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When stressed sufficiently, solid materials yield and deform plas-
tically via reorganization of microscopic constituents. Indeed, it
is possible to alter the microstructure of materials by judicious
application of stress, an empirical process utilized in practice
to enhance the mechanical properties of metals. Understanding
the interdependence of plastic flow and microscopic structure in
these nonequilibrium states, however, remains a major challenge.
Here, we experimentally investigate this relationship, between
the relaxation dynamics and microscopic structure of disordered
colloidal solids during plastic deformation. We apply oscilla-
tory shear to solid colloidal monolayers and study their particle
trajectories as a function of shear rate in the plastic regime.
Under these circumstances, the strain rate, the relaxation rate
associated with plastic flow, and the sample microscopic struc-
ture oscillate together, but with different phases. Interestingly,
the experiments reveal that the relaxation rate associated with
plastic flow at time t is correlated with the strain rate and sam-
ple microscopic structure measured at earlier and later times,
respectively. The relaxation rate, in this nonstationary condition,
exhibits power-law, shear-thinning behavior and scales exponen-
tially with sample excess entropy. Thus, measurement of sample
static structure (excess entropy) provides insight about both strain
rate and constituent rearrangement dynamics in the sample at
earlier times.
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For many amorphous solids—i.e., solids without long-range
order—a threshold stress exists beyond which the material

starts to deform plastically (yield) and flow like a liquid. These
yield stress materials, which range from foams and colloids to
cement and metallic glasses, have constituents and dynamics that
vary widely across length and time scales (1–3). Nevertheless,
they are unified by two features: the cross-over transition from
solid- to liquid-like behavior and a nonlinear viscosity response
to external stress (shear thinning) (4). Ultimately, to understand
these nonlinear mechanical processes, we need a detailed picture
about how shear couples to microscopic structure and relax-
ation. If successful, this understanding could lead to improved
processing of amorphous metals via stress-induced control of
microstructure (5, 6).

To this end, useful models have been developed to character-
ize the structural origin of plasticity in amorphous solids. Shear
transformation zone models, for example, posit the existence
of mechanically weak regions in amorphous solids analogous to
crystalline defects, and then they focus (largely) on the kinetics
associated with localized plastic events (7). The softer regions are
believed to facilitate or accelerate rearrangements nearby. This
general phenomenology of dynamic heterogeneity is observed in
experiments (8) and computer simulations (7) and is supported
by first-principle Mode-Coupling and Random First-Order Tran-
sition theories (9–11). Nevertheless, identification of mechan-
ically weak regions from static sample structure—e.g., before
plastic events occur—remains a challenge.

In a different vein, thermodynamic predictors based on
excess entropy (S ex ) have shown promise for explaining non-
linear mechanical phenomena in complex fluids (12–17). Excess
entropy concepts were developed from studies of liquids rather
than solids; they facilitate comparison of macroscopic system-
averaged structural and dynamical quantities. S ex is a structural
order parameter defined as the difference between system ther-
modynamic entropy and that of an equivalent ideal gas (18).
For typical liquids, S ex derives mainly from pair correlations of
its constituents (13) and is readily evaluated by experiment (15,
19). Excess entropy accurately predicts transport coefficients of
simple and complex fluids in equilibrium using their static struc-
ture (15, 19–30). Recently, in computer simulations, S ex has
been applied to supercooled liquids under steady-state shear; the
shear-dependent relaxation time of the supercooled liquids was
found to scale with S ex (16), thereby revealing a simple structural
connection to shear-thinning induced relaxation. This intriguing
discovery has not been tested experimentally. Moreover, the con-
cept of excess entropy scaling has not been applied to understand
plastic flow in amorphous solids, nor in materials driven into
more general nonstationary states.

In this contribution, we investigate the connection between
shear rate, relaxation time, and excess entropy of plastically
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deformed matter in nonstationary states. We use a custom-made
interfacial stress rheometer (31–34) to apply oscillatory shear at
different strain amplitudes to an oil–water interface (Fig. 1A; see
Materials and Methods for details). A series of disordered, two-
dimensional (2D) colloidal solids were prepared at the oil–water
interface (Fig. 1B). Their translational and orientational corre-
lation functions did not exhibit long-range order (SI Appendix).
The disordered samples were driven by the applied oscillatory
shear, and, concurrently, the trajectories of individual particles
in the samples were captured by video optical microscopy and
standard tracking software.

From particle position data during oscillatory shear, we com-
puted strain rate, the relaxation rate/time associated with plastic
flow, and the sample excess entropy. The relaxation time exhib-
ited a power-law scaling with shear rate, a characteristic of
shear-thinning behavior. Furthermore, phase shifts between the
oscillatory signals revealed a constant lag time between plastic
shear rate and plastically induced relaxation rate, and a differ-
ent lag time between relaxation rate and excess entropy (which
was proportional to the instantaneous relaxation time). These
delay intervals (phase shifts) uncovered connections between
shear rate, plastic flow-induced relaxation, and structure of the
samples in nonstationary states. Surprisingly, we found that
relaxation time/rate and excess entropy data measured at differ-
ent strain amplitudes collapsed onto a single master exponential
scaling curve which depends only on sample type. In total, the
work introduces an analysis framework based on excess entropy
scaling to understand plastic flow in both stationary and nonsta-
tionary states, and the findings suggest that information about
the relaxation history of an amorphous material can be deduced
from its current static structure.

Briefly, the solid-like monolayers consist of colloidal spheres
with different diameters (σ), surface charge densities, and pack-
ing fractions (φ) (Table 1 and Materials and Methods). In com-
bination, these factors determine interparticle separation (d),
sample structure (Fig. 1 C and D and SI Appendix), shear moduli,
and plasticity (33, 34). Rheology measurements of the samples
exhibit elastic behavior at small strain amplitudes and yield-
ing behavior when the strain exceeds about 3% (SI Appendix).
Herein, we focus exclusively on strain amplitudes above the yield
point (e.g., larger than 5%; Table 1).

We first used the particle trajectory data to measure and com-
pare shear rates and shear-induced relaxation times. The shear
strain, Γ(t), at time t quantifies the sample’s affine deformation,
which follows the oscillations of the needle motion. We com-
puted Γ(t) by taking average of the measured y-dependent local
strain, γ(y , t) (Materials and Methods). Fig. 2A shows that Γ̇(t)

follows the driving sinusoidal function set by the external force
and that it exhibits measurable fluctuations about the sinusoidal
function too. Note that fluctuations of Γ(t) about the driving
stress have been seen in plastically deformed bidisperse poly-
crystals in computer simulations (35, 36); these fluctuations were
attributed to intermittent yielding along grain boundaries and
become weaker when the sample has smaller crystalline domains.

We used nonaffine particle motions to evaluate sample
relaxation behavior (16, 37). At time t , the self-part of the
intermediate scattering function is

Fs(t , τ) =
1

N

〈
N∑

j=1

exp

[
2πi

d

∣∣∆~r ′j (τ)
∣∣]〉 . [1]

Here, N is the number of particles and ∆~r ′j the nonaffine dis-
placement of the j -th particle—that is, the residual after the
affine displacement has been subtracted from the total particle
displacement, ∆~rj . (See Materials and Methods and SI Appendix
for how to compute ∆~r ′j from ∆~rj .) The brackets, 〈· · · 〉, repre-
sent a time average over the period [t − δt/2, t + δt/2] (δt = 2.5
s is one-quarter of the shear cycle). The duration of the mea-
surement is thus δt . Ideally, Fs(τ) should decay to below 1/e at
τ = δt to extract the relaxation time. However, we will soon show
that this is not necessary.

Fig. 2B shows examples of Fs(t , τ) at two times where the Γ̇
values are different; these Fs(t , τ) functions decay at different
rates, indicating shear-dependent relaxation behavior. Fs(t , τ) is
well fit by the function,

Fs(t , τ) =A exp[−(τ/τα)β ], [2]

where τα is the α-relaxation time measured in the time interval
centered on t , and A' 1 is a constant prefactor (SI Appendix).
Since we can fit Fs(τ) data before it decays to 1/e to obtain
τα, we can estimate τα from measurements with duration
(δt) shorter than τα (see SI Appendix for details). Interest-
ingly, we found β > 1 (compressed exponential) throughout the
shear cycle in all samples. This finding confirms the expecta-
tion that particle configurations, when driven by external forces,
relax/reorganize faster than would occur if driven by diffusive
motions alone. A few studies have also reported β > 1 phenom-
ena (38–43); in these cases, ballistic motions of constituents were
found to accompany the accumulation and release of internal
stress (44). In our experiments, the nonaffine mean square dis-
placements, 〈∆r ′2(τ)〉, exhibit superdiffusive behavior—that is,
〈∆r ′2(τ)〉∼ τp with p> 1 (SI Appendix); by analogy to prior

Fig. 1. (A) Schematic of the interfacial stress rheometer. A sinusoidal magnetic force is imparted to the interface-bound magnetic needle, which, in turn,
introduces oscillatory shear stress at the oil–water interface. The parallel and perpendicular directions with respect to the needle motion are defined as the
x and y axis, respectively. (B) Micrograph of bidisperse colloidal particles at the oil–water interface from sample A. (C) Sixfold bond orientation order, ψ6,
measured from particles in B. Colors help to indicate the lattice director (orientation) as a guide for the eye to help discern ordered and disordered domains.
Dots with large size indicate |ψ6|> 0.9, and small dot size indicates |ψ6|< 0.9. (Scale bars: 100 µm). (D) A pair correlation function, g(x, y), measured from
particle positions in B exhibits strong anisotropy due to ordered domains.
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Table 1. Different colloidal monolayers

Sample σ, µm φ, % d, µm Γmax, %

A (bidisperse) 4.1, 5.6 43 7.4 5 to 16
B (monodisperse) 5.6 32 7.7 8 to 16
C (bidisperse) 1.0, 1.2 32 9.8 5 to 8

σ, particle diameter; φ, packing fraction; d, mean interparticle separa-
tion; Γmax, strain amplitude.

work, we believe the measured compressed exponential decay
of Fs(t , τ) is caused by superdiffusive particle motions. We
also investigated alternative explanations for the compressed
exponential decay of Fs(τ) (SI Appendix).

Using the Γ̇(t) and τα(t) data, we next investigated how shear
influences relaxation in the nonstationary regime. Fig. 2C com-
pares |Γ̇(t)| and τ−1

α (t) measured from sample A (Γmax = 16%)
as a function of t ; here, the absolute shear rate was used because
we expected the shear direction to have little influence on
relaxation rate. This comparison clearly demonstrates that the
relaxation rate lags the shear rate by a time interval, ∆t ' 0.8 s
(Materials and Methods and SI Appendix). This lag time hints at a
causal relation between shear and the shear-induced relaxation
processes. Moreover, the amplitude of τ−1

α (t) follows |Γ̇(t)|.
For a more quantitative comparison, we examined our data

in the context of the non-Newtonian relationship between shear
rate and relaxation time that has been found in steady state
(45, 46):

τα∼ (1 + Γ̇/Γ̇0)µ. [3]

Here, Γ̇0 is the shear rate associated with onset of non-
Newtonian viscous response behavior, and µ< 0 is a power-law
exponent characterizing shear-thinning behavior.

In oscillatory measurements, Eq. 3 has been established
between the mean (or maximal) viscosity and shear rate dur-
ing multiple shear cycles (47). To our knowledge, this relation
has not been used to describe the connection between the

instantaneous viscosity (or relaxation time) and shear rate in
nonstationary samples. Despite the phase shift between the shear
rate and the shear-induced relaxation rate, we might expect our
data to follow Eq. 3 with Γ̇ being replaced by its weighted time
average, 〈|Γ̇|〉δt , over the time interval [t − δt/2, t + δt/2] (that
is, the same window wherein τα(t) is evaluated; see Materials and
Methods and SI Appendix about calculation of 〈|Γ̇|〉δt ). To test
this hypothesis, we plot τα(t + ∆t) versus 〈|Γ̇(t)|〉δt measured
from sample A in Fig. 2D. Remarkably, the data from sample A
sheared at three different strain amplitudes collapse onto a sin-
gle master curve; the best fit using Eq. 3 gives Γ̇0 = (1.7± 0.5)×
10−3 s−1 and µ=−1.4± 0.3. Interestingly, the fitted Γ̇0 in our
sample is of the same order of magnitude as the onset shear
rates of nonlinear viscous response in molecular glasses (45). The
fitted µ is similar to those measured in dense suspensions of soft
colloidal particles (48). This finding suggests an interesting way
to characterize shear-thinning behavior in a nonstationary (e.g.,
oscillatory) measurement. Note, while in principle the lag time,
∆t , between shear rate and relaxation time may be a complex
function of shear rate, in our samples it suffices to use a constant
lag time.

Next, we computed excess entropy from particle positions and
explored whether excess entropy scaling laws can be applied
in systems experiencing nonstationary (oscillatory) shear. If the
scaling relation still holds, then, by implication, sample static
structure can provide information about relaxation induced by
plastic deformation. Previously, viscosity, diffusion coefficients,
and relaxation times have been found to obey a simple excess
entropy scaling law, τα∼ f (S ex ), for a wide variety of materials
(20–30) spanning different particle type, size, density, interac-
tion, temperature, material phase, and even shear rate (16, 24).
Importantly, S ex is well approximated by the two-body contribu-
tion, S2, which is readily determined from scattering or imaging
experiments (15, 19, 27).

To this end, we computed the time-dependent pair correla-
tion function, g(r), using particle positions at time t . Note that

Fig. 2. Dynamics in sample A. (A) Instantaneous shear rate, Γ̇(t), versus time, t. The solid line is the sinusoidal fit, Γ̇(t) = 0.096sin(ωt). (B) The self-part
of the intermediate scattering function, Fs(τ ), measured at the two times indicated by the same-color circles (green and blue) as in A. The dashed and
solid lines are fits using Eq. 2, with τα = 0.5 and 2.3 s and β= 1.3 and 1.5 at t = 16.3 and 18.8 s, respectively. (C) Relaxation rate, τ−1

α (t), versus time, t (red
circles). The magnitude of shear rate, |Γ̇(t)|, is also plotted (blue triangles) for phase-shift comparison. (D) The measured relaxation time, τα(t + ∆t), versus
time-averaged shear rate, 〈|Γ̇(t)|〉δt , from three experiments with different Γmax values. The solid line is the best fit using τα∼ (1 + 〈|Γ̇|〉δt/0.0017)−1.4.

Galloway et al. PNAS Latest Articles | 3 of 7

D
ow

nl
oa

de
d 

at
 U

N
IV

 O
F

 P
E

N
N

S
Y

LV
A

N
IA

 o
n 

M
ay

 2
6,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000698117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000698117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000698117/-/DCSupplemental


Fig. 3. (A) Measured g(r) from data taken at t = 16.7 and 19.2 s. A, Insets show the enlarged plots of the first (Left Inset) and the second and third peaks
(Right Inset) of g(r), respectively. (B) S2(t) versus t. τα(t) is also plotted for comparison. The black and green arrows indicate t = 16.7 and 19.2 s, respectively.
(C) τα(t− td) is plotted with a time delay, td(t)' 0.3τα(t).

we employed particle coordinates in a single video frame at
time t for determination of g(r); these particles were the same
as used above in computing Γ̇(t) and τα(t). Examples of g(r)
at two times, t = 16.7 and 19.2 s , are shown in Fig. 3A. These
g(r) functions exhibit quasi-long-range order extending out to
10 shells of neighbors; the extended correlations are indica-
tive of the presence of many small crystalline domains (Fig. 1C
and SI Appendix). By comparison, g(r) from sheared glass-
forming liquids typically exhibits only three well-defined peaks
(e.g., refs. 16 and 37). The correlation lengths obtained from
the spatial correlations of translational and orientational order
also confirmed that the samples were more ordered than
traditional glasses, but less ordered than crystals/polycrystals
(SI Appendix).

The peaks of g(r) evolved subtly throughout imposed shear
cycles (Fig. 3 A, Insets); these changes are indicative of shear-
induced restructuring. The comparatively high peaks in g(r)
at t = 19.2 s compared to t = 16.7 s suggest a more ordered
structure in the former case. The differences in peak height at
different times were rather small and were in accord with mea-
surements in sheared molecular glasses (14, 16, 37). From the
time-dependent g(r) data, we computed S2 versus t ,

S2 =−πρ
∫ ∞
0

{g(r) ln[g(r)]− [g(r)− 1]}rdr . [4]

Here, ρ is sample particle number density. Eq. 4 converges
quickly after r reaches 5d (SI Appendix); thus, we chose the cut-
off length, rcut = 10d , as the integration limit for computing S2.
We confirmed that with the same cutoff length, Eq. 4 converges
for the other two samples as well (SI Appendix). A larger −S2

value at t = 19.2 s confirms a more ordered structure, consistent
with g(r) data in Fig. 3A. Note that larger −S2 values are also
accompanied by larger bond orientation order (49), suggesting
that the orientational order is coupled to translational order by
shear (SI Appendix).

Fig. 3B presents S2(t) and τα(t) as a function of t dur-
ing the shear cycles. Notice that longer relaxation times, τα,
are accompanied by larger −S2 values or, equivalently, more
ordered sample structures. Taken together with the Γ̇(t) find-
ings (Fig. 2C), we conclude that faster shear rates lead to shorter
shear-induced relaxation times and more disordered resultant
particle arrangements.

Further inspection of Fig. 3B reveals that the peaks of −S2(t)
clearly lag behind those in τα(t); by comparison, the lags
between valleys are less apparent. A possible explanation is that
S2(t) lags behind τα(t) at all phase positions; this hypothesis
is further supported by the hysteresis loops generated by the
two functions (SI Appendix). Based on this intriguing obser-

vation, we hypothesize that 1) the relaxation time measured
at t is related to the sample structure (S2) at a later time,
t + td ; and 2) the time delay, td(t), is a function of τα(t). We
assume td(t)' hτα(t), where h is a constant throughout the
shear cycles. To test this hypothesis, we replotted τα(t − td) in
Fig. 3C. The relation td(t)' 0.3τα(t) best aligns the peaks and
the valleys of τα(t − td) and −S2(t) (Materials and Methods and
SI Appendix). Note that the choice of a linear function of τα
to approximate td is empirical; td could have a more complex
dependence on τα, Γ̇, and their time derivatives. This empiri-
cal finding that td ∼ τα suggests a picture wherein new structures
driven by shear-induced relaxation evolve to their final form after
a waiting time that is itself dependent on the relaxation pro-
cess/timescale. Moreover, the introduction of this form for td
enables comparison of τα versus S2 across different times and
conditions.

To this end, we investigated the scaling connection between
τα and S2 obtained at the different shear rates. Fig. 4 shows
τα(t − td) as a function of S2(t) for all three samples listed
in Table 1. For sample A, data from three strain amplitudes,
Γmax = 16, 8, and 5%, collapse onto a single master curve. There-
fore, we confirm that τα(t − td) is a simple monotonic function
of S2(t) in nonstationary oscillatory conditions. Moreover, the

Fig. 4. Delayed relaxation time, τα(t− td), as a function of the excess
entropy, −S2(t), measured from sample A with three different Γmax.
Inset shows same data measured from samples B and C. The three
datasets were fit by using Eq. 5 with c = 3.9± 0.2 (solid line), 1.0±
0.1 (inset dash-dot line), and 1.4± 0.1 (inset dashed line) for samples A, B,
and C, respectively.
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collapsed data from sample A are well fit by Rosenfeld’s
equilibrium excess entropy scaling law,

τα(t − td)∼ e−cS2(t)/kB , [5]

where c = 3.9± 0.2 is a constant prefactor (12).
Previous studies of the excess entropy scaling connect sam-

ple dynamics to static structure; in other words, a measurement
of static structure and the scaling law can be used to predict
sample dynamics. Our finding, although similar in form, has a
somewhat different implication: The static structure is a conse-
quence, rather than the cause, of the relaxation process. Slower
particle rearrangement processes (τα) produce more ordered
particle arrangements (S2) that require longer waiting times (td )
to observe. Furthermore, since the time delay, td , is explicitly
encoded in Eq. 5, we can use information about the “current”
sample static structure to learn about plastic flow and relax-
ation processes that occurred in the sample at earlier times. The
structures “remember” sample dynamical history (50). In the
future, application of this concept could provide insight about
manufacturing and processing of amorphous materials wherein
microstructures are altered by thermomechanical processing (5,
6). Note also, the “asynchronous” dynamics–structure connec-
tion observed in our oscillatory experiments is fully compatible
with steady-state experiments. When Γ̇ approaches a constant
value, both τα(t) and td(t) lose their dependence on t , and
the scaling framework evolves into a previous relationship found
for glass-formers in uniform shear flows (16). Thus, we expect
to see this transition from a non-steady-state to a quasi-steady-
state by gradually increasing the oscillatory period in future
studies.

To further examine the influence of material structure and
other properties on the excess entropy scaling, we plot τα(t − td)
versus S2(t) for samples B and C (Fig. 4, Inset). Sample B is
a monodisperse colloidal solid (Table 1) and thus has larger
ordered domains (SI Appendix) compared to those in sample A.
In this case, the combination of initial sample packing condition
and shear-induced restructuring gives rise to much larger |S2|
values, well above 4.5kB , a value that corresponds to the liquid-
to-crystal transition observed in 2D colloidal samples (51). By
comparison, sample C is a bidisperse mixture of much smaller
particles (Table 1) and thus has stronger thermal particle motion;
its |S2| values are between those of sample A and B. The short-
time Fs(τ) for sample C is very close, but never equal to unity,
unlike those measured in samples A and B (SI Appendix). We
believe that this difference is caused by thermal motion at short
times in sample C. Despite these differences in material prop-
erties, in all three samples, both τα and |S2| decrease with
increasing shear rate (as in sample A). All experimental data
thus demonstrate that excess entropy scaling with relaxation time
exists independent of shear rate. The best fits to Eq. 5 yield
c = 1.0± 0.1 and 1.4± 0.1, for samples B and C, respectively.
In previous experiments with colloidal samples, the range of
the dynamics is typically one decade by using multiple packing
fractions. Our experiment achieves a similar dynamic range by
changing shear rate alone. The excess entropy scaling form has
been found to depend on factors including interfacial bound-
ary conditions and the functional shape of the sample’s pair
potentials (16, 19, 29). For our amorphous samples with small
crystalline domains separated by regions of disorder, to fully
understand the difference in the prefactor c will require further
investigation.

Finally, we also examined use of S θ2 computed from directional
g(r , θ); here, θ is the direction relative to shear. Unfortunately,
the noise in g(r , θ) at long distances prevents Eq. 4 from converg-
ing within the finite cutoff distance (SI Appendix). In steady-state
measurements, this sampling noise can be suppressed by time
averaging. In non-steady-state samples, however, time averag-

ing necessarily involves integration over a broader range of
shear rates, which complicates evaluation of sample static struc-
ture. In the future, this issue could be ameliorated by using a
much larger sample size. Our observation that τα scales with S2

indicates a major difference in the microscopic relaxation mech-
anism between amorphous solids with small ordered domains
separated by regions of disorder and the more disordered glassy
samples. In the latter, τα has been found to scale better with the
extensional excess entropy, S θ2 , which is derived from g(r , θ=
π/4) (14, 16). The deformation along the extensional direction
(θ=π/4) has been argued to create more accessible configura-
tions (that is, smaller |S2| values) that facilitate faster relaxation
rates (16). In sheared amorphous samples with small crystalline
domains separated by regions of disorder, by contrast, particle
rearrangements likely occur through cooperative sliding motions
along grain boundaries, whose orientations depend on the sam-
ple’s initial condition and become randomized when sample size
is much larger than grain size. Therefore, we expect particle rear-
rangements to be less sensitive to shear in our polycrystal-like
solids (35, 36, 44).

In summary, we have developed a framework to under-
stand plastic-flow-induced dynamics in deformed amorphous
colloids with different degrees of polycrystallinity. The frame-
work extends the concept of excess entropy scaling from equi-
librium to nonequilibrium nonstationary states. Our experiment
demonstrates excess entropy scaling in nonequilibrium materi-
als. Experimental data comprising a wide range of shear rates,
relaxation times, particle pair correlations, and excess entropy
reveal that transient shear-induced relaxation times scale as
a simple exponential function of excess entropy. Collectively,
these results demonstrate, in nonstationary states, that increas-
ing (decreasing) strain rates leads to faster (slower) relaxation,
which, in turn, results in more disordered (ordered) microstruc-
tures. The work also reveals a power-law connection between
bulk shear rate and bulk viscous relaxation time that charac-
terizes sample shear-thinning behavior; using the observation of
excess entropy scaling, we thus deduce that shear thinning is
controlled by microscopic structure. Notably, we find that new
parameters, specifically lag times between shear rates, relaxation
times, and excess entropy, are crucial for proper application
of the excess entropy concept in nonstationary conditions. In
the future, it should be interesting to compare microscopic
relaxation channels and shear-induced structural anisotropy in
polycrystals versus more traditional glasses. Also, in addition to
uniform and oscillatory shear, it would be desirable to test excess
entropy scaling in more general strain protocols in both 2D and
three-dimensional systems.

Materials and Methods
Interfacial Stress Rheometer. The experiments used a custom-made interfa-
cial stress rheometer (32, 33). Briefly, a pair of vertical glass walls pinned a
water/decane interface, as shown in Fig. 1A. A magnetic needle was located
between and was parallel to the glass walls; it was held by capillary forces
at the interface. Water height was adjusted so that the interface was flat
between the two walls and needle. A pair of Helmholtz coils imposed
a sinusoidal magnetic force on the needle that translated it axially. The
out-of-plane Lorentz forces (approximately 10−16 N) were negligibly small
compared with interfacial trapping forces (approximately 10−2 N). The mov-
ing needle and the two fixed boundaries thus created a flat, 2D shearing
channel. A microscope (Infinity, K2) and high-resolution camera (IO Indus-
tries, Flare 4M180) were employed to measure the motions of the needle
and interface-bound colloidal particles (31, 33).

Sample Preparation. The colloidal suspensions were composed of sulfate
latex particles (Invitrogen) with different diameters. The particles were
injected onto the interface by using a pipette, and regions of approxi-
mately 80 × 200 particles were studied. Due to the small particle sizes
(<10µm), capillary interactions were small and unimportant (52, 53). A long-
range dipole–dipole repulsion between particles (54) caused the spheres to
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assemble into a disordered, jammed, 2D structure with large amorphous
areas filling the regions between randomly oriented microcrystal domains
(Fig. 1 B and C and SI Appendix). Characteristics of the three investigated
particle systems such as particle type, packing fraction, mean interparticle
separation, d (derived from particle pair correlation functions), and strain
amplitude are summarized in Table 1. The camera recorded the needle dis-
placement and all particle motions; trajectories were extracted from the
images by using standard particle-tracking software (55). The experiments
thus measured the particle positions, strain rate, relaxation time, and excess
entropy versus time during the shear cycle. We sheared the samples at a
fixed low frequency of 0.1 Hz to reduce/remove hydrodynamic effects. Addi-
tionally, we have calculated the Boussinesq number, Bq = |η*|/Dη, wherein
η* is the complex interfacial viscosity, D the needle diameter, and η the
mean viscosity of the oil and water (56, 57). Bq quantifies the ratio between
the in-plane and out-of-plane stresses induced by the needle. We find that
Bq = 147.5 and 101.5 for samples A and B, respectively, corroborating the
expectation that hydrodynamic flows in the water and oil phases are neg-
ligible. The relaxation processes are due to plastic events that occur when
the samples are stressed beyond yield.

Affine and Nonaffine Particle Motions. To compute the y-dependent mean
particle displacement, ∆x(y), along the shear (x) direction, we first com-
puted [yj(t), ∆xj(t)] from all particles at time t; ∆x(y) was then obtained
from the fit of [yj(t), ∆xj(t)] (SI Appendix). The local strain is thus γ(y, t) =

∂∆x(y, t)/∂y. To account for the slightly nonlinear flow profile (SI Appendix,
Fig. S1), ∆x(y, t) and γ(y, t) were fit by a polynomial of y up to the third
and second orders, respectively. To characterize the overall affine deforma-
tion, we defined Γ(t) as the spatial average (over y) of γ(y, t). The nonaffine
particle displacement, ∆~r ′j ≡{∆x′j , ∆y′j } between times t and t + τ , was
obtained by subtracting the affine contribution from the total horizontal
displacement, ∆x′j (τ ) = xj(t + τ )− xj(t)−∆x(yj , τ ). Since the net flow in y
direction is zero, ∆y′j (τ ) = yj(t + τ )− yj(t).

Calculation of 〈|Γ̇|〉δt . To determine 〈|Γ̇|〉δt , we defined a triangle ker-
nel function centered at t, Λ(t, s)≡max(δt/2− |s− t|, 0), and we com-
puted the convolution: 〈|Γ̇|〉δt = (|Γ̇|*Λ)(t)≡

∫∞
−∞ |

˙Γ(t− t′)|Λ(t′)dt′. (Note,
Λ was normalized before the convolution.) This parameter-free approach
places maximal weight on the shear rate at t and zero weight on
those shear rates outside of [t− δt/2, t + δt/2]. We also tested convolu-
tion with a Gaussian kernel function, and the results were very similar
(SI Appendix).

Evaluation of ∆t and td . To determine ∆t, we computed the (unnor-
malized) correlation function, C1(∆t)≡〈(〈|Γ̇(t)|〉δt −〈〈|Γ̇(t)|〉δt〉)(τ−1

α (t +

∆t)−〈τ−1
α (t + ∆t)〉)〉; here, ∆t is the trial lag time, and 〈· · · 〉 repre-

sents time average. The value of ∆t wherein C1(∆t) reaches its maximal
value was set to be the true lag time between 〈|Γ̇(t)|〉δt and τ−1

α (t)
(SI Appendix). To determine td , we similarly computed the (unnormal-
ized) correlation function, C2(h)≡〈|S2(t)|τα(t− hτα)〉 as a function of h.
Similar to the procedure above, C2(h) is maximized when hτα (or equiv-
alently, td) is closest to the true time lag between |S2(t)| and τα(t)
(SI Appendix).

Data Availability. All data discussed in the paper are available in the main
text and SI Appendix.
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