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Giant director fluctuations in liquid crystal drops
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We report the discovery and elucidation of giant spatiotemporal orientational fluctuations in nematic liquid
crystal drops with radial orientation of the nematic anisotropy axis producing a central “hedgehog” defect. We
study the spatial and temporal properties of the fluctuations experimentally using polarized optical microscopy,
and theoretically, by calculating the eigenspectrum of the Frank elastic free energy of a nematic drop of radius
R2, containing a spherical central core of radius R1 and constrained by perpendicular boundary conditions on
all surfaces. We find that the hedgehog defect with radial orientation has a complex excitation spectrum with
a single critical mode whose energy vanishes at a critical value μc of the ratio μ = R2/R1. When μ < μc, the
mode has positive energy, indicating that the radial hedgehog state is stable; when μ > μc, it has negative energy
indicating that the radial state is unstable to the formation of a lower-energy state. This mode gives rise to the
large-amplitude director fluctuations we observe near the core, for μ near μc. A collapse of the experimental
data corroborates model predictions for μ < μc and provides an estimate of the defect core size.

DOI: 10.1103/PhysRevE.105.044702

I. INTRODUCTION

Topological defects affect the stability and self-assembly
of complex fluids such as liquid crystals (LCs) and col-
loids [1–4]. Much of the research done on LCs, for example,
explores how defect topology, arrangement, and number vary
as a function of elasticity, confinement geometry, boundary
conditions, anchoring energetics, and thermodynamic phase.
These studies, in turn, guide efforts to create self-organized
and responsive soft materials [3,5–21]. To date, research on
topological defects has predominantly explored equilibrium
structure and energetics of nearby director fields. Director
fluctuations near defects are rarely studied. Here we inves-
tigate spatiotemporal fluctuations of the nematic LC (NLC)
director-field near the core of a classic hedgehog defect (topo-
logical charge +1) at the center of a spherical drop with
perpendicular (homeotropic) director alignment at the drop
surface.

Two equilibrium structural configurations are commonly
observed in these NLC drops [4,11,12,23–25]: a radial hedge-
hog, with nematic director n, the unit vector specifying the
direction of the nematic anisotropy axis, parallel to the pure
radial coordinate, and a “twist-bend” hedgehog [26], wherein
twist and bend distortions occur near the drop center. The
relative stability of these two configurations has received
some theoretical attention [4,11,23–25]. Reference [17] re-
ports a transition from the radial hedgehog to a configuration
featuring a hyperbolic core and a nonsingular charge +1
disclination ring. Another possible configuration, much stud-
ied by theory [27–33], is one in which the point core is
replaced by a strength +1/2 disclination ring. Here we focus
on director dynamics of drops with a radial hedgehog equilib-
rium configuration. Our model assumes drops of radius R2, a

central core consisting of a spherical inclusion of radius R1,
and homeotropic (perpendicular) boundary conditions on all
surfaces. To date, director dynamics near a defect core, as
opposed to defect translational diffusion [34], have not been
investigated much beyond the fast fluctuations occurring on
molecular scales [35–41], or the dynamics emerging from
rapid lattice vibrations of skyrmions in 2D films [42].

Our measurements and theoretical analysis [43] reveal a
remarkable feature of the hedgehog director configuration
that has not been reported in other systems and confine-
ment geometries [3,10,15,18,20,21]. We find that slow, giant
fluctuations of the director field n can emerge, driven by a
low-energy excitation mode strongly localized near the core,
with energy eigenvalue that approaches zero at a critical value
μc of the ratio μ = R2/R1 (see Supplemental Material (SM),
Movie 1 [22]) and becomes negative for μ > μc. We will refer
to this low-energy excitation as the critical mode. The remain-
ing modes have much higher energies and thus much smaller
fluctuation amplitudes. Our calculations predict a limit of
stability at μ = μc that agrees with the results of Ref. [23].

Using video-rate polarized optical microscopy (POM) and
image analysis, we measure the spatiotemporal fluctuations
of the director n around the hedgehog defect and reconstruct
n and its correlation functions. The observations reveal co-
operative modes of n that relax diffusively at different rates.
In many drops, n exhibits giant correlated fluctuations with
amplitudes as large as π/8 rad. Experimental measurements
of the temporal autocorrelation functions of n yield fluctuation
amplitudes and decay times, and when combined with theory,
provide an estimate of the size of the central core in drops
with giant fluctuations. Moreover, a somewhat surprising and
informative collapse of the experimental data is observed
when the critical-mode energy approaches zero. Thus, the
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combination of experiment and theory yields fresh insight
into the character of n in the vicinity of a simple defect core.
Such critical points could arise for topological defects in other
confined geometries/contexts such as defects in free-standing
Smectic-C films [44–50] and are potentially interesting for
nanoparticles in LCs [43,47–50].

II. EXPERIMENTAL

The experiments employ an NLC-water emulsion using
a mixture of 4-n-pentyl-4′-cyanobiphenyl (5CB, Kingston
Chemicals) that we hand-mix with a 0.1 wt% aqueous
solution of the surfactant sodium dodecyl sulfate (SDS,
Sigma-Aldrich). The latter promotes homeotropic anchoring
at the water/NLC-drop boundary [11,12], and the hand-
mixing helps minimize surfactant dispersion in the LC. The
resulting emulsion consists of spherical drops of NLC of
varying size, with only a few of the many suspended drops
making pointlike contact with a cell wall.

The samples are imaged with POM using a Leica DM
IRB inverted microscope and a 100x oil immersion objective
(N.A. = 1.4). Imaging of each drop is done at 60 frames per
second over a period of 5 to 10 min. The apparent softening
of the radial-hedgehog ground state configuration and emer-
gence of slow, giant, angular fluctuations of n are observable
in POM as illustrated in Fig. 1 (top-left image) and SM Movie
1 [22]. The fluctuations in roughly 50 percent of the drops
were significantly larger than the measurement random noise
and, therefore, are easily observed. Herein we focus on the
drops that exhibit these large fluctuations but will return to
put the cases with small fluctuations into theoretical context.
All fluctuating drops possess the same azimuthal pattern, in
agreement with the theoretical prediction (for μ < μc) that the
fluctuations have radial symmetry and appear the same along
any line of sight. Note also, we observe giant fluctuations
in drops using other surfactants (e.g., CTAB) and LCs (e.g.,
MBBA, 8CB, ZLI-4792). Finally, please note, our observa-
tions and those in Ref. [17] are different. The latter concerns
structure rather than dynamics, involves a different LC in
the vicinity of the nematic-smectic transition, and reports a
transition from a radial configuration to a hyperbolic state
with a large disclination ring, which is different from the
twist-bend configuration we find in preliminary simulations
which show a simple twist-bend hedgehog (with a possible
tiny Saturn-ring at the core, see SM Fig. S3 [22] and theory
paper [43] for details).

Two coexisting collective diffusion modes of n are readily
distinguished: (i) “azimuthally uniform” rotational diffusion,
which varies with the radial coordinate r but not with the
azimuthal coordinate ϕ, and (ii) scissorlike “relative” rota-
tional diffusion, which varies with both r and ϕ, see Fig. 1
(top-right). To quantify these modes further, each video frame
is analyzed. First, we employ image processing tools to locate
the defect position, i.e., the center of the cross-pattern. The
defect position is then used to obtain an azimuthal intensity
profile I (ϕ, t ) on a circle of probing radius r = r1 ≈ 0.4 μm
(see Fig. 1, lower panel; SM Fig. S1 [22]).

Since the images are recorded using crossed-polarizers,
the intensity profiles provide information about the director
orientation at each point on the probing circle. While di-

FIG. 1. Top-left: Snapshot of a fluctuating drop. “Azimuthally
uniform” rotational diffusion is characterized by the angle α1 (cen-
tered around zero), and “relative” or scissorlike rotational diffusion
is characterized by the angle α2 (centered around π/2). Green dashes
indicate the drop outer edge. The red circle is at r = r1 ≈ 0.4 μm.
Scale bar represents 5 μm. Top-right: Reconstruction of the director
n from the snapshot. The azimuthal intensity profile is determined
along the red circle (shown also in the top-left panel). The intensity
variation obtained in the crossed polarizer setup is used to extract
the director angle (β, see lower panel) for each angle ϕ. The cor-
responding colored dots indicate the azimuthal positions at which
the angular fluctuations shown in the lower panel are taken. Bottom:
Time evolution of δβ at r = r1 ≈ 0.4 μm for four azimuthal angles,
ϕ = 0◦, 90◦, 180◦, and 270◦ (see colored dots in the top-right panel),
taken along the red circle shown in the panels above. Scale bar on the
δβ axis represents π/4 radians. Inset: Definitions of the angles ϕ, β,
and δβ; the xyz-coordinate system is defined with z axis pointing out
of the page.

rector orientation varies in all three spatial dimensions, we
make the approximation that the observed fluctuations are
contained in the xy plane; angular fluctuations in the z di-
rection (along the path of the light) are difficult to quantify
experimentally. To extract information, we model the system
as a 2D slice, and we split each frame into eight angular
regions divided by neighboring extrema (SM Fig. S1 [22]).
Each region comprises and is bounded by one intensity max-
imum and one minimum. With the crossed polarizer setup,
we can identify every local minimum as a point where the
director lies parallel to one of the polarizers, and every local
maximum as a point where the director makes a 45◦ angle
with the polarizers. For other points at arbitrary angle ϕ

(with respect to horizontal axis), the director angle, β (with
respect to the horizontal axis, see the inset in the lower panel
of Fig. 1), can be determined using the following equation:

β(ϕ, t ) = 1
2 arcsin(

√
I (ϕ,t )−Imin(t )
Imax(t )−Imin(t ) ). Knowing β and ϕ enables

us to reconstruct the orientation of the director at each value
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FIG. 2. Normalized and bare (inset, right) correlation functions
at probing radius r = r1 ≈ 0.4 μm. Additional insets: schematic re-
constructions of n illustrating key features of the two coexisting
fluctuation modes. Blue (red) arrows indicate positive (negative)
δβ. Notice, the m = 0 mode has substantially larger amplitude and
relaxation time than all other modes.

of ϕ, and to measure δβ(ϕ, t ) = β(ϕ, t ) − ϕ, the deviation of
n from the radial hedgehog ground state. Figure 1 (bottom)
shows the fluctuations of δβ for different discrete azimuthal
positions, ϕ. Spatiotemporal director fluctuations within the
drop are shown in real time in SM, Movie 1 [22].

III. RESULTS

Using these measurements of director fluctuations, we next
build correlation functions based on δβ(r, ϕ, t ) (the polar
angle θ is fixed at its equatorial value of π/2) at discrete
azimuthal angles:

Cp(r, t ) =
〈
δβ(r, ϕ0, t0)δβ

(
r, ϕ0 + 2π p

N
, t0 + t

)〉
, (1)

with p = 0, 1, . . . , N − 1. These correlations are averaged
over angular position ϕ0 and time t0. We set N to 4 since the
POM image provides a cross pattern with four identifiable
branches (Fig. 1). The data are then further processed by
performing a discrete Fourier transform of Cp(r, t ):

Sm(r, t ) = 1

N

N−1∑
p=0

Cp(r, t ) exp

(
−im

2π p

N

)
. (2)

Reality of Cp(r, t ) requires S0(r, t ) and S2(r, t ) to be real,
and S1(r, t ) and S3(r, t ) to be complex conjugates of each
other. Figure 2 shows an example of the correlation functions
S0, S2 and S1 + S3 versus time, using the measurements of δβ

shown in Fig. 1. Since our measurements are mostly made at
a specific r, herein, we drop the r-dependence in Sm and Cm.

Fourier transformation decomposes the fluctuations into
modes with different azimuthal dependence. Based on Eq. 2,
Sm=0 corresponds to a sum of all Cp(r, t ); it characterizes
the “azimuthally uniform” rotational diffusion, and its value
is large when similar (in-phase) fluctuations occur at all
φ. S1,3 ≡ S1 + S3 = 2ReS1 = (C0 − C2)/2, characterizes the
“relative” rotational diffusion by looking at “opposing” or
“out-of-phase” (scissorlike) fluctuations for positions sepa-
rated by 180◦. Clear differences are apparent between modes

FIG. 3. Relaxation time τ0 and amplitude S0(0) (inset) at prob-
ing radius r = r1 ≈ 0.4 μm versus drop radius, R2. Solid lines are
obtained using the theoretical model with a fixed core radius of R1 =
9.0 nm, and the viscous parameter 
 = 15 ms

kg . Notice the poor agree-
ment between this model with fixed core radius and the experiment.

S0 and S1,3. First, the amplitude, S0(0), is approximately
one order of magnitude larger than S1,3(0), indicating the
dominance of the lowest-order-mode fluctuations of n (inset,
Fig 2). Second, the relaxation time τ0 is ≈1 s, while τ1,3 is
very short, about the time between video frames (≈0.017 s).

For the remainder of this paper, we focus on the fluctua-
tions, S0(t ), of the dominant, critical mode. The dependence
of its amplitude, S0(0), and relaxation time, τ0, is shown in
Fig. 3 as a function of drop radius (R2). These plots include
only drops with S0(0) larger than the measurement noise floor
[S0(0) > 0.01]. An increasing trend for both amplitude and re-
laxation time with drop size is apparent for radii R2 < 7.5 μm.
S0(t ) and τ0 as a function of lag time, and for different values
of r within the drop, are shown in Fig. S2; these measurements
reveal an expected suppression of S0(0) with increasing r, and
a τ0 that is constant within experimental error for all r.

IV. DISCUSSION

In our theory, of which we give a detailed account in a
dedicated publication [43], we describe the energetics of our
drops based on the usual Frank free energy,

F = 1

2

∫
{K1(∇ · n)2 + K2(n · ∇ × n)2

+ K3[n × (∇ × n)]2}d3r. (3)

The splay, twist, and bend elastic constants, are set to standard
values for 5CB: K1 = 6.4, K2 = 4.0, K3 = 10.0, all in pN .
The equilibrium director aligns everywhere along the radial
direction: n0 = êr . To study fluctuations about this state, we
express the local director as

n =
√

1 − f 2 − g2êr + f êφ + gêθ = n0 + δn, (4)

where, as in previous work [23,43], f and g are functions of
radius r and polar angle θ and, importantly, are also functions
of the azimuthal angle ϕ. We determine the modes associ-
ated with f and g by standard separation-of-variable methods
with product-function solutions [43]. The polar-angle func-
tions obey a Legendre equation of irrational order, and the
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FIG. 4. Numerical results (dots) and analytical approximation
(solid line) for the smallest allowed κ (μ) associated with the critical
mode (for μ < μc) that has radial eigenfunction u0(r). Inset: exam-
ples of radial f -eigenfunctions um for a drop with μ = R2/R1 ≈ 695.
Notice, u0(r) is strongly peaked near the core. V is the total volume
of the drop given by V = (4/3)πR3

2.

radial functions obey a Bessel equation of real or imaginary
irrational order.

Each solution, which is constructed so that the critical
mode wave function and associated fluctuations vanish at
r = R1, is characterized by a parameter,

κ = kR2, (5)

where k is the exact analog of the wave number in a plane-
wave system; k takes on an infinite set of discrete values such
that wave functions vanish at the outer boundary at radial posi-
tion r = R2. The energy density of eigenmodes is determined
by κ via

ε = K3

( κ

R2

)2
. (6)

Importantly, κ , and thus the zeros of the radial solutions,
depend on the ratio μ = R2/R1, rather than on R1 and R2

separately. The lowest energy configuration associated with
each mode corresponds to the smallest allowed values of κ .
For μ < μc, the radial eigenfunction of the lowest energy
excitation, u0(r), is strongly peaked near the core, whereas
all the other excitations are much less localized; see Fig. 4.
When μ > μc, κ becomes imaginary, and ε0 becomes nega-
tive, indicating an instability with respect to a nonradial state.

The theoretical solution (for μ < μc) is used to generate
instantaneous director configurations for comparison to exper-
imental images. The dark and bright regions observed through
crossed-polarizers are readily explained using the 5CB bire-
fringence. Light traveling through the dark ring/annulus at
approximately r = R2/3 experiences a retardation of 2π ;
the colors in the bright regions are different because the
birefringence has dispersion. We then utilize Jones calculus
to calculate the optical transmission through the full three-
dimensional drop and crossed polarizers, i.e., based on the
theoretical director configuration. Since refraction at the drop
surface is not taken into account, the reconstructed images are
only approximate for values of r approaching R2. Figure 5

FIG. 5. Comparison of three images of an actual drop showing
the fluctuations (top row), and three reconstructed polarized mi-
croscopy images predicted by the theory, calculated using the Jones
Matrix formalism (bottom row). The scale bars represent 5 μm.
Since refraction at the drop surface is not taken into account, the
agreement between the images and theoretical reconstructions is best
for small values of the radial coordinate, e.g., inside the dark circle
where the retardation equals 2π .

displays both the theoretical reconstructions and the exper-
imental images. The visual correspondence between theory
and experiment in the center portion of the drop is excellent.
Importantly, the fluctuations are largest near the core, consis-
tent with the prediction that u0(r) is sharply peaked near the
core.

Our theory [43] provides insight into the character of the
lowest-energy excitation mode. In particular, it provides us
with an analytic expression for small values of κ2 as a function
of μ, and it determines the critical value, μc = eiπ/ν ≈ 700 for
5CB, at which κ vanishes. Here ν is the order of the Bessel
equation for the radial eigenfunction of the lowest-energy
mode. Figure 4 plots κ as a function of μ.

For in-depth comparison with experiment, we compute the
static and dynamic correlation functions via standard Gaus-
sian functional integrations with F expressed in terms of its
eigenfunctions [43,51]. Because our experimental analysis
uses a 2D slice approximation and thus derives experimental
information about only azimuthal fluctuations of the director,
we need only the azimuthal deviation, f ≈ δβ, to build theo-
retical correlation functions for experimental comparison. Our
theoretical model predicts

S0(r, t, μ) = 3kBTu2
0(r, μ)

8πε0(μ)
e−t/τ0(μ), τ0(μ) = 1


ε0(μ)
,

(7)
where the 0 subscript denotes the lowest energy state and 
 is
the viscous parameter for the LC, i.e., the inverse rotational
viscosity of the liquid crystal, γ1. For 5CB, electro-optical
measurements [52] give γ1 ≈ 0.07 Pa-s, and hence 
 ≈ 15 ms

kg

at room temperature. Note, S0 is proportional to ε−1
0 , and as a

result diverges as μ approaches μc. In Eq. (7), we explicitly
indicate that ε0, u0, and τ0 depend on μ, the sole free variable
once κ is replaced by its analytic expression in terms of μ.
Our measurements are generally taken at radius r = R2/3.
A complete analysis demonstrates that higher-order modes
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FIG. 6. Size of the core radius R1 extracted from the experimen-
tal values of S0 (black dots) and τ0 with 
 = 20 ms

kg (red open circles).
The solid line is the critical line, Eq. (8), highlighted by the theory.
Inset: deviation �R1 = R1 − R2/μc of the experimental points from
the critical hedgehog.

have much larger energies, much smaller amplitudes, and
much shorter relaxation decay times than does the lowest
mode. These predictions thus agree with our observations of
the rapidly decaying and small amplitude scissorlike modes
(Fig. 2).

Our observation of some drops with visible central water
droplets, and prior theoretical work showing that the radial
director configuration is not stable without anchoring of the
director near the center [11,23], strongly suggest that all of the
drops we studied house a central water droplet. The central
droplet position is easily identified as the center of a black
cross defining the boundaries of the four-arm polarization
pattern (see Fig. 5), but its size (radius) is too small to be
detected by our optical techniques, thereby precluding any
possibility of a direct measurement of the core radius R1. Our
hand-mixing process is likely to produce drops with varying
core sizes, since varying amounts of water and surfactant can
become trapped inside the drops and migrate to their centers.
Indeed, attempts to fit Eq. (7) to our data for S0(r, 0, μ) and
τ (μ) versus R2, with a single R1 as a fitting parameter, lead
to poor agreement between experiment and theory (Fig. 3).
Therefore, to study core size, we use our theoretical results
to calculate R1, first using S0(r, 0, μ) and then using τ0(μ).
In the first case, all parameters except μ are fixed. By setting
S0(r, 0, μ) equal to the experimentally determined values of
this quantity, we obtain an equation determining μ for each
value of R2 from which we obtain R1 = R2/μ. The values of μ

obtained in this way differ from μc by an order of one percent
(or less) implying that R1 differs from

R1 = R2

μc
(8)

by the same small percentage. Figure 6 shows the strikingly
linear plot of R1 versus R2 and the small deviation of R1 from
Eq. (8). This behavior is a consequence of the fact that we are
only able to detect large fluctuations, which only arise when
ε0 is near zero, i.e., when μ is near μc.

The calculation of μ from S0(r, 0, μ) is a straightforward
task (with the help of Mathematica) because it has no un-
knowns other that the μ we seek to solve for. The function
τ0, which does not depend on the wave function u0, is less
complex than that for S0, but it also depends on the viscous pa-
rameter 
 whose value we do not know. We have two options
for extracting μ from τ : (i) We can use 
 as a fit parameter.
In this case, it turns out that the resulting dependence of R1 on
R2 is remarkably insensitive to the value 
; any value larger
than roughly 10 ms

kg leads to essentially the same outcome. (ii)
We can extract 
 for each R2 from the ratio S0(r, 0, μ)/τ0(μ)
using Eq. (4) and the known values of T and u2

0(r). In the
latter case, we find 
 = 28.9 ± 9.6 ms

kg ; note, the scatter is not
large enough to alter the functional dependence of R1 on R2.
Ultimately, both the data sets for S0(r, 0, μ) and τ0(μ) lead
to highly consistent estimates for R1 as a function of R2 (see
Fig. 6).

Our analysis suggests that R1 varies from approximately
5 to 25 nm, albeit with most cores between 5 and 12 nm.
These numbers are comparable to those found in other anal-
yses of defect cores [53–55], and are consistent with recent
experimental insights about the nanostructure of topological
defects [28] and theoretical work on the structure of nematic
hedgehogs [27,31,56].

Measurements of director fluctuations are easy near μ =
μc because of their large amplitude, but they become difficult
away from that point, when the director fluctuation amplitudes
become comparable to the experimental noise floor. In some
drops with diameters in the 5–10 micron range, the core radii
were measurable and were in the 550–750 nm range (μ ≈
7–20); notably, these drops did not show giant fluctuations,
consistent with their value of μ � μc.

However, approximately 50% of drops in our study, largely
with diameters in the 3–6 micron range, have cores too small
to be seen and did not exhibit measurable fluctuations. For
these drops, theory suggests that either μ � 0.85μc, i.e., μ

lies on the plateau, or, μ > μc. Clearly, it is desirable to
develop a better understanding of the drops director configu-
ration when μ > μc. To this end, we have begun a study [57]
using Q-based Landau-de Gennes (LdG) numerical mod-
els [58–61] of the ground-state configurations of our system
as a function of Frank elastic constants and the ratio μ.
Preliminary results, based on simulated drops smaller than
those in experiment, confirm that a radial hedgehog is the
lowest energy configuration for μ < μc. We find a lowest-
energy state that is a twisted hedgehog (with a possible tiny
Saturn-ring at the core) at μ greater than but very near μc

and more complex twisted structures as μ grows larger. The
radial hedgehog and twist-bend hedgehog configurations are
pictured in SM Fig. S3 [22], and the simulations will be dis-
cussed in detail in a future paper [57]. As noted earlier, twisted
equilibrium states have been predicted in NLC drops with
and without [12,13,17] spherical cores with a range of values
for the Frank constants, and twisted equilibrium states have
also been observed experimentally in LC drops [11,12,23–
25], albeit in larger drops than studied here.

Our experiments found no evidence of the twisted equi-
librium configuration. We suspect this a consequence of the
preparation method used to create the drops. For example,
if handshaking/mixing tends to produce drops containing an
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amount of water/surfactant roughly proportional to the drop
volume, then the radius of the core could scale with the drop
radius, limiting the observable range of μ = R2/R1 to values
below μc wherein the radial configuration is stable. Thus,
we speculate that drops with μ > μc may never have been
created.

V. CONCLUSION

In summary, collective fluctuation modes of n, and their
diffusive relaxation, are reported for the first time in NLC
drops. Slow and giant fluctuations of the lowest-energy (crit-
ical), in-phase rotational mode are observed by POM in the
vicinity of a point defect. Both the amplitude and relaxation
time of these fluctuations are orders of magnitudes larger
than the usual fluctuations in NLCs. Our theoretical analy-
sis suggests important new features about the character of
the critical mode. Giant fluctuations arise because the en-
ergy of the lowest excitation approaches zero as the ratio

μ = R2/R1 increases, leading to a softening of the director
configuration near the core, presaging a critical mode phase
transition to a twisted state. The characteristic features of this
mode are apparent in a remarkable scaling of the data. The
new understanding about this critical mode enables indirect
measurement of core size, suggests the possible existence
of similar dynamical effects near other topological defects
in different geometries/contexts, and offers new routes to
probe local properties of topological defects and the physics
of nanometer-size particles in LCs.
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