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Abstract: We introduce a frequency-domain modified Beer-Lambert algorithm for diffuse
correlation spectroscopy to non-invasively measure flow pulsatility and thus critical closing
pressure (CrCP). Using the same optical measurements, CrCP was obtained with the new
algorithm and with traditional nonlinear diffusion fitting. Results were compared to invasive
determination of intracranial pressure (ICP) in piglets (n= 18). The new algorithm better
predicted ICP elevations; the area under curve (AUC) from logistic regression analysis was
0.85 for ICP ≥ 20 mmHg. The corresponding AUC for traditional analysis was 0.60. Improved
diagnostic performance likely results from better filtering of extra-cerebral tissue contamination
and measurement noise.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Many patients with acute brain injury experience intracranial hypertension that impairs cerebral
metabolism and causes secondary hypoxic-ischemic damage [1–4]. Invasive intracranial pressure
(ICP) monitoring devices can be used to improve therapeutic management, but their risks
often preclude or delay their use [5]. Thus, the development of non-invasive ICP monitoring
technologies has been investigated [6–9]. One promising technology is diffuse correlation
spectroscopy (DCS); DCS can non-invasively measure pulsatile heart-beat fluctuations in
microvascular cerebral blood flow [10]. To date, pilot studies have used DCS flow waveforms to
predict ICP in non-human primates [11], adults with traumatic brain injury [12], and pediatric
critical care patients [13,14]. Resultant ICP predictions have been obtained from data via
machine learning [11–13] and critical closing pressure (CrCP) models of the cerebral circulation
[14]. Irrespective of analysis approach, a well-known confound of DCS is its sensitivity to
signal contamination from extra-cerebral tissues [15]. Here we introduce a novel frequency-
domain modified Beer-Lambert method to filter extra-cerebral contamination from the DCS flow
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waveforms, and we demonstrate its improved prediction of ICP elevations in a piglet model
(equivalent to toddler-aged children).

In this work, we utilize model-based estimation of CrCP. CrCP is the sum of ICP and the
compression pressure exerted by active wall tension from vasomotor tone on the arterioles [16].
Since CrCP depends on ICP, the measurement of CrCP provides a proxy measure of intracranial
hypertension (especially in periods of vasodilation when active wall tension is reduced). In fact,
CrCP may be more clinically relevant than ICP, since it better reflects the factors which affect
cerebral blood flow. While the difference between mean arterial blood pressure (MAP) and ICP
is often referred to clinically as the cerebral perfusion pressure, the true pressure gradient across
the arterioles also depends on vasomotor tone. Specifically, assuming that the outflow blood
pressure at the distal end of the arterioles is CrCP [17], we refer to MAP – CrCP as the “actual”
cerebral perfusion pressure (aCPP). Note, if pressure in the arteriole drops below CrCP, then the
vessel collapses, and cerebral blood flow ceases.

By leveraging the aCPP concept, we can derive CrCP from concurrent measurements of
pulsatile cerebral blood flow and arterial blood pressure during the cardiac cycle [17,18]. Most
previous studies have used transcranial Doppler ultrasound measurements of blood velocity in
large cerebral arteries [18–25], which may not reflect arteriolar flow. DCS, however, measures
blood flow in small arterioles [17], which depend more directly on the CrCP outflow pressure.
DCS thus holds potential to measure CrCP with improved accuracy. To date, however, DCS
measurements of CrCP have relied on nonlinear fitting of the DCS intensity autocorrelation
signal to a homogeneous semi-infinite head model that ignores differences between extra-cerebral
and cerebral tissues [17,26–30]. In addition, correlation noise in the measurements can make it
difficult to resolve heart-beat fluctuations in blood flow. Herein, we report pilot results that show
the modified Beer-Lambert method’s mitigation of these confounds.

2. Methods

2.1. Vascular model of arterioles for deriving CrCP

The derivation of CrCP from pulsatile blood flow in cerebral arterioles (F) has been described
elsewhere [17,27]. Briefly, we employed a “resistive-only” approximation to model the cerebral
arteriole vasculature compartment between the large arteries and the capillary bed. The in-flow
blood pressure at the entrance to the arteriole compartment is PA, the resistance of the arterioles
is R, and the outflow blood pressure at the distal end of the arteriole compartment is CrCP.
CrCP is estimated based on the Ohms’ law approximation relating the driving arteriolar pressure,
PA−CrCP, to arteriolar blood flow (F):

PA(t) − CrCP = F(t)R. (1)

Here, t denotes time, and we assume CrCP and R remain constant over the measurement time
scale. To obtain CrCP, the resistance R is first derived from pulsatile heart-beat fluctuations in
PA and F. Specifically, the Fourier transform of Eq. (1) at the heart rate (fhr) gives R= |PA(fhr)| /
|F(fhr)|, where |PA(fhr)| and |F(fhr)| are the Fourier spectral amplitudes of PA and F at fhr (note,
we assume |CrCP(fhr)| << |PA(fhr)|; throughout the manuscript, bolded variables refer to Fourier
amplitudes). Next, CrCP is determined from R and the time average of Eq. (1):

CrCP = ⟨PA⟩ [1 − (|PA(fhr)|/⟨PA⟩) /(|F(fhr)|/⟨F⟩)] , (2)

where the ⟨⟩ brackets denote the temporal means. The arteriolar flow pulsatility index, PIF ≡

|F(fhr)|/⟨F⟩, is directly measured with the optical DCS technique (see Sections 2.2, 2.3, 2.4).
However, PA is not directly measured. It is instead estimated from measurement of systemic
arterial blood pressure (ABP). Due to flow through the large arteries, PA is lower than ABP. In a
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rat model, PA was measured and found to be directly proportional to ABP, i.e., PA(t)= η ABP(t)
[31]. Substituting this proportionality into Eq. (2), we obtain:

CrCP = η MAP(1 − PIABP/PIF). (3)

Here, MAP is the systemic mean arterial blood pressure, and PIABP ≡ |ABP(fhr)| / MAP. We
assumed η= 0.6 based on the rat measurements [31]. Herein, we measured PIF with 4 methods.

2.2. Measurement of flow pulsatility: nonlinear diffusion fitting (Methods 1, 2)

The traditional approach to measure PIF is via a “nonlinear diffusion fitting algorithm.” Specifically,
coherent near-infrared light delivered on the scalp is detected a distance ρ away. The DCS signal
is the normalized temporal intensity autocorrelation function of the detected light emerging
from the head (g2(τ)) at multiple delay-times (τ); τ typically ranges from 1 µs to ∼50 ms [32].
To resolve heart-beat fluctuations in blood flow, g2(τ) curves are sequentially measured at high
sampling rates (e.g., 20 Hz) [10]; we denote the curve measured at time t as g2(τ,t). Then,
at each time t, F(t) is derived by nonlinear fitting of g2(τ,t) to the homogeneous semi-infinite
medium solution of the correlation diffusion equation [32]. More precisely, the correlation
diffusion solution gives the normalized electric field autocorrelation function (g1(τ)), which is
then converted to g2(τ) via the Siegert relation for fitting. To measure PIF, |F(fhr)| was computed
from the Fourier transform of F(t), and ⟨F⟩ was derived from the nonlinear semi-infinite fit of
⟨g2(τ)⟩ (recall, the ⟨⟩ brackets denote the temporal means).

To explore the tradeoff between improving signal sensitivity to the brain and reducing the
impact of correlation noise, we critically examined two methods that use this traditional approach
to measure PIF. In Method 1, fitting is performed to the early part of the g2(τ,t) decay curve
(improved brain sensitivity [33,34]). In Method 2, fitting is performed using essentially the whole
decay curve (reduced correlation noise impact [35]). The specific delay-times used for fitting in
both methods were derived from the time-average of the magnitude of g1(τ) across the time-scale
of the PIF measurement, i.e., ⟨|g1(τ)|⟩. Note, ⟨|g1(0)|⟩ = 1 and ⟨|g1(τ)|⟩ decays towards zero with
increasing τ [32]. For Method 1, fitting was performed using τ for which ⟨|g1(τ)|⟩ > 0.7. For
Method 2, fitting was performed using τ for which ⟨|g1(τ)|⟩ > 0.1.

Method 1 has improved brain sensitivity because the autocorrelation function decay times
associated with long light paths from source to detector are relatively short, while the decay
times associated with short light paths are relatively long [33,34]. Thus, |g1(τ)| at shorter τ is
inherently more sensitive to the deeper brain tissue. Fitting to a small number of short τ instead
of to the whole curve, however, increases the impact of correlation noise [35]. We chose the
⟨|g1(τ)|⟩ > 0.7 cutoff, instead of ⟨|g1(τ)|⟩ > 0.8 or ⟨|g1(τ)|⟩ > 0.6, to balance the tradeoff between
improved depth sensitivity and reduced number of τ for fitting. This choice is supported by our
simulations below (Sections 2.5, 3.1).

Method 2 is optimal for reducing errors from correlation noise because fitting is performed
across the whole decay curve. Note, we chose the ⟨|g1(τ)|⟩ > 0.1 cutoff instead of ⟨|g1(τ)|⟩ > 0
for fitting because we wanted to minimize fitting to longer τ after the curve has fully decayed (the
blood flow information in the signal is during the decay).

As a final aside, we are using ⟨|g1(τ)|⟩ to define the τ for fitting instead of using fixed τ ranges
(e.g., defining the short τ range as 1µs to 10 µs) because the τ range of the |g1(τ)| decay depends
on physiology (e.g., flow index, tissue optical properties) and source-detector distance. Using
⟨|g1(τ)|⟩ to define the short τ range helps ensure that the fitting is weighted to longer light paths.
Further, we are using ⟨|g1(τ)|⟩ instead of ⟨g2(τ)⟩ because ⟨g2(τ)⟩ varies with changes in the
Siegert β coefficient across experiments.
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2.3. Measurement of flow pulsatility: semi-infinite modified Beer-Lambert algorithm
(Method 3)

Figure 1 is a flow chart depicting the steps for an alternative method to determine PIF. This
alternative method uses the DCS modified Beer-Lambert law in the semi-infinite tissue geometry
[36]. For each delay-time τ, and at each measurement timepoint t, we define the term “DCS optical
density” as ODDCS(τ,t) ≡ −log(g2(τ,t) – 1); log denotes the natural logarithm. In prior work,
we derived the DCS modified Beer-Lambert law in the time-domain, which relates differential
changes in ODDCS(τ,t) to the corresponding differential changes in F, tissue optical absorption
(µa), and tissue optical reduced scattering (µ′s) [36]. The law is specifically the truncation of the
Taylor series expansion of ODDCS(τ,t) to first order in F, µa, and µ′s. Hence, the law is accurate
for small changes in ODDCS(τ,t).
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Fig. 1. Flow chart of the semi-infinite modified Beer-Lambert algorithm for measuring the
cerebral blood flow pulsatility index (PIF) with diffuse correlation spectroscopy (DCS). See
main text for more details. (a) Schematics showing: (left) temporal heart-beat fluctuations
in the DCS cerebral blood flow index (F, 10−8 cm2/s) and (right) two exemplar intensity
autocorrelation function curves corresponding to the temporal mean (red squares) and the
flow at time t* (black circles) (there is no noise in this data). The DCS modified Beer-Lambert
law relates temporal changes in ODDCS to corresponding temporal changes in flow and
tissue optical absorption (µa) and reduced scattering (µ′s) properties (the law is accurate for
small ODDCS changes). (b) PIF is obtained by solving a system of equations specified by
the Fourier transform of the DCS modified Beer-Lambert law at the heart rate (i.e., one Eq.
for each τ; we assume that the changes in tissue optical properties during the cardiac cycle
negligibly contribute to ODDCS changes). Inputs in this system of equations include ⟨F⟩ and
the dF(τ) weighting factor; ⟨F⟩ is derived from a semi-infinite nonlinear fit of ⟨g2(τ)⟩; ⟨µa⟩
and ⟨µ′s⟩ were inputs to this fit, and dF(τ) was calculated from ⟨F⟩ and the optical properties
via Eq. (6).

Applying the law to the temporal heart-beat changes in ODDCS(τ,t) relative to the temporal
mean, we obtain:

ODDCS(τ, t) − ⟨ODDCS(τ)⟩ = dF(τ)∆F + da(τ)∆µa + ds(τ)∆µ′s. (4)
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Here, ∆F=F(t) − ⟨F⟩, ∆µa = µa(t) − ⟨µa⟩, and ∆µ′s = µ′s(t) − ⟨µ′s⟩, and the weighting factors
are dF(τ) ≡ ∂⟨ODDCS(τ)⟩/∂F, da(τ) ≡ ∂⟨ODDCS(τ)⟩/∂µa, and ds(τ) ≡ ∂⟨ODDCS(τ)⟩/∂µ′s.

The weighting factors are readily calculated from knowledge of ⟨F⟩, ⟨µa⟩, and ⟨µ′s⟩ [36]. Let’s
consider, for example, the calculation of dF(τ). First, via the Siegert relation between g2(τ)
and g1(τ), i.e., g2(τ)= 1+ β|g1(τ)|2 (β is a constant determined primarily by the experimental
collection optics), we obtain [36]:

dF(τ) =
∂

∂F
[− log(⟨g2(τ)⟩ − 1)] =

∂

∂F
[− log(β⟨|g1(τ)|⟩

2)] = 2
∂

∂F
[− log ⟨|g1(τ)|⟩] . (5)

⟨|g1(τ)|⟩ is given by the homogeneous semi-infinite medium solution of the correlation diffusion
equation, i.e., g1,SI(τ), evaluated at ⟨F⟩, ⟨µa⟩, and ⟨µ′s⟩. Accordingly,

dF(τ) ≈
2
δF

log

(︄
g1,SI

(︁
τ, ⟨F⟩ − δF/2, ⟨µa⟩ ,

⟨︁
µ′s

⟩︁)︁
g1,SI (τ, ⟨F⟩ + δF/2, ⟨µa⟩ , ⟨µ′s⟩)

)︄
(6)

where δF= 10−5 × ⟨F⟩ is the step size for evaluating the derivative numerically. Analogous
expressions exist for computing da(τ) and ds(τ) [36]. Herein, we measured ⟨µa⟩ and ⟨µ′s⟩ with a
frequency-domain diffuse optical spectroscopy technique [37,38], and ⟨F⟩ was obtained from a
semi-infinite nonlinear fit of ⟨g2(τ)⟩ (see Section 2.2).

We now assume that da(τ)∆µa and ds(τ)∆µ′s are negligible compared to dF(τ)∆F. The assumption
that scattering factor changes during the cardiac cycle are negligible is reasonable since scattering
is primarily due to particles that are extra-vascular [36]. It is also reasonable to assume that
da(τ)∆µa is small; fractional heart-beat changes in µa are typically much smaller than fractional
changes in F [10]; note also, even for the same fractional change, the size of da(τ)∆µa is
considerably less than dF(τ)∆F [36].

Accordingly, from the frequency-domain variant of Eq. (4) obtained via Fourier transform,
the heart-rate amplitudes of ODDCS and F are proportional, i.e., |ODDCS(τ,fhr)| = dF(τ)|F(fhr)|
(note, the Fourier transforms of the constants ⟨ODDCS(τ)⟩ and ⟨F⟩ at fhr are zero). PIF, defined
as |F(fhr)| / ⟨F⟩, is then readily derived from:

|ODDCS(τ, fhr)| = PIF × (dF(τ) ⟨F⟩) . (7)

Equation (7) is an over-determined system of equations; there is one equation for each delay-
time τ in g2(τ). We used the Moore-Penrose pseudoinverse method implemented in MATLAB
R2021a (pinv function, Mathworks, Natick, Massachusetts) to solve the system of equations for
PIF. In principle, only one τ is needed to determine PIF, but the use of multiple τ improves
signal-to-noise. For the pig experiment herein, we used the short τ for which ⟨|g1(τ)|⟩ > 0.7.

2.4. Measurement of flow pulsatility: two-layer modified Beer-Lambert algorithm
(Method 4)

It’s also straight-forward to extend the modified Beer-Lambert approach to heterogeneous tissue
geometries [36]. A simple useful heterogeneous geometry is the planar two-layer model of the
head, which comprises a semi-infinite bottom layer (corresponding to the cortical regions of the
brain) and a superficial top layer with thickness L (corresponding to extra-cerebral scalp and
skull tissue). The two-layer extension of Eq. (4) is:

ODDCS(τ, t) − ⟨ODDCS(τ)⟩ = dF,c(τ)∆Fc + dF,ec(τ)∆Fec + da,c(τ)∆µa,c+

da,ec(τ)∆µa,ec + ds,c(τ)∆µ′s,c + ds,ec(τ)∆µ′s,ec

, (8)

where Fc and Fec are the DCS flow indices in the cerebral (c) and extra-cerebral (ec) layers,
respectively, µa,c and µa,ec are the corresponding optical absorption coefficients, and µ′s,c and
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µ′s,ec are the corresponding optical reduced scattering coefficients. The multiplicative weighting
factors in Eq. (8) can be computed from the planar two-layer medium solution of the correlation
diffusion equation, i.e., g1,2L(τ) [36]. We continue to assume that changes in tissue optical
properties during the cardiac cycle negligibly contribute to ODDCS changes, which simplifies
Eq. (8) to:

ODDCS(τ, t) − ⟨ODDCS(τ)⟩ = dF,c(τ) (Fc(t) − ⟨Fc⟩) + dF,ec(τ) (Fec(t) − ⟨Fec⟩) . (9)

Next, for the pig experiment herein, the pressure of the optical probe against the scalp was
made large to attenuate scalp blood flow pulsatility. Further, because the brain is contained
within the fixed skull, arteriolar blood flow pulsatility in the brain is expected to be larger than
in the scalp and other peripheral tissues [39]. For our analysis, we assumed the special case of
Eq. (9) for which heart-beat fluctuations in extra-cerebral blood flow negligibly contribute to
ODDCS changes. Then, as with the semi-infinite case, the two-layer flow pulsatility index, i.e.,
PIFc ≡ |Fc(fhr)| / ⟨Fc⟩, is solved from the frequency-domain variant of Eq. (9):

|ODDCS(τ, fhr)| = PIFc ×
(︁
dF,c(τ) ⟨Fc⟩

)︁
. (10)

Here, dF,c(τ) is computed numerically via [36]

dF,c (τ) ≡
∂ ⟨ODDCS (τ)⟩

∂Fc
≈

2
δFc

log

(︄
g1,2L

(︁
τ, ⟨Fc⟩ − δFc/2, ⟨Fec⟩ ,

⟨︁
µa,c

⟩︁
,
⟨︁
µ′s,c

⟩︁
,
⟨︁
µa,ec

⟩︁
,
⟨︁
µ′s,ec

⟩︁
, L

)︁
g1,2L

(︁
τ, ⟨Fc⟩ + δFc/2, ⟨Fec⟩ ,

⟨︁
µa,c

⟩︁
,
⟨︁
µ′s,c

⟩︁
,
⟨︁
µa,ec

⟩︁
,
⟨︁
µ′s,ec

⟩︁
, L

)︁ )︄
(11)

with δFc = 10−5 × ⟨Fc⟩. ⟨Fc⟩ and ⟨Fec⟩ were derived from nonlinear fitting of ⟨g2(τ)⟩ to
1+β|g1,2L(τ)|2. We additionally assumed that tissue optical properties were homogeneous, i.e.,
⟨µa,c⟩ = ⟨µa,ec⟩ = ⟨µa⟩, ⟨µ′s,c⟩ = ⟨µ

′
s,ec⟩ = ⟨µ

′
s⟩, and we obtained them from fitting a semi-infinite

head model to frequency-domain diffuse optical spectroscopy measurements. Finally, for the pig
experiment herein, L was posthumously measured (see Section 2.6), and we used the short τ for
which ⟨|g1(τ)|⟩ > 0.7 to solve Eq. (10). Figure 2 is a flow chart of the two-layer algorithm.

2.5. Impact of correlation noise on flow pulsatility measurements: simulated data

One reason we have developed this new algorithm is that correlation noise hinders determination
of flow dynamics at the heart rate [10]. As a result, the measured PIF underestimates the true PIF.
Indeed, for severe noise levels, the observable heart rate signal can be negligible, and then the
measured PIF is zero. Thus, an analysis algorithm that is more robust against correlation noise
will be less prone to underestimation of PIF. As an initial test of which method can better recover
the pulsatility index in the presence of noise, we generated simulated DCS data and compared the
modified Beer-Lambert and nonlinear diffusion fitting estimates of PIF from the same dataset.

Briefly, we generated simulated g2(τ,t) with noise in the semi-infinite geometry for a 1-minute-
long pulsatile F(t) waveform (2.5 cm source-detector distance, 20 Hz sampling). The generation
of the data is described in detail in Appendix 1. Using a correlation noise model [40], varying
levels of correlation noise were added based at different DCS intensity (photon count rate at the
detector); we varied this count rate from 5 to 50 kHz in 5 kHz steps (note, the noise decreases
with increasing intensity). For each intensity level, we generated 30 sets of pulsatile g2(τ,t) data
for the cases of one detector and six detectors. For the six-detector case, which mimics our
experimental data acquisition in piglets, six g2(τ,t) measurements from six detectors at the same
source-detector distance were averaged together.

Next, we used the semi-infinite nonlinear diffusion fitting algorithm to compute PIF for each
g2(τ,t) set (fitting performed at short τ for which ⟨|g1(τ)|⟩>0.7; see Section 2.2). Corresponding
computations of PIF with the modified Beer-Lambert algorithm were obtained via Eq. (7) (note,
the same values of short τ were used to solve Eq. (7)). The means and standard deviations of PIF
obtained with each algorithm were compared to the true PIF of the F(t) waveform.
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Fig. 2. Flow chart of the two-layer modified Beer-Lambert algorithm for measuring
the cerebral blood flow pulsatility index (PIFc ≡ |Fc(fhr)|/⟨Fc⟩) with diffuse correlation
spectroscopy (DCS). The planar two-layer model of the head comprises a semi-infinite
cerebral layer (flow index, Fc; tissue optical properties, µa,c, µ′s,c) and a superficial extra-
cerebral layer with thickness L (flow index, Fec; tissue optical properties, µa,ec, µ′s,ec). PIFc
is obtained by solving a system of equations specified by the Fourier transform of the 2-layer
DCS modified Beer-Lambert law at the heart rate. We assume: a) small ODDCS changes
solely due to Fc variation, and b) homogeneous tissue optical properties. Inputs in this
system of equations include ⟨Fc⟩ and the dF,c(τ) weighting factor. ⟨Fc⟩ and ⟨Fec⟩ are derived
from a two-layer nonlinear fit of ⟨g2(τ)⟩. The measured optical properties and L were inputs
in this fit; dF,c(τ) was calculated via Eq. (11).

Finally, using the same simulated data, we tested the effects of using different ranges of τ for
deriving the nonlinear diffusion and modified Beer-Lambert estimates of PIF. As mentioned
in Section 2.2, restricting fitting to short τ increases the depth sensitivity [33,34], but it also
increases the impact of correlation noise [35]. In addition, the modified Beer-Lambert algorithm
can be prone to errors from the larger ODDCS changes that occur at longer τ [36]. To explore
these effects, we obtained nonlinear diffusion fitting and modified Beer-Lambert estimates of PIF
using other τ ranges for the fittings. Specifically, a g1(τ) cutoff was employed to define the τ
range for fitting, i.e., the ⟨|g1(τ)|⟩ > cutoff, for cutoffs between 0.1 and 0.9.

Importantly, to improve the accuracy of all PIF estimates, we sought to remove the “white
noise” level present at all frequencies in the |F(f)|/⟨F⟩ Fourier spectra (see Section 2.7).

2.6. In vivo piglet model of intracranial hypertension

To compare CrCP obtained with nonlinear diffusion fitting and modified Beer-Lambert algorithms
to invasive ICP, we used a piglet model of intracranial hypertension [41,42]. The experiment
complied with the ARRIVE 2.0 guidelines, and all procedures were approved by our Institutional
Animal Care and Use Committee in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals.

One-month-old female piglets (n= 25, weight: 10.3± 0.8 kg) were measured with continuous
physiologic monitors (see Appendix 2). Briefly, invasive intraparenchymal ICP and microdialysis
sensors were placed in the right hemisphere, a hybrid DCS and frequency-domain diffuse optical
spectroscopy (FD-DOS) probe was placed on the left forehead, and arterial blood pressure was
monitored via a catheter inserted in the right femoral artery (Fig. 3(a)). Details about the probe
and the optical instrument are described in Appendix 3. Note, FD-DOS measures tissue blood
O2 saturation (StO2), total hemoglobin concentration (THC), and the tissue absorption (µa) and
reduced scattering (µ′s) properties used for DCS fitting [37,38]. Note also, the microdialysis
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Fig. 3. Experimental Procedures and Exemplar Data Analysis. (a) Burr holes were
drilled in piglets for the placement of an external ventricular drain (EVD) and invasive
neuromonitors (intracranial pressure (ICP), microdialysis). A non-invasive diffuse optical
probe was sutured to the skin of the left forehead (dashed lines indicate the midline and
coronal suture). (b) Continuous optical and invasive monitoring were performed during
graded ICP increases induced by EVD infusion of mock cerebrospinal fluid. At the end
of the time-period for each ICP level, arterial blood gas and microdialysis samples were
taken (black circles). (c) Exemplar arterial blood pressure (ABP, mmHg) and optical blood
flow index (F, 10−8 cm2/s) time-series in a piglet with invasive ICP of 20 mmHg (F was
derived from semi-infinite diffusion fitting to short delay-times (Method 1), the pink circle
and green square denote exemplar systolic and diastolic timepoints). (d) (Top) Individual
optical intensity autocorrelation function (g2(τ)) measurements at the corresponding systolic
(pink) and diastolic (green) timepoints labeled in panel (c) (source-detector distance, 2.5
cm; wavelength, 850 nm). (Bottom) Exemplar mean g2(τ) across 1 minute of data acquired
at the 20 mmHg ICP level with its semi-infinite diffusion fit (solid line). (e) Normalized
Fourier spectral amplitudes of 1-minute F time-series derived from semi-infinite diffusion
fitting to short delay-times (Method 1, top), and the whole g2(τ) curve (Method 2, bottom).
White noise levels (see main text) of 0.005 and 0.004, respectively, were subtracted from
the heart-rate amplitudes to compute F pulsatility indices (PIF) of 0.106 and 0.155 for the
short τ and whole curve fitting methods. This results in critical closing pressure (CrCP)
measurements, respectively, of −11.1 and 2.5 mmHg for the short τ and whole curve fitting
methods (via Eq. (3); MAP= 53 mmHg, PIABP = 0.143). (f) Normalized Fourier spectral
amplitudes for blood flow obtained with the short τ semi-infinite (Eq. (7); Method 3, top)
and 2-layer (Eq. (10); Method 4, bottom) modified Beer-Lambert algorithms, plotted against
frequency. White noise levels of 0.016 and 0.027, respectively, were subtracted from the
heart-rate amplitudes to compute PIF, i.e., 0.177–0.016= 0.161 and 0.306–0.027= 0.279.
This results in semi-infinite and 2-layer CrCP estimates of 3.6 and 15.5 mmHg, respectively.

sensor measures the concentrations of pyruvate, lactate, glycerol, and glucose concentrations in
the extracellular interstitial fluid.

After a 10-minute baseline, graded elevations of ICP were induced (Fig. 3(b)) by infusing
mock cerebrospinal fluid through an external ventricular drain (EVD) catheter in the right lateral
ventricle (see Appendix 2). ICP was increased in ∼5 mmHg increments up to ∼60 mmHg. Each
ICP level was maintained for 10 minutes. At the end of baseline and each ICP level, cerebral
microdialysis and arterial blood gas samples were taken. Microdialysis samples were measured
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with the ISCUS Flex Analyzer (mDialysis, Stockholm, Sweden), and arterial blood gas samples
were analyzed with a GEM 3000 (Instrumentation Laboratory, Bedford, MA). All animals were
immediately euthanized after the final ICP level via a bolus injection of potassium chloride.
Then, the scalp and skull thicknesses underneath the FD-DOS/DCS probe were posthumously
measured with calipers (measurements were done at 4 distinct locations; L in Fig. 2 was the
mean scalp+ skull thickness across the 4 locations).

2.7. In vivo computation of CrCP with four methods

Four methods, illustrated schematically in Fig. 4, were used to measure PIF and derive CrCP via
Eq. (3). Methods 1 and 2 used the “short τ” and “whole curve” traditional semi-infinite nonlinear
diffusion fitting (Section 2.2); Methods 3 and 4 used the novel “short τ” semi-infinite and “short
τ” two-layer modified Beer-Lambert linear inversions (Sections 2.3, 2.4). The three “short τ”
methods (Methods 1, 3, and 4) use τ for which ⟨|g1(τ)|⟩>0.7 for nonlinear fitting/linear inversion;
the “whole curve” method (Method 2) uses τ for which ⟨|g1(τ)|⟩>0.1. CrCP was calculated with
all four methods once every minute from 20 Hz DCS data (1200 data frames).
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Fig. 4. Schematic of the four methods used to measure the cerebral blood flow pulsatility
index once every minute with diffuse correlation spectroscopy. Inputs include the intensity
autocorrelation function time-series (g2(τ,t), 20 Hz sampling), its temporal mean (⟨g2(τ)⟩),
the Siegert relation β coefficient, the temporal averages of the tissue optical absorption and
reduced scattering coefficients (⟨µa⟩ and ⟨µ′s⟩), and the extra-cerebral layer thickness (L). F
denotes the cerebral blood flow index in the semi-infinite head model. Fc and Fec denote the
cerebral and extra-cerebral blood flow indices in the planar 2-layer head model. Flow indices
in dark red are derived from short τ fitting/inversion. Flow indices in blue are derived from
whole curve fitting. |F(f)|, |Fc(f)|, and |ODDCS(τ,f)| are the Fourier spectral amplitudes of
F, Fc, and ODDCS(τ) at frequency f. For all 4 methods, a white noise (wnoise) correction
was made to the pulsatility index measurements (see Fig. 3, Appendix 4). The white noise
level is the mean |F(f)| / ⟨F⟩ (or mean |Fc(f)| / ⟨Fc⟩ for Method 4) across the 1.2fhr to 1.8fhr
frequency range (fhr is the heart rate).

Inputs to the CrCP estimates include the corresponding 1-minute means of the FD-DOS
measurements of ⟨µa⟩ and ⟨µ′s⟩, and the corresponding Siegert β coefficient derived from the short
τ semi-infinite fit of the mean ⟨g2(τ)⟩. Note, the short τ range for the latter fit was determined
based on an initial estimate of β, i.e., ⟨g2(2 µs)⟩ − 1. Fourier transforms and nonlinear fits were
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performed with the fft and fminsearchbnd [43] functions in MATLAB R2021a. Semi-infinite fits
constrained F between 0 and 10−6 cm2/s.

Figure 3 shows exemplar measurements in a piglet at the 20 mmHg ICP level. For Method 1,
the F(t) time-series was noisy and the computed PIF gave a non-physiological negative CrCP
of −11.1 mmHg. For Method 2, fitting to the whole g2(τ) curve resulted in a larger PIF and a
CrCP of 2.5 mmHg. For Method 3, dF(τ) in Eq. (5) was first computed based on ⟨µa⟩, ⟨µ′s⟩, and
⟨F⟩ measurements; note, ⟨F⟩ was obtained from short τ semi-infinite nonlinear fitting to ⟨g2(τ)⟩.
Equation (7) was then solved using the short τ range (Fig. 3(f), top, shows the solution at the heart
rate and other frequencies), and the CrCP derived from the PIF measurement was 3.6 mmHg.

Finally, for Method 4, we first fit ⟨g2(τ)⟩ to the planar two-layer correlation diffusion solution to
extract ⟨Fc⟩ and ⟨Fec⟩ (fitting was performed to the whole ⟨g2(τ)⟩ curve). Inputs to the fit were the
measured extra-cerebral layer thickness, the Siegert β coefficient, and the homogeneous optical
properties. The fit constrained ⟨Fc⟩ between 0 and 10−6 cm2/s with ⟨Fec⟩≥0. The two-layer
correlation diffusion solution is shown elsewhere [36,44]. Herein, we used an approximation of
it to mitigate numerical errors, i.e., Eq. (8) in Kienle and Glanzmann [45], and we numerically
evaluated the solution’s integral via a Gauss-Laguerre quadrature of 1000 points. Then, dF,c(τ)
was computed, and Eq. (10) was solved using the short τ range (Fig. 1(f)). The resultant CrCP
was 15.5 mmHg.

Note, a non-zero “white noise” level is present at all frequencies in the |F(f)|/⟨F⟩ Fourier
spectra (see Fig. 3). Thus, for all four methods, we sought to remove the white noise prior to
computing PIF. Specifically, the white noise level was estimated as the mean |F(f)|/⟨F⟩ across the
1.2fhr to 1.8fhr frequency range to avoid contributions from harmonics. PIF was then computed
from |F(fhr)|/⟨F⟩ after subtracting the white noise level. For more discussion about the white
noise and its removal, see Appendix 4.

2.8. In vivo statistical analysis

To test our hypothesis that the use of novel modified Beer-Lambert methods (Method 3 and
4) improves prediction of intracranial hypertension compared to traditional nonlinear diffusion
fitting methods (Methods 1 and 2), we developed univariate logistic regression models for
detecting intracranial hypertension (IH) based on CrCP. We defined IH as invasive ICP ≥ 20
mmHg [2]. Animals with baseline ⟨F⟩≤10−10 cm2/s were excluded; this very low ⟨F⟩, which is
comparable to the “biological zero” signal of DCS (e.g., the BFI observed, for example, during
zero-flow circulatory arrest conditions [46,47]) is an indication that the probe was not correctly
positioned over the brain. Animals were also excluded if visual inspection showed no observable
Fourier spectral amplitude peak at the heart rate for F. All statistical analyses were performed on
the means of data computed across each 10-minute ICP level (Fig. 3(b)).

For each CrCP analysis method, CrCP data were classified as normotension (ICP< 20 mmHg)
and IH (ICP ≥ 20 mmHg) based on invasive ICP monitoring. Receiver operating characteristic
(ROC) curves were computed and the area under the ROC curve (AUC) quantified to evaluate
predictive performance. Specifically, a logistic regression model was fit to the normotension and
IH CrCP data to derive a probability for the presence of IH, i.e., PM = 1 / (1+ e−M), with M ≡

β0 + β1×CrCP and the weighting parameters β0 and β1 determined from the fit. A ROC curve
was then generated by varying the PM threshold for predicting the presence of IH and plotting the
sensitivity (true positive rate) versus 1−specificity (false positive rate) for each PM threshold.
We report the CrCP threshold for predicting IH based on the maximal sum of sensitivity and
specificity. In addition, we quantified the measurement failure rate for each CrCP analysis method
as the percentage of CrCP measurements that produced negative pressures (negative CrCP values
are non-physiologic). Finally, to assess the performance of CrCP in relation to that of other
physiological metrics, we quantified performance for univariate IH detection based on Fc, StO2,
and MAP.
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We next characterized the quantitative relationship of ICP with CrCP estimates, i.e., we
performed univariate linear mixed effects regressions of invasive ICP with CrCP for each
CrCP analysis method (grouping variable, animal ID #). Here, our aim was to probe the
linear relationship between CrCP and ICP, so we excluded failed CrCP measurements (i.e.,
measurements with negative CrCP). Negative CrCP measurements were not excluded in the
logistic regression analyses that assess the performance of a single CrCP measurement.

Finally, we report average (median (IQR)) cerebral and systemic physiology across the pigs at
baseline (i.e., prior to any ICP elevations), moderate IH (20 ≤ ICP< 40 mmHg), and severe IH
(ICP ≥ 40 mmHg).

3. Results

3.1. Impact of correlation noise on flow pulsatility (PIF) measurements: simulated data

The true PIF of the 1-minute simulated F time-series without noise was 0.264 (Fig. 5(a)), and
exemplar g2(τ) data derived from the F time-series is shown in Fig. 5(b) with and without
addition of correlation noise. For the data with noise, Fig. 5(c) shows exemplar normalized
Fourier spectral amplitudes obtained with the “short τ” semi-infinite modified Beer-Lambert
and nonlinear diffusion fitting methods, i.e., Methods 3 and 1, respectively (see Fig. 4). The PIF
recovered with the modified Beer-Lambert approach was more accurate than the PIF recovered
with the nonlinear diffusion fitting approach across all DCS intensities (Fig. 5(d) and 5(e); lower
intensities have higher correlation noise). A comparison of Fig. 5(d) to 5(e) also shows noticeable
improvement in PIF measurement accuracy when the signals from 6 detectors are averaged in
parallel to improve signal-to-noise.

In Fig. 5(f), we fix the signal intensity at 30 kHz, corresponding approximately to the regime in
which the short τ modified Beer-Lambert scheme PIF approached its true value for six detectors,
and we study the effects of using more delay-times in the fitting (e.g., ⟨|g1(τ)|⟩>0.1). In this
situation, the accuracies of the Modified Beer-Lambert and nonlinear diffusion approaches
worsen and improve, respectively, depending on delay-time. This is expected. The Modified
Beer-Lambert approximation is worse for the larger ODDCS changes that arise at longer delay-
times; nonlinear fitting to more delay-times is better for homogeneous media. Notice also that
compared to the 0.7 ⟨|g1(τ)|⟩ cutoff, accuracy worsens for both approaches at the 0.8 and 0.9
⟨|g1(τ)|⟩ cutoffs. This supports our choice of the 0.7 cutoff for Method 3.

3.2. In vivo prediction of intracranial hypertension

Of the 25 piglets, 6 were excluded because their baseline ⟨F⟩ was ≤10−10 cm2/s. One additional
piglet was excluded because DCS signal-to-noise was too low to observe pulsatile heart-beat
fluctuations. For the remaining 18 piglets, we acquired data across 139 ICP levels in total. On
average (mean±SD) we recorded 8± 2 ICP levels per piglet. The average DCS intensity and
Siegert β coefficient across piglets at baseline were 36± 10 kHz and 0.46± 0.04 (mean±SD).
The mean scalp, skull, and scalp+ skull thicknesses at the optical probe location were 0.28± 0.04
cm, 0.34± 0.06 cm, and 0.62± 0.07 cm, respectively. Finally, the average measurement of the
cerebral to extra-cerebral blood flow index ratio (Fc/Fec) at baseline obtained from two-layer
diffusion fitting was 14.5 (6.6, 49.0) (median (interquartile range)).

Four methods were used to compute CrCP (see Fig. 4). Logistic regression analyses showed that
the two-layer and semi-infinite modified Beer-Lambert estimates of CrCP were both predictive of
intracranial hypertension (Fig. 6, Table 1); the AUCs were 0.85 (95% CI: 0.78–0.90) and 0.79
(95% CI: 0.71–0.86), respectively. At their optimal CrCP decision thresholds for indicating IH
detection, i.e., CrCP> 19 mmHg for the two-layer, and CrCP> 13 mmHg for semi-infinite, both
methods were more specific than sensitive (Table 1). Considering the two-layer case, for example,
this means that CrCP< 19 more accurately indicates intracranial normotension than CrCP> 19
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Fig. 5. (a) Simulated temporal blood flow index (F, 10−8 cm2/s) without noise and its
normalized Fourier spectral amplitudes (systolic timepoint, pink circle; diastolic timepoint,
green square); ⟨F⟩ is the mean F across the 1-minute time-series (only 10 s shown), and
PIF is the flow pulsatility index. (b) Simulated intensity autocorrelation function (g2(τ))
measurements for the systolic and diastolic timepoints without (top) and with (bottom)
noise in the semi-infinite geometry. Noise was added assuming a signal intensity of 30
kHz and averaging across 6 detectors placed at the same source-detector distance of 2.5
cm. (c) For the same noise level as in the bottom panel of (b), the normalized Fourier
spectral amplitudes of F obtained with the semi-infinite modified Beer-Lambert (Method 3)
and nonlinear diffusion fitting (Method 1) algorithms are plotted against frequency (short
delay-times τ, corresponding to ⟨|g1(τ)|⟩>0.7, were used for fittings). For computation
of PIF, white noise levels of 0.032 and 0.008 for modified Beer-Lambert and diffusion fit,
respectively, were subtracted from the signal amplitude at the heart rate (1.45 Hz). (d) Mean
PIF (±SD) obtained with the modified Beer-Lambert (red circles, Method 3) and nonlinear
diffusion fitting (black squares, Method 1) algorithms on simulated data with varying noise;
noise is determined based on the signal intensity and is reduced by averaging across 6
detectors. Notice that PIF approaches its true value for the modified Beer-Lambert fit at
signal intensities between 20 and 30 kHz. (e) Same plot as panel (d), except simulations were
done using one detector instead of six. (f) For a 30 kHz intensity signal and six detectors,
the mean PIF (±SD) obtained for both algorithms are plotted using different ⟨|g1(τ)|⟩ fitting
cutoffs (for lower cutoffs, more τ are used in the fitting).

indicates intracranial hypertension. In contrast to the modified Beer-Lambert estimates, the
predictive performance of the nonlinear diffusion fitting estimates of CrCP was weak (AUC ≤ 0.60,
Fig. 6 and Table 1). MAP, StO2, and Fc metrics also exhibited weak performance for detecting
IH (Table 1).

The CrCP measurement failure rates (i.e., percentage of CrCP measurements that produced
negative pressures) were dramatically lower for the modified Beer-Lambert methods than the
nonlinear diffusion fitting methods (Table 2). For example, 74% of the CrCP measurements
obtained with short τ nonlinear diffusion fitting were negative, while the two-layer modified
Beer-Lambert method produced only 1 negative measurement (0.7%).
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CrCP Measurement Methods (see Fig. 4)

#3, Semi-inf. Modified Beer-Lambert, Short 𝜏
AUC: 0.79 (95% CI: 0.71 to 0.86)

#4, 2-Layer Modified Beer-Lambert, Short 𝜏
AUC: 0.85 (95% CI: 0.78 to 0.90)

#1, Semi-inf. Nonlin. Diffusion Fit, Short 𝜏
AUC: 0.51 (95% CI: 0.41 to 0.61)

#2, Semi-inf. Nonlin. Diffusion Fit, Whole Curve
AUC: 0.60 (95% CI: 0.51 to 0.69)

Fig. 6. Receiver Operating Characteristic (ROC) curves for univariate detection of intracra-
nial hypertension (IH) (i.e., ICP ≥ 20 mmHg) based on critical closing pressure (CrCP)
measurements computed with the nonlinear diffusion fitting and modified Beer-Lambert
methods (see Fig. 4). The area under the curves (AUC) are shown in the legend.

Table 1. Univariate Thresholds, Sensitivity, and Specificity for Detection of Intracranial
Hypertension (IH)a

Metric Threshold Sensitivity Specificity AUC (95% CI)

Critical Closing Pressure (CrCP, mmHg)

1. Semi-inf. Nonlinear Fit, Short τ > −1.7× 103 100% 2% 0.51 (0.41, 0.61)

2. Semi-inf. Nonlinear Fit, Whole Curve > −43 100% 0% 0.60 (0.51, 0.69)

3. Semi-inf. Mod. Beer-Lambert, Short τ > 13 68% 88% 0.79 (0.71, 0.86)

4. 2-Layer Mod. Beer-Lambert, Short τ > 19 71% 93% 0.85 (0.78, 0.90)

Mean Arterial Pressure (MAP, mmHg) > 49 98% 7% 0.56 (0.45, 0.66)

Cerebral Blood Flow Index (Fc, 10−8 cm2/s) < 15.3 98% 10% 0.58 (0.47, 0.68)

Tissue Blood O2 Saturation (StO2) < 0.64 98% 12% 0.58 (0.48, 0.69)

aOptimal decision thresholds (mmHg) maximized the sum of sensitivity and specificity (“> threshold”, values greater
than threshold indicate IH, “< threshold”, values less than threshold indicate IH); IH is defined as ICP ≥ 20 mmHg.
Sensitivity is the fraction of actual IH measurements accurately detected, and specificity is the fraction of actual
intracranial normotension measurements accurately detected. CrCP Methods 1−4 are described in Fig. 4.

Table 2. Critical Closing Pressure versus Intracranial Pressure Regressions and Measurement
Failure Ratesa

Critical Closing Pressure Analysis
Method (see Fig. 4) Slope (95% CI)

Intercept, mmHg
(95% CI) R

Failure
Rate

1. Semi-inf. Nonlinear Fit, Short τ 0.17 (−0.01, 0.35) 5.3 (−1.0, 11.7) 0.30 74%

2. Semi-inf. Nonlinear Fit, Whole Curve 0.24 (0.13, 0.36) 3.8 (−1.6, 9.2) 0.24 42%

3. Semi-inf. Modified Beer-Lambert, Short τ 0.45 (0.38, 0.53) 2.5 (−1.1, 6.2) 0.63 17%

4. 2-Layer Modified Beer-Lambert, Short τ 0.49 (0.42, 0.56) 6.8 (3.0, 10.7) 0.61 0.7%

aSlope and intercept of linear mixed effects best-fit (negative measurements were excluded in the regression analyses); R,
Pearson correlation; Failure Rate, percentage of negative critical closing pressure measurements.

We next consider the linear relationship between CrCP and invasive ICP. Table 2 reports the
slope and intercept of the linear mixed effects best-fits between CrCP and invasive ICP for the four
CrCP analysis methods. For the whole curve nonlinear diffusion fitting method and both modified
Beer-Lambert methods, increasing CrCP was associated with increasing ICP (p< 0.001). There
was no significant association, however, for CrCP computed with the short τ nonlinear diffusion
fitting method (p= 0.06). In addition, the two-layer CrCP intercept of the best-fit was positive
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Table 3. Summary Statistics of Physiologya

Variable Baseline Moderate IH
(20 ≤ ICP< 40)

Severe IH
(ICP ≥ 40)

Intracranial Pressure (ICP, mmHg) 8.3 (6.8, 10.2) 29.1 (24.6, 33.6) 48.7 (43.7, 53.7)

Critical Closing Pressure (CrCP, mmHg) 9.1 (5.6, 12.5) 22.8 (16.6, 30.2) 28.4 (22.3, 38.6)

Cerebral Perfusion Pressure (CPP, mmHg) 63.3 (56.0, 72.8) 43.5 (28.2, 52.3) 29.5 (22.7, 41.1)

Cerebral Physiology (Optical Metrics)

Blood Flow Index (Fc, 10−8 cm2/s) 6.70 (4.37, 11.1) 4.83 (2.83, 6.26) 4.96 (3.51, 7.90)

Flow Pulsatility Index (PIFc) 0.17 (0.15, 0.25) 0.33 (0.19, 0.58) 0.27 (0.20, 0.47)

Tissue Blood O2 Saturation (StO2) 0.59 (0.56, 0.62) 0.58 (0.56, 0.60) 0.57 (0.54, 0.60)

Total Hemoglobin Concentration (µM) 53.5 (49.3, 61.5) 54.4 (48.3, 64.1) 52.4 (45.3, 67.8)

Relative Fc (Fc / Fc,Baseline) 1.00 0.75 (0.52, 1.01) 0.71 (0.49, 0.97)

Absorption (µa (850 nm)) (cm−1) 0.15 (0.14, 0.16) 0.15 (0.13, 0.17) 0.14 (0.13, 0.17)

Reduced Scattering (µś(850 nm)) (cm−1) 8.1 (6.7, 8.7) 8.1 (7.0, 9.2) 8.0 (6.9, 8.9)

Cerebral Microdialysis

Lactate-Pyruvate Ratio (LPR) 14.2 (11.3, 17.7) 18.8 (12.6, 23.8) 26.5(18.7, 35.6)

Lactate (mM) 0.33 (0.21, 0.56) 0.23 (0.18, 0.54) 0.26 (0.21, 0.51)

Pyruvate (µM) 19.8 (13.3, 28.5) 14.6 (10.8, 21.8) 10.0 (8.5, 18.3)

Glycerol (µM) 13.8 (6.5, 16.6) 6.4 (4.7, 13.5) 10.6 (6.3, 13.4)

Glucose (mg/dL) 5.1 (3.1, 8.0) 2.6 (1.7, 3.5) 2.2 (1.1, 4.3)

Systemic Hemodynamics

Mean Arterial Pressure (MAP, mmHg) 73.5 (63.1, 79.0) 73.8 (57.5, 79.7) 80.9 (71.6, 88.8)

Arterial Pressure Pulsatility Index 0.14 (0.12, 0.18) 0.14 (0.11, 0.17) 0.12 (0.11, 0.15)

Heart Rate (bpm) 118 (100, 146) 118 (97, 134) 121 (107, 130)

Arterial Blood Gas

pH 7.48 (7.47, 7.52) 7.48 (7.46, 7.50) 7.48 (7.46, 7.51)

pCO2 (mmHg) 37 (33, 40) 37 (33, 40) 38 (33, 39)

pO2 (mmHg) 99 (91, 109) 92 (86, 101) 91 (82, 99)

Hematocrit (%) 22 (20, 24) 22 (20, 25) 23 (20, 25)

Glucose (mg/dL) 68 (48, 83) 70 (37, 93) 56 (51, 96)

Lactate (mM) 1.0 (0.9, 1.2) 0.9 (0.7, 1.0) 0.9 (0.6, 1.0)

aData are reported as medians (interquartile ranges). Method 4 estimate of CrCP; CPP=MAP – ICP.

(p< 0.001), but the intercepts of the regressions for the other analysis methods were not different
from zero. Finally, both the semi-infinite and two-layer modified Beer-Lambert CrCP estimates
exhibited stronger correlations with ICP than the nonlinear diffusion fitting estimates. Note that
the slopes of the best-fit lines for all four analysis methods were less than one, which shows that
CrCP measures underestimate ICP at higher pressures.

Table 3 reports average physiology during baseline, moderate IH, and severe IH.

4. Discussion

In this study, we introduced and demonstrated a frequency-domain modified Beer-Lambert
analysis algorithm for measuring pulsatile blood flow and critical closing pressure (CrCP) with
the non-invasive diffuse correlation spectroscopy (DCS) technique. CrCP measurements in
piglets, derived with the new algorithm, were predictive of intracranial hypertension. The
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prediction was independent of mean arterial pressure and other diffuse optical metrics of blood
flow and tissue oxygen saturation.

4.1. Modified Beer-Lambert versus nonlinear diffusion fitting algorithms

Traditionally, pulsatile blood flow with DCS has been obtained via nonlinear fitting of the DCS
signal to the semi-infinite correlation diffusion solution. Our simulations show this approach is
prone to noise-induced underestimations in blood flow pulsatility, especially when only short
delay-times are used for fitting. These underestimations can in turn drive CrCP measurements
negative (see Eq. (3)). Indeed, 74% of our CrCP measurements in piglets obtained with semi-
infinite diffusion fitting to short delay-times were negative. The correlation noise confound is
reduced by fitting to the whole DCS g2(τ) curve, but 42% of the CrCP measurements were still
negative, and the correlation with ICP was weak.

Since scalp/skull pulsatility is usually lower than brain pulsatility [39], extra-cerebral tissue
contamination is another confound that can lead to underestimations in brain pulsatility measure-
ments. This effect can be reduced by fitting to only short delay-times in the DCS signal to increase
measurement depth sensitivity [33,34], but as discussed above, this also increases the impact of
correlation noise. A key benefit of the modified Beer-Lambert approach, which we observed
in our simulations, is improved signal-to-noise when using short τ ranges. This coupling of
improved signal-to-noise with increased brain sensitivity likely explains the stronger correlation
between ICP and the semi-infinite modified Beer-Lambert estimate of CrCP than between ICP
and the nonlinear diffusion fitting estimate of CrCP.

The two-layer modified Beer-Lambert results demonstrate ease of use in heterogeneous
geometries as another key benefit of the approach. Layered tissue models can also be used for
nonlinear diffusion fitting to improve accuracy, but noise-induced instability in the fitting is a
known problem [48–55]. The modified Beer-Lambert approach, by contrast, only requires a
simple linear inversion to obtain cerebral blood flow pulsatility. In future work, extending the
modified Beer-Lambert approach to more realistic head models and using alternative estimations
of the extra-cerebral layer thickness [51,56] may further improve accuracy.

We note that in our prior study in infants with hydrocephalus [14], we used the whole-curve
non-linear diffusion fitting method to compute CrCP, and we observed a stronger correlation
(R= 0.48) between CrCP and ICP than was observed in the present study with the method in
piglets (i.e., R= 0.24). In this prior work, due to their thin scalp/skull, the infant measurements
were carried out using a 2.0 cm source-detector distance (a 2.5 cm distance was used for
the piglets). As a result of the shorter source-detector distance and thinner scalp/skull, DCS
correlation noise and extra-cerebral tissue contamination might have been less confounding in
the infant measurements.

We further note that promising alternative approaches to reduce the DCS correlation noise
confound in the traditional nonlinear fitting analysis include averaging flow waveforms across
many cardiac cycles [26,29] and combining DCS measurements with near-infrared spectroscopy
photoplethysmography [30]. Another proposed method to calculate CrCP uses high temporal
resolution to perform linear extrapolation during diastole when the relationship between F and
CrCP may be more linear [26]. Our modified Beer-Lambert approach has the advantage of
being less sensitive to the subtle differences between the shapes of the peripheral and cerebral
ABP waveforms (the derivation of CrCP assumes that measured peripheral ABP waveforms
are equivalent to cerebral ABP waveforms) [27]. These approaches, however, are not mutually
exclusive, and the modified Beer-Lambert law for flow could be applied in the time-domain to
derive F(t) for either machine learning or diastole-only methods, which may also benefit from
removal of superficial signals.
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4.2. Delay-time range choices for modified Beer-Lambert algorithms

Recall, the DCS modified Beer-Lambert law (Eq. (4)) is a good approximation for small changes in
ODDCS. Importantly, if the multiplicative weighting factors in Eq. (4) are small, then ∆ODDCS(τ)
can still be small for large tissue hemodynamic changes. For short τ, the weighting factors dF(τ),
da(τ), and ds(τ) are all close to zero, and at long τ, all 3 weighting factors deviate substantially
from zero [36]. Accordingly, the DCS modified Beer-Lambert law is usually accurate at short τ
but breaks down at long τ. This behavior is evident in our simulations (Fig. 5(f)). When longer τ
are used, i.e., τ corresponding to conditions wherein ⟨|g1(τ)|⟩ < 0.6, then the accuracy of the PIF
estimate is diminished.

Fortunately, the short τ range is optimal for brain monitoring because the DCS signal at short τ
is inherently more sensitive to the deeper brain tissue (see Section 2.2). Indeed, as we discussed
above (Section 4.1), the superior in vivo performance of the semi-infinite modified Beer-Lambert
method (Method 3) compared to the whole-curve nonlinear diffusion fitting method (Method 2)
is likely due to this increased brain sensitivity.

Note however, we found (see Fig. 5(f)) that the use of extremely short τ ranges, i.e., corre-
sponding to ⟨|g1(τ)|⟩ > 0.8 or ⟨|g1(τ)|⟩ > 0.9, decreased accuracy compared to ⟨|g1(τ)|⟩ > 0.7.
This effect arises because the impact of correlation noise is substantial when only a few τ are used
for linear inversion of Eq. (7); the smaller ∆ODDCS(τ) and higher correlation noise at the very
short τ also makes it harder to distinguish signal from noise. (As an aside, when we performed
simulations without adding correlation noise, the PIF errors for the 0.8 and 0.9 ⟨|g1(τ)|⟩ cutoffs
were not significant (data not shown).) Thus, our simulations suggest the 0.7 ⟨|g1(τ)|⟩ cutoff
is optimal for in vivo brain monitoring. Use of a 0.6 ⟨|g1(τ)|⟩ cutoff is another possibility, but
although the noise levels for the 0.6 and 0.7 cutoffs in Fig. 5(f) are similar, there is more risk of
the modified Beer-Lambert law breaking down for the 0.6 cutoff.

Finally, in principle, only one τ is needed to determine PIF with Eq. (7). In practice, we have
found that this single τ estimate is noisier than the multiple τ estimate. For example, in our
simulation (at 30 kHz intensity, average across 6 detectors), the estimate of PIF with a single
τ (such that ⟨|g1(τ)|⟩ = 0.7) was 0.27± 0.03 (mean±SD), and the corresponding estimate with
multiple τ (with ⟨|g1(τ)|⟩ > 0.7) was 0.27± 0.01.

Future study is needed to confirm these findings for different source-detector separations,
heterogeneous geometries, and different absolute flow indices and tissue optical properties.

4.3. CrCP predicts intracranial hypertension more robustly than other optical metrics

We have found that the CrCP prediction of IH was substantially better than the prediction
achieved with the optical Fc and StO2 metrics. Many confounds, e.g., tissue optical property
errors, scalp/skull thickness heterogeneity, head curvature, and hematocrit [48,50,54,56–59], are
known to impact the absolute Fc metric. By contrast and importantly, the flow pulsatility index
used to calculate CrCP is a fractional flow change, and fractional flow changes are more robust
to these confounds, e.g., especially head curvature and baseline tissue optical property errors
(scalp/skull thickness errors and temporal changes in optical properties can be more problematic)
[36,50,51,54,56]. Future work is needed to fully understand the effects of these DCS confounds
on the flow pulsatility measurement.

In a different vein, the StO2 metric is influenced by changes in both cerebral perfusion and
oxygen metabolism [37]. Thus, the minimal change in StO2 and ∼30% decrease in cerebral
blood flow observed from baseline to IH (see Table 3) suggests that the blood flow decrease was
almost matched by a corresponding decrease in cerebral metabolic rate of oxygen (CMRO2). The
decreased CMRO2 level, though, was not sufficient on its own to sustain brain metabolism (the
increased microdialysis LPR shown in Table 3 indicates increased anaerobic brain metabolism).
Interestingly, linear mixed effects regression analyses showed that Fc, StO2, and the optical
aCPP were negatively associated with increasing LPR (p< 0.001, data not shown), though the
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Pearson correlations were modest, i.e., R=−0.24 for aCPP, R=−0.12 for Fc, and R=−0.12
for StO2 (recall, aCPP=MAP – CrCP; we used the Method 4 CrCP estimate). Despite the
modest correlations, the associations motivate the future use of these optical metrics for detecting
metabolic distress (as a reference comparison, the Pearson correlation between invasive CPP
and LPR was R=−0.34 (p< 0.001)). In a future publication, we will focus on the cerebral
physiological effects of IH.

4.4. Limitations

A major limitation in the DCS measurement of CrCP is the uncertainty about the η factor in
Eq. (3), which accounts for the blood pressure drop across the large cerebral arteries. Herein, we
assumed η=0.6 based on rat measurements, but this assumption is likely in need of refinement
for piglets. This factor may even be ICP-dependent. If, for example, vasodilation during severe
IH resulted in a minimal pressure decrease from arteries to arterioles (i.e., η ≈ 1), the computed
median CrCP during severe IH in Table 3 would be 47 mmHg, which is close to the median
ICP. This suggests that assuming a constant η blunts the true CrCP change between moderate IH
and severe IH. Further, CrCP might be expected to be higher than ICP at baseline because of
vasomotor tone. The closeness of median CrCP and ICP at baseline (Table 3) thus suggests the
true η in piglets at baseline is higher than 0.6. η may also vary across subjects. To aid clinical
translation, schemes for subject-specific estimation of η are needed.

Measurement accuracy can probably be improved from better modeling of the arterial vascular
tree. In the present work, arterioles were modeled as a resistor. We previously investigated an
alternative two-compartment Windkessel model that incorporates compliance, i.e., the arterioles
were modeled as a resistor and capacitor in parallel [17]. This is a more realistic model than
the “resistor-only” approach, and the phase difference (time lag) between pulsatile arteriolar
blood pressure and cerebral blood flow waveforms provides information about compliance [17].
Measurement of this phase difference is difficult in practice, however, as it is sensitive to location
of the peripheral arterial measurement of ABP. Future work is needed to improve understanding
of these transit time differences before the Windkessel or other vascular models could be routinely
implemented.

A third limitation is the assumption that CrCP is constant over the time scale of the measurement.
In practice, this means that the well-known heart-beat fluctuations in ICP [39], and thus in CrCP,
are assumed to be negligible compared to heart-beat fluctuations in arteriolar blood pressure.
Future work is needed to investigate measurement errors caused by ICP pulsatility. Finally,
we assumed that scalp flow pulsatility in the piglets was negligible due to high optical probe
pressure against the scalp, and we assumed that contribution of pulsatile changes in tissue optical
properties to the pulsatile DCS signal were negligible. These assumptions may need to be relaxed
in future work.

5. Conclusion

Optically measured critical closing pressure (CrCP) obtained with a frequency-domain modified
Beer-Lambert algorithm was predictive of intracranial hypertension in piglets. The prediction
was independent of mean arterial pressure and other diffuse optical metrics of blood flow and
tissue oxygen saturation. When CrCP was obtained with traditional nonlinear diffusion fitting
in piglets, measurement failure rate (i.e., fraction of negative CrCP measurements) was high,
and the correlation with invasive intracranial pressure was much weaker. The key to the success
of the modified Beer-Lambert approach was its robustness to correlation noise and its effective
filtering of extra-cerebral tissue signals.
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Appendix 1: generation of simulated DCS data with noise

First, we simulated a 1-minute-long pulsatile DCS blood flow index waveform by scaling invasive
brachial arterial blood pressure data acquired in an adult patient (125 Hz sampling), i.e., F(t)= F0
(ABP(t)/MAP), with F0 = 10−8 cm2/s. The pulsatility index of this waveform (|F(fhr)|/F0) is
the true PIF. Second, we down-sampled F(t) to 20 Hz sampling and generated a normalized
DCS intensity autocorrelation function (g2(τ,t)) for each F(t) in the down-sampled time-series.
Specifically, for light wavelength 850 nm, source-detector distance 2.5 cm, and optical tissue
absorption and reduced scattering properties of 0.1 and 8 cm−1, the normalized electric field
autocorrelation function (g1(τ,t)) at each F(t) was obtained by evaluating the semi-infinite
correlation diffusion solution; g2(τ,t) curves were then derived from the corresponding g1(τ,t)
curves via the Siegert relation, i.e., g2(τ,t)= 1+ 0.5 |g1(τ,t)|2 [37].

Third, using a correlation noise model [40], varying levels of correlation noise were added to
the g2(τ,t) curves based on varying the DCS intensity (photon count rate at the detector). The
noise model provides the standard deviation of the correlation noise in g2(τ) – 1 for each τ, i.e.,
σnoise(τ). In addition to depending on intensity, the noise model depends on the measurement
integration time (set to 1/(20 Hz)= 50 ms), the g1(τ) characteristic decay time (extracted from
exponential fitting of the corresponding g1(τ,t) curve for each g2(τ,t) curve), the correlator bin
width for each τ (the bin widths of our in vivo multi-τ software correlator were used [10], i.e.,
there were 9 tiers in the multi-τ scheme; tier 1 comprised the earliest 16 τ, each subsequent
tier comprised the next set of 8 τ; the bin width for tier n was Tn = 2n−1T1, with T1 = 1 µs; for
more details on the multi-τ scheme, see [60]), and the Siegert β coefficient (set to 0.5). The
DCS intensity was changed from 5 to 50 kHz in 5 kHz steps. For each intensity, 30 sets of
g2(τ,t) curves with noise were generated (i.e., for each set, random correlation noise was added
to the noise-free g2(τ,t) set: g2,noise(τ,t)= g2(τ,t)+X(t) σnoise(τ); X(t) denotes a random number
drawn from the standard normal distribution). These curves simulate measurements acquired
with a single DCS detector. In our in vivo piglet data, we used an array of 6 DCS detectors to
acquire 6 measurements in parallel at the same source-detector distance. To simulate parallel
DCS detection, the same procedure described above was repeated to independently simulate
g2(τ,t) measurements for each detector, and the average g2(τ,t) across the 6 detectors was used.
This assumes that real noise is independent across the 6 detectors.

Appendix 2: piglet handling procedures and inducement of elevated ICP

One-month-old female piglets (n= 25, weight: 10.3± 0.8 kg (mean± SD), Meck Farms, Lancaster,
PA) were anesthetized with intramuscular injection of ketamine (200 mg) and 4% inhaled
isoflurane, intubated, and then mechanically ventilated with 2% isoflurane and 21% FiO2 (tidal
volume, 10 mL/kg; positive end-expiratory pressure, 6 cm H2O). The respiratory rate was
adjusted to target end-tidal CO2 pressure between 35−45 mmHg (25± 4 breaths-per-minute).
Body temperature was also monitored and maintained at 37.5± 1.3°C with a 3 M Bair Hugger
system. Catheters were placed under ultrasound guidance in the right femoral artery and bilateral
femoral veins for ABP monitoring (Millar Instruments, Houston, TX), blood gas sampling, and
drug administration. IV Propofol (2 mg/kg/hr) and dexmedetomidine (1 µg/kg/hr) were then
administered for the duration of the study.

The right hemisphere scalp was reflected to expose the skull. For the infusion of mock
cerebrospinal fluid into the right ventricle, an external ventricular drain (EVD) catheter (10 Fr.,
INS0001, Integra, Plainsboro, NJ) was placed 12 mm paramedian and 8 mm anterior to the
coronal suture (EVD tip depth 3 cm from top of skull). Placement was confirmed by aspirating
cerebrospinal fluid and identifying ICP waves. For invasive intraparenchymal ICP monitoring, a
Millar sensor (Millar Instruments) was inserted ∼2 cm beneath the skull through a bolt (Integra)
placed over the right frontal cortex. A cerebral microdialysis probe (CMA 71 Elite, mDialysis)
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was placed ∼1 cm deep in the brain parenchyma through a burr hole in the right parietal bone.
Finally, for continuous DCS and FD-DOS monitoring, a hybrid optical probe was sutured to
the skin on the left forehead lateral to the midline and anterior to the crown [46]. Throughout
the study, ABP, invasive ICP, and vital signs were synchronized and recorded with a PowerLab
system (1 kHz sampling, ADInstruments, Australia). The mock cerebrospinal fluid used to
elevate ICP was dextrose 5% in one-fourth normal saline warmed to body temperature [41,42].
The infusion rate was initially set to 4 mL/hr to increase ICP; the infusion rate needed to achieve
maximal ICP was highly variable, ranging from 30 mL/hr to ∼100 mL/hr.

Appendix 3: diffuse optical instrument and probe

DCS and FD-DOS measurements were performed in parallel using a single fiberoptic probe [46].
The DCS source was a 850-nm laser (DL850-100S, CrystaLaser, Reno, NV) coupled to a 90°-
bend borosilicate fiber bundle (1-mm diameter, 0.66 NA, 3-meter long, Fiberoptics Technology,
Pomfret, CT). For DCS detection, six avalanche photodiodes (SPCM-AQ4C, Excelitas, Quebec,
Canada) were connected to a fan-out bundle of single-mode fibers (780 HP, Thorlabs, Newton,
NJ) placed 2.5 cm from the source; the bundle (made by Fiberoptic Systems, Simi Valley, CA)
was terminated on the common end with a 3-mm right angle prism (N-SF11, Edmund Optics,
Barrington, NJ) that was placed against the skin. The intensity autocorrelation function of the
signal measured with each photodiode was continuously computed at 80 delay-times (between 1
µs and 4 ms) with a multiple-τ software correlator (50 ms integration time, or 20 Hz sampling)
[10]. The mean g2(τ) across the 6 detectors was then used.

FD-DOS measurements were acquired with a commercial instrument (Imagent, ISS, Cham-
paign, IL). Specifically, the amplitude and phase of diffuse photon density waves induced by
intensity-modulated sources (110 MHz) were measured at four wavelengths (690, 725, 785, 830
nm) and four source-detector distances (1.5, 2, 2.5, 3 cm). FD-DOS and DCS detection were
performed through the same right-angle prism on the skin; for FD-DOS, a borosilicate fiber
bundle (2 mm diameter, 0.55 NA) was placed circumferentially around the single-mode fibers at
the center. Source light from each wavelength was delivered to four FD-DOS source locations via
fan-out bundles of 0.66 NA borosilicate fiber (90°-bend 2.5-mm diameter common end, 1-mm
diameter leg ends, Fiberoptics Technology). Note, the DCS source fiber bundle was part of the
fan-out bundle at the 2.5 cm source-detector distance. An 850-nm short-pass filter (OZOptics,
Ontario, Canada) in front of the FD-DOS detector blocked DCS light. FD-DOS measurements of
StO2 and THC (10 Hz sampling) were performed simultaneously with DCS. Assuming constant
water volume fraction of 0.75, a semi-infinite tissue model was used to derive StO2 and THC
[46]. Tissue absorption and reduced scattering at the DCS wavelength were determined from
StO2, THC, and a Mie scattering model [57,61].

Note, since we did not have spectral filters in front of the DCS detectors to block FD-DOS
light, FD-DOS light contamination in the DCS signals reduced the Siegert β coefficient from the
expected value of 0.5. In practice, the amount of contamination varied with the changes in tissue
optical properties within and across subjects. Thus, we decided to fit for β in the computation of
CrCP (see Section 2.7; note, this entailed fitting β to the 1-minute temporal mean of the g2(τ,t)
data used to compute CrCP, i.e., ‹g2(τ)›). Fitting for β, though necessary herein, does increase the
risk of crosstalk between fitting parameters. Accordingly, fixing β at 0.5 (or at a value measured
at baseline) is preferable for DCS signals free of contamination from other light sources.

Appendix 4: white noise in Fourier spectra

Recall, a non-zero “white noise” level, which we denote as σ, is present at all frequencies in
the |F(f)|/⟨F⟩ Fourier spectra (e.g., Fig. 3(e), Fig. 5(c)). In general, a white noise level of σ
arises from the Fourier transform of a random variable, X(t), with zero mean and σ2 variance
[62]. Thus, the white noise in the nonlinear fitting and modified Beer-Lambert Fourier spectra
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originate from random noise in the F(t) and ODDCS(τ,t) time-series. Figure 3 and 5 indicate that
the white noise is larger for ODDCS(τ,t) / (dF(τ)⟨F⟩) (see Eq. (7)) than for F(t)/⟨F⟩ obtained from
traditional nonlinear diffusion fitting. Future work is needed to better understand this.

Future work is also needed to optimize the removal of the white noise level in the PIF
computation. Here, we took the mean of |F(f)|/⟨F⟩ across the 1.2fhr to 1.8fhr frequency range
to estimate the white noise level, which we subtracted from |F(fhr)|/⟨F⟩ to determine PIF. The
selection of the 1.2fhr to 1.8fhr frequency range was somewhat arbitrary. The range is between
the fundamental and first harmonics of the heart rate in the flow waveform and is also beyond
higher order harmonics in lower physiologic frequencies in the flow waveform. Further, this
frequency range is still plausible for white noise estimation with modestly lower DCS sampling
rates than 20 Hz (e.g., 10 Hz). We did try choosing other frequency ranges for estimating the
white noise, e.g., taking the average across frequencies defined by 1.2fhr to 1.8fhr and 2.2fhr to
2.8fhr. The choice of the specific frequency range did not alter our findings.
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