are in the brain mask, we
constructed a mask for this R matrix:

M(n,m) =


1 if B(n) = 1 and B(m) = 1;

0 if B(n) = 0 or B(m) = 0.
(22)

M(n,m) is unity if R(n,m) is a correlation coefficient between two pixels within the brain mask,
and it is zero otherwise.

For seed-based functional connectivity analysis, a pixel of interest (the seed) is chosen, and the
corresponding row from the connectivity matrix, R, selected. These correlation coefficients are
then reshaped to 128 × 128 pixels and are displayed as a map of correlation coefficients on the
surface of the mouse brain (with the equivalent row ofM providing the brain segmentation). Seeds
were selected based on the expected locations of canonical cortical regions from histological
mouse brain atlases.

2.6.2. Averaging.

The correlation coefficients are not normally-distributed (they are bounded by −1 and 1).
Therefore, for statistical analysis, they are converted using Fisher’s transform to an approximate
normal distribution: F(n,m) = arctanh(R(n,m)). This statistic has the advantage that values can
be more accurately averaged compared to averaging raw correlation coefficients [22,23].
If the viewed area was the same for every session and for every mouse, then it would be

straight-forward to create an averaged correlation (transformed) matrix, because F could simply
be averaged across sessions. However, since B and M are different for each session, we must
account for this variation. In previous work, analysis was performed on the intersection of all
brain masks; we will refer to this procedure in this manuscript as the intersect method. Let the
number of sessions for a given mouse be S, and let the subscript s denote the relevant matrix
from each session. Further, let the subscript I denote overall data averaged with the intersect
method. Then:

MI(n,m) =
S∏

s=1
Ms(n,m) =


1 if all of Ms(n,m) = 1;

0 if any of Ms(n,m) = 0.
(23)

FI(n,m) =
∑S

s=1 Fs(n,m)
S

×MI(n,m). (24)

We propose to explore the alternative averaging method which treats the data as censored, that is,
the data are only partially known. For the purpose of this manuscript, we call this procedure the
censored method. Let the subscript C denote overall data averaged with the intersect method.
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Then:

MC(n,m) =


1 if any of Ms(n,m) = 1;

0 if all of Ms(n,m) = 0.
(25)

FC(n,m) =
∑S

s=1 Fs(n,m) ×Ms(n,m)∑S
s=1 Ms(n,m)

. (26)

We can also keep track of the number of pixels included in each component of FC:

N(x, y) =
S∑

s=1
Ms(n,m). (27)

For display, the averaged F is converted back to a correlation coefficient: R(n,m) = tanh(F(n,m)).
Seed-based correlation analysis is performed as before with a seed pixel being chosen and the
corresponding row of R displayed with the brain mask being the same row of M.

For the intersect method, as one might expect, the final brain segmentation is the intersection
of the component brain segmentations. That is, every non-zero row of MI is equal. On the other
hand, with the censored method, the brain segmentation for each seed-based map depends on the
seed pixel. For example, consider the case of two sessions with overlapping but non-identical
segmentations. Then, pixels with data only from session 1 would have no correlation coefficients
with pixels that have data only from sessions 2. Thus, it is important to keep track of MC so as to
be able to construct the appropriate field-of-view for any given seed pixel.
Now, that we have averaged over mice, an equivalent averaging procedure can be used to

average across mice, by replacing the products and sums over sessions with products or sums
across mice.

3. Results

Seven mice were scanned using our custom-built OIS imaging system. The mice were imaged in
5 minute scans with 3 to 6 scans per mouse. To highlight the ability and value for combining
different fields-of-view, mice with suboptimal sessions were included in the data set. Two of the
mice were scanned with exposed skulls covered by a thin layer of mineral oil. Five mice were
scanned with through-skull cranial windows secured with dental cement; in three of these mice,
insufficient dental cement was used, and thus the field-of-view was restricted to the medial cortex.
Additionally, there are sporadic other artifacts in the images including camera saturation and
bubbles in the dental cement, which will be identified and processed by the pixel-wise quality
control metrics.

3.1. Brain segmentation

The first step in data processing is quality assessment performed on a pixel-wise basis. Saturation
of the CCD camera was rare, but it occurred in some sessions, and in one run it resulted in the
exclusion of a relatively large number of pixels in the center of the field-of-view (Fig. 2). The
median number of pixels excluded by this metric across all sessions was 0 (IQR: 0-0; range:
0-226, 0-1.4%). Note, that there are 16,384 (1282) total pixels in the image.
We next masked pixels based on signal-to-noise (Fig. 3). For each session, each pixel’s

standard deviation over time was plotted against the square root of its mean value. We expected
this plot to follow a linear relationship (see Methods). By visual inspection, this expectation was
true, with the majority of scans having a tight linear distribution (Fig. 3(B)). The majority of
pixels that failed this signal-to-noise threshold fell along the brain-skin interface, but a number of
pixels were also excluded from the central area of brain indicating that not all central pixels should
be assumed to be of equal quality, as would occur with fully manual segmentation (Fig. 3(C-D)).
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Fig. 2. Examples of the saturation masking procedure. Data is shown prior to affine
transformation. (A) Image of the maximum light intensity measured over time in mouse 2,
session 5. (B) BSAT for this session. In this case, no pixels were excluded, and all pixels
have a value of 1 (shown in white). (C) Similar image to A for mouse 3, session 3. In
this case, the LED was accidentally set to be too bright, resulting in saturation over the left
retrosplenial and parietal cortex. (D) The saturation mask, similar to B, for this session
demonstrating exclusion of the saturated pixels (marked in black).

For other scans, more noisy pixels were present (Fig. 3(F-H)), but again the linear relationship
with the square-root of mean pixel counts held, and pixels that were excluded helped to outline
the brain interface. The median number of pixels excluded by this metric across all sessions was
208 (1.3%; IQR: 148-300, 0.9-1.8%; range: 19-565, 0.1-3.5%).
The third quality metric is based on the local correlation between adjacent pixels (Fig. 4).

Across the visualized cerebral cortex, local correlations are high (near one). Note that these
local correlations will not be equal to the correlation coefficients between adjacent pixels in
later functional connectivity analysis because, during the current masking step, the data has not
undergone temporal filtering and spatial smoothing, which increase local correlation coefficients.
As expected, local correlations are very low (near zero) in the regions covered with fur (the upper
right and upper left corners of Fig. 4(B, E)); in these cases, the photons do not enter tissue. Local
correlation is also low at the border regions (either brain-skin or at the edge of the dental cement,
arrows in Fig. 4). The mask thus created is also helpful delineating the brain region and for
guiding manual segmentation. Overlying venous sinuses (seen along the midline, for example)
also result in lower local correlation. This metric removed the largest number of pixels (due to
the large areas of hair in the full images) with a median number of pixels across all sessions
excluded of 8193 (50%; IQR: 6661-10011, 41-61%; range: 2687-11048, 16-67%).
The structure of the masks using these metrics was generally similar across runs during the

same imaging session (Fig. 5). In all cases, the masks outlined the interface between brain and
surrounding tissue. Additionally, the venous sinuses that run along the sagittal and coronal
sutures were frequently removed by masking. However, the masks also captured sources of noise
specific to each run: either large areas of spurious signal (Figs. 2(D) and 3(H)) or single pixels
unique to each run (Fig. 5).
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Fig. 3. Example data demonstrating the signal-to-noise pixel quality metric. Data is shown
prior to affine transformation. (A) Maximum intensity image (same as Fig. 2(A)) shown as
an anatomic reference. (B) The standard deviation of each pixel over time is plotted against
the square root of the intensity. Data is from mouse 2, session 5. The linear regression line
of best fit is shown in green. Pixels meeting the SNR threshold are colored blue while pixels
that failed and will be excluded from analysis are shown in red. (C) Image of the standard
deviation for each pixel divided by the square root of the mean intensity for the same data.
(D) SNR mask created from the data in C. In this session, only a few pixels were excluded
based on this metric (shown in black). (E-H) The same analysis as A-D, now for mouse 3,
session 3. Here, while the data is noisier, the same linear relationship holds. Pixels at the
border of the dental cement (green arrows) show lower SNR and are excluded (black pixels
in H). Additionally, there is a small region in the left sensorimotor cortex (blue arrows) that
has low signal-to-noise, which upon examination of the data seems to be due to instability in
the camera read-out. Individual low quality pixels can be excluded, and the entire run need
not be discarded.

When combined, the three masks form a basis for the guided segmentation. While manual
segmentation resulted in errors at the borders of the brain, the semi-automated segmentation
resulted in improved intra-rater reliability (Fig. 6). This improvement was quantified. Guided
segmentation resulted in an increase in all measures of agreement (Fig. 7 and Table 2). The
Dice coefficient, although relatively insensitive to small variations in overlap, was high for both
methods and did exhibit a significant increase with guided segmentation. The Jaccard coefficient,
which is more sensitive to small differences, also significantly increased with guided segmentation.
The boundary F1 score, which is most sensitive to small differences in the boundary position was
highly variable with manual segmentation, but was consistently high with guided segmentation
(Fig. 7 and Table 2). As expected, inter-rater agreement was lower than intra-rater agreement,
but inter-rater agreement was much improved by using guided segmentation. With manual
segmentation, the boundary F1 score, in particular, was very low. Interestingly, with guided
segmentation, all measures of agreement were nearly as good as intra-rater agreement (Fig. 7 and
Table 2).

3.2. Single-session functional connectivity

In addition to serving as a guide for segmentation, masked pixels were removed from further
analysis, including smoothing and global signal regression. One might hypothesize that this
masking should result in cleaner hemodynamic signals and less noise in the correlation maps.
We have examined this question for a variety of scenarios and summarize some of these findings
below. Generally, when a seed was chosen from a pixel that passed all the quality metrics,
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Fig. 4. Example data demonstrating the local correlation quality metric. Data is shown
prior to affine transformation. (A) Maximum intensity image (same as Fig. 2(A)) shown as
an anatomic reference. (B) Image of the minimum value of the correlation coefficients from
each pixel’s surrounding four pixels. Areas covered with hair (in the four corners of the
image) have values around zero; boundary regions (e.g., brain-skin) have low correlations as
well. Data is from mouse 2, session 5. (C) Mask created from the data in B (excluded pixels
in black). Note that the mask highlights boundary areas where the brain region meets the
reflected skin flaps (pink arrows). (D-F) The same as A-C for mouse 3, session 3. As with
other metrics, the data from this mouse is shown to be noisier, but the mask highlights the
edge of the dental cemented region (green arrows). In all sessions, pixels are often removed
from the region of the confluence of venous sinuses where the cerebrum meets the olfactory
bulb with this mask (cyan arrows).

there was not an appreciable difference between the maps using either segmentation method
(Fig. 8(A-B)). Similarly, if a seed was chosen from a pixel that failed a quality metric, but was
surrounded by good pixels, then there was not a large effect (Fig. 8(C-D)). Thus, for this basic
level of functional connectivity analysis, spatial smoothing did a reasonable job of removing the
effects of noisy pixels even in the absence of masking.

Alternatively, one could choose a pixel as a seed that failed quality metrics and was surrounded
by other noisy pixels and was not interpolated using spatial smoothing (these pixels are thus
available for analysis only in the manual segmentation data). Such seeds resulted in noisy
functional connectivity maps without a clear neurologic basis for the correlations (Fig. 9). This
result held regardless of the particular mask that caused a pixel to fail. Thus, when larger blocks
of low quality pixels are present, their effect was noticeable and could not be removed by spatial
smoothing. Masking of these pixels prevents these noisy functional connectivity maps from
being present in the overall connectivity matrix, R.

3.3. Averaging across sessions and mice

Use of the intersection method resulted in substantial drop-out of pixels when averaging across
sessions. When using manual segmentation, we found that a median of 1378 pixels (8%,
range: 819-2108, 5-12.9%) are lost when using intersect averaging across sessions. When
using pixel-wise masking with guided segmentation in combination with the intersect averaging
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Fig. 5. Variation in the masks created by the pixel-wise quality metric across multiple runs
in the same mouse (mouse 1, sessions 1-5, prior to affine transformation). In this mouse,
camera saturation was never present; so, that mask is not shown. Note also, that the mouse
was repositioned after Run 1; so that run is slightly shifted relative to the others. For the
SNR mask (upper row), an area at the posterior edge of the left visual cortex (red arrow)
is masked in most runs, possibly due to pooling mineral oil (used in this mouse) at that
location. Additionally, scattered pixels in the center of the field-of-view are excluded in each
run. For the local correlation mask (lower row), the masks area are very similar across runs.
Common areas excluded were the areas of fur in the upper right and upper left corners, the
venous sagittal sinus (blue arrows), and along the brain-skin interface (green arrows).

Fig. 6. Demonstration of unintended intra-rater variation in brain segmentation. Data is
shown prior to affine transformation. (A) Example false color image from a single imaging
frame from the OIS system as used for brain segmentation (mouse 2, session 5). (B) Variation
in manual segmentation between two sessions by the same reader. Pixels within the first
segmentation are colored red while those in the second segmentation are colored green. The
overlap between the two segmentations is shown in yellow. (C) Reduced variation (greater
overlap) is seen between two segmentations when using guided segmentation.
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Fig. 7. Box plots for measures of segmentation reliability. For all metrics, guided
segmentation decreased variation for both intra- and inter-rater segmentation. (A) Dice
coefficient for intra-rater segmentation. (B) Jaccard coefficient for intra-rater segmentation.
(C) Boundary F1 score for intra-rater segmentation. (D-F) Same as A-C for inter-rater
segmentation.

Table 2. Metrics for intra- and inter-rater agreement using manual and guided segmentation. All
values are presented as the median and interquartile range.

Intra-rater

Manual Guided P-value

Dice Coefficient 0.96 (0.94–0.97) 0.98 (0.97–0.99) 0.0003

Jaccard Coefficient 0.92 (0.89–0.94) 0.97 (0.95–0.98) 0.0002

Boundary F1 Score 0.68 (0.49–0.76) 0.96 (0.92–0.99) <0.0001

Inter-rater

Manual Guided P-value

Dice Coefficient 0.92 (0.89–0.95) 0.96 (0.94–0.97) <0.0001

Jaccard Coefficient 0.84 (0.81–0.90) 0.92 (0.89–0.93) <0.0001

Boundary F1 Score 0.37 (0.19–0.55) 0.91 (0.82–0.94) <0.0001
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method, then more pixels are lost (median: 1563 pixels, 9.5%; range: 1285-2799, 7.8-17.1%).
This increased loss is because the pixels excluded in each session do not always match between
sessions. With censored averaging no pixels are lost. The resulting improved field-of-view is
apparent in the seed-based functional connectivity maps (Fig. 10). In mice with a high degree of
overlap between sessions, then all methods were able to do a reasonable job at preserving a high
field-of-view (Fig. 10(A-D)). However, in mice wherein field-of-view varied more substantially
between sessions, then the censored method resulted in a larger preserved field-of-view (compare
Fig. 10(E) to Fig. 10(G) and Fig. 10(I) to Fig. 10(K)). When utilizing pixel-wise quality metrics
in combination with the intersection method, the problem is even worse, as every pixel excluded
in each single session necessarily reduces the overall field-of-view (Fig. 10(F, J)).

Fig. 8. The effects of the pixel-wise quality metrics on the results of seed-based functional
connectivity analysis in single sessions. Data is shown from mouse 1, session 1 after affine
transformation. First a seed was chosen from the left motor cortex (black circle) that had
passed all quality metrics. Functional connectivity maps are shown using both manual (A)
and guided segmentation (B). The two maps are similar; thus the presence of low quality
pixels at distant locations has little effect on the overall map. Then, a nearby pixel also in the
left motor cortex was chosen as a seed (black circle). This seed failed the local correlation
mask, but was filled in by interpolation during spatial smoothing and thus is present in
both segmentations. Maps from manual segmentation (C) are similar to that from guided
segmentation (D). Thus, in this basic analysis, the Gaussian spatial smoothing is able to
ameliorate the effects of isolated low quality pixels even without masking.

When combining data from all mice, the improvements with censored averaging are even more
apparent (Fig. 11). With manual segmentation and intersect averaging, 3.00 × 107 correlation
coefficients remain (only 11.1% of the 1284 = 2.68 × 108 possible correlations). With guided
segmentation and intersect averaging, only 1.57 × 107 correlation coefficients remain (5.9%
of all possible correlations). With guided segmentation and censored averaging, 1.57 × 108
correlation coefficients remain; this represents a 5.2-fold improvement over the prior standard
method and 58% of all possible correlations in the field-of-view. This improvement is slightly
exaggerated by the inclusion of suboptimal scans: the three runs with inadequate dental cement
restrict the lateral field-of-view of the intersect method field-of-view, and the one run with a
large region of camera saturation results in a large hole in left parietal cortex of the intersect
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method field-of-view. An alternative method to preserve field-of-view would be to simply not
use data from mice with poor field-of-view or poor signal-to-noise, but this approach can exclude
valuable data. Widely applicable analysis techniques should not rely on having only perfect data
to work. Furthermore, the data from individual mice (e.g., Fig. 10) demonstrate that even mice
with limited field-of-view still show the expected network structure and their inclusion in the
overall average should improve confidence and statistical rigor for data within the imaged regions.
Using all the data, even the suboptimal scans, is a more efficient use of mice and scanning time.

Fig. 9. Functional connectivity maps performed using seeds that failed pixel-wise quality
metrics. All data is after affine transformation. All seeds (black circles) shown in this
figure were surrounded by other pixels that failed the quality metrics and were unable to be
interpolated using spatial smoothing; thus all maps are shown using manually segmented
data only. (A) A map of correlation coefficients using a seed in the frontal cortex along the
sagittal sinus (mouse 1, session 5). This pixel failed the local correlation metric. (B) A
seed pixel chosen from the region where the camera was saturated in the left retrosplenial
cortex (mouse 3, session 3). (C) A seed pixel chosen from a region of low SNR in the left
somatosensory cortex (mouse 3, session 3). (D) A seed pixel chosen from a region of low
local correlation in the cingulate cortex and sagittal sinus (mouse 3, session 3). The resulting
images all consist of patterns without a sensible neurologic network.

The wider field-of-view provided by censored averaging permits mapping of brain regions that
are more lateral, anterior, and posterior. Although these areas were not present in every brain
exposure, they are readily mapped by the censored method. With the intersect methods some
areas such as olfactory and visual cortex are lost. Similarly, the full extent of some networks, such
as the lateral somatomotor network are seen only with the censored method. Throughout most of
the field-of-view, the correlation map using the censored data is smooth, and it is not readily
apparent that a different set of sessions are included in each point. However, along the edges of
the censored field-of-view only a small number of sessions are contributing to the overall image.
In these areas, the edges between different component fields-of-view are more obvious.
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4. Discussion

We have developed, demonstrated, and quantified novel visual processing methods to improve
the analysis of mouse optical neuroimaging data. Pixel-wise quality metrics improved the data
quality of the hemodynamic time courses and increased image quality through improved image
segmentation. These findings were quantified via decreasing unintended intra- and inter-rater
variation in brain segmentation. The new methods lead to improved confidence in the segmented
boundaries. Additionally, since the guided segmentation is less user-dependent, the segmentation
process is less dependent on expertise. Further, we developed methods to combine functional
connectivity correlation coefficients even when the pixels involved differ between sessions. These
methods compensate for both varying field-of-view in each cranial exposure and also the varying
brain masks introduced by the pixel-wise quality metrics.

Fig. 10. Demonstration of methods for combining data across sessions within a mouse.
Data is shown after affine transformation. Data in the first row (A-D) is from mouse 2 with a
seed in the left motor cortex (black or red circle). (A) Correlation coefficients from data
segmented manually and then merged using the intersect method. (B) Data segmented using
the guided segmentation and then merged with the intersect method. (C) Data segmented
using the guided segmentation and then merged using the censored method. (D) Image
showing the number of sessions contributing data for each pixel’s correlation coefficient
when censored averaging is used (here, most pixels use all three sessions). (E-H) Similar
data to A-D using data from mouse 3 and a seed in the right motor cortex. Note two large
regions that were excluded by the pixel-wise quality metrics from one session cause drop-out
in the guided segmentation / intersect method data. In the left parietal cortex, there is a
region with signal loss due to camera saturation (green arrows, compare to Fig. 2(D)). In
the left somatosensory cortex, there is signal loss due to instability in camera illumination
(blue arrows, compare to Fig. 3(H)). The censored averaging method preserves the full
field-of-view. (I-L) Similar data to A-D using data from mouse 3 and a seed in the right
retrosplenial cortex.
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The techniques presented enable a more robust statistical treatment of imaging data, enabling
finer control over data quality. One goal of this contribution is to suggest analysis methods that
preserve as much usable data as possible. Ultimately, this gain could decrease the number of
mice or sessions required and could increase statistical power. Rather than discarding mice with
limited fields-of-view, or discarding sessions with areas of poor data quality, these data can be
incorporated into the statistical model. This process is similar in concept to the fMRI technique
of removing individual frames due to motion [24,25], which enables usable data to be extracted
from sessions otherwise corrupted by subject motion. While on an individual session basis, the
exclusion of pixels with low signal-to-noise did not visually appear to change many canonical
correlation maps, more advanced metrics such as community construction and network analysis
can be highly sensitive to data quality and noise. Thus, we expect that further advantages to pixel
masking will be apparent in the future.
The quality metrics rely on multiple thresholds to determine which pixels to include. The

coefficients chosen here were selected based on visual inspection of the data and the masks
generated. Future work is necessary to determine if the values chosen here are optimal and
generalizable. For example, different wavelengths of light have different path lengths in tissue,
which may affect the masking parameter thresholds (e.g., λ1, λ2). Additionally, other optical
intrinsic signal imaging systems may have different signal-to-noise characteristics. We would,
however, expect that the approaches described here should be generalizable.

Additional insight may be gained by examining the Fourier properties of the data. For example,
techniques developed for fMRI such as amplitude of low frequency fluctuations (ALFF) [26] and
relative ALFF (rALFF) [27] may be able to differentiate brain from other tissue types. However,
the magnitudes of these metrics are not homogenous across the brain [28,29], and their utility for
segmentation is unexplored. Furthermore, because optical imaging’s high sampling rate avoids
the aliasing of high-frequency systemic physiology into the low frequency functional connectivity
band, the values of these metrics may be different with optical imaging. This difference from
fMRI may be particularly relevant for rALFF, which depends on the reference frequency band
chosen for normalization. Understanding the properties of these metrics with OIS imaging will
be part of our future work.

Other sources of noise in optical imaging data may require different types of filtering procedures.
For example, as awake optical neuroimaging in mice becomes more prevalent [19,30], imaging
quality will likely be improved by methods to remove artifacts due to motion [25]. Although
mice are restrained in these studies, motion can cause systematic errors in fMRI measurements
of functional connectivity even in restrained, anesthetized subjects [31]. Additionally, the effects
of motion can differ between populations leading to statistical bias when performing group-level
analyses [32]. Censoring individual pixels will likely be inadequate to remove such artifacts and
more sophisticated methods, as have been used in fMRI [33], will be required.
Although the methods demonstrated in this manuscript concerned optical intrinsic signal

imaging and resting-state functional connectivity, they should be broadly applicable to other
imaging modalities. Human optical neuroimaging techniques, such as diffuse optical tomography
(DOT), face similar spatial data issues as arise in mice. Variation in DOT image-pad positioning
can introduce problems such as the field-of-view not being constant subject-to-subject and
session-to-session. When functional data from DOT is mapped onto anatomic imaging fromMRI
[34,35], variation can be quantified, but this process does not ameliorate the underlying problem
that variability imposes. As in prior mouse studies, the intersect method for multi-session and
multi-subject averaging is commonly used [35,36], but it suffers from the same problems that
were quantified in this paper. Such methods will be severely limiting for future studies, especially
those in children or hospitalized patients, for example, where one might expect probe positioning
to be extremely variable. Accounting for variations in a rigorous way is important to improving
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Fig. 11. Demonstration of methods for combining data across mice. Data is shown after
affine transformation. Each row is a different canonical resting-state network as shown by
seed-based functional connectivity with the seed denoted by the circle (black or red). The
first column uses manually segmented data merged using the intersect method. The second
column is data segmented using the guided segmentation and then merged with the intersect
method. The third column is data segmented using the guided segmentation and then merged
using the censored method. The fourth column shows the number of sessions contributing
data for each pixel’s correlation coefficient when calculated using the censored method.
When seeds are selected that are outside of the field-of-view of the intersect method data,
then the segmented brain is shown entirely in blue.
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data reliability. The same general approach described here could be applicable to atlases for
functional DOT data.

Future work will address the statistical analysis of merged data, which is nontrivial. Correlation
coefficients in the final data will have been computed from a different subset of sessions, and we
will need to treat the variance in an individualized manner. Then, the Fisher coefficients can be
properly converted to z-scores and p-values. An alternative method for the analysis of resting-state
functional connectivity data is independent component analysis (ICA). Similar censoring methods
for ICA would be ideal, although the adaptation of ICA algorithms to comprehend partial data
may be difficult. Similarly, the general concept of creating a mask to guide data censoring should
be applicable to task-evoked activity (from OIS imaging, fluorescent dye imaging, or DOT).
General linear model coefficients could be calculated at each pixel using a censored hemodynamic
trace and expected canonical response. However, again the analysis of error and degrees of
freedom necessary to calculate p-values will need to take into consideration the censored nature
of the data.

5. Conclusion

In conclusion, these rigorous in vivo studies demonstrate that pixel-wise quality metrics, guided
segmentation, and censored averaging techniques can increase the amount of usable data and
field-of-view obtainable from optical intrinsic signal imaging studies. More sessions can be
included, thereby increasing subject numbers and likely increasing statistical power. Moreover,
these methods increase the statistical rigor of optical neuroimaging and should enable detection
of subtle effects. Ultimately, the resulting better understanding of data quality and its statistical
properties will facilitate future work with more advanced methods of interpreting brain network
connectivity data.
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