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The complexity of categorical syllogisms was assessed using the relational
complexity metric, which is based on the number of entities that are related in a
single cognitive representation. This was compared with number of mental models
in an experiment in which adult participants solved all 64 syllogisms. Both metrics
accounted for similarly large proportions of the variance, showing that complexity
depends on the number of categories that are related in a representation of the
combined premises, whether represented in multiple mental models, or by a single
model. This obviates the difficulty with mental models theory due to equivocal
evidence for construction of more than one mental model. The “no valid
conclusion™ response was used for complex syllogisms that had valid conclusions.
The results are interpreted as showing that the relational complexity metric can be
applied to syllogistic reasoning, and can be integrated with mental models theory,
which together account for a wide range of cognitive performances.
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The purpose of this research was to assess how the relational complexity
(RC) metric accounts for performance in syllogistic inference, and to attempt
to integrate it with mental models theory (Johnson-Laird & Byrne, 1991).
Relational complexity (RC; Andrews & Halford, 2002; Halford, Cowan, &
Andrews, 2007; Halford, Wilson, & Phillips, 1998) is defined by the number
of related variables in a cognitive representation. Higher RC values are
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associated with increased processing loads, and adults are limited to four
variables (Halford, Baker, McCredden, & Bain, 2005). Concepts too
complex to be processed in parallel are handled by segmentation (decom-
position into smaller segments that are processed serially) and conceptual
chunking (recoding representations into fewer variables).

RC has accounted for complexity effects in children’s reasoning (Andrews
& Halford, 2002; Andrews, Halford, Bunch, Bowden, & Jones, 2003;
Halford & Andrews, 2004, 2006; Halford, Andrews, Dalton, Boag, &
Zielinski, 2002) including the foundational principle of transitivity, and the
longstanding enigma of children’s difficulty with class inclusion (Halford,
Andrews, & Jensen, 2002; Inhelder & Piaget, 1964). It has also been applied
to sentence comprehension (Andrews, Birney, & Halford, 2006), the Tower
of Hanoi (Halford et al., 1998), and knights and knaves problems (Birney &
Halford, 2002). It has been linked to working memory (Halford et al., 2007;
Oberauer, Sub, Wilhelm, & Wittmann, 2008) and it has been applied to
mathematics education (English & Halford, 1995) and to air traffic control
(Boag, Neal, Loft, & Halford, 2006).

We will focus specifically on categorical syllogisms, which are deductive
arguments containing two premises and a conclusion, for example:

Some teams in the World Cup are African.
No African teams have ever won the World Cup.
.. Some teams in the World Cup have never won it.

Mental models (MM) theory is the metric that accounts for the most
variance in syllogistic reasoning (Espino, Santamaria, & Garcia-Madruga,
2000; Evans, Newstead, & Byrne, 1993; Johnson-Laird & Byrne, 1991).
Problems that require only one mental model are reliably easier than those
that require two or three models (Bucciareli & Johnson-Laird, 1999;
Johnson-Laird & Bara, 1984; Johnson-Laird & Byrne, 1991). However it
is unclear whether people actually construct more than one model. Whereas
Bucciarelli and Johnson-Laird (1999) found multiple models were con-
structed under certain facilitative conditions, Newstead, Handley, and Buck
(1999) found that individuals constructed no more models for syllogisms
that theoretically require multiple models than they do for single model
syllogisms, nor was there any correlation between number of models
constructed and overall accuracy. Polk and Newell (1995) and Markovits
and Barrouillet (2002) proposed a theory based on progressive elaboration
of a single representation. Although propensity to construct alternative
models may be related to individual differences, and to various task variables
(Bucciarelli & Johnson-Laird, 1999; Newstead, Thompson, & Handley,
2002), some uncertainty remains about number of mental models as a
complexity metric.
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RC theory is essentially an MM theory and it has the essential properties of
mental models. The most important assumptions in this context are that a
mental model is an analogue of the structure implied by the premises (it
consists of an array of entities rather than an abstract rule), that it is
constructed by the reasoner, and can be used to generate an inference
(Goodwin & Johnson-Laird, 2005; Halford, 1993). We also assume, consistent
with MM theory, that the premises will be encoded first, then an integrated
representation of the premises will be formed. This “forward processing”
hypothesis appears reasonably robust (Stupple & Ball, 2007). RC reflects the
load entailed in processing the relations implied by the premises, and RC
theory would not be applicable to reasoning based on soundness (logical
validity and truth of premises), where conclusions are retrieved from semantic
memory. RC theory assesses complexity by the number of distinct categories
that are implied by the premises of a syllogism, and differs from the MM
theory of Johnson-Laird and Byrne (1991) in that it does not assume
construction of more than one mental model. If successful, this approach
would obviate the uncertainty of the MM metric and the resulting integration
of MM and RC theory would increase parsimony in the field. In assuming that
participants attempt to construct a model that represents relations implied by
the premises, and integrate the representations to determine the logically
correct conclusion, mental models theory is quite distinct from the probability
heuristic model (PHM; Oaksford & Chater, 2007). RC theory also differs from
PHM in that the latter does not incorporate a complexity metric per se, and it
needs to be supplemented by relational complexity, or a similar metric, in
order to account for confidence in conclusions (Halford, 2009). Ultimately
there may be scope for further integration there.

In categorical syllogisms both premises and conclusion are in one of four
“moods’’:

All X are Y (A: universal affirmative premise)
Some X are Y (I: particular affirmative premise)
No X are Y (E: universal negative premise)

Some X are not Y (O: particular negative premise)

The premises follow one of the four figural arrangements noted in Table 1.
Hence, there are 16 different versions for each figure (four moods for each
premise), which leads to 64 syllogisms. Of these, 27 have valid conclusions.
Whether individuals generate their own conclusions or evaluate given
conclusions, performance is generally above chance, but it is far from perfect
and there is large variance between syllogisms and between individuals (for a
review, see Polk & Newell, 1995). We will assess the ability of the RC metric to
account for between-syllogisms variance.
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TABLE 1
Conclusions according to the figural heuristic
Figure Premise arrangement Conclusion form suggested by heuristic
1 XY~-YZ X-Z
2 YX-ZY Z-X
3 XY-ZY n/a
4 YX-YZ n/a

RELATIONAL COMPLEXITY OF CATEGORICAL
SYLLOGISMS

The essence of RC as applied to categorical syllogisms is illustrated in
Figure 1. Figure 1A displays the eight distinct classes of entity that arise
given the interrelation of three separate properties. Relational complexity is
defined by the number of these classes that are required to represent the
combined premises, taking account of strategies that participants use.
Figure 1B illustrates how a subset of these classes 1s explicitly related for the
syllogism:

Premises: All X are Y
All Y are Z
Conclusions: A/l X are Z, and Some Z are X.

Representations of the separate premises are shown in hines 1 and 2 of Figure
1B, and of the combined premises in line 3. The full representation of the
combined premises entails three classes of entities: XYZ, 7 XYZ, 7 X YZ
(where —1 means negation). The full representation of the combined
premises is ternary relational. However, chunking can be applied because
the relation between 1 XYZ and 1 X1 YZ does not need to be processed,
and so these two categories can be chunked (fused) into one category, by
Principle 1, defined later. This is shown in line 4 of Figure 1B, which
represents a relation between XYZ and —1X(Y, 71Y)Z. Therefore effective
RC 1s 2. This application of conceptual chunking 1s known as the principle of
neglect (in this case the status of Y can be neglected). A more general
account of the principles of RC analyses is given below. Chunking is part of
the encoding process, and in our complexity assessments we have not found
it necessary to assume that chunking imposes a processing load.

Effective RC estimates are based on the strategies used, including
heuristics, which are determined by rational analysis, supported by empirical
evidence (Halford et al., 2007). Previous applications have been predomi-
nantly to domains such as transitive inference, sentence comprehension, and
knights and knaves puzzles, in which there is extensive empirical evidence of
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(A)
Area Entity Class
1. XYZ
2. X-YZ / :
3. XY~Z I
4. XY 7, \\
5. ~XYZ
6. XY Z
7. =X -YZ
8. XY 7
®B)
All X are Y
ANlY are Z

Combined Premises
{full representation)

Combined Premises
{simplified representation)

Figure 1. (A) The eight distinct classes of entities formed by combining three binary categories.
(B) Interrelation for a subset of categories corresponding to full and simplified representations of
the syllogism: AN X are Yand Al ¥ are Z.

cognitive processes used. Analyses are guided by domain-general principles
(Andrews et al., 2006; Andrews & Halford, 2002; Birney, Halford, &
Andrews 2006; Halford et al., 1998, 2007), the most important of which for
our purposes are:

1. Variables can be chunked or segmented only if relations between them
do not need to be processed.

2. Eftective RC for a cognitive process is the least complex relation
required to represent the process, using the least demanding strategy
available to humans for that task.

3. RC of a task is based on the most complex step.
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When applied to syllogistic reasoning, the guiding principle is that RC of
a syllogism is the lowest complexity value that yields a correct solution. The
RC principles are consistent with the singularity, relevance, and satisficing
assumptions proposed by Evans (2006; see Table 1). We assume one mental
model (singularity), that mental models are selected on the basis of
plausibility (relevance) and models are accepted if they are consistent with
current goals (satisficing). The satisficing assumption is particularly
important, because it means that participants do not need to know the
rationale for their strategies, but only need to be satisfied that the strategy is
consistent with their goals. Simplifying heuristics that produce correct
answers make some problem forms easier by increasing the range of
strategies available, and they influence the number of correct responses.
We assume that participants have a tendency to use simplifying strategics
and heuristics when they are available, but we do not assume that
participants know that the strategies are valid. There is very little evidence
that participants know why (or even that) their mental models and heuristics
work. We test the proposition that participants use heuristics even when they
do not yield a correct answer.

However, individuals will sometimes construct a model that i1s less
complex than needed to yield a valid conclusion. We assume a general
tendency to rely on a range of simplifying strategies (which we outline
shortly). On higher RC syllogisms, simpler strategies will often not fully
represent the structure of the task, leading to error (Halford et al., 1998,
Section 3.5), so higher error rates are predicted on higher RC problems.

The principle that RC of a syllogism is the lowest complexity value that
yvields a correct solution implies that RC analyses are based on computa-
tional level theory of cognitive processes, rather than the algorithmic level.
Therefore we envisage that there might be more than one algorithm
corresponding to a particular RC computational process. This “indetermin-
ism’ at the process level accords with recent work which has shown the high
degree of wvariance in participants’ syllogistic reasoning strategies (see
Bucciarelli & Johnson-Laird, 1999). We are also agnostic about the specific
content of a mental model, such as whether it consists of tokens (as in
Johnson-Laird’s mental model theory), images, or other entities, because
they are intertranslatable without affecting RC. RC is determined by the
number of distinct classes of entities that have to be related, rather than the
content of the entities.

Because our analysis 1s framed at the computational level, it does not
require that participants have any metacognitive knowledge of when various
simplification strategies will lead to valid conclusions. In fact, the predictions
of the model depend on a lack of such knowledge: Simplifying strategies are
not always valid, especially for higher RC problems, and therefore lead to
error. If participants had explicit knowledge of this, they could adjust their
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strategies, and the model would no longer predict more errors on the higher
RC problems. As we will see, the RC account yields empirical predictions
about performance across the full set of 64 syllogisms, including novel
predictions that are not made by any rival theory.

RELATIONAL COMPLEXITY ANALYSIS OF SYLLOGISMS

The most complex step is premise combination, because this is where the
most complex relations are represented. As illustrated in Figure 1B, 2, 3, and
4, combined premises represent relations between X, Y, Z, whereas
representations of individual premises represent only relations between
two variables (XY or YZ). There is also empirical evidence in transitive
inference that premise integration imposes the highest processing load
(Maybery, Bain, & Halford, 1986). The complexity of premise integration
holds unless it is circumvented by atmosphere or figural heuristics, in which
case complexity is based on the heuristics. The minimal effective RC for each
syllogism, based on the RC of the most complex step in the task, is specified
in Table 2.

Our analysis can be broken into the following steps: premise representa-
tion, premise combination, conceptual chunking and heuristics that reduce
effective RC, and complexity assessment.

Premise representation

Representations required for categorical syllogisms can be defined initially
by normative graphical models of the information contained in the premises
(Stenning & Oberlander, 1995; Stenning & Yule, 1997). Effective RC is then
determined by taking account of strategies and heuristics.

The fully represented and simplified models for the four premise moods
are shown in Figure 2. Areas that are necessary (i.e., define cases that must
exist) according to the premises are shaded. Areas that are not shaded are
considered possible (i.e., define cases that may, but do not definitely, exist).
Models are simplified primarily by representing the end term (X or Z) in a
premise in full, while neglecting areas that are concerned solely with the
middle term (Y) of a premise.

The positive universal premise (4/ X are Y) can be simplified by
neglecting the possible area representing —1 XY, where —1 X means “not
X, so that XY is considered only as a single necessary entity. According to
the principle of neglect, 1 XY is neglected because it does not represent any
relation involving X.

The positive particular premise (Some X are Y) can be simplified by
neglecting the possible predicate area (1 XY). In this case XY is the



TABLE 2

Conclusions, percentage correct, relational complexity (RC), and number of mental models (MM) by figure

Al X are ¥ Some X are ¥ NoXae¥ Some X are not ¥

(A) Figure | syllogisms; XY-YZ

Al Yare Z Al X are Z 100% Some X are Z 89.5% Some Z are not X 5.3% NVC 49%
Some Z are X Some Z are X
RC=2MM =1 RC=2MM=! RC=4 MM =3 RC=§ MM =2

SomeYareZ — NVCIS8% NVC 17.8% Some Zare not X 31.6%  NVC17.8%
RC=4 MM =2 RC=4 MM =2 RC=4 MM =3 RC=5MM =2

NoYare Z No X are Z%.7% Some X are not Z 52.6% NVC 25.1% NVC 20.2%
NoZare X RC=3* MM =3 RC=4 MM =2 RC=4 MM =2
RC=2 MM =1

Some Yarenot Z  NVC8.3% NVC 13.8% NVC 26.3% NVC 34.8%
RC=4 MM =2 RC=4 MM =2 RC=4 MM =2 RC=4 MM =2

(B) Figure 2 syllogisms. YX-ZY

Al Zare Y Al Z are X T3.7% NVC 6.9% No X are Z94.7% NVC 12.1%
Some X are Z RC=4MM =] NoZare X RC=4 MM =2
RC=2MM =1 RC=2MM =1

SomeZareY  Some Xare Z89.5% NVC 16.4% Some Zarenot X 31.6%  NVC 19.0%
Some Z are X RC=4 MM =] RC=3% MM =3 RC=4 MM =2
RC=2 MM =1

NoZare Y Some X are not Z 10.5% Some X are not 7 5.3% NVC 24.3% NVC 29.6%
RC=4 MM =3 RC=4 MM =3 RC=4 MM =2 RC=4 MM =2

Some Zarenot Y NVC 9.7% NVC 26.3% NVC 19.0% NVC 30.0%
RC=5MM =2 RC=5MM=2 RC=4 MM =2 RC=4 MM =2
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Table 2 { Continued)

Al Xare Y Some X are Y NoXare ¥ Some X are not ¥

(C) Figure 3 syllogisms; XY-ZY

Al Zare Y NVC 26.3% NVC 19.0% No X are Z 84.2% Some X are not Z 15.8%
RC=4MM=2 RC=4MM=2 NoZare X RC=I MM =2

RC=2MM =1

Some ZareY — NVC [5.4% NVC 27.1% Some Zarenot X21.1%  NVC26.3%
RC=4MM =2 RC=4MM=2 RC=4 MM =3 RC=5 MM =2

NoZare Y NoXare Z73.7% Some X are not Z 21.1% NVC 41.3% NVC 24.3%
NoZare X RC=4 MM =3 RC=4 MM =2 RC=4 MM =2
RC=2MM =1

Some Z are not Y Some Z are not X 26.3% NVC 25.1% NVC 23.9% NVC 340%
RC=IMM=2 RC=5MM=2 RC=4 MM =2 RC=4 MM =2

(D) Figure 4 syllogisms. YX-YZ

Al Yare Z Some X are Z 31.6% Some X are Z 78.9% Some Zarenot X 21.1%  Some Z are not X 52.6%
Some Z are X Some 7 are X RC=4 MM =3 RC=3 MM =2
RC=4 MM =3 RC=2MM=!

Some YareZ  Some Xare Z 68.4% NVC39.7% Some Zarenot X 158%  NVC 34.8%
Some Z are X RC=4MM =2 RC=4 MM =3 RC=4 MM =2
RC=2MM =1

NoYare Z Some X are not Z 15.8% Some X are not Z 31.6% NYC 49.4% NVC B3.1%
RC=4 MM =3 RC=4 MM =3 RC=4 MM =2 RC=4 MM =2

Some Yarenot Z  Some X are not Z 474% NVC 30.8% NVC 20.6% NVC #4.1%
RC=3MM =] RC=4 MM =2 RC=5 MM =2 RC=4 MM =2

“RC based on atmosphere and figaral heuristics
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Premises Full Simplified
Representation Representation

All X are ¥ ﬁx

Neglect of ~XY area
(unshared predicate area)

Neglect of XY area

(unshared predicate area)
Some X are ¥ .
NoXare¥ .

Some X arve not ¥ @

&

No simplified model

Neglect of XY area
(anshared predicate area)

or Neglect of XY area
(shared predicate area)

Figure 2. Full and simplified representations of the four premise moods.

necessary area, whereas X 1Y is retained as a possible area. Again, 1 XY is
neglected because it does not represent any relation to X.

The negative universal premise (No X are Y) cannot be simplified as both
mutually exclusive areas must be portrayed. This reflects the standard
interpretation of syllogisms in which no variable represents an empty set.

The negative particular premise (Some X are not Y) can be simplified so
that again only the subject of the premise is represented in full, the remaining
predicate area being neglected. For this premise, X 1Y is the necessary area,
whereas XY is the remaining possible area.

We also suggest a second method of simplifying the negative particular
premise (Some X are not Y) again reducing the model from three to two
areas to be considered. In this case the shared region of the full premise
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model is neglected, and the resultant simplified model equates to the
negative universal premise (No X are Y). Again, in this model, X 7Y is the
necessary area, whereas 1 X Y 1s the remaining possible area. Thus, both
suggested simplifications of the negative particular premise (Some X are not
Y) preserve the one necessary area, X 1Y, but lend different priority to the
two remaining possible areas.

Although RC analyses do not depend on participants knowing the
rationale for their strategies (use of strategies without full understanding is
common, and arguably typical) we expect participants would recognise that
full representation of end terms of the premises has priority. A similar
principle is incorporated in the Verbal Reasoning model (Polk & Newell,
1995). However, we assume that the high processing demands of premise
integration will often lead participants to default to more simplified premise
representations, which can sometimes lead to error. This is a form of
conceptual chunking, because it reduces the dimensionality of the repre-
sentation. For some problems, this process is efficient, and preserves logical
validity, but for other problems—most notably the higher RC problems—it
leads to error.

Premise combination

The premise combination principles we use can be applied to both simplified
and full models. First, middle term (Y) areas are made to correspond
(overlap completely), and then the end term (X, Z) areas are combined in a
maximal way (representing all possible areas).

There is a valid conclusion if, and only if, there is a necessary area
(Stenning & Oberlander, 1995). A necessary area in the premises is preserved
as necessary in the integrated representation, if and only if it is not
subdivided in the process of integration—it must remain intact (see Stenning
& Oberlander, 1995). Only then can a valid conclusion can be drawn, and the
nature of such a conclusion can be i1dentified by exploring the relationship
between the necessary area(s), and the other end term areas in the model. If
there is no necessary area preserved in the integrated representation, then no
valid conclusion can be drawn.

Complexity assessment

Once a graphical model of effective RC has been established, RC for
solutions based on MM of the premises is calculated by simply counting the
number of distinct spatial areas that are represented, which corresponds to
the number of distinct classes of entities that are related in the representa-
tion. The results of this analysis across the 64 problems, and the comparison



402 ZIELINSKI, GOODWIN, HALFORD

with MM theory is shown in Table 2. Complexity varies from two spatial
areas (binary relation) to five spatial areas (quinary relation).

EXAMPLE PROBLEMS

The following problems illustrate some of the principles underlying our
complexity analysis. Consider the following problem:

All X are Y
Some £ are not Y = Some Z are not X.

Full and simplified representations are shown in Figure 3. The first two rows
show both full and simplified representations of the premises. For the
purpose of this example we will only consider one of the possible simplified
representations of the second premise. The third row shows full and
simplified valid representations of combined premises (valid representations
are those from which only the correct conclusion can be drawn). As before,

Premises Full Simplified
Representation Representation

Al X are ¥

Some £ are not Y

Combined
Premises
Valid}

Combined
Premises
Iavalid}

Combined
Premises
(Iavalid}

Figure 3. Full and simplified representations of the syllogism: A/l X are ¥ and Some Z are not Y.
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areas that necessarily exist according to the premises are shaded. In this case
we have three areas to consider. There 1s one necessary area:

1. X Y Z: there must be Zs that are not Ys and thus not Xs.
It 1s also possible that there may exist:

2. XY Z: Zs that are Ys and also Xs; and
3. XY 1 Z: Xs that are Ys but not Zs.

These three pieces of information together lead to the valid conclusion:
Some Z are not X, and the RC of this syllogism is ternary. This conclusion is
consistent with the one which would be yielded from the full representation
of the combined premises shown on the left, where again the only conclusion
is Some Z are not X.

Now let us consider the problem:

No Xare Y
Al Y are Z = Some Z are not X.

This problem does not lend itself to simplification. The representations are
shown in Figure 4. Premise 1 cannot be simplified any further. Using the
reduced representation of Premise 2 and combining it with the model of
Premise 1, we would end up with a model of the combined premises as
shown in Figure 4. This simplified representation of combined premises is
invalid as it would lead to two erroneous conclusions: No X are Z and No Z
are X. Therefore, the simplification heuristic would not yield correct answers

Premises Full Simplified
Representation Representation

No X are ¥
No simplified model

ANl Y are Z

Combined
Premises

Figure 4. Full and simplified representations of the syllogism: No X are Yand Al Y are Z.
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in this case, in violation of Principle 2. In contrast, the full representation of
combined premises generates only the valid conclusion: Some Z are not X.

Thus, the only valid model here combines full representations of both
premises. There are four areas in this model, so the RC of this syllogism 1s
quaternary.

REVERSIBILITY PRINCIPLE

For premises with moods, Some and No, subject and object roles can be
switched without affecting the meaning of the premise. However, reversing
the premises changes the simplified representation of the premise, and can
reduce complexity.

For example, consider the syllogism:

Some Y are X
No Z are ¥ = Some X are not 2.

Complete representations of the combined premises would contain five
distinct areas, and so the RC of this syllogism would be classed as quinary.
By reversing the first premise and applying the principle of neglect, the
representation is reduced to four areas (see Table 2).

ADJUSTMENT FOR “"HEURISTIC”” SOLUTIONS: FIGURAL
AND ATMOSPHERE EFFECTS

Figural (Johnson-Laird & Byrne, 1991; Johnson-Laird & Steedman, 1978)
and atmosphere (Begg & Denny, 1969; Woodworth & Sells, 1935) heuristics
can reduce the complexity of the representation that is used. The figural
heuristic implies that if the figure is XYY Z, the conclusion should be in the
form X-Z, while if the figure is YX-Z2Y, the conclusion (after swapping the
order of the premises) should be in the form Z-X (see Table 1). The simplest
application of the figural heuristic entails matching the terms of the
conclusion to the end terms in the premises, so is a mapping of a binary
relation. Thus this strategy is binary relational. The heuristic is likely to be
cued by the end terms, so XY-YZ figures cue a conclusion beginning with
X, and so on, as suggested by Evans (2006) for other reasoning tasks.

The atmosphere heuristic incorporates attributes of quality (positive,
negative) and quantity (universal, particular). The principle of quality
asserts that where one or both premises are negative, the conclusion will be
negative, otherwise it will be positive. This corresponds to the rule
premise(negative) which is a unary relation. This is mapped to conclu-
sion(negative) which is also a unary relation. The mapping of one unary
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relation to another is a unary relation (Halford et al., 1998, Section 6.2.2).
The principle of quantity asserts that where one or both premises are
particular, the conclusion will be particular, otherwise it will be universal.
This corresponds to the mapping of premise(particular) to conclusion(par-
ticular) and is a unary relation. The combination of the principle of quality
and the principle of quantity is a mapping of two variables into a new
variable, and is a ternary relation: premise(negative) -+ premise(particular)
= conclusion(negative, particular).

For eight Figure 1 or 2 problems, valid conclusions can be generated by
applying both the figural and atmosphere heuristics. For a further two
Figure 4 problems, the atmosphere heuristic can be used in conjunction with
either order of end terms (X-Z or Z-X) to generate a valid conclusion,

Figural and atmosphere heuristics can be segmented into separate steps,
because they are independent: in principle (the figural heuristic can be
applied without the atmosphere heuristic, and vice versa). However, only the
atmosphere heuristic can yield a valid conclusion by itself (for the two Figure
4 problems, just mentioned, which have symmetrical conclusions). The
figural heuristic can never be employed alone to yield a valid conclusion.
Our complexity analyses accord with this observation: The RC of the
svllogism is equal to the RC of the least complex heuristic, or the least
complex combination of heuristics, that will yield a valid conclusion. When
application of these heuristics offers a less complex means of determining the
correct solution to a problem than can be generated by the construction of a
mental model of the combined premises, the problem is assigned a
complexity appropriate to these heuristics, by Principle 2 (noting that
Principle 2 defines complexity by the least complex relation required to
perform the process). It should be noted that for only two problems is the
application of the figural and atmosphere heuristics used to define the level
of RC (see Table 2). Although the figural and atmosphere heuristics can be
used to generate a correct solution on a number of problems as outlined
previously, construction of a mental model is generally found to be no less
parsimonious than use of these heuristics.

PREDICTIONS AND EXPERIMENT

First, it is predicted that the difficulty of syllogisms should increase with
their relational complexity, and that our metric will capture the variance
between syllogisms as well as MM theory, across the full range of 64
syllogisms. This would demonstrate that the RC metric, which has been
shown to be effective elsewhere, can be validly applied to categorical
syllogisms. Because the field has been heavily worked we doubt it is possible
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to exceed the proportion of variance accounted for by other models, which
might already be at asymptotic level.

Second, we predict that the no valid conclusion (NVC) response will be
used for complex problems which do have valid conclusions. The reason is
that NVC can be a default, or a surrogate “don’t know”, where processing
demands are excessive.

Third, because our analysis categorises the NVC problems as being
among the most complex (Levels 4 and 5), and we predict that the NVC
response will be used for hard problems, correct answers to NVC problems
will be artificially inflated. Neglect of this factor could distort the complex-
ities of categorical syllogisms.

Fourth, the tendency to default to NVC responses on complex VC
problems will be greater when combined figural and atmosphere heuristics
cannot be used (i.e., on Figure 3 and 4 problems).

Fifth, availability of figural and atmosphere heuristics influences
responses even where the heuristics cannot yield the correct answer (as on
NVC problems).

METHOD
Participants

Twenty undergraduate students from the University of Queensland were
recruited by means of advertisement throughout the campus. Twelve male
subjects aged 17-38 years (M =22, §D=06.34) had one to four years of
tertiary study (M =2.5, D =0.90). Eight female subjects aged 18-21 years
(M =19.5, SD=1.07) had one to four years of tertiary study (M =2.63,
SD =0.92). Participants were paid $40.00 for participating and each
syllogism answered correctly earned a bonus of AUS$0.50. No participant
had previously studied categorical syllogisms.

Materials

Tasks were presented on IBM-compatible computers with 15-inch colour
monitors, and subjects were not permitted the use of pencil and paper in this
study. Participants were presented with a set of two premises and asked to
select the most appropriate conclusion for those premises from a set of nine
alternative conclusions, as shown later. Selection was made by clicking the
left button of the mouse. If two answers were deemed equally valid, they
were to select either alternative. This procedure was adopted because it yields
percentages correct that are comparable across the entire set of problem
forms, and it enabled us to determine which set of responses each participant
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makes, both of which are essential to testing our hypotheses. There did not
appear to be any archived data that were suitable for our purposes in these
respects.

Conclusions, presented in random order, comprised the following
alternatives:

All X are Z

All Z are X

Some X are Z

Some Z are X

No X are Z

No Z are X

Some X are not Z
Some Z are not X
No valid conclusion.

Payment and provision of the nine alternatives were both intended to
promote deep processing of the premises. However, forward processing,
from premises to conclusion, was still expected. A backward strategy
would be unlikely here (unlike methodology which requires verification
of a single conclusion) because at least some processing of premises
would be required to choose one of the exhaustive set of conclusions
offered.

Test procedure

Each participant completed two practice items on the computer. Both items
had the relatively simple form:

Al X are Y
All Yare Z = All X are Z.

The initial practice itemn was based on occupation (Doctors, Accountants,
Lawyers); the second introduced the participants to the idea of representing
categories by letters (A, B, C). Feedback was given. If the correct response
was not given for the second practice item, the experimenter reviewed the
practice problems with the participant to ensure understanding.

Test items

Each participant completed 64 categorical syllogisms in random order. All
test problems used abstract contents, the letters X, Y, Z, as the premise
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variables. No feedback was given. Responses and response times were
recorded automatically.

RESULTS

One participant was eliminated due to consistently rapid, poor performance
that was outside the range of the rest of the group.! Table 3 shows the
percentages of correct responses and latencies over each level of complexity.
Only problems ranked as quaternary consist of both valid conclusion (VC)
and (NVC) problems, thus we separate out these two types in Table 3. For all
NVC syllogisms (RC 4 and 5 only), Table 3 also presents accuracy data that
corrects for default NVC responding (see later).

As Table 3 indicates, prediction one was strongly confirmed-—as RC
increased, accuracy decreased monotonically. A one-way ANOVA with four
levels of complexity, counting all problem forms, uncorrected, in each
condition, yielded F(3, 60)=32.75, p < .001.

NVC default responses

Supporting predictions two and three, there is evidence that the NVC
response is given as a default when the complexity of the syllogism is high.
Figure 5 indicates a higher level of accuracy on NVC problems when
response time is limited to 10 s, as in Johnson-Laird and Bara’s (1984)
Experiment 1 (in which participants generated conclusions), than when there
is no time limit, as in their third experiment (again, conclusion generation)
and the current experiment (in which participants chose a conclusion from a
set of options). Moreover, as Figure 5 shows, there was no accuracy
difference between quaternary and quinary problems in Johnson-Laird and
Bara’s time-limited condition, whereas there is some observable decline for
quinary problems in both of the conditions without a time limit. NVC
problems are difficult, and there was no “don’t know’’ option in any of these
experiments, so it appears that when participants are required to respond
quickly on difficult problems, they tend to use NVC as the default response.

This interpretation is further supported by the findings from the current
experiment for VC problems, shown in Figure 6. Increased complexity
produces longer latency for correct responses, and shorter latency for
incorrect responses. Although a univariate ANOVA of latencies showed
no significant main effects of RC, F(2, 507)=0.12, p=.89, or accuracy,

! The participant produced 20% correct responses on the easiest syllogisms compared with the
group mean of 85%, 70% NVC responses compared with 7% for the group, and a response latency
of 8.49 s compared with 23.77 s for the group.
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TABLE 3
Percentages of correct responses and mean latencies (with standard deviations)
over each level of complexity

Mean latency

Relational complexity ( RC) Percentage correct Correct Incorrect
2 (VO) 84.7 (36.1) 31.4 (23.5) 42.1 (43.2)
3(VO) 37.7 (48.7) 42.5 (27.8) 39.7 (29.3)
4 (AlD 333 (47.1) 38.8 (38.3) 33.0 31L.4)
4 (VC) 19.1 (39.4) 48.0 (33.1) 32.6 (27.3)
4 (NVQO) 38.4 (48.7) 37.1 (39.0) 33.2(33.2)
5 (NVO) 30.8 (46.4) 39.0 (35.3) 359 (34.4)
4 (NVC) corrected (*) 25.1 (35.1) — —

5 (NVC) corrected (*) 20,0 (32.7) — —

Corrected (*) =corrected for NVC bias by percentage of NVC responses for quaternary VC
problems.

F(1,507)=0.11, p =.77, there is a significant interaction, F(2, 507) = 6.027,
p =.003. When problems were solved correctly, planned pairwise compar-
isons (Bonferroni-corrected, two comparisons) indicated that it took
significantly less time to solve binary (31.56 s) than ternary problems
(42.54 s, p = .04) and quaternary problems (48.04 s, p = .001). No significant
differences were found between individual levels of complexity when
problems were not solved correctly. However, a separate ANOVA indicated
that incorrect responses on quaternary problems took less time than did
incorrect responses on combined binary/ternary problems, F(1, 268)=4.273,

70

60 +
Johnson-Laird & Bara
504 Exp 1 - timed

40 d=venen TF-C;I;;;s-onwLaird & Bara
Exp 3 ~ untimed

Mean % correct

Current Experiment
uncorrected data

20
4

Relational complexity of NVC items

Figure 5. Mean accuracy for NVC problems over three experiments.
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Figure 6. Estimated means of response time (s) for VC problems.

p=.04. Increasing complexity leads to an increasing likelihood of a rapid,
incorrect response.

The default interpretation of NVC responses is corroborated by two
further findings. The number of NVC responses for VC problems, shown in
Figure 7A, is greater for complex problems (RC3 and RC4) than for simple
problems (RC2). Supporting Prediction 4, number of NVC responses is
greater for Figures 3 and 4 problems, for which combined figural and
atmosphere heuristics do not apply. The figural heuristic cannot be
employed for Figures 3 and 4 problems, because their premise structure
(X-Y, Z-Y; Y-X, Y-Z, respectively) does not yield an ordering of the X and Z
elements. (Although see earlier discussion—there are two Figure 4 problems
that the atmosphere heuristic alone can yield a valid conclusion, because the
valid conclusion is symmetrical). A 2 (Figures 1 and 2/Figures 3 and 4) x 3
(binary, ternary, quaternary complexity) ANOVA vyielded significant main
effects of figure, F(1, 21)=11.98, p=.002, and of complexity, F(2, 21)=
6.12, p =.008, with no interaction. Binary problems produced significantly
fewer NVC responses than ternary (p = .023) and quaternary problems (p =
.003), which did not differ significantly. This suggests that NVC responses
are used as a default for problems that are complex, and for which heuristics
based on a combination of figure and atmosphere are unavailable, due to
criteria not being met, as explained earlier. The finding of no increase in
NVC responses from RC3 to RC4 suggests RC3 problems were sufficiently
complex to elicit the NVC response in those participants who were inclined
to adopt that default. The same effect of figure is observed on the number of
NVC responses for NVC problems, shown in Figure 7B. A 2 (Figures 1 and
2/Figures 3 and 4) x 2 (quaternary/quinary complexity) ANOVA yielded a
main effect of figure, F(1, 33) = 10.39, p =.003, but no effect of complexity
and no interaction. The lack of complexity effects is probably due to the
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Figure 7. Percentage of NVC responses for Figures 1 and 2 versus Figures 3 and 4 on (A) VC and
(B) NVC problems.

small range of complexities, both being close to the limit of capacity (four

variables).
However, the data indicate that some ability to discriminate validity of

inferences does exist, because there are more NVC responses for invalid RC4
syllogisms (38.4%) than for valid RC4 syllogisms (21.05%), F(1, 778)=
21.14, p < .001.

Supporting prediction five, participants were sensitive to the availability
of the figural-atmosphere heuristic even where it can never yield correct
answers, as in NVC problems. Table 4 shows types of errors on NVC
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TABLE 4
Response type for syllogisms with no valid conclusion

Figure 1 and 2 problems Figure 3 and 4 problems
Response type* Number Percentage Number Percentage
1 113 29.7 147 45.5
2 122 32.1 N/A N/A
3 28 7.4 85 26.3
4 38 10.0 29 9.0
5 53 13.95 35 10.8
6 26 6.85 27 8.4
Total 380 100 323 100

*Response type:

. No valid conclusion (correct responsec}

. Response based on combined figural and atmosphere heuristics
. Response based on atmosphere heuristic

Response reflects mood of one premise only

Response mood is “Some’ when premise mood is “Some not”
. Other response.

<RV VRN

problems, expressed as frequencies and percentages. Data for Figure 1/2 and
Figure 3/4 problems are given separately. It is clear that for Figure 1/2
problems the most common response is that generated using the combined
figural-atmosphere heuristic, closely followed by the NVC response.
Together these two answers account for 61.8% of participants’ responses.
If we include subjects whose responses suggested use of the atmosphere
heuristic only, we can account for 69.2% of responses on Figure 1/2
problems. A similar percentage of responses on Figure 3/4 problems is
accounted for by considering NVC responses and responses generated by
using the atmosphere heuristic (noting that the figural heuristic is not
available for these problems). These two sets of responses account for 71.8%
of answers on Figure 3/4 problems with NVC.

Other notable errors (see Table 4, response types 4 and 5), accounting for
around 20-24% of responses, included a tendency to base the mood of the
response on the mood of one premise only where that strategy does not match
the atmosphere heuristic (response type 4). For example, consider the
syllogism:

All X are Y
Some Z are not Y = Some Z are not X,

For this syllogism, approximately 10% of subjects responded “A/l X are 2. A
second set of error responses (response type 5) found subjects giving a
response in the form of “Some”” when “Some not” was the mood of at least one
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of the initial premises. These particular response errors suggested a percentage
of subjects were having difficulty understanding the logical difference between
the premise moods, “Some™ and “Some not”.

However, although analysis of error type has its own value and interest, for
the sake of this paper, the important conclusions to be drawn from the data
displayed in Table 4, are that for complex syllogisms for which figural and
atmosphere heuristics cannot provide a correct answer (i.e., the NVC
syllogisms) subjects were most likely to default to the combined figural and
atmosphere heuristics. For those syllogisms that do not lend themselves to this
set of heuristics, the default solution was NVC (note that 45.5% of Figure 3/4
problems were answered NVC vs. 29.7% of Figure 1/2 problems). The third
most common response strategy for these complex syllogisms was use of the
atmosphere heuristic without the figural heuristic.

Because RC analyses are based on cognitive processes employed, we have
adjusted our accuracy data for NVC problems to estimate for (and remove)
default responses. For each participant we calculated the percentage of
“NVC” responses to the quaternary VC problems (i.e., where complexity is
high). We then subtracted this percentage from the overall percentage of
“NVC” responses. This avoids inflation of correct responses to with false
positive NVC responses. However, NVC is not like heuristics such as
atmosphere and figural heuristics, in that it is not based on recognised
properties of the premises (such as attributes of quality, quantity, or structural
features of the premises) but is a default response to complexity.

Comparison of mental models and relational complexity

In this section we estimate how well each metric predicted performance,
using a number of variations of the MM metric. Recent formulations of the
mental model theory emphasise the distinction between one and multiple
model problems (Bucciarelli & Johnson-Laird, 1999; Johnson-Laird &
Byrne, 1991, 1996); hence, we collapse their two- and three-model problems.
We refer to this measure as MM _reduced.

‘We make separate analyses for all syllogisms, and for syllogisms with valid
conclusions. Linear multiple regressions were performed with RC and
MM_reduced entered as independent predictors, and percentage correct as
the dependent variable. We also consider linear models of the data.

Linear multiple regression—all syllogisms. RC and MM_reduced account
for similarly large proportions of the variance. Table 5 shows the results of the
regression analyses run using the version of our data corrected by individual
subject “NVC” responses. Across all 64 syllogisms (not differentiating
between VC and NVC problems) the strength of the regression model was



TABLE 5

Complexity predictions from multiple regression analyses of three data sets

Nature of regression model

Variables Correlation Strength () Significance { F-value) f [ Sig o
All syllogsrs, our data corrected for NVC response bias
I.RC 852 S0 F2, 61)=120.675, =29 =280 <00r 009
2. MM_reduced p<0il -6 =590 <Q0r 09
VC syllogsms, our data corrected for NVC response bias
1.RC 903 880 F2, 4)=88.15, =52 -3 40l
2. MM_reduced <001 2-49 -6 )] KIiA1)
Johnson-Laird & Bara (1984) Exp. I (timed)
|.RC 903 Sl F2, ) =48 45, =58 -4 ne ol
2 MM_reduced p<il 2 -%5 -187 a0y
Johnson-Laird & Bara (1984) Exp. 3 {untimed)
l.RC 903 6 F2, ) =115.15, L-5% =369 001 0%
2 MM_reduced p< 001 2 -47 =30 Mo 035
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relatively high, R® = .810, when both RC and the MM _reduced were included
as predictors. The relatively high correlation of the predictors (.852) influenced
the relative amounts of shared variance (.676) and unique variance (.134)
explained by this model. RC and MM_reduced jointly accounted for a high
proportion of the variance and both contributed significant unique variance,
though this was slightly greater for MM _reduced.

This analysis was repeated, but with MM_reduced expanded to three
levels as done by Bucciarelli and Johnson-Laird (1999). This showed that the
maximum variance explained (.79) was close to, but slightly less than that
explained by the analysis including the binary MM_reduced variable. A
moderate correlation between the predictors (.456) influenced the relative
amounts of shared variance (.34) and unique variance (.45) explained by this
model. Although both predictors contributed significantly to the model, RC
outperformed this version of MM_reduced explaining 82% of the unique
variance contributed by the two predictors.

Curve estimation (linear and quadratic models )—all syllogisms. MM_reduced
is a binary variable, so only a linear model of fit is possible. This model accounted
for 78.5% of the variance, F(1, 62) = 144.96, p < .001, across all syllogisms. In
contrast, the relationship between RC and accuracy data is best described by a
quadratic model, F(1, 61)=130.31, p < .001, accounting for 81% of variance
(compared with a linear model accounting for 70% of variance), F(1, 62)=
144.96, p < .001. This appears to reflect a floor effect on quaternary and
quinary relational problems (Table 3) suggesting that quinary relational
problems are beyond participants’ processing capacity (Halford et al., 1998),
so normal strategies are no longer used.

Linear multiple regression—VC syllogisms. Considering the VC syllo-
gisms in isolation (see Table 5), the strength of the regression model was quite
high, R = .880, when both RC and MM_reduced were included as predictors.
High correlation between the predictors (.903) meant that shared variance
(.793) was greater than the unique variance (.087) explained by this model.
Although both predictors contributed significantly to the model, RC (58.6%
of unique variance) slightly outperformed MM _reduced (41.4% of unique
variance). A similar analysis using the full version of MM, analysed by the
method of Johnson-Laird and Byrne (1991), was carried out. The overall
strength of the regression model was high (R? = .848), as was the correlation
between the predictors ((958). Although only RC contributed significant
unique variance (91% of .046), most of the variance explained by the model
was shared variance (.802).

Table 5 also shows regression analyses of data by Johnson-Laird and Bara
(1984), both timed (Exp. 1) and untimed (Exp. 3). Given evidence presented
earlier for inflated NVC responses, and Johnson-Laird and his colleagues’
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recent distinction between VC and NVC problems (Bucciarelli & Johnson-
Laird, 1999), we examine VC syllogisms only.

Looking first at the timed condition (Exp. 1), the overall strength of the
regression model was high at .880. High correlation between the predictors
(.903) meant that shared variance (.721) was greater than the unique
variance (.080) explained by this model. RC (63.75% of unique variance) was
the only significant predictor in the model.

In the untimed condition (Exp. 3), the overall strength of the regression
model was high at .906. High correlation between the predictors (.903)
meant that shared variance (.817) was greater than the unigue variance
(.089) explained by this model. Although both predictors contributed
significantly to the model, RC (60.7%) contributed more unique variance
to the model than did MM_reduced (39.3%).

Curve estimation (linear and quadratic models )—VC syllogisms. For VC
syllogisms only, the relationship between RC and accuracy data, across all
data sets, is best described by a quadratic rather than a linear model (see Tables
3 and 6). We interpret the quadratic function as indicating a floor effect for
quaternary problems. In all cases, both the linear and the quadratic models of
RC explain more variance in subject performance than does the mental model
variable.

DISCUSSION

This paper is to the first to show how RC analyses can be applied to
syllogistic reasoning, and the research has demonstrated that it accounts for
a useful proportion of variance in problem form difficulty. Thus, we have
demonstrated that complexity analysis of syllogistic reasoning is possible,
and we have also shown how people can simplify syllogistic reasoning to
comply with capacity limitations. The RC metric has proven to be
approximately as effective as MM in accounting for performance on
categorical syllogisms. Although each metric has a small advantage in
specific analyses, the dominant finding is that they account for similarly
large proportions of the variance in performance, approximately 80%,
regardless of how complexity is analysed in each model. RC and MM share
common conceptions of the reasoning process, but differ in the explanations
they imply for the effect of complexity. MM theory links the effect of
complexity to construction of alternate mental models of the premises,
which is influenced by recognition that one model might not be the only
possible representation, which is an important factor in reasoning. RC
theory accounts for complexity effects by the number of distinct categories
of entities that are related in a representation of the premises. RC is directly



TABLE 6
Curve estimation for mental models (binary variable) and relational complexity across three data sets for VC syllogisms

Farimee explained ()

Linear model Quadratic model
Data set MM reduced Falwe RC Fvalue RC Fvalue
Current 8 K1, 25)=121.83, p <001 845 R, 25)=13583, p < 001 8 Al 1)=88.05, p <0l
Exp. 1* timed 7 1, 25)=T5.35, p< .00l J1 H1L 25)=8495, p< 001 80 AL 24)=4845, p <001
Exp. 3* unrimed 88 H1, 25)=143.84, p < 001 87 KL 25)=16769, p<.001 A HL 4 =115.15, p <001

*Johnson-Laird and Bara (1984)
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related to working memory demands, because measures of ability to bind
elements into integrated representations in working memory are good
predictors of reasoning (Oberauer et al., 2008).

Expansion of the 64 syllogism set to a 576 syllogism set (Roberts, 2005)
offers potential for further discrimination between theories, but more
information about strategies used with the expanded set is required before
the RC metric can be applied to it. The 64 syllogism set is restricted, but the
extensive data base on premise interpretations and strategies is valuable,
indeed essential, for application of the RC metric. Furthermore, the finding
that RC accounts for a similar proportion of variance to MM is consistent
with findings by Andrews et al. (2006) that RC accounts for a similar
proportion of variance in sentence complexity as the dependency locality
theory metric (Gibson, 2000), again approximately 80%. In both categorical
syllogisms and sentence comprehension, RC performs as well as a metric
that has been specifically designed for that domain. It may be that this is
close to the maximum proportion of variance that can be accounted for by
any one model, at least in the present state of knowledge.

RC is also an effective metric in reasoning and cognitive development,
mathematics education, and industrial complexity, as reviewed in the
Introduction. RC is similar to metrics used successfully in implicit learning,
including serial reaction time (Stadtler, 1992) and artificial grammar (van
den Bos & Poletiek, 2008). A common metric applicable to many domains
adds to the parsimony of cognitive theories. First, it enables equivalences
between tasks to be defined independently of procedure or content, as
Andrews and Halford (2002) have shown for six domains in cognitive
development. It also provides a rational basis for rank ordering tasks
according to their cognitive complexity. The ability to determine complex-
ities independently of content has yielded many predictions that go well
beyond intuition (Halford, 1993; Halford, Andrews, Dalton, et al., 2002;
Halford, Andrews, & Jensen, 2002). Historically, it has proven difficult to
find a basis for assessing complexity in reasoning with both flexibility and
reliability, but RC appears to do so across a wide range of domains.

Relational complexity theory is essentially a theory of mental models
(Goodwin & Johnson-Laird, 2005; Halford, 1993), but it conceptualises
models in a different way than have previous mental model theories of
reasoning. According to the current formulation, number of MMs is not
required to assess complexity. Instead, complexity can be accounted for by
number of categories that are related in a representation of the combined
premises, where the representation is progressively elaborated by verbal
reasoning or memory retrieval processes. This means that the issue as to
whether people really construct more than one mental model, though it has
some intrinsic significance, is not critical to assessment of complexity.
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The result of this analysis is that RC theory is integrated with MM theory
in the context of categorical syllogisms, and produced complexity estimates
that are robust. This adds to integration by Goodwin and Johnson-Laird
(2005), who adopted RC in their MM account of relational reasoning, and
to the formulation by Markovits and Barrouillet (2002), who showed that
elaboration of MM by children was influenced by RC. Our findings also
corroborate the decision to collapse two- and three-model problems
(Bucciarelli & Johnson-Laird, 1999; Johnson-Laird & Byrne, 1991, 1996)
because this yields better prediction. RC theory yielded five predictions
about categorical syllogisms, all of which were supported.

Another finding of the study is that “no valid conclusion™ appears to be
used as a default response for complex problems, as a substitute for “don’t
know”. If no allowance is made for this it can distort assessments of
performance, because it leads to a large number of false positive responses
on NVC problems. Future studies could investigate factors that influence this
tendency, such as mental ability. The default to NVC might be associated with
more modest intellectual ability, because it obviates the need for the complex
reasoning required to determine that there is no valid conclusion. Never-
theless, given that 37 of the 64 syllogisms have no valid conclusion, this
tendency is a serious distortion. Our data also show that default to NVC
occurs more with Figures 3 and 4 problems for which combined atmosphere
and figural heuristics cannot be used. The finding that the same effect occurs
for NVC problems where the heuristics cannot yield correct answers supports
Principle 2 that participants tend to use simplifying heuristics without
knowledge of whether they yield correct answers.

Our conclusion is that complexity as measured by the RC metric is a
factor in syllogistic reasoning. Reasoning is subject to capacity limitations,
but we have been able to identify highly effective strategies for reducing
complexity, thereby avoiding overload. This study integrates the RC metric
with MM theory, which potentially increases parsimony in the field. When
combined with RC findings in other domains, this suggests RC is potentially
a general cognitive complexity metric.
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