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Abstract. Optical neuromonitoring provides insight into neurovascular physiology

and brain structure and function. These methods rely on spectroscopy to relate

light absorption changes to variation of concentrations of physiologic chromophores

such as oxy- and deoxyhemoglobin. In clinical or preclinical practice, data quality

can vary significantly across wavelengths. In such situations, standard spectroscopic

methods may perform poorly, resulting in data loss and limiting field-of-view. To

address this issue, and thereby improve the robustness of optical neuromonitoring, we

develop, in this manuscript, novel methods to perform spectroscopy even when data

quality exhibits wavelength-dependent spatial variation. We sought to understand the

impact of spatial, wavelength-based censoring on the physiologic accuracy and utility of

hemoglobin spectroscopy. The principles of our analysis are quite general, but to make

the methodology tangible we focused on optical intrinsic signal imaging of resting-

state functional connectivity in mice. Starting with spectroscopy using four sources,

all possible subset spectroscopy matrices were assessed theoretically, using simulated

data, and using experimental data. These results were compared against the use of the

full spectroscopy matrix to determine which subsets yielded robust results. Our results

demonstrated that accurate calculation of changes in hemoglobin concentrations and

the resulting functional connectivity network maps was possible even with censoring of

some wavelengths. Additionally, we found that the use of changes in total hemoglobin

(rather than oxy- or deoxyhemoglobin) yielded results more robust to experimental

noise and allowed for the preservation of more data. This new and rigorous image

processing method should improve the fidelity of clinical and preclinical functional

neuroimaging studies.
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1. Introduction

Optical neuroimaging and neuromonitoring systems hold promise to provide insight

into bedside clinical care and preclinical animal models (White et al. 2012; Bauer et al.

2014; Lynch et al. 2014; Selb et al. 2015; Ko et al. 2018). To fulfill this promise,

it is desirable that measurements and analysis be robust to noise and other errors

that frequently arise during data acquisition (Yücel et al. 2017; Wheelock et al. 2019).

Indeed, many algorithms can generate ideal results in controlled environments but fail in

practical scenarios. A crucial step in most optical measurement schemes is spectroscopy,

wherein data from multiple wavelengths is analyzed to determine the concentrations of

physiologically relevant molecules. Here, we aim to understand how partial data loss

(i.e., censoring) affects spectroscopy performance, and we develop a novel algorithm to

overcome these problems and recover useable data.

The goal of most optical neuromonitoring systems is to determine concentrations

(or relative changes in concentrations) of oxy- and deoxyhemoglobin as well as other

chromophores such as water, lipid, and cytochrome oxidase. Since these chromophores

have differing absorption spectra, their individual concentrations can be determined

from light absorption measurements at multiple wavelengths. However, the accuracy

of this spectroscopic calculation is dependent on the particular wavelengths chosen.

Multiple methods have been developed to select optimal wavelengths, including search

algorithms (Arifler et al. 2015), singular value decomposition (Corlu et al. 2003; Corlu

et al. 2005; Brendel and Nielsen 2009; Correia et al. 2010), uniqueness (Corlu et al. 2003;

Corlu et al. 2005; Brendel and Nielsen 2009; Correia et al. 2010), and error minimization

(Brendel and Nielsen 2009). In these schemes, determination of “optimal” wavelengths

relies on the assumption that data from all wavelengths is fully available and is of equal

quality.

In practice, quality issues can prevent use of all data at all times. A camera

or detector may become saturated at one wavelength and not others, for example,

or data at one wavelength may be of poor quality due to hair interfering with fiber

contact. For this reason, we developed quality-control metrics that masked data at

certain pixels from optical intrinsic signal (OIS) images (White et al. 2019) based on

camera saturation as well as signal variance. Similar concepts have been developed to

remove source-detector pairs from diffuse optical tomography (DOT) or near-infrared

spectroscopy (NIRS) data prior to reconstruction or analysis (White and Culver 2010;

Eggebrecht et al. 2012; Ferradal et al. 2016; Pollonini et al. 2016; Hocke et al. 2018).

In practice, such masks are wavelength-specific (e.g., pixels may be saturated only at

one wavelength). The current state-of-the-art in optical imaging allows spectroscopy
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Wavelength censoring for spectroscopy in optical functional neuroimaging 3

only when all wavelengths are available; even loss of data at one wavelength renders

the remaining data at that measurement location useless. Therefore, for OIS, the

final mask for oxy- and deoxyhemoglobin will contain only measurements within the

intersection of masks at all wavelengths. As a result, large decreases in the field-of-

view often arise. For the case of DOT or NIRS, wherein images are obtained using

topographic or tomographic reconstruction algorithms, missing wavelengths will result

in statistical errors and missing data. Thus, new algorithms are needed to address

these spectroscopic problems that affect all optical neuromonitoring systems that rely

on multiple wavelengths for chromophore analysis.

In this contribution, we develop a novel methodology, termed wavelength censored

spectroscopy, that overcomes these problems and thereby enables experimenters to

perform spectroscopy even when data from only a subset of wavelengths is available. We,

then, seek to understand under what conditions the results of this new algorithm are

accurate and reliable. In order to ground our approach, we will focus on simulated

and experimental data from an optical intrinsic signal (OIS) neuroimaging system

designed to measure changes of the concentrations of oxy- , deoxy-, and total hemoglobin

(∆[HbO2], ∆[HbR], and ∆[HbT], respectively) in the brains of mice. Two objectives

underlie our wavelength censoring approach. First, we will examine the error in

the calculation of changes in hemoglobin concentrations that arises from performing

spectroscopy using different wavelength subsets. As we expect that certain wavelength

combinations would perform poorly compared to the full spectroscopy matrix, a look-up

table of allowable wavelength combinations could (in principle) be created to indicate

which data could be used for analysis despite censored wavelengths. Second, we examine

the effects of experimental noise and spectroscopic error on our ability to generate

useable functional neuroimaging data. For this analysis, we will use simulated and

experimental resting-state functional connectivity data. Functional connectivity is

performed by correlating hemodynamic time series at different cortical locations in

order to map neuronal networks. Optical measurements of resting-state functional

connectivity networks in mice have provided unique insights into disease pathology such

as Alzheimer’s disease (Bero et al. 2012) and stroke (Bauer et al. 2014). The approaches

described herein, however, are generalizable to the majority of optical functional

neuroimaging and neuromonitoring approaches, including near-infrared spectroscopy

(NIRS) and diffuse optical tomography (DOT). Previous optical functional connectivity

analyses have shown that maps generated with different hemoglobin species show

equivalent functional connectivity structure (White et al. 2009; Kura et al. 2018).

However, as noise in the reconstructed time series leads to artificially low correlation

coefficients (biasing functional connectivity calculations), we predict that experimental

noise and the need to censor data from varying wavelengths will differentially affect the

practical ability of each contrast to reveal the expected connectivity structure. In this

manuscript, we present results from a theoretical analysis of the spectroscopy matrix,

from simulated data, and from experimental data that explore these objectives and aid

the development of best practices.
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Wavelength censoring for spectroscopy in optical functional neuroimaging 4

2. Methods

2.1. Optical Intrinsic Signal Imaging System

We performed optical intrinsic signal (OIS) imaging using a system similar to that

described previously (White et al. 2019) (Figure 1A). Illumination is derived from four

visible-light light emitting diodes (LEDs) with emission spectra nominally centered

at 470 nm (M470L3-C1), 530 nm (M530L3-C1), 590 nm (M590L3-C1), and 625

nm (M625L3-C1, all from Thorlabs). These wavelengths were chosen from amongst

commercially-available visible-light LEDs using the wavelength selection methods of

Corlu et al. (2003), Corlu et al. (2005), and Brendel and Nielsen (2009) described

below (Section 2.6), such that the four LEDs would together have good spectroscopic

performance. Images were acquired with a cooled, CCD camera (iXon 887, Andor

Technologies) at 120 Hz. Illumination of each LED was temporally multiplexed such

that images at each of the four wavelengths were acquired sequentially; thus, the overall

framerate was 30 Hz. Crossed polarizers were used to eliminate light signal from specular

reflection. The system was controlled with custom-written software using Matlab and

the Andor software development kit.

2.2. Animal Preparation and Imaging

All procedures were approved by the institutional animal care and use committee

(IACUC) at the Children’s Hospital of Philadelphia (CHOP). Male C57bl/6 mice (ages

8 to 13 weeks) were anesthetized with a mixture of ketamine (100 mg/kg) and xylazine

(10 mg/kg) through intraperitoneal injection. After achieving adequate anesthesia, the

animal was held in place with ear bars and was kept warm with a heating pad. The hair

on the dorsal surface of the head was removed with a depilatory cream, and the scalp

was cleaned with iodine and ethyl alcohol. The scalp was incised and reflected to expose

the skull from the olfactory bulb (anteriorly) to the superior colliculus (posteriorly) with

as much lateral exposure as possible. A glass intact-skull cranial window was placed

using transparent dental cement (Silasi et al. 2016) (Figure 1B). Note that with the

chosen wavelengths and this imaging geometry, the penetration depth is approximately

1 mm such that the images are reflective of the cortical gray matter.

All functional neuroimaging data was acquired during the “resting state” (i.e., no

external stimuli were applied) in order to subsequently perform functional connectivity

analysis. Tme series imaging data was acquired in 5-minute imaging runs with up to

30 minutes of total imaging time per mouse per session. Data from the camera consists

of a series of images of light intensity over time. The two-dimensional images cover the

dorsal surface of the mouse brain and surrounding tissue (Figure 1B); the x-direction

indicates right-to-left and the y-direction posterior-to-anterior. The field-of-view of the

camera was about 1.5 cm (sampled by 128 pixels) along both x and y directions.

The data for each LED, j, was analyzed as normalized changes in measured light
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Wavelength censoring for spectroscopy in optical functional neuroimaging 5

Figure 1. Schematic of the optical intrinsic signal (OIS) imaging system. (A) Diagram

of system components. (B) Schematic of the field-of-view: the brain seen through the

cranial window and skull is shown in light gray, with surrounding hair and skin in dark

gray. Major suture landmarks are shown in red. (C) Experimentally measured spectra

for the illuminating light emitting diodes (LEDs) overlaid for comparison with the

extinction coefficients for oxy- (HbO2) and deoxyhemoglobin (HbR) (y-axis for LED

spectra is arbitrary; heights were normalized to preserve equal area under the curve).

intensity, I(x, y, t), at each pixel position and over time using the Rytov approximation:

∆Ij(x, y, t) = − ln

(
I(x, y, t)

〈I(x, y, t)〉

)
. (1)

These measured changes, ∆I(x, y, t), are termed log-ratio data; the brackets, 〈〉,
denote the temporal mean over the five-minute imaging run. Pixels were masked

individually for each wavelength based on quality control criteria as described previously

(White et al. 2019). Additional image processing, including segmentation and filtering

were performed using standard methods (White et al. 2011; White et al. 2019).

2.3. Spectroscopy Matrix and Mean Path Lengths

For each LED, j, source spectra were measured with a spectrometer (FLAME-S-VIS-

NIR-ES, Ocean Optics) and then divided by the area under the spectrum’s curve to

yield normalized LED source spectra, Sj(λ). Measured LED peak wavelengths and full-

widths-at-half-maxima deviated slightly from the nominal values (Figure 1C). Hereafter,

LEDs will be referred to by their part numbers (e.g., M470). A matrix of extinction
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Wavelength censoring for spectroscopy in optical functional neuroimaging 6

coefficients was constructed using these source spectra and the hemoglobin extinction

coefficients, εi(λ), from Prahl (2002), where i denotes either oxyhemoglobin (HbO2) or

deoxyhemoglobin (HbR). For each chromophore, i, and LED, j, a weighted, source-

dependent extinction coefficient was determined as:

ε̂i,j =
∑
λ

εi(λ)Sj(λ). (2)

The matrix of weighted, source-dependent extinction coefficients was then defined as

E =


ε̂HbO2,M470 ε̂HbR,M470

ε̂HbO2,M530 ε̂HbR,M530

ε̂HbO2,M590 ε̂HbR,M590

ε̂HbO2,M625 ε̂HbR,M625

 . (3)

A modified Beer-Lambert law (for light from each LED, j) relates log-ratio data to

optical tissue absorption changes (∆µa,j(x, y, t)):

∆Ij(x, y, t) = ∆µa,j(x, y, t)Lj. (4)

Here, the mean pathlengths in tissue, Lj, were calculated using the analytical solution to

the diffusion approximation of the radiative transfer equation in a semi-infinite geometry

(Arridge et al. 1992; White et al. 2011):

Lj =
c

µ′s
× 1

2γ
√
µac
×
(

1 +
3

c
µaγ

2
)

(5)

Here, γ =
√

c
3(µ′s+µa)

, and c is the speed of light in tissue. We used an assumed

reduced scattered coefficient (µ′s = 10/cm), an absorption coefficient calculated from

the source-dependent extinction coefficients with an assumed baseline hemoglobin

concentration and oxygen saturation ([HbT]0 = 76 µM and StO2= 65%), and an assumed

tissue index of refraction (Strangman et al. 2003).

Then, we assumed oxy- and deoxy-hemoglobin are the only chromophores with

temporal variance to arrive at the spectroscopy equation:
∆µa,M470(x, y, t)

∆µa,M530(x, y, t)

∆µa,M590(x, y, t)

∆µa,M625(x, y, t)

 =


ε̂HbO2,M470 ε̂HbR,M470

ε̂HbO2,M530 ε̂HbR,M530

ε̂HbO2,M590 ε̂HbR,M590

ε̂HbO2,M625 ε̂HbR,M625


[

∆[HbO2](x, y, t)

∆[HbR](x, y, t)

]
;(6)

∆µa(x, y, t) = E×∆[Hb](x, y, t). (7)

2.4. Simulated Data

In order to understand the effect of noise on spectroscopy in a controlled environment,

we first used simulated data. Our goal was to create a model system that would have

the similar network properties to resting-state functional connectivity networks. Thus

we started with a 100-by-100 pixel image that we divided into sixteen 25-by-25 pixel
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Wavelength censoring for spectroscopy in optical functional neuroimaging 7

regions. As in the brain, the time course for each region consisted of a weight sum of a

regional signal as well as a global signal:

Xr(t) = G(t) + αRr(t), (8)

where r denotes the region (r ∈ {1, . . . , 16}), G(t) is the global signal, Rr(t) is the

regional signal, and Xr(t) is the final time trace for the region. α is a constant assumed

to be 0.5. Both G(t) and all of the Rr(t) were time series of 300 normally-distributed

random numbers.

In order to create a network structure, regional signals were chosen such that some

regions were correlated and anticorrelated. Namely, each region was correlated with the

“homotopic” region on opposite side of the midline (Rr = Rp) and anti-correlated with

one other region in the same “hemisphere” (Rr = −Rq), where r, p, and q are different

region labels. Thus, there were four independent regional signals such that every pixel

would be correlated with pixels in its own region and those in the homotopic region,

and each pixel was anticorrelated with pixels in two regions (one ipsilateral and one

contralateral).

Simulated signals were then converted into simulated changes in oxy- and

deoxyhemoglobin as:

∆[HbO2]i(t) = βXi(t)StO2,0[HbT]0, (9)

∆[HbR]i(t) = γ∆[HbO2]i(t). (10)

For the baseline total hemoglobin concentration, [HbT]0, and tissue oxygen saturation,

StO2,0, the values from Strangman et al. (2003) were used, as in Section 2.3. Changes in

oxyhemoglobin from the global signal were set to be 10% of baseline (β = 0.1). Changes

in deoxyhemoglobin were assumed to be anti-correlated with, and half the magnitude

of, changes in oxyhemoglobin (γ = −0.5). These assumptions are based off of previous

literature on neurovascular coupling (Raichle 2010; Hillman 2014; Bergonzi et al. 2015).

(Note: we did perform a sensitivity analysis to test whether our later results were

due to these asumptions, see Section 2.7.) Absorption changes were computed from

these concentration changes and then converted to simulated changes in the log-ratio

of measured light intensity, ∆I(x, y, t), using the spectroscopy matrix and mean optical

pathlengths. The above assumptions resulted in variance in the log-ratio data that was

similar to that observed experimentally.

2.5. Wavelength Censored Spectroscopy

As defined above, spectroscopy relates how changes in absorption at each LED are

determined by changes in oxy- and deoxyhemoglobin concentrations via the system of

linear equations, ∆µa(x, y, t) = E×∆[Hb](x, y, t). These equations can be solved using

ordinary least squares techniques, ∆[Hb](x, y, t) = (ETE)−1ET∆µa(x, y, t), which

minimize the error ‖∆µa(x, y, t)− E∆[Hb](x, y, t)‖2.
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Wavelength censoring for spectroscopy in optical functional neuroimaging 8

This process assumes that data is available for all LEDs. To account for missing

data from censored LED data, we must adjust the above equation. Let W, the censoring

matrix, be a diagonal matrix:

W =


w1 0 0 0

0 w2 0 0

0 0 w3 0

0 0 0 w4

 , (11)

where wi is 1 if data from LED i is present, and 0 if not. Note that W is spatially

variant, W(x, y), as the coefficients along the diagonal vary with position based on data

quality metrics. The censored form of the spectroscopy equation is then:

W(x, y)×∆µa(x, y, t) = W(x, y)× E×∆[Hb](x, y, t). (12)

Then, the ordinary least squares inversion is:

∆[Hb](x, y, t) =
(
(W(x, y)E)TW(x, y)E

)−1
(W(x, y)E)T W(x, y)∆µa(x, y, t).(13)

We define Ẽ(x, y) = W(x, y)E, and rewrite this equation:

∆[Hb](x, y, t) =
(
Ẽ(x, y)T Ẽ(x, y)

)−1
Ẽ(x, y)TW(x, y)∆µa(x, y, t). (14)

Note, spatial variance is now incorporated into the spectroscopy matrix, Ẽ(x, y). This

expression minimizes the error:

‖W(x, y)∆µa(x, y, t)−W(x, y)E∆[Hb](x, y, t)‖2 (15)

=
∥∥∥W(x, y)∆µa(x, y, t)− Ẽ(x,y)∆[Hb](x, y, t)

∥∥∥2 . (16)

We term this technique wavelength censored spectroscopy.

2.6. Assessment of Spectroscopy Matrix Quality

The constructions described above permit spectroscopy to be performed with a subset of

the original data. However, it is not clear whether the results will be equivalent to those

obtained with the full matrix, in particular, if applied in the presence of physiologic

and experimental noise. Although we selected the original complement of four LEDs

to optimize spectroscopic performance, the censored matrices, using only subsets of the

original sources, may have performance that varies substantially and may be inadequate

for practical use. To this end, we assessed the theoretical quality of all spectroscopy

matrices (both the full 4-LED matrix and all possible 3- and 2-LED combinations) with

two standard metrics.
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Wavelength censoring for spectroscopy in optical functional neuroimaging 9

The first metric derives from a wavelength-dependent matrix constructed following

the methodology of Corlu et al. (2003), Corlu et al. (2005), and Brendel and Nielsen

(2009):

M =


ε̂HbO2,M470/λpeak,M470 ε̂HbR,M470/λpeak,M470

ε̂HbO2,M530/λpeak,M530 ε̂HbR,M530/λpeak,M530

ε̂HbO2,M590/λpeak,M590 ε̂HbR,M590/λpeak,M590

ε̂HbO2,M625/λpeak,M625 ε̂HbR,M625/λpeak,M625

 , (17)

where λpeak,j is the empirically measured peak wavelength for each LED. (Note, this

wavelength-dependence arises, in part, from a power-law assumption for the scattering

coefficient (Corlu et al. 2003).) As before, we define M̃ = WM. Then, the residual

norm is:

R =
∥∥∥W1− M̃(M̃2M̃)−1M̃T1

∥∥∥ . (18)

Here 1 denotes the four-by-four unity matrix. Lower values of R indicate that the matrix

is more likely to produce non-unique solutions.

The second metric, κ, is the condition number of Ẽ (i.e., the ratio of its maximum

to its minimum singular value). Smaller κ values represent more minimized crosstalk

and thus ensure more equal sensitivity to all chromophores.

2.7. Assessment of Error with Wavelength Censoring

For simulated data, measurement noise was added for each LED (j) at each pixel:

∆I ′j(x, y, t) = ∆Ij(x, y, t) + a × Nj(x, y, t), where N(x, y, t) was a series of normally-

distributed random numbers unique to each pixel, and a is an overall noise level. The

fractional noise level (a divided by the temporal standard deviation of ∆Ij) was varied

between 0% and 100% depending on the simulated experiment, as described below.

Spectroscopy was performed using the full complement of data (all four LEDs) and then

with all possible subset combinations of LEDs. The root-mean-square error between the

measured hemoglobin time series and the simulated time series was calculated for each

pixel. For normalization, all errors were divided by the simulated standard deviation of

the global signal (i.e., βStO2,0[HbT]0). The normalized root-mean-square error was also

calculated between data from the subset spectroscopy matrices and data obtained from

the full matrix.

To test whether any results using the simulated data were due to the particular

assumptions made in constructing the simulated resting-state time trace (e.g., that

oxy- and deoxyhemoglobin are anticorrelated), we also assessed whether the error was

dependent on the magnitude or direction of changes in ∆[HbO2] and ∆[HbR]. Both

∆[HbO2] and ∆[HbR] were independently varied between -20% and 20% of baseline

(StO2,0[HbT]0). Measurements were simulated, and 25% Gaussian measurement noise

was added, as above. This process was repeated one thousand times, and the normalized

root mean square error was calculated.
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Wavelength censoring for spectroscopy in optical functional neuroimaging 10

For experimental data, since the “true” hemodynamics in the mice were unknown,

the root-mean-square error was calculated between the hemodynamic data obtained

from subset spectroscopy matrices and data from the full spectroscopy matrix. These

errors were normalized by the root-mean-square of the ∆[HbO2] signal measured with

four wavelengths.

2.8. Functional Connectivity Analysis

For both simulated and experimental data, resting-state functional connectivity analysis

was performed as previously described (White et al. 2011; White et al. 2019). Global

signal regression was used. Correlation coefficients and functional connectivity maps

were generated using a seed-based analysis. For simulated data, an arbitrary seed

from one region in the simulated “brain” was chosen (as all regions were statistically

equivalent).

We first examined the effect of wavelength censoring on the simulated data when

the censoring matrix was spatially-invariant (i.e., the same subset of wavelengths was

available at all pixels). We assessed the the performance of functional connectivity in

the face of increasing measurement error. The simulated measurement noise was varied

from 0% to 100% in 1% increments. The correlation coefficient was calculated between

the seed and a pixel known to be correlated, as well as between the seed and a pixel

known to be anti-correlated. This procedure was repeated one hundred times and the

average correlation coefficient calculated using Fisher transforms. This procedure was

repeated for all subset spectroscopy matrices. Example functional connectivity maps

were created at 25% measurement noise.

We next analyzed simulated functional connectivity results assuming spatially-

variant wavelength censoring. Namely, we assumed that W(x, y) included all four LEDs

for all points in the simulated “left hemisphere”, and included only a subset of LEDs for

all points in the “right hemisphere”. The above analyses demonstrating the response

to noise were repeated, and the example functional connectivity networks maps were

constructed for all possible right-hemisphere censoring matrices.

For experimental data, we took the same approach. We initially examined spatially-

invariant wavelength censoring, and then we examined the effect of different wavelength

subsets in the two hemispheres. To perform this analysis, we used data sets which

contained high quality data for all LEDs across the entire field-of-view, such that

wavelength censoring could be imposed post hoc. For functional connectivity with

experimental data, seeds were chosen from canonical functional areas (e.g., the motor

and retrosplenial cortices) using the expected cortical locations based on histologic

atlases and prior neuroimaging results.

We next assessed the use of wavelength censoring in practical examples where data

from some LEDs was unable to be used. First, we used data from one run where

the intensity on the M470 LED was intentionally increased to saturate a region of the

camera’s pixels. This saturation caused the quality mask to exclude a small region of
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Wavelength censoring for spectroscopy in optical functional neuroimaging 11

pixels over the left hemisphere for this one LED. Second, we used data from one run

wherein the M625 LED moved half-way through the run due to a loose set screw. This

change in the angle of illumination caused a shift in the overall baseline for many pixels

such that most of the field-of-view failed the signal-to-noise quality threshold for this

LED. Wavelength-censored spectroscopy was used based on the empirical pixel quality

masks. Functional connectivity maps were created using seeds, as described above.

2.9. Practical considerations for optimal wavelength selection

As will be demonstrated, censored spectroscopy matrices will vary significantly in their

ability to correctly determine chromophore concentrations in the setting of experimental

noise. Thus, when constructing a new optical neuromonitoring system, the set of

illumination sources whose performance is most robust to data loss is not necessarily

the same combination that would result in the “optimal” theoretical performance when

all wavelengths are available. Thus, we propose a revision to the methods of Corlu

et al. (2003), Corlu et al. (2005), and Brendel and Nielsen (2009) described above in

Section 2.6. Namely, we will judge four-source combinations by the worst theoretical

performance of all possible three-source combinations, again using the residual norm and

condition number (i.e., the minimum residual norm and maximum condition number of

all three-source subsets).

We examined the theoretical performance of all four-LED combinations possible

using visible light LEDs available through ThorLabs; these included the four LEDs in

the current system (nominal center wavelengths: 470 nm, 530 nm, 590 nm, and 625 nm)

as well as LEDs with nominal center wavelengths of 505 nm and 617 nm. Since we were

unable to experimentally confirm the spectra of all such LEDs, the LED spectra were

assumed to have a Gaussian shape with a peak at the nominal wavelength and a full-

width at half-maximum of 30 nm (note, this FWHM is larger than the nominal value,

but in line with that empirically measured on our current LEDs). For each selection of

four LEDs, the minimum residual norm and maximum condition number of all three-

LED combinations was found. Possible LED selections were then compared to each

other using these metrics.

3. Results

3.1. Theoretical Assessment of Spectroscopy Matrix Quality

The full (four-LED) spectroscopy matrix for our OIS system as well as all possible

three- and two-LED subsets were assessed using the residual norm, R, and the condition

number, κ (Figure 2). The full spectroscopy matrix had a residual norm of 0.46 and

a condition number of 15.9. These values compare favorably with values for optimized

wavelength selections in the prior literature; for example, compare to Figure 1 in Corlu

et al. (2005) and Figure 4 in Brendel and Nielsen (2009).
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Wavelength censoring for spectroscopy in optical functional neuroimaging 12

Figure 2. Theoretical assessment of the full spectroscopy matrix (red circle) and

all possible sub-matrices (green and blue circles) using condition number (κ, on the

x-axis) and residual norm (R, on the y-axis). An ideal matrix would maximize R and

minimize κ (i.e., it would be as far to the upper-left as possible). Note the variance

in performance of the subset matrices relative to the full matrix. Also, note that all

two-LED matrices have a residual norm of zero by definition.

Of the three-LED matrices, three performed well with R > 0.3. Interestingly,

however, censoring the M625 LED resulted in a residual norm of only R = 0.06. All

three-LED matrices had excellent condition numbers (κ), with the greatest being 21.6;

the three matrices that performed well by R all had κ < 20 (Figure 2). Note, all two-

LED matrices result in R = 0, by definition. Thus, these matrices must be judged

solely on the basis of their condition number, κ. Four of these matrices had κ < 20.

The matrices that consisted solely of two LEDs with little wavelength separation (i.e.,

the pairs M470 and M530 as well as M530 and M590) performed poorly with κ > 25.

3.2. Simulated Optical Intrinsic Signal Data

To test performance with censored spectroscopy matrices, we next analyzed data from

the simulated OIS time courses of the 100-by-100 pixel “brain” with 25% added noise.

Root-mean-square error was calculated against both the original simulated data (the

ground truth) as well as the results attained from the full four-LED spectroscopy

matrix. The majority of spectroscopy matrices produced errors for changes in oxy-

and deoxyhemoglobin that were comparable in magnitude to the added measurement

noise (Table 1). Notably, errors in total hemoglobin concentration changes (∆[HbT])

were generally less than 10% and were substantially lower than those for ∆[HbO2] and

∆[HbR] throughout. As expected, differences in performance of the censored matrices

were found. The three-LED matrix with the worst performance resulted from censoring

the M625 data. Removing this LED resulted in errors in ∆[HbO2] and ∆[HbR] of
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Wavelength censoring for spectroscopy in optical functional neuroimaging 13

greater than 60% compared to the simulated data. However, censoring the M625 data

was not worse than other three-LED combinations when compared to four-LED data.

By contrast, censoring the M530 data resulted in measured hemodynamics that were

in excellent agreement with data from the full spectroscopy matrix (relative error in

∆[HbO2]: 2.4%, in ∆[HbR]: 2.2%, and in ∆[HbT]: 4.6%).

Table 1. Normalized root-mean-square errors (based on simulated data with

25% added measurement noise) for various LED combinations using simulated

hemodynamics.

Number

of LEDs
LEDs Included

Relative to Simulated Data Relative to 4 LED Data

∆[HbO2] ∆[HbR] ∆[HbT] ∆[HbO2] ∆[HbR] ∆[HbT]

4 LEDs M470, M530,

M590, M625

39.2% 35.8% 6.9% - - -

3 LEDs M470, M530,

M590

65.7% 60.9% 7.7% 33.3% 31.2% 2.1%

M470, M530,

M625

37.7% 35.7% 7.0% 32.7% 33.3% 0.6%

M470, M590,

M625

39.5% 35.8% 8.4% 2.4% 2.2% 4.6%

M530, M590,

M625

33.6% 37.8% 10.4% 38.1% 29.4% 8.7%

2 LEDs M470, M530 162% 157% 8.3% 150% 147% 3.6%

M470, M590 65.7% 60.9% 8.9% 33.3% 31.4% 5.0%

M470, M625 31.7% 30.0% 9.2% 33.1% 35.6% 5.2%

M530, M590 105% 91.5% 15.7% 90.0% 76.5% 13.9%

M530, M625 35.3% 30.6% 10.9% 41.9% 37.1% 9.1%

M590, M625 44.9% 32.1% 17.9% 57.8% 40.0% 18.3%

As might be expected, fewer of the two-LED matrices performed as well, but this

poor performance was limited to ∆[HbO2] and ∆[HbR]; relative errors in ∆[HbT] were

still good throughout. For example, the matrix which involved only the closely-spaced

LEDs, M470 and M530, performed particularly poorly based on the condition number.

This matrix had the worst errors in ∆[HbO2] and ∆[HbR], of over 150% relative to the

simulated data; however, its error in ∆[HbT] was only 8.3%.

We next examined the simulated functional connectivity maps (again using 25%

added noise): a seed was chosen in one location, and the correlations plotted using

∆[HbO2] contrast (Figure 3). In most cases, the expected correlation pattern is present,

although the different spectroscopy matrices drastically vary in their ability to recover

data without noise. Since the added noise in each pixel is independent, noise in the

recovered hemoglobin concentration change is reflected in correlation coefficients that are
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Wavelength censoring for spectroscopy in optical functional neuroimaging 14

closer to zero (no correlation). In particular, for the sub-matrices that performed poorly

previously (e.g., the two-LED matrices with closely spaced wavelengths: M470/M530

and M530/M590), the correlation structure is only barely visible. (Images obtained with

∆[HbR] contrast were similar; data not shown.) We repeated this analysis with ∆[HbT]

contrast (Supplemental Figure 1). The computed functional connectivity networks are

much stronger using this contrast, with less sensitivity to noise, as expected from

the earlier error analysis. In particular, some of the two-LED subset matrices that

performed poorly with ∆[HbO2] provided maps based on ∆[HbT] contrast that are

nearly indistinguishable from those obtained with three or four LEDs.

Figure 3. Simulated functional connectivity data analysis with the addition of 25%

simulated measurement noise. The seed pixel is in the lower-left region (yellow circle).

The simulated data (upper-left subfigure) demonstrates the expected pattern consisting

of two correlated regions, two anti-correlated regions, and remaining regions without

correlation. Data reconstructions are shown with all possible subset spectroscopy

matrices and ∆[HbO2] contrast. Note, the ability to recover expected networks without

noise varies between different spectroscopy matrices.

We then examined the effect of increasing noise levels on the performance

of functional connectivity correlation analysis. The added noise in the simulated

measurements was varied from 0% to 100%. To summarize our findings, we display

values of two representative correlations across the range of added noise: a correlation

coefficient between the seed pixel and a pixel in the “contralateral” correlated region

and the correlation coefficient between the seed pixel and a pixel in the “contralateral”

anti-correlated region. At 0% added noise, these correlation coefficients will equal 1

and −1, respectively. As added noise is increased, these values will trend towards

0; the rate of this decay is indicative of the robustness of the spectroscopy matrix

to added noise (slower decay being preferred). Results with sub-matrices (three- and

two-LED) were compared to the full (four-LED) spectroscopy matrix. Using ∆[HbO2]

contrast, the three-LED sub-matrices that performed well in both theoretical tests

and error calculations had similar performance to the full matrix (Figure 4, upper-

left box). Similar results were possible with the two-LED matrices that had performed

well (Figure 4, upper-right box); the two-LED matrices that involved pairs of LEDs with

wavelengths closest together (e.g., M470/M530 and M530/M590) had particularly poor
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Wavelength censoring for spectroscopy in optical functional neuroimaging 15

performance; the remaining two matrices had intermediate performance. All results were

improved when examining ∆[HbT] (Figure 4, lower boxes), even for the two wavelength

spectroscopy matrices.

Figure 4. Simulated functional connectivity results with increasing added

measurement noise. A 100x100 pixel “brain” was simulated as described. Correlation

coefficients are shown between a one pixel seed and two other pixels: a homotopic

pixel (correlated, r = 1, in red) and a pixel known to be anti-correlated (r = −1, in

blue). Data from the full, four-wavelength spectroscopy matrix is shown with dashed

lines (same in all subfigures). Data from wavelength-censored matrices are grouped by

number of wavelengths remaining and are labeled by the remaining wavelengths (solid

lines). The top group of subfigures is data using ∆[HbO2] contrast and the lower group

is data using ∆[HbT].

To quantitatively compare the effect of added noise between different subset

matrices, we calculated the added noise level at which a particular correlation coefficient

fell below r = 0.75, compared to the expected r = 1.0 in the setting of no added

noise (Table 2). These results corroborated those shown in Figure 4. The four-LED
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Wavelength censoring for spectroscopy in optical functional neuroimaging 16

spectroscopy matrix, as well as many of the three-LED and some of the two-LED

matrices, were able to determine the correlation values using ∆[HbO2] contrast with

excellent results up to 20% added noise. However, the two-LED matrices with closely

spaced wavelengths performed poorly with ∆[HbO2] contrast, wherein noise in the 5-8%

range caused drops in correlation coefficients below r = 0.75. Use of ∆[HbT] contrast

resulted in substantially improved performance with correlation values falling only for

noise levels of about 50% for most subset spectroscopy matrices.

Table 2. Performance of correlation analysis in the setting of increasing noise using

simulated data. Correlations were calculated between two pixels known to be correlated

(i.e., actual r = 1). Shown are the level of added measurement noise levels at which

data reconstructed with each wavelength combination caused the correlation coefficient

to fall below r = 0.75 (a higher value of added noise indicates the results were more

robust).

Number

of LEDs
LEDs Included

Added Noise Level Resulting in r < 0.75

∆[HbO2] ∆[HbR] ∆[HbT]

4 LEDs M470, M530,

M590, M625

20% 11% 57%

3 LEDs M470, M530,

M590

12% 7% 51%

M470, M530,

M625

21% 11% 55%

M470, M590,

M625

20% 11% 47%

M530, M590,

M625

18% 11% 38%

2 LEDs M470, M530 5% 3% 48%

M470, M590 12% 7% 44%

M470, M625 25% 13% 43%

M530, M590 8% 5% 25%

M530, M625 22% 13% 36%

M590, M625 18% 13% 22%

The results above assumed that the censored spectroscopy matrix was spatially-

invariant (for example, for the three-LED matrices, the same LED was censored over

the entire field-of-view). However, in practice, the censoring matrix will be spatially-

variant as pixel-wise quality masking will be LED-dependent. Thus, we simulated a

spatially-variant censoring matrix: in the left “hemisphere” of the simulated brain, the

full four-LED matrix was used (i.e., no censoring), while in the right “hemisphere”

a subset of LEDs was censored (and all possible subset matrices were examined as
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Wavelength censoring for spectroscopy in optical functional neuroimaging 17

before). Results demonstrated that the correlation structure could still be visualized,

even though different spectroscopy matrices were used for reconstruction of the data in

the two hemispheres (Supplemental Figure 2).

The above results have demonstrated that use of ∆[HbT] contrast drastically

improved the ability of spectroscopy matrices (even those with censoring) to recover

the correct changes in hemoglobin concentrations; this finding was true even with high

levels of added measurement noise. We suspected that this result might be a consequence

of our assumptions in constructing the simulated data, namely that changes in ∆[HbO2]

and ∆[HbR] were anticorrelated and had particular magnitudes relative to the baseline

assumed optical properties. To test these hypotheses, we repeated the root-mean-

square error analysis from above (Table 1), but we independently varied the changes in

∆[HbO2] and ∆[HbR] from −20% to 20% of baseline. These results showed that error

was independent of the magnitude of changes in either contrast (Supplemental Figure

3). Similarly, it did not appear that lower error in ∆[HbT] was due to anticorrelation

of ∆[HbO2] and ∆[HbR] since low errors in ∆[HbT] were seen for all tested changes in

∆[HbO2] and ∆[HbR], including when these changes had the same sign.

3.3. Experimental Optical Intrinsic Signal Data

We next examined the performance of wavelength censored spectroscopy in experimental

data acquired in mice. We first selected runs that contained good data at all LEDs across

the field-of-view (N = 16). The normalized root-mean-square errors in the ability to

calculate ∆[HbO2], ∆[HbR], and ∆[HbT] (Table 3) generally followed the patterns found

from the simulations with 25% added measurement noise (compare to Table 1, right-

hand columns), although the errors in the experiments are slightly larger than in the

simulations. The subset matrix with censoring of M530 performed particularly well.

The worst errors were seen with the two-wavelength matrices with closely-spaced LEDs.

Again, errors were substantially lower in ∆[HbT] than ∆[HbO2] or ∆[HbR].

We then examined functional connectivity data from representative five-minute

scans using all possible (spatially-invariant) spectroscopy matrices. Seed-based

functional connectivity maps with the seed in the left motor (Figure 5) and retrosplenial

(Supplemental Figure 4) cortices demonstrated that when using ∆[HbO2], the expected

structure was seen with most of the censored spectroscopy matrices. Even with some

two LED matrices, the network structure was very similar to that seen using all four

LEDs. Two-LED matrices consisting of only of two wavelengths close to each other (i.e.,

M470/M530 and M530/M590) were most prone to losing correlations due to noise. Maps

obtained using ∆[HbR] were similar (data not shown). As with the simulated data, the

use of ∆[HbT] as a contrast resulted in lower noise and clearer functional connectivity

maps (i.e., even with censored matrices that performed poorly with oxyhemoglobin,

Figure 6).

Next, we used similar experimental data wherein the original data quality was

of excellent in all four LEDs across the entire field-of-view, but in this case we
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Wavelength censoring for spectroscopy in optical functional neuroimaging 18

Table 3. Normalized root-mean-square errors between data calculated with subset

spectroscopy matrices and that calculated using the full spectroscopy data. Values

were derived from experimental scans (N = 16) with the error averaged across pixels

within the brain segmentation. Data is shown as the median and interquartile range

(IQR) across runs.

Number

of LEDs
LEDs Included

Normalized Error Relative to 4 LED Data (%)

∆[HbO2] ∆[HbR] ∆[HbT]

3 LEDs M470, M530,

M590

58.7 (48.1-65.6) 55.1 (45.2-61.5) 3.6 (3.0-4.1)

M470, M530,

M625

45.6 (41.7-52.7) 46.4 (42.5-53.7) 0.9 (0.8-1.0)

M470, M590,

M625

3.0 (2.8-3.3) 2.7 (2.5-2.9) 5.7 (5.2-6.2)

M530, M590,

M625

57.6 (48.5-61.7) 44.4 (37.4-47.5) 13.2 (11.1-14.1)

2 LEDs M470, M530 200 (176-219) 195 (172-213) 5.8 (4.8-6.2)

M470, M590 58.6 (48.1-65.5) 53.6 (44.8-60.7) 7.3 (6.2-7.8)

M470, M625 56.5 (47.3-64.0) 62.6 (51.5-70.1) 8.1 (6.8-8.7)

M530, M590 110 (99.6-116) 93.8 (85.1-99.7) 16.6 (15.3-14.1)

M530, M625 75.4 (61.6-83.6) 65.8 (53.8-73.4) 13.1 (11.1-14.1)

M590, M625 99.3 (82.8-112) 70.3 (57.8-78.7) 29.7 (25.5-34.1)

Figure 5. Functional connectivity data with a seed in the left motor cortex

(yellow circle) and ∆[HbO2] contrast. The expected functional connectivity pattern

consists of correlations with the ipsilateral somatosensory cortex as well as homotopic,

contralateral motor cortex; these effects are demonstrated using data obtained with

four-LED spectroscopy. Data obtained using the censored spectroscopy matrix is

shown, with the labels corresponding to the LEDs remaining. The expected functional

connectivity network is visible in most of the images, with varying degrees of noise.

With some of the two-LED matrices, the correlation structure is lost due to noise.
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Figure 6. The same functional connectivity maps as in Figure 5, now with ∆[HbT]

contrast. These maps exhibited much lower noise, with the expected functional

connectivity structure demonstrated even with censored spectroscopy matrices that

previously performed poorly.

assumed that the censoring matrix was spatial variant: namely that the left half of

the image (left hemisphere) had a full complement of wavelengths available while the

right half (right hemisphere) used a censored spectroscopy matrix. Data from the motor

seeds demonstrated that detection of the expected functional connectivity network was

possible even with a spatially-variant censoring matrix (Figure 7).

Figure 7. Functional connectivity data with a seed in the left motor cortex (yellow

circle) and ∆[HbT] contrast. The data in the left hemisphere (left half of the image,

denoted with the red bracket) was obtained using the full spectroscopy for all images.

Data in the right hemisphere (right half of the image, blue bracket) was obtained

using the censored spectroscopy matrix, as labeled. In all images (with the exception

of M590/M625), the expected pattern was seen.
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3.4. Wavelength censoring in practice

In the above analysis, wavelength censoring was imposed post hoc on data in which all

four LEDs were acquired with good data quality across the entire visible brain. We

now examine the use of wavelength censoring on example data where not all LEDs

were available across the entire field-of-view. In the first example (Figure 8, top row),

the intensity of the M470 LED was intentionally increased to saturate the camera in a

region of the left hemisphere. The expected network structure was still visualized (the

figure shows the lateral sensorimotor network demonstrated from a seed intentionally

chosen from inside the region where only three wavelengths were available). In a second

example (Figure 8, bottom row), the set screw holding the M650 LED was loose causing

a slight shift in the LED’s illumination half-way through the run. Thus, the majority

of pixels failed the signal-to-noise quality threshold in this wavelength only. Despite

this problem, again we can see the expected lateral sensorimotor network. Without

wavelength censoring, all pixels with data less than the full complement of LEDs

would have had to be excluded. The field-of-view (especially in Example 2) would be

dramatically smaller as a result, and the particular seeds chosen (from within regions

with censoring) would not be available for analysis.

3.5. Practical Wavelength Selection

As we have seen, in the setting of wavelength censoring, the performance of the

spectroscopy matrix depends both on the initial LEDs chosen and on the performance of

the various subset matrices. Therefore, we set out to optimize wavelength selection with

the practical consideration that the four LEDs chosen for the system should be judged

on the worst performance of any three-LED, censored sub-matrix. All possible four-LED

spectroscopy matrices using commercially available visible light LEDs from ThorLabs

(Figure 9A) were created. We then calculated the condition number and residual norms

for these matrices and all possible three-LED submatrices. Wavelength combinations

that had good performance when all wavelengths were available did not necessarily have

good performance of their submatrices (Figure 9B). For example, the combination of

M470/M505/M530/M617 performed well as a full matrix but particularly poorly when

judged based on its subsets. Note, the four LEDs of our current experimental system

had good performance of as a full matrix and when censoring one LED.

4. Discussion

In order to be widely applicable and useful, optical neuroimaging and neuromonitoring

systems must be robust to the experimental noise and data loss that inevitably arise

during routine use. Using traditional spectroscopic methods, noise which results in

the inability to use data from one illumination source or wavelength leads to complete

data loss. This work provides a rigorous approach to ameliorate such data loss. The

efficacy of wavelength censored spectroscopy was demonstrated with both simulated and
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Figure 8. Practical performance of wavelength censoring in example runs with missing

data. Two examples are shown. The first column shows false-color images of the

mouse brain to demonstrate the landmarks and field-of-view. The seed location for

functional connectivity analysis is shown with a yellow circle. The second column

demonstrates the pixels included in the analysis after quality masking and manual

segmentation. Pixels shown in white had all four LEDs. Pixels in red had less than

four LEDs available. Black pixels are outside the brain (e.g., scalp and hair). In the

third column, representative functional connectivity maps are shown (both maps use

∆[HbT] contrast). In example 1 (top row), the M470 LED was intentionally increased

in intensity to saturate the camera over a small region in the left hemisphere. In

the second example (bottom row), the M650 LED moved slightly half-way through

the recording due to a loose set screw. This change in baseline intensity caused a

majority of pixels to fail a signal-to-noise threshold for this wavelength. In both cases,

the use of spectroscopy with wavelength censoring allows normal delineation of the

functional architecture despite choosing a seed from within the region where only

three wavelengths are available for analysis. Note: without wavelength censoring, any

red pixels in the second column (where data from at least one LED is missing) would

have had to be excluded from analysis. In particular, the example seeds chosen would

have been outside the usable field-of-view.

experimental data. These results should help improve the field-of-view and utility of

optical intrinsic signal imaging (OIS) as well as other neuromonitoring systems, such as

near infrared spectroscopy (NIRS) and diffuse optical tomography (DOT).

We examined the variability in the accuracy of subset spectroscopy matrices to

accurately calculate changes in concentrations of different hemoglobin species. Results

showed that subset illumination combinations varied significantly in their ability to

reproduce the expected results. In particular, two-LED combinations consisting solely

of closely-spaced wavelengths resulted in the worst relative performance. On the
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Figure 9. Theoretical performance of possible four-LED spectroscopy matrices and

their three-LED sub-matrices. (A) Spectra of visible light LEDs available from

ThorLabs, displayed with the extinction coefficients for oxy- and deoxyhemoglobin. (B)

Theoretical performance of the full spectroscopy matrices and the worst performance

of their three-LED censored subsets (combination #8 is the LEDs currently in use).

Recall that better performance is expected with a high R and a low κ (i.e., towards

upper-left corner). Note that the matrices that perform the best as four-LED matrices

(i.e., the ones closest to the upper-left corner with low condition number and high

residual norm) do not necessarily have the best performance with censoring of one

wavelength.

other hand, for our imaging system, censoring only the green M530 LED resulted in

minimal changes in results. These considerations apply most strongly to changes in

oxy- and deoxyhemoglobin; interestingly, calculation of changes in the total hemoglobin

concentration were less sensitive to the wavelengths preserved and were substantially

more robust in the face of increased noise. Thus, while the M625 red LED was the most

crucial for preserving performance in the calculation of ∆[HbO2] and ∆[HbR], ∆[HbT]

could still be accurately determined even when that LED was censored.

Furthermore, we demonstrated that spectroscopic accuracy has direct effects on

the ability to perform resting-state functional connectivity. Using wavelength censored

spectroscopy, accurate correlation coefficients could still be calculated and the expected

neurologic structure of functional connectivity networks could be found. As above,
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analysis using ∆[HbT] was most robust to added noise and to the loss of data.

These findings connect to the results of Kura et al. (2018). They demonstrated that

functional connectivity maps generated with ∆[HbT] have higher signal-to-noise than

both ∆[HbO2] and ∆[HbR]. Our work provides justification that this finding arises

through experimental noise in spectroscopy rather than underlying cerebrovascular

physiology. Based on their findings, to simplify data acquisition and analysis, Kura

et al. propose the use of single-wavelength imaging at a wavelength sensitive to ∆[HbT]

(specifically they used the same M530 LED as in our system).

While we agree with their motivation to simplify analysis, and while our prior

work also utilized single-wavelength imaging, here we have shown that use of multiple

wavelengths increases experimental robustness. Our results also suggest that the error

in ∆[HbT] was lower than the added noise present in the individual wavelength data.

Thus, determination of ∆[HbT] via multi-wavelength spectroscopy is likely superior in

signal-to-noise than the use of a single wavelength measurement sensitive to ∆[HbT].

Additionally, there may be situations (e.g., disease models with altered neurovascular

coupling) for which measuring ∆[HbO2] and ∆[HbR] independently is important. Using

multiple LEDs to over-determine the spectroscopy problem enables the use of wavelength

censoring to maintain maximum flexibility in data analysis. Similarly, our methods could

be extended to systems designed to measure concentration changes of water (Xiao et al.

2004) or cytochrome-C oxidase (Bale et al. 2016), which would not be possible with

single-wavelength imaging.

Our results inform optimal methods for system construction, wavelength selection,

and data analysis. Choosing illumination sources based on the theoretical results of

the full spectroscopy matrix may not optimize for performance in the setting of data

loss. We suggest following our approach to select sources based on their performance

in the setting of censoring. Once a system is constructed and the performance of the

spectroscopy matrix (and its censored subsets) calculated, a look-up table of acceptable

wavelength combinations can be constructed for which continued analysis despite data

loss is permitted.

Our experiments tested hypotheses only in the context of resting-state

hemodynamics that arise through neurovascular coupling. It is possible that the anti-

correlation of ∆[HbO2] and ∆[HbR] in this setting is responsible for some of the lower

noise seen with ∆[HbT] contrast. Our simulations suggest that the robustness of ∆[HbT]

does not solely arise from this phenomenon, but we were unable to test this finding

with experimental data. In the future, we plan to explore these methods using near-

infrared frequency-domain or time domain systems able to calculate absolute tissue

optical properties. Additionally, while detection of functional connectivity networks

through correlation analysis was reasonably robust, techniques that require independent

calculation of [HbO2] and [HbR] to determine (for example) tissue oxygen saturation and

oxygen extraction fraction may be more sensitive to experimental noise. The approaches

demonstrated here are still applicable to understanding and improving spectroscopy in

such contexts.
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Another source of error in spectroscopy is the accuracy of the extinction coefficients

in the spectroscopy matrix. If errors are made in the determination of these values,

then, clearly, any spectroscopy calculations would be inaccurate. We did not address

this source of error in the present study. While the tissue reduced scattering coefficient

does not affect the spectroscopy matrix and algorithm directly, the diffuse pathlength is

dependent on the assumed tissue absorption and reduced scattering coefficients. Errors

in the calculation of the diffuse pathlength result in errors in ∆µa and thus errors in the

calculated hemoglobin concentrations. This problem has been shown to lead to crosstalk

between different chromophore concentrations (Okui and Okada 2005). While outside

the scope of this paper, we do intend to study the effect of error in the calculation of

the diffuse pathlength in future work, especially as the scattering coefficient might be

expected to vary spatially in pathology (Abookasis et al. 2009). We note, however, that

simulations using both analytical solutions and Monte Carlo methods have shown that

the diffuse pathlength is relatively insensitive to errors in µ′s or µa in the range where

our experiments were performed (Kohl et al. 2000). Thus, we expect errors from this

uncertainty to be small.

In this manuscript, we only studied the effects of noise and data loss within the

experimental context of OIS imaging in mice. One reason for this choice was that,

in OIS, errors such as camera saturation and low signal-to-noise affect individual

pixels; thus, when averaging across different subjects and imaging runs, the data

loss effect is immediately visualized via reduction in field-of-view (White et al. 2019).

Interestingly, similar problems arise in diffuse optical tomography (DOT) and near

infrared spectroscopy (NIRS). In such human imaging systems, individual source-

detector pairs may need to be censored due to low data quality (White and Culver 2010;

Eggebrecht et al. 2012; Ferradal et al. 2016; Pollonini et al. 2016; Hocke et al. 2018).

Such censoring needs to be accounted for accurately, for example, when visualizing data,

when reconstructing three-dimensional volumes, or when statistically interpreting data.

The wavelength censoring approaches we have presented (with a visible light system)

are readily generalizable to the near-infrared regime used in NIRS and DOT, as long as

such systems utilize more than two wavelengths. Furthermore, the algorithms could be

similarly useful for other wavelengths regimes (e.g., deeper infrared). Thus, our results

improve the ability of optical neuroimaging and neuromonitoring to impact real-world

applications based on pre-clinical and clinical subject and across multiple spectral and

spatial regimes. There has been increasing optical literature on methods for removing

movement artifacts from data (Cooper et al. 2012; Barker et al. 2013), and similar

issues arise in functional magnetic resonance imaging (fMRI), which is very sensitive to

motion artifacts (Power et al. 2012). In fMRI, volume censoring (removing time points

corrupted by subject motion) has been shown to improve the data quality of functional

connectivity analysis (Power et al. 2014; Siegel et al. 2014) beyond that achievable

through regression of artifactual time series. As even with optimal artifact removal and

filtering algorithms, censoring of data is unavoidable, statistical analysis methods that

most optimally preserve the accuracy of the remaining data will become increasingly
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important as translational and clinical work becomes more prevalent.

5. Conclusion

We have developed an analysis methodology and applied it to accurately perform

spectroscopy even in the context of wavelength censoring. Within the context of

functional neuroimaging, the use of ∆[HbT] contrast greatly improves signal to noise and

enables accurate calculations of correlations even in the setting of data loss. Calculation

of ∆[HbO2] or ∆[HbR] is more sensitive to measurement noise and loss of wavelengths,

but calculation is still possible with selected subset spectroscopy matrices. Overall,

these new tools and insights should improve the ability to accurately perform functional

neuroimaging on individual subjects in real world experimental settings.
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