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Psychologists have studied deductive reasoning for over a century and they
have proposed various theories about its underlying mental processes in
naive individuals; that is, those who have had no training in logic. Earlier
theories followed the lead of Piaget and were based on formal rules of
inference (e.g., Inhelder & Piaget, 1958; for an assessment of the deductive
paradigm, see Evans, 2002). However, about 25 years ago an alternative
theory proposed that deduction was based on mental models constructed
from the meaning of the premises and general knowledge: a valid conclusion
was one that held in all the models of the possibilities consistent with the
premises (e.g., Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991).

Recently psychologists have realised that pragmatic processes have a
major impact on reasoning (e.g., Johnson-Laird, 2006; Johnson-Laird &
Byrne, 2002), and they have proposed dual-process theories of reasoning in
which one system, System 1, exploits automatic processes sensitive to
pragmatic factors, and a subsequent system, System 2, uses logic and
calculation (e.g., Evans, 2007; Sloman, 1996; Stanovich, 2008). Some
theorists have even made the extreme claim that there is no need to postulate
deductive ability as part of thinking. In the case of syllogisms, which are
simple deductions based on quantifiers such as “all” and ‘“‘some”, naive
reasoners are said to respond solely on the basis of the atmosphere of the
premises (e.g., Wetherick & Gilhooly, 1995). Similarly, Oaksford and
Chater (e.g., 2002, p. 349) argue that ““everyday rationality does not depend
on formal systems like logic and only formal rationality is constrained and
error prone. . .everyday reasoning is probabilistic and people make errors in
so-called logical tasks because they generalize these strategies to the
laboratory”. Hertwig, Ortmann, and Gigerenzer (1997, pp. 105-106)
likewise write: ““...those who study first-order logic or variants thereof,
such as mental rules and mental models, ignore the ecological and social
structure of environments”. Still others argue that deductive reasoning
depends on pragmatic schemas for specific contents (e.g., Cheng & Holyoak,
1985), or on innate modules adapted to deal with specific contents, such as
checking for cheaters (e.g., Cosmides, Tooby, Fiddick, & Bryant, 2005). So,
just how much ability in pure deductive reasoning do naive individuals really
possess?

One way to answer this question is to consider Sudoku puzzles. They are
digit placement puzzles that have become popular worldwide. Their
popularity shows that people can solve them. But they cannot be solved
using pragmatic schemas or innate modules tuned to specific contents, or
fast and frugal heuristics, or the atmosphere of premises, or probabilistic
reasoning. They are, as we shall argue, puzzles of pure deduction, and their
solution depends ultimately on the ability to make valid deductive
inferences; that is, to draw conclusions that must be true given the truth
of their premises. In terms of dual processes, the rapid intuitions of System 1
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may play a part in their solution but the slower deliberations of System 2 are
decisive.

Sudoku puzzles derive from Latin squares (Ball & Coxeter, 1987; Euler,
1849). Figure 1 presents three typical puzzles, and the task is to fill in the
empty cells in an array with the correct digits. One general rule governs the
puzzles: Every digit from 1 to 9 must occur exactly once in each row, in each
column, and in each of the nine 3-by-3 boxes into which the array is divided
(shown by the bold lines in Figure 1).

This rule contains three quantifiers: every, exactly once, and each, and so
its logical analysis calls for first-order logic (Jeffrey, 1981). A proper Sudoku
puzzle has one unique solution, but larger puzzles rapidly become
intractable (Yato & Seta, 2002).

In order to explain how individuals master Sudoku, we need to draw a
distinction between inferential strategies and tactics. We propose the
following working definition following Van der Henst, Yang, and Johnson-
Laird (2002):

A strategy in reasoning is a systematic sequence of elementary mental steps
that an individual follows in making an inference.

Mild Difficult
1 9 2|7 8 7
9 2 5 817 2
2 3 5 14
3 14 2 7 2 9 1 5
8 4
1 28 5 5 8 7 3 2
9 7 3|7 8
1 3 9 4 9(7|3
4|6 7 5 4 5
Fiendish
7|5 9 4|6
9 1 3 2
2 6 1 7
8 2
1 3 8 5
3 9 2 4
8|4 3 709

Figure 1. Three Sudoku puzzles used in Experiment 1: mild, difficult, and fiendish (from Gould,
2005).
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We refer to each of these mental steps as a factic, and so a strategy is a
sequence of tactics that an individual uses to make an inference. We can
illustrate this terminology with the following inference:

If there is a 5 in this cell, then there is not a 5 elsewhere in the row.
There is a 5 elsewhere in the row.
Therefore, there is not a 5 in this cell.

You can make this inference using various strategies. For example, you
can make the supposition that there is a 5 in this cell, infer from the
conditional that there is not a 5 elsewhere in the row, detect the
inconsistency between this conclusion and the second premise, and so reject
your supposition. Each step in this strategy—the supposition, the simple
inference, the detection of the inconsistency, and so on—is a separate tactic.
An alternative strategy is to envisage that the one possibility consistent with
both premises is:

not 5 in this cell 5 elsewhere in the row

and to use this possibility to accept the conclusion. In this case, the tactics
are to envisage a possibility, and to draw a conclusion from it.

Theorists of deductive reasoning disagree about whether inferential
tactics rely on formal rules of inference (Braine & O’Brien, 1998; Rips, 1994)
or mental models (Johnson-Laird & Byrne, 1991). They also disagree on
whether there is a single deterministic inferential strategy (formal rule
theories) or multiple non-deterministic strategies (the mental model theory;
see, €.g., Van der Henst et al., 2002). Sudoku puzzles have a lesson to teach
both sorts of theory. When participants make deductions in the
psychological laboratory, they already know the basic inferential tactics
that they use. They know, for example, how to make the simple
“modus ponens” deduction from a conditional illustrated above. But, in
contrast, they do not know the basic inferential tactics for Sudoku, and so
they have to learn them. We now turn to our theory of the psychology of
these puzzles.

THE PSYCHOLOGY OF SUDOKU PUZZLES

The theory presented in this section postulates that when individuals first
encounter a Sudoku puzzle, without having had any experience with them or
instruction on how to solve them, they do not know how to proceed at first.
They may try to guess a digit in an empty cell, or think about the set of
possible digits that could occur in it. But the first step in their mastery of the
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puzzles is to acquire a repertoire of simple tactics that can be used in a basic
strategy.

A simple tactic, by our definition, is one that starts with definite digits
in several cells and that enables individuals to deduce from them a
definite digit that occurs in another cell. For example, if a row in a
puzzle contains the digits 1, 2, 3, 4, 5, 6, 7, 8, and there is one empty cell
in the row, it follows that the digit in the empty cell must be 9, because
the rule governing all puzzles states that every digit from 1 to 9 must
occur exactly once in each row (see above). The inference is a valid
deduction, and its premises are the state of the array in the puzzle, and
the general rule. This tactic is an instance of one that applies to any set,
1.e., row, column, or 3-by-3 box: if any set contains eight digits, then the
empty cell in the set has the missing ninth digit. The tactic uses just a
single constraint, i.e., individuals need to consider only one set to deduce
the value of the target cell. The tactic is simple and obvious, but alas it
cannot be used at the start of any real Sudoku puzzle, because the initial
state of the puzzle never has eight digits in the same set (see, e.g.,
Figure 1). An advanced tactic, by our definition, is one that eliminates
digits from the set of prior possibilities for one or more cells, and we
return to the nature of these tactics later in the paper.

The present theory postulates that there are seven distinct sorts of simple
tactic that individuals acquire, but we emphasise here that they are not
forced to use any of these tactics. We have devised a computer program that
solves Sudoku puzzles without using any of them, and we describe its
method of solution later. Hence, the postulate of seven tactics is a
psychological claim about how naive individuals first begin to cope with
the puzzles. The tactics are all valid deductions, and they differ on two
principal dimensions. The first dimension is binary and concerns the nature
of the underlying deduction. Consider the tactic in which eight digits in a
row exclude these digits from a target cell, and so the remaining ninth digit
must occur there. The tactic is a case of exclusion (of the eight digits). In
other words, in an exclusion tactic digits already in the array are excluded
from a particular cell, which must therefore have the remaining digit, for
example:

1 through 8 are already in a set containing one empty cell.
Therefore, they can be excluded from the one empty cell in the set.
Therefore, the digit in the empty cell is the remaining digit of 9

In contrast, consider a tactic in which, say, a 3-by-3 box does not contain
a 9, but 9s do occur in two rows intersecting the box. The remaining row in
the box must include a 9, and so if there is only one empty cell in this row, it
must be 9. The tactic is a case of inclusion (of the 9). In other words, in an
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inclusion tactic, a digit that already occurs one or more times in the array
must be included in a particular cell, for example:

9 occurs in two rows intersecting a box.
Only one cell in the box is empty in the remaining row.
Therefore, the digit in the empty cell is 9.

The second dimension on which tactics differ is the number of constraints
on the unknown target digit. The simple tactic that we illustrated first uses
only a single constraint: the digits in a single set imply the value of the target
digit. Another simple tactic uses the distribution of eight digits over two
different but intersecting sets, such as a row and a column, to determine the
digit in the cell at the intersection. This tactic accordingly uses two distinct
constraints: the row and the column. The number of constraints in a relation
determining the value of variable is known as its “‘relational complexity”
(Halford, Wilson, & Phillips, 1998). Studies have shown that relational
complexity affects the difficulty of deductions (Birney, Halford, & Andrews,
2006; Goodwin & Johnson-Laird, 2005). Hence, the greater the relational
complexity of a simple tactic, the harder it should be to use: it should take
longer, and it should be more likely to lead to error.

Figure 2 illustrates the seven sorts of simple tactics, both exclusion and
inclusion tactics, and they are laid out according to their relational
complexity. Each tactic is an instance of a valid deduction, but naive
individuals who have never encountered a Sudoku puzzle before will have to
discover these tactics for themselves if they are to master the puzzles.

The present theory postulates that relational complexity depends on the
number of sets that have to be taken into account in order to deduce the
digit in a cell. An alternative hypothesis defines relational complexity in
terms of the number of digits that have to be taken into account in using a
tactic. For inclusion tactics, the two hypotheses make opposite predictions
because, as Figure 2 shows, the numbers of digits to be taken into account in
an inclusion tactic (including those within a box) decline with an increase
in relational complexity based instead on sets. We examine this divergence in
Experiment 2. The minimum relational complexity in terms of sets is one, as
when eight digits in a set can be excluded as digits for the ninth cell. The
maximum relational complexity is five, as when a digit’s occurrence in two
rows and two columns, and the contents of the 3-by-3 box itself, imply that
the digit is included in a particular empty cell in the box.

Anyone who is experienced in solving Sudoku puzzles knows that they
differ in difficulty, and that they are usually classified at four levels: easy,
mild, difficult, and fiendish (see, e.g., the compilations of puzzles edited by
Gould, 2005). For skilled solvers, easy puzzles take about 10 minutes to
complete, whereas fiendish puzzles take over an hour. The present theory
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Exclusion tactics

Sufficient digits are distributed over one, two, or
three sets to exclude all but a definite digit from
the target cell. A set is a row, column, or the
box, and the number of sets equals the relational
complexity of the tactic.

Relational Complexity = 1

o
N

123456 +F

Relational Complexity = 2

- K-

12345

Relational Complexity = 3

[--R K-

123 3

Relational Complexity = 4

None

Relational Complexity =5

None

Inclusion tactics

All the other empty cells in the box containing the target
cell are in at least one of a number of sets (either rows or
columns) in which one possible digit for the target cell
occurs. The box itself must contain the possible digit
somewhere (which functions as a separate constraint),
and so it can be inferred that this digit must occur in the
target cell. The relational complexity of the tactic is thus
equal to the number of sets (rows or columns) that
functions as constraints, plus the box constraint. An X in
a cell indicates that the cell is occupied by another
number. The value of this number is inconsequential, so
the X’s do not count as a separate constraint.

None
X | XX
9
X|x|?
X X
9
X ?
9
9
9
X ?
9
1 9
, 9
?]
9
9

Figure 2. Illustrations of the seven simple tactics for solving easy Sudoku puzzles. The value of
“7 is always 9 for each tactic. Exclusion tactics directly exclude possible digits from a target cell
so that it can only contain one specific digit. Inclusion tactics use the occurrence of a digit in
other cells in a set to infer that it must be included in the target cell. Each line in a diagram with
digits at its end signifies ruling out the occurrence of these digits in the empty cells through
which the line runs, because these numbers are already in the relevant set.
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accordingly needs to explain, first, what aspects of the puzzles contribute to
their difficulty and, second, how experience enables skilled individuals to
solve the more difficult puzzles. Readers might suppose that the difference in
difficulty over the four sorts of puzzle is merely a matter of how many digits
are missing from the initial array of a puzzle. In fact, this number does not
vary much. The three puzzles in Figure 1, for example, differ vastly in
difficulty but have the same number of missing digits. Hence, the number of
empty cells in the initial array is not crucial. Likewise, as we will show, the
initial steps in the four sorts of puzzle also do not differ reliably in difficulty.
So, what is responsible for difficulty?

The answer according to the present theory depends on strategy and
tactics: simple tactics suffice for the easier puzzles, but fail utterly with more
difficult puzzles. The claim is true, but too coarse to elucidate four levels of
difficulty. A more refined analysis calls for the concept of a stage in the
solution of a puzzle. The initial stage is the array presenting the puzzle. At
this stage it is possible to deduce the particular digits in a certain number of
cells in the array depending solely on the digits in the initial array, and it is
also possible to eliminate possible digits for other cells using advanced
tactics, again depending solely on the digits in the initial array. When all of
these deductions, which are independent of one another, have updated the
array, the puzzle is at its second stage: some cells contain definite digits, and
the remainder contain sets of possible digits. Once again, a new set of
independent deductions can be made to infer definite digits for cells or to
reduce the possible digits for cells. They yield the next stage of the puzzle,
and so on...all the way to the solution of the puzzle in which all the cells
have definite digits. The concept of a stage in a puzzle therefore has a precise
logical definition, and the computer program that we devised allows us to
examine each stage in the solution of a puzzle.

Individuals are most unlikely to use a strategy that proceeds in an orderly
fashion, moving from one complete stage to the next. Indeed, the present
theory postulates that because tyros start with easy or mild puzzles, they
should soon acquire some simple tactics. Their basic strategy should be to
infer a definite digit, and then to check whether it in turn enables them to use
another simple tactic to infer a further definite digit, and so on. As soon as
they can go no further in this way, they scan the array looking for other
configurations of digits that allow them to use a simple tactic. If this
hypothesis is correct, then easier puzzles should have on average a higher
number of definite digits that can be deduced at any stage in their solution.
We used our computer program to test this prediction. The program uses a
recursive strategy based on a single advanced tactic, i.e., it works through an
array, recursively using each definite digit in a cell to eliminate possibilities
for all the cells in the same sets as this cell. We took samples of 10 puzzles at
each of the four levels of difficulty from Gould (2005). The program revealed
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the following mean numbers of definite digits that could be inferred at each
stage in the solution of the puzzles: 4.3 for the easy puzzles, 2.3 for the mild
puzzles, 1.8 for the difficult puzzles, and 1.3 for the fiendish puzzles
(Jonckheere trend test, z=6.51, p < .00001). A corollary is that the easier a
puzzle is, the fewer the number of stages in its solution. The psychological
implication of our computational result is that human solvers can infer a
definite digit at any point more readily in the easier puzzles than in the harder
puzzles, and this factor provides an explanation of the cause of difficulty.

Easy puzzles can be solved using only simple tactics, as can many mild
puzzles. But simple tactics alone fail to cope with difficult and fiendish
puzzles. The mean of 1.3 definite digits per stage for fiendish puzzles, which
we cited above, is just a mean, and there are many stages in the solution of
such a puzzle where all that can be inferred are eliminations from the
possible digits in cells. A crucial shift in strategy is therefore necessary to
solve the harder Sudoku (the difficult and fiendish ones): individuals have to
keep a record of the possible digits in cells, and to use advanced tactics that
enable them to eliminate possible digits. The progressive elimination of
possibilities ultimately leads to only a single possibility for a cell, but this
final inference may not be feasible until individuals have passed through a
large number of stages. We reiterate that the use of advanced tactics become
feasible only when individuals realise that they need to record the possible
digits in cells. We return to the nature of advanced tactics later in the paper,
but first we need to consider the evidence supporting the theory’s account of
simple tactics.

EXPERIMENT 1

Our first experiment was designed to examine the initial performance of
naive individuals encountering their very first Sudoku puzzles. It tested
whether they were able to discover simple tactics, whether they relied on
them to a greater extent than advanced tactics, and whether any difference
in difficulty occurred at the outset amongst mild, difficult, and fiendish
puzzles. The theory predicts that naive individuals should develop simple
tactics before they discover the need to develop advanced tactics, which
depend on maintaining a record of the possible digits in cells. It also predicts
that once individuals have inferred a definite digit they should follow up its
consequences, if possible, in another inference.

Method and participants

Ten Chinese University of Hong Kong students (mean age =20.4 years)
acted as their own controls; on their own account, none of them had any
prior experience with Sudoku puzzles. They tackled three puzzles: a mild, a
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difficult, and a fiendish one (selected from Gould, 2005), spending 15
minutes on each of them. Figure 1 above presents examples of the puzzles
used in the experiment. They were presented in random orders, and the
participants’ task was to fill in as many missing digits as possible. After the
participants filled in a digit, they had to write a justification explaining why
the digit was correct for that cell. In this way we were able to assess whether
the participants had become aware of a tactic, and the sequence of
justifications revealed the order in which they had filled in the digits while
tackling each puzzle. The participants were told the general rule for Sudoku
(see the Introduction), but otherwise received no instructions whatsoever on
how to go about solving them.

Results and discussion

The participants correctly solved a mean of 2.2 digits for the mild puzzles,
2.1 for the difficult puzzles, and 2.0 for the fiendish puzzles, but this slight
trend was not reliable (Page’s L = 123.0, p = .25, ns). The main differences in
difficulty among the three sorts of puzzles evidently occur after their early
stages. To solve only two digits in 15 minutes shows that the puzzles were
difficult for the naive participants, because experienced solvers can solve the
whole of an easy puzzle in that time.

As the theory predicts, the participants overwhelmingly used simple
tactics (83% of their inferences; Wilcoxon test, z=2.97, p < .005). Although
we had not predicted the phenomenon, the participants were also more
likely to use exclusion than inclusion tactics (on 85% of occasions;
Wilcoxon test, z=1.89, p < .05). One reason for this bias may be that
exclusion tactics are easier than inclusion tactics. In an exclusion tactic,
reasoners can start with a putative target cell, and check what digits occur in
the same row, column, and box as this cell’s. But with an inclusion
tactic reasoners have to look for occurrences of the same digit in rows or
columns that are appropriately aligned with a box which just happens to
have only one free cell that can include the digit. This task is likely to be
demanding, at least until the array has four instances of the same digit
aligned on a box.

The mean relational complexity of the participants’ simple tactical steps
was 2.8, but their numbers at different levels of complexity were insufficient
for a test of its effects on their performance. As the theory predicts, their
strategy followed the principle of following up an inference of a digit with a
subsequent tactic that exploited it. When they had a choice between using
this strategy and making an independent inference, they tended to use this
strategy (87% of occasions; Wilcoxon test, z=2.37, p < .01).

The participants’ written justifications for their inferences of digits
contained cases of six of the seven simple tactics in Figure 2: no one used the
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inclusion tactic with a relational complexity of five. The following protocols
illustrate the use of three different simple tactics:

1. Exclusion tactic with relational complexity of 3 (Participant 35,
fiendish puzzle): ““1, 2, 3, 9 have already occurred in the row [of the
target cell], 4, 5, 8 have already occurred in the column [of the target
cell], 7 has already occurred in the 3-by-3 box [of the target cell], only
6 can be filled in [the target cell].”

2. Inclusion tactic with relational complexity of 3 (Participant 9, mild
puzzle): “The 3-by-3 box does not contain 3, and the other four
empty cells cannot contain 3 [because 3 has already occurred in the
same two rows as theirs]”. The participant then put a 3 in the
appropriate target cell.

3. Inclusion tactic with relational complexity of 4 (Participant 2, mild
puzzle): “4 has already occurred in the two rows above, and also
cannot be placed in the cell to the left [of the target cell], because 4 has
already occurred [in the same column] in the 3-by-3 box below [the
cell to the left of the target cell].” The participant then put a 4 in the
appropriate target cell.

These protocols are typical, and they show that the participants were well
aware of the tactics that they used to infer correct digits for empty cells.
Sceptics might suppose that individuals are bound to acquire the simple
tactics, because they are necessary to solve the puzzles. In fact, none of the
simple tactics postulated in the theory is necessary for the solution of
puzzles. Our computer program uses none of them, but instead a general
tactic of eliminating possibilities (see the earlier account).

The participants differed considerably in their accuracy. One participant
made no errors whereas another, the least competent, made errors on three-
quarters of the digits that he inferred. Overall 28% of the assignments of
digits to cells were erroneous. Some errors may have been guesses
constrained by the possible values for a cell. Others were unconstrained in
this way and included mistakes, such as a failure to bear in mind a digit that
was already in a set. No reliable difference occurred between the two sorts of
errors. We conclude that with experience the proportion of errors declines,
along with any tendency to guess.

EXPERIMENT 2

The relational complexity of a simple tactic should directly influence its
difficulty. Previous studies of the effects of relational complexity on
deduction have examined only small values, because in everyday language
relations seldom hold over two or three arguments (see, e¢.g., Goodwin &
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Johnson-Laird, 2005; Halford et al., 1998). In contrast, the simple tactics
for Sudoku vary in relational complexity from one to five, and so they
allow us to investigate a much greater range of values of relational
complexity than has typically been studied. Experiment 2 tested the
prediction that tactics should increase in difficulty with their relational
complexity, and it focused on inclusion tactics so that we could contrast
predictions based on number of digits with those based on number of sets.
As Figure 2 shows, the numbers of digits to be taken into account in an
inclusion tactic decline with an increase in relational complexity defined
instead on sets.

Method and participants

We tested 18 Princeton students (mean age = 26.5 years), who acted as their
own controls; none of them reported any prior experience with Sudoku
puzzles. Their task was to infer the value of the digit in a given cell in
each of nine problems. There were two problems depending on inclu-
sion tactics with relational complexity values of two, three, four, and five,
and one trial for an exclusion tactic with a relational complexity value of
two. Figure 3 illustrates examples of the five sorts of problems. Each
participant received the total of nine problems in a different random order,
and they had 4 minutes to solve each problem. The problems were presented
on separate print-out sheets, and the participants filled in their answers on
the sheets.

Results and discussion

Table 1 presents the percentages of problems that the participants solved, and
the overall mean latencies for both correct and incorrect solutions (because of
the small percentages of correct solutions in some conditions). Those
participants who failed to give any answer within the time limit (24% of
responses) were assigned the latency of the time limit. The trend for the
inclusion tactics across the four relational complexity values was reliable for
latency (Page’s L =478.5, z=2.3, p < .01) but not for accuracy, although it
was in the predicted direction (Page’s L =455.0, z=0.4, p=.34, ns). The
departure from the effects of relational complexity when its value was five is
probably attributable to the ease of noticing four instances of the same digit in
columns and rows intersecting the box containing the target cell. Participants
performed better on the exclusion tactic problem, which had a relational
complexity of two, than the two inclusion tactics problems with a relational
complexity of two, and the difference was reliable for latency (Wilcoxon test,
z=23.2, p < .05) but not for accuracy (Wilcoxon test, z= 1.3, p =18, ns). The
participants’ performance also improved over the trials, as reflected by the
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a. b.
8 2 3/1(9 4 8
41 8 2
N 2/6|3 8 5 N|7 116
7 3
2 8 7 4
6 9 7|3 3 1
4 3 8
9 1 5 6
6 4 7 9 3
c d.
5 8 7 8 2|5
2 6 3 8
N 4 N 4 1
1 2 4
7 9 7 5
3 4 1
9 8 3 2 6 9
8 8 5
1 7 5|2 9 93 2 4 6
e.
5 8 4 1
7 4 9
N
6|2
4 2|7
3 8 7
6|3
2 4 6|15

Figure 3. Examples of problems in Experiment 2 in which the task was to infer the digit for the
cell marked “N”. (a) N =35, relational complexity of two, (b) N =2, relational complexity of
two, (c) N =7, relational complexity of three, (d) N =8, relational complexity of four, (¢) N =4,
relational complexity of five.

TABLE 1
Percentages of correct responses and mean latencies of all responses, correct and
incorrect, Experiment 2

Exclusion Inclusion Inclusion Inclusion Inclusion
tactic, tactic; tactic; tactic; tactic;
relational relational relational relational relational
complexity complexity complexity complexity complexity
of two of two of three of four of five
Percentages correct 83 67 64 50 58

Overall latencies (s) 474 122.1 158.6 170.5 165.0
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increase in both latency and accuracy (Page’s L =4338.0, z=3.2, p < .001,
and Page’s L =4330.0, z=3.1, p < .001 respectively). Finally, the participants
failed to solve 38% of the problems, but in most cases (84% of these responses)
they did not infer any digit rather than inferring an erroneous digit (Wilcoxon
test, z=2.35, p < .05), thereby corroborating Experiment 1’s finding that
individuals were not inclined to make guesses.

THE NATURE OF ADVANCED TACTICS

Simple tactics alone cannot solve difficult or fiendish puzzles, which require
advanced tactics embedded in an advanced strategy in which participants
keep a record of the sets of possible digits for cells. Hence, when individuals
move on to more difficult puzzles they have to learn to use this strategy.
Their impetus to make the shift in strategy is likely to come from their
discovery that they can make no further progress in a difficult problem by
relying solely on simple tactics. However we have no evidence on this point
and, as readers should realise, its collection would call for an empirical study
that would make unrealistic demands on participants’ time.

Advanced tactics can be analysed as two-step processes. The first step is
to infer a set of digits as the only possibilities for certain cells, and the second
step is to use these possibilities to eliminate possibilities from other cells.
Simple exclusion and inclusion tactics can be extended into advanced tactics
that yield not a definite digit, but a set of possibilities. For example,
sufficient digits might be distributed over sets to exclude all but two digits for
a target cell. Likewise, the configuration of possibilities may call for two
target cells to each include a pair of possible digits. These extensions of
exclusion and inclusion tactics to cases yielding possibilities rather than
definite digits provide the first step in advanced tactics. The second step is to
use these possibilities to winnow those in other cells.

Figure 4 illustrates two advanced tactics, which we investigated
empirically. They are probably among the earliest advanced tactics that
individuals are likely to discover. Their first steps do indeed depend on the
extensions to exclusion tactics, which we mentioned earlier, or on the prior
use of advanced tactics themselves (in a recursive way). Advanced tactic I in
Figure 4 has a first step yielding the same n digits as the only possibilities for
n cells in a set, where n=2 in this case, and its second step is to eliminate
these same possibilities from any other cells in the set. For instance, as the
figure shows, if two cells in the same row of a box can contain only 5 or 6,
then these two digits can be eliminated from any other cell in the box.
Advanced tactic 2 in Figure 4 consists of a first step yielding a particular
digit that is possible in only two cells in a row or column within a box, and
nowhere else in the box, and its second step is to eliminate this digit from
any cell in the same row or column outside the box. For instance, as
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Advanced Tactic 1 Step 1 Step 2
123789 = > 405656 —> 4 5,6/5,6

b 5.6,
123 8™ 9]

@~

Step 1:  Use exclusion tactic to eliminate all but n possibilities in a set by considering the
occurrence of digits in other sets.

Step 2:  Exclude these n values from any cell in the same set (where minimum value of n = 2).

Advanced Tactic 2 Step 1 Step 2
6
7
9 1 1
258 1,3 1,3 |
t e 4 _— 4| |
235 1.8 1.8

238 —EH— 1,5 (5]

Step 1:  Use exclusion tactics to yield two cells in the same set that are the only
possibilities for a particular digit. This step, as shown, may also eliminate possibilities in a
cell outside the box in the same set as the two cells.

Step 2:  Exclude this digit from any other cell in the same sets.

Figure 4. An illustration of two advanced tactics. As in Figure 2, a line rules out the occurrence
of the numbers at its end in the empty cells through which it strikes, because the numbers have
occurred in the set already.

the figure shows, the digit 1 can occur only in the top or bottom cell in the
left-hand column of the box, and so it can be eliminated from the cell in the
same column below the box. It can also be eliminated from any other cells in
this column outside the box that contain it as a possibility.

These advanced tactics yield valid conclusions about possibilities, and so
their logical analysis calls for a modal predicate logic, which has a greater
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expressive power than standard predicate logic (see, e.g., Hughes &
Cresswell, 1996). Psychological theories based on formal rules of inference
do not as yet contain accounts of modal predicate logic, but the general
principles of these theories stipulate that inferences depend on the translation
of all premises into a formal language (see, e.g., Braine & O’Brien, 1998;
Rips, 1994). However, the translation of the current state of the array into a
single one-dimensional linguistic expression is likely to render proofs
corresponding to advanced tactics rather cumbersome. It is an interesting
intellectual challenge to formulate the appropriate rules of inference or
axioms needed for such proofs. An array of digits appears to be a much more
efficient representation—it acts as an external model, because it makes the
constraints of row, column, and digit, easy to perceive (see Bauer & Johnson-
Laird, 1993, on what makes a diagram helpful in reasoning).

Two factors should affect the difficulty of advanced tactics. The first
factor is relational complexity, because it affects the ease of deducing the
possible digits in the first step of advanced tactics. The second factor is
more subtle. In an advanced tactic, individuals deduce that certain digits,
which are possible for some cells only, cannot occur in any other cells in
a set. A tactic should be easier to use when the number of possible digits
is the same as the number of cells for which they are possible. For example,
it is easier to detect that a pair of digits are the only possibilities for a pair
of cells (as in the first advanced tactic in Figure 4), than to detect that one
digit is among the varied possibilities in a pair of cells (as in the second
advanced tactic). The aim of our final experiment was to test both this
prediction and the prediction about the relational complexity of advanced
tactics.

EXPERIMENT 3

In order to test the theory’s predictions about advanced tactics, Experiment 3
presented problems in two ways. One group of participants tackled problems
in which the cells contained lists of their possible digits (the “possibilities™
group), and one group tackled the problems without such information (the
“blank” group). The experiment examined two different instances of the first
advanced tactic that differed in their relational complexity, and one instance
of the second advanced tactic. In the blank group there should be a direct
trend in difficulty over the three sorts of problems, whereas in the possibilities
group the effect of relational complexity in the first step cannot occur because
the results of the first step are already displayed by the possibilities in the
array, and so the two instances of the first tactic should not differ reliably but
be easier than the second tactic. In general, the problems in the possibilities
group should be easier than in the blank group, because its participants first
have to infer the possibilities.
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Method and participants

The participants were 20 Chinese University of Hong Kong students (mean
age =21.5 years); none of the participants reported any prior experience
with Sudoku puzzles. They were assigned at random to either the
possibilities group or the blank group. The procedure was the same as in
Experiment 2. The participants tackled a total of eight problems, two
different instances of each of the three advanced tactics, and two filler
problems calling for the use of an inclusion tactic with a relational
complexity of four. Figure 5 presents three examples of the problems used in
the experiment.

Results and discussion

Table 2 presents the percentages of correct responses and the mean latencies
for all responses, correct and incorrect. The possibilities group solved more
problems than the blank group (Mann-Whitney U=25.0, z=1.93, p < .05),
and they responded faster (U=11.0, z=2.95, p < .005). As the theory
predicts, the first advanced tactic was easier the second advanced tactic, as
shown in both accuracy (Wilcoxon’s test, z=1.96, p < .05) and latency
(Wilcoxon, z=2.32, p < .02). Likewise, as predicted, this difference held
for the possibilities group, both for accuracy (Wilcoxon test, z=2.3, p < .02)
and latency (Wilcoxon test, z=2.26, p < .01). In the blank group the
data showed a trend in the predicted direction, but it was not reliable for
accuracy (Page’s L=123.0, z=0.67, p=.25, ns) or for latency (Page’s
L=124.5, z=1.01, ns). The effect of relational complexity within the first
advanced tactic was reliable for the blank group, as predicted, for both
accuracy (Wilcoxon test, z=1.82, p < .05) and for latency (Wilcoxon test,
z=2.19, p < .02).

An unintended consequence of the problems demonstrated the greater
difficulty of the second advanced tactic over the first. It was possible for
the participants to solve all the problems (apart from one investigating
the first tactic with the higher relational complexity) by instead carrying
out a sequence of three or more simple tactics. However, the partici-
pants’ protocols showed that they had a preference to rely on the first
advanced tactic rather than the sequence of simple tactics (16 partici-
pants did so, 1 relied on simple tactics, and 3 were ties, binomial test,
p < .0001), whereas the participants’ preferences split more evenly for
the second advanced tactic (6 were biased in favour of the advanced
tactic, 5 used simple tactics, and there were 9 ties, binomial test, p =.5, ns).
In other words, this tactic was sufficiently difficult that the participants
spontaneously discovered a different sequential strategy for solving the
problems.
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Figure 5. Three examples of problems in Experiment 3 shown for the “possibilities” condition,
where the task is to infer the digit for the cell marked “N”. (a) N =4. The first step of the first
advanced tactic in Figure 4 yields the result shown, which is that 6 and 9 must occur in the two
hitherto empty cells of the seventh row; the second step eliminates them as possibilities for N,
and so it must be 4. (b) N=3. The first step of the first advanced tactic in Figure 4 yields the
result shown, which is that 1 and 2 must occur in the two cells in the top left box; the second step
eliminates them as possibilities for N, and so it must be 3. (¢) N =3. The first step of the second
advanced tactic in Figure 4 yields the results shown for the top left box, which are that 1 and 4
must occur in its top left cell, and 1 and 8 must occur in its top right cell. The second step
eliminates 1 from any cell in the same row as those two cells, including N, and so it must be 3.
Other inferences can also be made from these arrays, although they are irrelevant to
determining the value of N, e.g., in 3b the fifth cell on the third row can be inferred to contain 8
alone.

GENERAL DISCUSSION

Sudoku puzzles, as we have argued, have the striking property that their
solution depends solely on deduction. In terms of dual-process theories,
which we described in the Introduction, the intuitions of System 1 may affect
performance, but what are decisive are the deliberations of System 2. At each
point in an error-free solution of a puzzle, an individual makes a valid
deduction from the current state of the puzzle and the general rule that each
digit from 1 through 9 must occur once in each row, column, and 3-by-3 box
in the array. That is all it takes—pure deductive reasoning from premises: no
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TABLE 2
Percentages of correct responses and mean latencies of all responses, correct and
incorrect, for the two groups in Experiment 3

First advanced First advanced

tactic of lower tactic of higher Second
relational relational advanced
complexity complexity tactic
Possibilities group Percentages correct 85 75 50
Overall latencies (s) 91.7 111.3 184.8
Blank group Percentages correct 70 30 25
Overall latencies (s) 174.3 258.9 227.2

arithmetic (the puzzles could just as well be framed in terms of alpha-
betical letters or any nine distinctive tokens), no inductive or probabilistic
inferences (pace Oaksford & Chater, 2002), no fast and frugal heuristics
(pace Hertwig et al., 1997), no pragmatic schemas (pace Cheng & Holyoak,
1985), no content-specific modules of evolutionary psychology (pace
Cosmides et al., 2005), and no use of the atmosphere effect (pace Wetherick
& Gilhooly, 1995). The puzzles are remote from the ecological and
social structure of environments (pace Hertwig et al., 1997). Yet individuals
all over the world, both Westerners and East Asians, are able to make the
deductions necessary to solve Sudoku puzzles, even though they have had
no training in logic. In sum, the puzzles establish that logically naive
individuals have the competence to make deductions about abstract
matters, and that they enjoy exercising this ability, contrary to all the
theories above that impugn it. Recent evidence also implies that the teaching
of mathematics can be more effective when it too focuses on abstract
matters rather than on concrete everyday examples (Kaminski, Sloutsky, &
Heckler, 2008).

The difference in difficulty over the four grades of Sudoku—easy, mild,
difficult, and fiendish—was elucidated by our computer program for solving
the puzzles. The program measured difficulty in the number of definite digits
deducible at each stage in a puzzle (see the Introduction). The use of the
array as an external model allows individuals to develop various tactics, and
it corroborates the theory that naive reasoners rely on the meaning of the
general rule, just as they appear to rely on the meaning of premises in
straightforward deductions.

The difference in difficulty also depends on the strategy and tactics that
are needed to solve a puzzle. Simple tactics take as their starting point
definite digits in cells and they deliver as a result a new digit as the value of a
cell. Most people who tackle a puzzle receive some instruction about simple
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tactics, which is often stated along with an introductory puzzle (see, e.g.,
Gould, 2005). However, with no instruction whatsoever the participants in
Experiment 1 discovered most of the simple tactics for themselves. These
tactics differ in difficulty. They exploit a certain number of distinct
constraints, i.e., digits in rows, columns, or the same box as a target cell
(see Figure 2). As Experiment 2 showed, the greater the number of these
constraints in terms of sets rather than digits, i.e., the greater the relational
complexity (Birney et al., 2006), then in general the harder the tactic is to
use—it takes longer, and individuals are more likely to make a mistake.
Only when an inclusion tactic depends on four occurrences of the same digit
in an array, aligned in rows and columns that intersect a given box, does the
trend in difficulty appear to reverse.

Relational complexity, as Experiment 3 showed, also affected the
difficulty of using advanced tactics. The first step is a deduction about sets
of possibilities in cells, and the second step is a deduction that eliminates the
possibilities from other cells. What matters is the match between the number
of possible digits and the number of cells available to put them in. Hence, it
is easier to see that the same two digits are the only possibilities for two cells
than to see that a single digit occurs in various lists of possibilities. Another
advanced tactic that individuals may use in solving fiendish puzzles depends
on postulating that one possible digit is the solution to a cell, and then
following up this assumption until it either yields the solution or reaches an
inconsistency calling for an alternative assumption to be made about the
digit in the starting cell.

Two phenomena from Sudoku puzzles are most revealing about human
reasoning, and call for a revision to standard theories of deduction. First,
naive individuals are able to acquire simple deductive tactics in order to
solve easy and mild Sudoku puzzles. Experiment 1 showed that naive
participants acquired explicit knowledge of such tactics in a quarter of an
hour’s experience in tackling a puzzle. Few empirical studies of deduction
have reported the acquisition of explicit deductive tactics—explicit in the
sense that participants can describe them to someone else. An analogy
would be Aristotle enunciating rules for syllogisms (see Kneale & Kneale,
1962, p. 75). But Aristotle is not a typical participant in a psychological
experiment, although one study of syllogisms has reported that individuals
do discover some incomplete rules for them during the course of an
experiment (Galotti, Baron, & Sabini, 1986).

Second, as individuals move on from easier puzzles to more difficult ones
(see, e.g., Gould, 2005), they are bound to discover that their current
strategy of stringing together simple exclusion and inclusion tactics fails.
Some of them may give up the puzzles at this point, but others persevere and
make a strategic shift: they begin to use a strategy that depends on a whole
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new set of tactics. They no longer aim to make inferences yielding only
definite digits, but instead their strategy now depends on keeping a record of
the possible digits in a cell. This shift in strategy is analogous to shifting
from proofs in the first-order predicate calculus to proofs in the first-order
modal predicate calculus.

Neither of these phenomena can be explained by any current theory of
deductive reasoning. We can discount probabilistic theories and content-
specific theories for the reasons that we have described earlier. Theories
based on formal rules have no machinery for acquiring inferential tactics,
1.e., new rules of inference, or for shifting from one inferential strategy to
another, and tend to postulate a single fixed and deterministic strategy
(Braine & O’Brien, 1998; Rips, 1994). The original model theory fares little
better (e.g., Johnson-Laird, 1983). However, the model theory has recently
been expanded in order to account for individuals’ ability to learn how to
solve problems that come in series, such as so-called “‘matchstick problems™
(Lee & Johnson-Laird, 2004). These problems call for a certain number of
pieces—the matchsticks—to be removed from an initial array in order to
eliminate a certain number of squares. A typical problem, for instance, is to
remove three pieces from a 2-by-3 array of squares in order to eliminate
three squares from the array. To master these problems, individuals have to
acquire a set of seven distinct tactics, and they do so by deducing the
consequences of various moves, which depend on the number and location
of the pieces that they remove. After they have deduced these consequences
they can then deliberately apply a tactic whenever it is appropriate.
Individuals tackle their first problem using a strategy of trial and error
constrained by the initial array and the statement of the given problem.
They soon learn that a better strategy is based on the ratio of the current
number of pieces to be removed to the current number of squares to be
eliminated. They then use this ratio to constrain their choice of tactics. In
principle, the same acquisition mechanism applies to tactics in Sudoku. A
proper account of human deductive reasoning should accordingly allow for
the acquisition of inferential tactics, and for shifts from one sort of
deductive strategy to another. Such shifts have also been observed in a study
in which individuals reasoned from sets of three or four verbal premises
(Van der Henst et al., 2002).

In conclusion, the solution to the puzzle of Sudoku yields an insight into
human competence that is in stark contrast to many psychological theories:
reasoners readily acquire the ability to make deductions about abstract
contents, which are far removed from the exigencies of daily life and from
the environment of our evolutionary ancestors. If they could reason only
about this environment, then it is hard to see how they would ever have
developed mathematics and logic, or science and technology. As Piaget
recognised, our ability to make deductions about abstract matters remote
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from our mundane life is a fundamental human characteristic, and one that
is essential to intellectual progress. Sudoku puzzles tap into the fun that we
have in exercising this ability.
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