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Abstract

Spinal cord ischemia leads to iatrogenic injury in multiple surgical fields, and the ability to

immediately identify onset and anatomic origin of ischemia is critical to its management.

Current clinical monitoring, however, does not directly measure spinal cord blood flow,

resulting in poor sensitivity/specificity, delayed alerts, and delayed intervention. We have

developed an epidural device employing diffuse correlation spectroscopy (DCS) to monitor

spinal cord ischemia continuously at multiple positions. We investigate the ability of this

device to localize spinal cord ischemia in a porcine model and validate DCS versus Laser

Doppler Flowmetry (LDF). Specifically, we demonstrate continuous (>0.1Hz) spatially

resolved (3 locations) monitoring of spinal cord blood flow in a purely ischemic model with

an epidural DCS probe. Changes in blood flow measured by DCS and LDF were highly cor-

related (r = 0.83). Spinal cord blood flow measured by DCS caudal to aortic occlusion

decreased 62%. This monitor demonstrated a sensitivity of 0.87 and specificity of 0.91 for

detection of a 25% decrease in flow. This technology may enable early identification and crit-

ically important localization of spinal cord ischemia.

Introduction

Paralysis and paraparesis, resulting from iatrogenic spinal cord ischemia are not infrequent

complications of vascular surgery for management of aortic disease [1–7], spine surgery for

the management of congenital and acquired spine deformity [8, 9], or spine trauma [10]. To

date, efforts to image the critical spinal cord blood supply preoperatively to guide surgical

intervention have met with mixed success [11–17]. The vasculature supplying the spinal cord

is complex [18] and exhibits large inter-subject variability [19, 20] in both native vascular

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0251271 May 10, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Busch DR, Lin W, Goh CC, Gao F, Larson

N, Wahl J, et al. (2021) Towards rapid

intraoperative axial localization of spinal cord

ischemia with epidural diffuse correlation

monitoring. PLoS ONE 16(5): e0251271. https://

doi.org/10.1371/journal.pone.0251271

Editor: Alberto Dalla Mora, Politecnico di Milano,

ITALY

Received: January 19, 2021

Accepted: April 23, 2021

Published: May 10, 2021

Copyright: © 2021 Busch et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This study was funded by the United

States National Institutes of Health (U01-

NS095761). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: Several authors have patents

issued US20140343384 (AGY, TFF), US8,082,015

(AGY), US6,076,010 (AGY), US10,342,488 (AGY,

https://orcid.org/0000-0002-9488-944X
https://orcid.org/0000-0002-7265-2679
https://doi.org/10.1371/journal.pone.0251271
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251271&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251271&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251271&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251271&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251271&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251271&domain=pdf&date_stamp=2021-05-10
https://doi.org/10.1371/journal.pone.0251271
https://doi.org/10.1371/journal.pone.0251271
http://creativecommons.org/licenses/by/4.0/


anatomy and as a result of prior aortic disease. These factors help to explain the frustration of

efforts to prevent spinal cord ischemia.

The approaches most widely employed for intraoperative spinal cord ischemia monitoring

are motor and somatosensory evoked potentials. Unfortunately, evoked potentials (EP) have

high false positive and false negative rates [21, 22], and the changes in EP that drive alerts are

often delayed by 10–20 minutes after ischemia onset [23]. Additionally, EP have shown very

limited ability to identify the anatomic origin of the ischemia. In clinical practice, electrophysi-

ological monitoring is affected by anesthetics and hypothermia [24], is incapable of monitor-

ing in the preoperative or immediate postoperative setting, and requires continuous presence

of a technologist and/or neurologist. Thus, it is unclear whether current intraoperative neuro-

physiological monitoring in aortic [25] or spine surgery [26] influences outcome.

An optimized spinal cord monitor would offer the ability to immediately detect and region-

ally/axially resolve the level of origin of the ischemia, independent of anatomic variability in

vascular supply. Such qualities could speed surgical response and focus it toward restoring spi-

nal cord blood flow. To address these limitations, here we demonstrate a novel optical device

to measure spinal cord blood flow. To measure spinal blood flow, the device employs diffuse

correlation spectroscopy (DCS) [27, 28] and utilizes a thin, highly flexible, epidural fiber optic

probe with multiple flow sensors (FLOXsp). In a porcine model of pure ischemia (e.g., no asso-

ciated trauma, compression, distraction), we test the ability of this device to rapidly detect and

regionally discriminate changes in spinal cord blood flow using a single probe.

Material and methods

Diffuse correlation spectroscopy (DCS)

DCS utilizes a diffusion model of light transport in tissue to provide rapid, quantitative, and

non-invasive measurements of blood, as validated against several clinical techniques [27, 29,

30]. Specifically in reference to the work presented here, DCS has been validated against

microsphere measurements of spinal cord blood flow [31]. DCS employs photon correlation

techniques to derive a blood flow index proportional to microvascular blood flow [27, 28, 32,

33]. Among other studies, DCS-monitoring of blood flow changes has been validated in

humans against arterial spin-labeling and velocity mapping MRI [29, 34–36].

The FLOXsp probe (Fig 1) is <0.13 cm in diameter, enabling placement into the epidural

space through a small laminotomy or an epidural needle. The probe utilized in this study

(FiberOptic Systems Inc, Simi Vally, CA) contained 3 illumination fibers (100/110/125 μm

LOH) separated by 10 cm, which were serially illuminated utilizing a 785 nm long-coherence

laser (CrystaLaser, Reno, NV) through a fiber optic switch (PiezoJena, Jena, Germany). A sin-

gle mode (6/125/165 Cu800) detector fiber is positioned on either side of each source with 2

cm of axial separation. The lumen of the probe is entirely occluded between each source-detec-

tor pair by a radiographic fiducial, which also serves to prevent light transport in the lumen of

the probe and therefore direct illumination of the detectors. Light was detected in parallel at

these six locations using photon-counting APD detectors (Excelitas, Waltham, MA). Thus, the

FLOXsp probe measures 3 distinct regions on the spinal cord, separated by 10 cm, with par-

tially redundant measurements at each location (Fig 1).

Detector output was fed to a hardware correlator (Correlator.com) and the resulting tempo-

ral autocorrelation function transmitted to a data acquisition and instrument control com-

puter (PXIe-8135 in chassis PXIe-1082) with auxiliary instrument control (PXIe-6361), data-

acquisition (PXIe-6612) and data-processing (PXI-7822R) cards (National Instruments, Aus-

tin, TX). Here, data were fit in real-time to a solution of the correlation diffusion equation [27,

28], using an FPGA-based fitting routine described elsewhere [37]; to arrive at a blood flow
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index (BFI), which is displayed in real time. Raw data was also stored for off-line processing.

Data integration time and source intensity was adjusted for each animal; optical output power

was limited to a maximum of 27mW, within the American National Standards Institute stan-

dard for skin illumination (no standard for spinal cord exists) [38]. Data acquisition of each

‘frame’, consisting of all three source positions, took <10s. In this study, we utilize changes in

spinal cord blood flow, relative to a baseline period (ΔrBF(t) = (BFI(t)-BFIbaseline)/BFIbaseline),

where the baseline period is prior to the experimental perturbation.

Model, anesthesia, and monitoring

A swine model is common in studies of spinal cord injury and was chosen for development of

these invasive probes due to the requirement that these optical tools are validated in a geome-

try and modelling regime similar to that utilized for human measurements. The effective trans-

port length of near-infrared light in tissue is ~1 mm, roughly the size of a mouse or rat spinal,

compared to ~10 mm spinal cord diameters in humans and pigs, precluding use of rodent

models. Additionally, the physical probes developed for eventual human use may be utilized in

a porcine spinal column, but are far too large for rodent spines.

Five adult domestic pigs (2 male and 3 female) weighing 47–65 kg were employed in these

studies, which were approved by the UTSW Institutional Animal Care and Use Committee

under protocol 2018-102476-USDA. West Texas Hampshire pigs were obtained from Change

of Pace Inc., housed in individual adjacent or group stalls permitting interaction, per local vet-

erinary policy. Water was supplied ad libitum, pigs were fed 3 cups of pig diet #8753 twice

daily, room temperature was maintained between 61 and 81 F, and a 12 hour day/night illumi-

nation schedule was followed. Prior to experiments, animals were monitored by certified vet-

erinarian technicians with on-site or on-call staff veterinarian support. Surgeries began at

approximately 8:00 am local time and animals were monitored by certified veterinary techni-

cians and a board-certified anesthesiologist. Anesthesia was induced with glycopyrrolate (0.2

mg/kg, IM), Ketamine (15–20 mg/kg, IM), Xylazine (1.1–2.0 mg/kg, IM) and Tiletamine

HCL/Zolazepam (4–6 mg/kg, IM). Following anesthetic induction, a peripheral intravenous

catheter was placed and animals were intubated and ventilation controlled. Anesthesia was

Fig 1. Photo of 3 position probe, all three source fibers illuminated. Black regions of probe are combined radiographic fiducials and blocks to prevent light propagation

down the length of the probe. Schematic of probe in spine and expanded view of probe distal tip, showing fiducials at tip and between each source-detector pair, as well as

the fiber positions. Each of the three detector-source-detector combinations along the probe is configured in a similar fashion. Not to scale.

https://doi.org/10.1371/journal.pone.0251271.g001
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maintained with isoflurane (1–3.0%, inhaled) and fentanyl (2–10 μg/kg/hr, IV). Central

venous access was obtained using a 16 G single lumen catheter placed into the right internal

jugular vein under ultrasound guidance and advanced into the right atrium to allow for reli-

able delivery of intravenous fluids and anesthetic agents. Adequacy of ventilation was verified

via continuous end tidal CO2 and pulse oximetry, and intermittent arterial blood gas analysis.

Rectal temperature was monitored and a Bair Hugger (3M Maplewood, MN) forced air warm-

ing blanket with an operating site orifice was also employed. Following all experimental proce-

dures, animals were euthanized with intravenous pentobarbital sodium with phenytoin 120

mg/kg and potassium 2 mEq/kg. One additional pig died after induction of anesthesia and

prone positioning, but prior to experimental interventions. This was deemed possibly due to

decreased lower venous return caused by the placement of an abdominal bolster. Use of this

bolster was discontinued in further experiments.

Epidural multi-level probe placement

The FLOXsp probe was placed into the epidural space through an L2/3 laminotomy, and then

advanced into position with fluoroscopic guidance. The anatomic position (vertebral level) of

each set of detectors was documented; the DCS sensors were positioned between the T7 and

T9, T11 and T13, and T15 and L1 vertebrae, respectively (Fig 2).

Flow validation and regional ischemia detection

Laser Doppler Flowmetry (LDF) was employed to provide a continuous monitor of blood flow

changes to compare to changes in spinal cord blood flow measured by DCS. While not

approved for spinal cord monitoring, there is wide acceptance of LDF to measure superficial

hemodynamics in other tissues, e.g., brain [39]. Using the same laminotomy, a laser Doppler

flow (LDF) probe (CP1T-HP-1000, Moor Instruments, Wilmington DE, LDF separation 2

mm) was placed directly upon the spinal cord, caudal to the most proximal set of detectors on

the FLOXsp probe (~2 spinal levels, Fig 2). The 8 mm diameter face of this probe was placed

flat against the spinal cord, minimizing hemodynamic change due to the pressure of the probe

on the spinal cord or mechanical injury of the cord. We compared changes in flow measured

with the FLOXsp probe and LDF apparatus in two experiments:

1. Physiological/Respiratory Manipulation of Flow: Hypocarbia induced hypoperfusion and

hypercarbia/hypoxia induced hyperemia. The effect of both hypocarbia and hypercarbia/

hypoxemia upon neurovascular hemodynamics are well known. Hypocarbia was accom-

plished via step-wise increases in ventilation to reduce arterial pCO2. This was followed by

Fig 2. Schematic of pig spine with FLOXsp (blue) and LDF probes (green) in place. The REOBA balloon is shown

in 5 positions, above/below each of the cephalad, central, and caudal DCS measurement sites (in this example, T9, T12,

and T15), as well as the LDF site at the L2 laminotomy. Red clouds indicate the approximate zone of illumination for

each sensor.

https://doi.org/10.1371/journal.pone.0251271.g002
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stepwise decreases in ventilation to a final respiratory hold (maximum of 5 minutes or

SpO2 = 50%) to achieve a peak level of pCO2 ~60 mmHg and hypoxemia (PaO2~45

mmHg). Pigs were then hyperventilated once again in a stepwise fashion to achieve hypo-

carbia (PaO2~25 mmHg). Arterial blood gases obtained during these experiments con-

firmed the extent of both hypo/hypercarbia.

2. Multi-level Aortic Occlusion: Here we correlated changes in regional blood flow measured

by the FLOXsp probe and the LDF probe during aortic balloon occlusion. An ER-REBOA

intra-aortic balloon catheter (Prytime Medical, Boerne, TX) was introduced via a 7 Fr

sheath into the femoral artery. This balloon catheter also facilitates measurement of intra-

aortic pressure, cephalad to the level of balloon inflation. The pigs were then placed in a

prone position and an L-2/3 laminotomy was created. The FLOXsp probe was then placed

into the epidural space through the laminotomy (schematic, Fig 2), advanced into position

with fluoroscopic guidance, and the anatomic position (vertebral level) of each set of detec-

tors documented. Following probe insertion, the REBOA balloon was advanced to the level

of the proximal descending thoracic aorta and above the most distal detector set on the

FLOXsp probe.

The balloon was then inflated to fully occlude the aorta at five locations: 1) cephalad to the

distal FLOXsp detectors, 2) between the distal and central FLOXsp detectors, 3) between the

central and proximal FLOXsp detectors, 4) between the proximal FLOXsp detectors and the

LDF probe, and 5) below the LDF probe. At each location balloon inflation was verified fluoro-

scopically and with loss of femoral arterial pressure (Fig 3). Changes in flow were documented

at each of the three FLOXsp detectors, as well as at the LDF probe. Balloon inflation was main-

tained at each position for 5 minutes.

Sample size determination. In determining sample size we assumed a non-normal distri-

bution for the data and employed a one tailed Wilcoxon-Mann-Whitney test for two indepen-

dent means. We assumed an ischemic region would experience a decrement of at least 25% in

flow, and that the standard deviation in the measurement might approach 25%. Assuming a

minimal effect size = 1.0 for discriminating an injured from non-injured region and an α =

0.05, sample sizes of 14 per group are be required to achieve power of 0.8–0.9. Given the ability

to repeat the balloon inflation experiment several times in each pig, we estimated that a sample

size of 8 or less would allow us to detect a difference in flow between regions. An interim anal-

ysis was conducted at 5 animals in an effort to reduce animal use and the data was deemed suf-

ficient to meet the sample size assumptions.

Statistical approaches. DCS and LDF measurements of blood flow during hypoxia-

hypercarbia were down-sampled to similar time bins, normalized to a baseline period prior to

each manipulation of ventilation, pooled across pigs and time points, then correlated (corr-

coef, Matlab 2019a, Mathworks). In the present analysis, due to the very small study popula-

tion (5 pigs), we did not correct for repeated hypoxia-hypercarbia cycles in the same pig or

multiple time-series measurements.

Blood flow in the spinal cord during aortic occlusions were averaged over 3 minutes after

the balloon was fully inflated. Data from multiple pigs and serial inflations in the same pig

were pooled. The median (prctile, Matlab 2019a) and 95% confidence intervals [40] were cal-

culated without statistical correction for non-independent data. A receiver operating charac-

teristic (ROC) curve and area under the ROC curve (AUC) were calculated using average

change from baseline of DCS-measured blood flow over 3 minutes following balloon inflation

at each of the 3 DCS sensor locations, using radiographically-determined location of the aortic

balloon and sensor as the ground truth (perfcurv, Matlab 2019a).
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Fig 3. Anterior-posterior radiograph of an REOBA balloon. The balloon was inflated in the aorta between the

caudal (black arrows) and central (white arrows) positions of a FLOXsp probe placed on the along the spinal cord in

the epidural space. Fiducial markers noted by arrows are located between each light source and corresponding pair of

detector positions (Fig 1).

https://doi.org/10.1371/journal.pone.0251271.g003
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Results

DCS data at three positions along the spinal cord were acquired at least once every 10 seconds

throughout physiological manipulations and aortic inflations as described below for each of 5

pigs.

We utilized laser Doppler flowmetry (LDF) to measure blood flow at a site caudal to the

lowest DCS sensor (~2 vertebral levels separation), placing a surface LDF probe directly on the

spinal cord. During physiological perturbations designed to increase and decrease spinal cord

blood flow (hypoxia + hypercarbia, or hypocarbia), the partial pressure of carbon dioxide in

the blood (pCO2, measured by blood gas) ranged from 20.7 to 93.7 mmHg, inducing up to a

~20% decrease and ~200% increase from baseline in DCS-measured blood flow (Fig 4) while

arterial blood oxygenation ranged from 100 to 38%. The changes in blood flow were highly

correlated between the LDF and proximate DCS sensor (Fig 5).

The balloon position in relationship to the FLOXsp probe regions and LDF probe was con-

firmed fluoroscopically prior to and during inflation, then monitored throughout the experi-

ment. Aortic occlusion was confirmed by loss of femoral artery pressure. An example of a fully

inflated balloon between the central and caudal DCS detectors is shown in Fig 3.

The axial location of aortic occlusion, from the mid-thoracic to lumbar, led to regionally

distinct changes in spinal cord blood flow. Detectors below the balloon occlusion level rapidly

detected a decrease in blood flow, while detectors positioned above the inflated balloon

detected quasi-stable or modestly increased spinal cord blood flow. Fig 6 depicts characteristic

regional changes in blood flow sensed by the FLOXsp in response to balloon inflation. When

Fig 4. Example change in relative blood flow versus blood concentration of carbon dioxide measured by DCS at three

sites along the spinal cord in a single pig.

https://doi.org/10.1371/journal.pone.0251271.g004
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the balloon is positioned cephalad to each sensor level (e.g., red shaded regions in Fig 6), flow

decreases. In this example, we observed little or no change in flow in FLOXsp detector regions

when the balloon was placed caudal to the sensor position (e.g., blue shaded regions in Fig 6).

The more caudal the balloon was to the level of measurement, the less perturbation during bal-

loon inflation was observed.

Blood flow at FLOXsp detector regions caudal to the balloon inflation demonstrated reli-

able and substantial decreases in blood flow. Blood flow measured by LDF showed a similar

Fig 5. Comparison of changes in relative cerebral blood flow measured by the LDF and most caudal DCS sensors. A best linear fit line is shown

(black) along with a 1:1 line (dashed black line). The overall correlation coefficient was 0.83 (p<0.001; 95% confidence interval, (0.79, 0.86)).

Measurements made in 5 pigs during hypoxia-hypercarbia (pCO2 range 20.7 to 93.7 mmHg).

https://doi.org/10.1371/journal.pone.0251271.g005
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pattern (Pearson’s correlation coefficient r = 0.83), although the location of this sensor limited

balloon positions cephalad to it. Increases in spinal cord blood flow immediately following bal-

loon deflation were higher (up to +150%) in DCS measurements than in LDF (<50%) metrics.

This response was not the focus of this study and the differences were not quantified, however,

this observation suggests that blood flow in the deeper tissues (gray matter), able to be probed

by DCS, may have different reperfusion dynamics than the relatively shallow tissues (white

matter) probed by LDF.

Specifically and more quantitatively, blood flow response in this group of 5 pigs measured

cephalad to the balloon occlusion was slightly elevated 13 [–2 18] % (median, [IQR]), while

mean blood flow caudal to the occlusion dropped by -62 [–75–46] % from baseline (Fig 7A).

We calculated a receiver operating characteristic curve for the ability of each sensor location on

the FLOXsp probe to detect the relative location (caudal or cephalad to the sensor) of aortic

occlusion (Fig 7B). The individual sensors of the FLOXsp device were found to have a sensitivity

of 0.87 and specificity of 0.91 for detection of a 25% decrement in spinal cord blood flow below

the level of aortic occlusion, as measured by individual detectors (AUC = 0.89, S1 Table).

Combining simultaneous measurements of blood flow changes at three axially-separated

sites on the spinal cord, we developed a simple algorithm to localize the balloon inflation as

’above all’, ’between cephalad and central’, ’between central and caudal’, and ’below all’ detec-

tors (see Fig 6). Utilizing a cutoff of rBF = -30%, the device localized the balloon inflation cor-

rectly 72% of the time. The majority of mis-localizations originated from a single detector

Fig 6. Time course of blood flow changes during serial aortic balloon inflation and occlusion. The balloon was

moved from cephalad to caudal locations (schematic, inset), measuring at three different sites with DCS (cephalad,

central, and caudal) and one site with LDF. Shaded regions indicate that the aortic balloon was inflated. Red (blue)

shading indicates the balloon was cephalad (caudal) to the measurement site. As discussed in the text, a cutoff of ΔrBF

= -30% permitted localization of the balloon inflation relative to the DCS measurement sites, i.e., ’above all’ (a),

’between cephalad and central’ (b), ’between central and caudal’ (c), and ’below all’ (d, e). In situations where the

sensor position was only slightly cephalad to the balloon, we occasionally observed slight decreases (e.g., cephalad

sensor near minute 30) and increases (e.g., caudal DCS near minute 60). This effect may be due to the precise local

vascular anatomy and degraded the accuracy of localization. Anecdotally, we observed smaller increases in blood flow

following balloon deflation with LDF, although this reactivity was not the focus of our study.

https://doi.org/10.1371/journal.pone.0251271.g006
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proximate to the balloon. Eliminating these sites proximate to the balloon position increased

correct localization to 92%.

Discussion

To test the ability of the device to detect and localize spinal cord ischemia we chose an

approach that elicits ischemia without directly compressing the spinal cord. This was accom-

plished through use of an intra-aortic balloon which can be positioned and repositioned accu-

rately using fluoroscopy between aortic occlusion (inflation) trials. Additionally, the probe is

not disturbed during these periods of ischemia, minimizing potential motion artifacts due to

the model. This approach also conveniently replicates aortic occlusion during open or endo-

vascular thoraco-abdominal aortic repair.

The ability to regionally discern the origin of spinal cord ischemia is particularly important

in repair of the thoracoabdominal aorta where the impact of the extent of resection or endo-

vascular graft coverage remains unpredictable due to a high degree of variability in native vas-

cular supply to the spinal cord, and/or to variability in effects of prior disease [18, 41]. It is also

of particular importance in the correction of spine deformity involving multiple levels where

the origin of ischemia due to distraction may be uncertain. Currently, this enigma is com-

pounded by the lack of reliability of evoked potential monitoring, including false negative and

false positive alerts [21], as well as delays between inciting ischemia and alerts that can exceed

10 minutes [23]. Our device has previously shown itself to rapidly (<10s) and reliably detect

the onset of changes in blood flow [31]. Moreover, evoked potential monitoring cannot local-

ize ischemia, complicating any attempt to restore blood flow via intraoperative re-implanta-

tion, etc.

A shorter aortic balloon or greater spacing between the source-detector pairs on the

FLOXsp probe would improve localization consistency at the expense of axial spatial

Fig 7. Blood flow changes in spinal cord regions cephalad and caudal to aortic occlusion at multiple positions and

repetitions. No correction for multiple measurements in the same pig (N = 5). (a) Blood flow below the site of aortic

balloon inflation fell -62% (95% confidence interval, CI: -71, -58%) from baseline, while blood flow above the aortic

occlusion increased 13% (1.8, 17%) from baseline, rejecting the null hypothesis at a significance of 0.05 that the blood

flow below the balloon site did not change (i.e., ΔrBF = 0). The respective interquartile ranges for the caudal and

cephalad measurements were [–75–46] % and [–2 18] % respectively. (b) Receiver operating characteristic curve of the

ability of DCS flow to predict the placement of the aortic balloon cephalad to the DCS sensors, including sensitivity

(0.87) and specificity (0.91) calculated for a cutoff of ΔrBF = -25% to detect an aortic occlusion cephalad to the sensor

location (S1 Table).

https://doi.org/10.1371/journal.pone.0251271.g007
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resolution. Anatomical variation in the precise origin relative to the terminus of the small

arteries supplying the spinal cord may provide a practical limit to the precision of axial resolu-

tion of ischemia.

In the present work, our device has demonstrated its ability to spatially localize the level of

aortic occlusion, potentially offering an improved opportunity for focused intervention.

The anatomy of the porcine spinal cord is highly comparable to the human spinal cord [42]

and this model has been used extensively in spinal cord injury and ischemia research [43]. The

spinal cord blood supply in the pig is subtly different from the human, appearing to be more

resistant to prolonged aortic occlusion secondary to a more extensive collateral network [41].

However, our preparation is acute and these subtle differences, reflecting the enhanced ability

of the pig to slowly increase collateral blood flow, do not affect our experimental design and

desire to test the ability of our device to detect acute changes in blood flow. Insertion of the

probe was not impacted by anatomical differences between the porcine and human spine.

Our study had several limitations. We choose to use LDF as a comparator technique as it

provides a continuous blood flow metric in the operating room. However, the LDF technique

typically uses very short source-detector separations (here, 2mm) and is sensitive to a small

region (< 5 mm3) of superficial tissues (<2 mm from the surface), while the DCS technique as

employed here is sensitive to a larger region (~ 5 cm3) up to ~10 mm into the tissue. Thus,

comparison between the two methods is somewhat problematic as each samples a different tis-

sue bed, likely partially explaining the discrepancy between techniques shown in Fig 5. More-

over, in the present experiment, the DCS and LDF probes were not co-located, as they both

optically and mechanically interfere with one another. In addition, the LDF probe placement

required a laminotomy and the geometry created challenges in securing the probe in the lami-

notomy without injuring the spinal cord. LDF is known to be extremely sensitive to motion

artifacts, especially if this changes fiber optic-to-tissue coupling. We utilized a temperature

sensor built into the LDF probe head to identify and remove periods of poor tissue contact

identified with lower temperature measurements. Additionally, we excluded events in which

the temporal derivative of the LDF signal had a discontinuity. DCS is also vulnerable to

motion, however, the overlying bony spine effectively assists in holding the probe in place.

DCS probe motion was not a challenge in this experiment; future long-term studies, especially

if transport is involved, will need to address this issue. In our analysis comparing LDF and

DCS data, we did not correct for serial measurements in each pig.

Outlook

In summary, the FLOXsp device is capable of immediate, continuous, reliable, and regionally

specific detection of changes in spinal cord blood flow, offering earlier identification of spinal

cord ischemia and improved opportunity for focused intervention. This device may prove of

exceptional value to vascular and cardiovascular surgeons in planning for and conducting aor-

tic interventions such as stenting, to spine surgeons in the management of congenital and

acquired spine deformity, as well as in the management of spine trauma. Finally, while not yet

tested in an intensive care environment, it is expected that this technology will also allow for

continuous postsurgical monitoring, a critical period where monitoring is currently not possi-

ble and during which delayed ischemia resulting in injury is known to occur.

Supporting information

S1 Table. Tabulation of changes in relative blood flow (rBFI %) during serial inflations

(inflation #) at three sites (site #, 1 is most cephalad) in each of five pigs (pig #). Each infla-

tion-site pair is labeled with the radiographically determined location of the aortic occlusion
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balloon (is the balloon cephalad, true/false).

(PDF)
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