Bayesian Inference

Frank Schorfheide

University of Pennsylvania

Econ 722 – Part 1

February 13, 2019

• Frequentist:

- pre-experimental perspective;
- condition on "true" but unknown θ_0 ;
- treat data Y as random;
- study behavior of estimators and decision rules under repeated sampling.

• Bayesian:

- post-experimental perspective;
- condition on observed sample Y;
- treat parameter θ as unknown and random;
- derive estimators and decision rules that minimize expected loss (averaging over θ) conditional on observed Y.

- Ingredients of Bayesian Analysis:
 - Likelihood function $p(Y|\theta)$
 - Prior density $p(\theta)$
 - Marginal data density $p(Y) = \int p(Y|\theta) p(\theta) d\phi$
- Bayes Theorem:

$$p(\theta|Y) = rac{p(Y| heta)p(heta)}{p(Y)} \propto p(Y| heta)p(heta)$$

• Implementation: usually by generating a sequence of draws (not necessarily iid) from posterior

 $\theta^i \sim p(\theta|Y), \quad i=1,\ldots,N$

• Algorithms: direct sampling, accept/reject sampling, importance sampling, Markov chain Monte Carlo sampling, sequential Monte Carlo sampling...

- We previously discussed the evaluation of the likelihood function: given a parameter $\boldsymbol{\theta}$
 - solve the DSGE model to obtain the state-space representation;
 - use the Kalman filter to evaluate the likelihood function.
- Let's talk a bit about prior distributions.

- Ideally: probabilistic representation of our knowledge/beliefs before observing sample Y.
- More realistically: choice of prior as well as model are influenced by some observations. Try to keep influence small or adjust measures of uncertainty.
- Views about role of priors:
 - **1** keep them "uninformative" (???) so that posterior inherits shape of likelihood function;
 - 2 use them to regularize the likelihood function;
 - \bigcirc incorporate information from sources other than Y;

- Group parameters:
 - steady-state related parameters
 - parameters assoc with exogenous shocks
 - parameters assoc with internal propagation
- Non-sample information $p(\theta|\mathcal{X}^0)$:
 - pre-sample information
 - micro-level information
- To guide the prior for θ , you can ask: what are its implications for observables Y?

Name	Domain	Prior		
		Density	Para (1)	Para (2)
Steady-State-Related Parameters $\theta_{(ss)}$				
100(1/eta-1)	\mathbb{R}^+	Gamma	0.50	0.50
$100\log\pi^*$	\mathbb{R}^+	Gamma	1.00	0.50
$100\log\gamma$	\mathbb{R}	Normal	0.75	0.50
λ	\mathbb{R}^+	Gamma	0.20	0.20
Endogenous Propagation Parameters $ heta_{(endo)}$				
ζ_{p}	[0, 1]	Beta	0.70	0.15
1/(1+ u)	\mathbb{R}^+	Gamma	1.50	0.75

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support for the Uniform distribution; *s* and ν for the Inverse Gamma distribution, where $p_{\mathcal{IG}}(\sigma|\nu, s) \propto \sigma^{-\nu-1} e^{-\nu s^2/2\sigma^2}$. The joint prior distribution of θ is truncated at the boundary of the determinacy region.

Name	Domain	Prior		
		Density	Para (1)	Para (2)
	Exogenou	is Shock Para	meters $ heta_{(exactle)}$	o)
ρ_{ϕ}	[0, 1)	Uniform	0.00	1.00
$ ho_{\lambda}$	[0, 1)	Uniform	0.00	1.00
$ ho_z$	[0, 1)	Uniform	0.00	1.00
$100\sigma_{\phi}$	\mathbb{R}^+	InvGamma	2.00	4.00
$100\sigma_{\lambda}$	\mathbb{R}^+	InvGamma	0.50	4.00
$100\sigma_z$	\mathbb{R}^+	InvGamma	2.00	4.00
$100\sigma_r$	\mathbb{R}^+	InvGamma	0.50	4.00

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse Gamma distribution, where $p_{\mathcal{IG}}(\sigma|\nu, s) \propto \sigma^{-\nu-1} e^{-\nu s^2/2\sigma^2}$. The joint prior distribution of θ is truncated at the boundary of the determinacy region.

- We will focus on Markov chain Monte Carlo (MCMC) algorithms that generate draws
 {θⁱ}^N_{i=1} from posterior distributions of parameters.
- Draws can then be transformed into objects of interest, $h(\theta^i)$, and under suitable conditions a Monte Carlo average of the form

$$ar{h}_{\mathcal{N}} = rac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} h(heta^i) pprox \mathbb{E}_{\pi}[h] = \int h(heta) p(heta|Y) d heta.$$

• Strong law of large numbers (SLLN), central limit theorem (CLT)...

• Main idea: create a sequence of serially correlated draws such that the distribution of θ^i converges to the posterior distribution $p(\theta|Y)$.

For i = 1 to N:

1 Draw ϑ from a density $q(\vartheta|\theta^{i-1})$.

2 Set $\theta^i = \vartheta$ with probability

$$\alpha(\vartheta|\theta^{i-1}) = \min\left\{1, \ \frac{p(Y|\vartheta)p(\vartheta)/q(\vartheta|\theta^{i-1})}{p(Y|\theta^{i-1})p(\theta^{i-1})/q(\theta^{i-1}|\vartheta)}\right\}$$

and $\theta^i = \theta^{i-1}$ otherwise.

Recall $p(\theta|Y) \propto p(Y|\theta)p(\theta)$.

We draw θ^i conditional on a parameter draw θ^{i-1} : leads to Markov transition kernel $\mathcal{K}(\theta|\tilde{\theta})$.

Benchmark Random-Walk Metropolis-Hastings (RWMH) Algorithm for DSGE Models

- Initialization:
 - **1** Use a numerical optimization routine to maximize the log posterior, which up to a constant is given by $\ln p(Y|\theta) + \ln p(\theta)$. Denote the posterior mode by $\hat{\theta}$.
 - 2 Let $\hat{\Sigma}$ be the inverse of the (negative) Hessian computed at the posterior mode $\hat{\theta}$, which can be computed numerically.
 - **3** Draw $\theta^{\dot{0}}$ from $N(\hat{\theta}, c_0^2 \hat{\Sigma})$ or directly specify a starting value.
- Main Algorithm For $i = 1, \ldots, N$:
 - **1** Draw ϑ from the proposal distribution $N(\theta^{i-1}, c^2 \hat{\Sigma})$.
 - **2** Set $\theta^i = \vartheta$ with probability

$$\alpha(\vartheta|\theta^{i-1}) = \min \left\{1, \frac{p(Y|\vartheta)p(\vartheta)}{p(Y|\theta^{i-1})p(\theta^{i-1})}\right\}$$

and $\theta^i = \theta^{i-1}$ otherwise.

- Initialization steps can be modified as needed for particular application.
- If numerical optimization does not work well, one could let $\hat{\Sigma}$ be a diagonal matrix with prior variances on the diagonal.
- Or, $\hat{\Sigma}$ could be based on a preliminary run of a posterior sampler.
- It is good practice to run multiple chains based on different starting values.

- Generate a single sample of size T = 80 from the stylized DSGE model.
- Combine likelihood and prior to form posterior.
- Draws from this posterior distribution are generated using the RWMH algorithm.
- Chain is initialized with a draw from the prior distribution.
- The covariance matrix $\hat{\Sigma}$ is based on the negative inverse Hessian at the mode. The scaling constant c is set equal to 0.075, which leads to an acceptance rate for proposed draws of 0.55.

Parameter Draws from MH Algorithm

Notes: The posterior is based on a simulated sample of observations of size T = 80. The top panel shows the sequence of parameter draws and the bottom panel shows recursive means.

Parameter Draws from MH Algorithm

Notes: The posterior is based on a simulated sample of observations of size T = 80. The top panel shows the sequence of parameter draws and the bottom panel shows recursive means.

Prior and Posterior Densities

Notes: The dashed lines represent the prior densities, whereas the solid lines correspond to the posterior densities of ζ_p and σ_{ϕ} . The posterior is based on a simulated sample of observations of size T = 80. We generate N = 37,500 draws from the posterior and drop the first $N_0 = 7,500$ draws.

- Algorithm generates a Markov transition kernel K(θ|θ̃): it takes a draw θⁱ⁻¹ and uses some randomization to turn it into a draw θⁱ.
- Important invariance property: if θ^{i-1} is from posterior $p(\theta|Y)$, then θ^i 's distribution will also be $p(\theta|Y)$.
- Contraction property: if θ^{i-1} is from some distribution $\pi_{i-1}(\theta)$, then the discrepancy between the "true" posterior and

$$\pi_i(heta) = \int \mathcal{K}(heta| ilde{ heta}) \pi_{i-1}(ilde{ heta}) d ilde{ heta}$$

is smaller than the discrepancy between $\pi_{i-1}(\theta)$ and $p(\theta|Y)$.

The Invariance Property

• It can be shown that

$$p(heta|Y) = \int \mathcal{K}(heta| ilde{ heta}) p(ilde{ heta}|Y) d ilde{ heta}.$$

• Write

 $K(\theta|\tilde{\theta}) = u(\theta|\tilde{\theta}) + r(\tilde{\theta})\delta_{\tilde{\theta}}(\theta).$

u(θ|θ̃) is the density kernel (note that u(θ|·) does not integrated to one) for accepted draws:

 $u(\theta|\tilde{ heta}) = \alpha(\theta|\tilde{ heta})q(\theta|\tilde{ heta}).$

• Rejection probability:

$$r(ilde{ heta}) = \int \left[1 - lpha(heta| ilde{ heta})
ight] q(heta| ilde{ heta}) d heta = 1 - \int u(heta| ilde{ heta}) d heta.$$

The Invariance Property

• Reversibility: Conditional on the sampler not rejecting the proposed draw, the density associated with a transition from $\tilde{\theta}$ to θ is identical to the density associated with a transition from θ to $\tilde{\theta}$:

$$p(\tilde{\theta}|Y)u(\theta|\tilde{\theta}) = p(\tilde{\theta}|Y)q(\theta|\tilde{\theta})\min\left\{1, \frac{p(\theta|Y)/q(\theta|\tilde{\theta})}{p(\tilde{\theta}|Y)/q(\tilde{\theta}|\theta)}\right\}$$
$$= \min\left\{p(\tilde{\theta}|Y)q(\theta|\tilde{\theta}), p(\theta|Y)q(\tilde{\theta}|\theta)\right\}$$
$$= p(\theta|Y)q(\tilde{\theta}|\theta)\min\left\{\frac{p(\tilde{\theta}|Y)/q(\tilde{\theta}|\theta)}{p(\theta|Y)/q(\theta|\tilde{\theta})}, 1\right\}$$
$$= p(\theta|Y)u(\tilde{\theta}|\theta).$$

• Using the reversibility result, we can now verify the invariance property: $\int K(\theta|\tilde{\theta}) p(\tilde{\theta}|X) d\tilde{\theta} = \int \mu(\theta|\tilde{\theta}) p(\tilde{\theta}|X) d\tilde{\theta} + \int r(\tilde{\theta}) \delta_r(\theta) p(\tilde{\theta}|X) d\tilde{\theta}$

$$\int \mathcal{K}(\theta|\tilde{\theta})p(\tilde{\theta}|Y)d\tilde{\theta} = \int u(\theta|\tilde{\theta})p(\tilde{\theta}|Y)d\tilde{\theta} + \int r(\tilde{\theta})\delta_{\tilde{\theta}}(\theta)p(\tilde{\theta}|Y)d\tilde{\theta}$$
$$= \int u(\tilde{\theta}|\theta)p(\theta|Y)d\tilde{\theta} + r(\theta)p(\theta|Y)$$
$$= p(\theta|Y)$$

• Suppose parameter vector θ is scalar and takes only two values:

 $\Theta = \{\tau_1, \tau_2\}$

- The posterior distribution $p(\theta|Y)$ can be represented by a set of probabilities collected in the vector π , say $\pi = [\pi_1, \pi_2]$ with $\pi_2 > \pi_1$.
- Suppose we obtain ϑ based on transition matrix Q:

$$Q = \left[egin{array}{cc} q & (1-q) \ (1-q) & q \end{array}
ight].$$

Example: Discrete MH Algorithm

• Iteration *i*: suppose that $\theta^{i-1} = \tau_j$. Based on transition matrix

$$Q=\left[egin{array}{cc} q & (1-q) \ (1-q) & q \end{array}
ight],$$

determine a proposed state $\vartheta = \tau_s$.

- With probability $\alpha(\tau_s|\tau_j)$ the proposed state is accepted. Set $\theta^i = \vartheta = \tau_s$.
- With probability $1 \alpha(\tau_s | \tau_j)$ stay in old state and set $\theta^i = \theta^{i-1} = \tau_j$.
- Choose (Q terms cancel because of symmetry)

$$lpha(au_{s}| au_{j}) = \min \left\{1, rac{\pi_{s}}{\pi_{j}}
ight\}.$$

Example: Transition Matrix

• The resulting chain's transition matrix is:

$${\cal K} = \left[egin{array}{cc} q & (1-q) \ (1-q) rac{\pi_1}{\pi_2} & q+(1-q) \left(1-rac{\pi_1}{\pi_2}
ight) \end{array}
ight].$$

• Straightforward calculations reveal that the transition matrix K has eigenvalues:

$$\lambda_1({\mathcal K})=1, \quad \lambda_2({\mathcal K})=q-(1-q)rac{\pi_1}{1-\pi_1}.$$

- Equilibrium distribution is eigenvector associated with unit eigenvalue.
- For $q \in [0, 1)$ the equilibrium distribution is unique.

- The persistence of the Markov chain depends on second eigenvalue, which depends on the proposal distribution *Q*.
- Define the transformed parameter

$$\xi^i = \frac{\theta^i - \tau_1}{\tau_2 - \tau_1}.$$

• We can represent the Markov chain associated with ξ^i as first-order autoregressive process

$$\xi^{i} = (1 - k_{22}) + \lambda_{2}(K)\xi^{i-1} + \nu^{i}.$$

• Conditional on $\xi^i = j$, j = 0, 1, the innovation ν^i has support on k_{jj} and $(1 - k_{jj})$, its conditional mean is equal to zero, and its conditional variance is equal to $k_{jj}(1 - k_{jj})$.

- Autocovariance function of $h(\theta^i)$:
 - $COV(h(\theta^i), h(\theta^{(i-l)}))$

$$egin{array}{rl} &=& ig(h(au_2)-h(au_1)ig)^2\pi_1(1-\pi_1)ig(q-(1-q)rac{\pi_1}{1-\pi_1}ig)' \ &=& \mathbb{V}_\pi[h]ig(q-(1-q)rac{\pi_1}{1-\pi_1}ig)' \end{array}$$

 If q = π₁ then the autocovariances are equal to zero and the draws h(θⁱ) are serially uncorrelated (in fact, in our simple discrete setting they are also independent).

Example: Convergence

• Define the Monte Carlo estimate

$$ar{h}_N = rac{1}{N}\sum_{i=1}^N h(heta^i).$$

• Deduce from CLT

$$\sqrt{N}(\overline{h}_N - \mathbb{E}_{\pi}[h]) \Longrightarrow N(0, \Omega(h)),$$

where $\Omega(h)$ is the long-run covariance matrix

$$\Omega(h) = \lim_{L \longrightarrow \infty} \mathbb{V}_{\pi}[h] \left(1 + 2 \sum_{l=1}^{L} rac{L-l}{L} \left(q - (1-q) rac{\pi_1}{1-\pi_1}
ight)'
ight).$$

• In turn, the asymptotic inefficiency factor is given by

$$\mathsf{InEff}_{\infty} = \frac{\Omega(h)}{\mathbb{V}_{\pi}[h]} = 1 + 2 \lim_{L \longrightarrow \infty} \sum_{l=1}^{L} \frac{L-l}{L} \left(q - (1-q)\frac{\pi_1}{1-\pi_1}\right)^l.$$

Example: Autocorrelation Function of θ^i , $\pi_1 = 0.2$

Example: Asymptotic Inefficiency $InEff_{\infty}$, $\pi_1 = 0.2$

Example: Small Sample Variance $\mathbb{V}[\bar{h}_N]$ versus HAC Estimates of $\Omega(h)$

Benchmark Random-Walk Metropolis-Hastings (RWMH) Algorithm for DSGE Models

- Initialization:
 - **1** Use a numerical optimization routine to maximize the log posterior, which up to a constant is given by $\ln p(Y|\theta) + \ln p(\theta)$. Denote the posterior mode by $\hat{\theta}$.
 - 2 Let $\hat{\Sigma}$ be the inverse of the (negative) Hessian computed at the posterior mode $\hat{\theta}$, which can be computed numerically.
 - **3** Draw $\theta^{\dot{0}}$ from $N(\hat{\theta}, c_0^2 \hat{\Sigma})$ or directly specify a starting value.
- Main Algorithm For $i = 1, \ldots, N$:
 - **1** Draw ϑ from the proposal distribution $N(\theta^{i-1}, c^2 \hat{\Sigma})$.
 - **2** Set $\theta^i = \vartheta$ with probability

$$\alpha(\vartheta|\theta^{i-1}) = \min \left\{1, \frac{p(Y|\vartheta)p(\vartheta)}{p(Y|\theta^{i-1})p(\theta^{i-1})}\right\}$$

and $\theta^i = \theta^{i-1}$ otherwise.

Observables for Small-Scale New Keynesian Model

Notes: Output growth per capita is measured in quarter-on-quarter (Q-o-Q) percentages. Inflation is CPI inflation in annualized Q-o-Q percentages. Federal funds rate is the average annualized effective funds rate for each quarter.

Convergence of Monte Carlo Average $\overline{ au}_{N|N_0}$

Parameter	Mean	[0.05, 0.95]	Parameter	Mean	[0.05,0.95]
au	2.83	[1.95, 3.82]	$ ho_r$	0.77	[0.71, 0.82]
κ	0.78	[0.51, 0.98]	$ ho_{g}$	0.98	[0.96, 1.00]
ψ_1	1.80	[1.43, 2.20]	ρ_z	0.88	[0.84, 0.92]
ψ_2	0.63	[0.23, 1.21]	σ_r	0.22	[0.18, 0.26]
$r^{(A)}$	0.42	[0.04, 0.95]	σ_{g}	0.71	[0.61, 0.84]
$\pi^{(A)}$	3.30	[2.78, 3.80]	σ_z	0.31	[0.26, 0.36]
$\gamma^{(Q)}$	0.52	[0.28, 0.74]			

Notes: We generated N = 100,000 draws from the posterior and discarded the first 50,000 draws. Based on the remaining draws we approximated the posterior mean and the 5th and 95th percentiles.

DSGE Model Estimation: Effect of Scaling Constant c

Notes: Results are based on $N_{run} = 50$ independent Markov chains. The acceptance rate (average across multiple chains), HAC-based estimate of $\text{InEff}_{\infty}[\bar{\tau}]$ (average across multiple chains), and $\text{InEff}_{N}[\bar{\tau}]$ are shown as a function of the scaling constant c.

DSGE Model Estimation: Acceptance Rate $\hat{\alpha}$ versus Inaccuracy InEff_N

Notes: InEff_N[$\bar{\tau}$] versus the acceptance rate $\hat{\alpha}$.

What Can We Do With Our Posterior Draws?

- Store them on our harddrive!
- Convert them into objects of interest:
 - impulse response functions;
 - government spending multipliers;
 - welfare effects of target inflation rate changes;
 - forecasts;
 - (...)

Parameter Transformations: Impulse Responses

Notes: The figure depicts pointwise posterior means and 90% credible bands. The responses of output are in percent relative to the initial level, whereas the responses of inflation and interest rates are in annualized percentages.

Bayesian Inference – Decision Making

• The posterior expected loss of decision $\delta(\cdot)$:

$$\rho(\delta(\cdot)|Y) = \int_{\Theta} L(\theta, \delta(Y)) p(\theta|Y) d\theta.$$

• Bayes decision minimizes the posterior expected loss:

 $\delta^*(Y) = \operatorname{argmin}_d \rho(\delta(\cdot)|Y).$

- Approximate $hoig(\delta(\cdot)|Yig)$ by a Monte Carlo average

$$ar{
ho}_Nig(\delta(\cdot)|Yig) = rac{1}{N}\sum_{i=1}^N Lig(heta^i,\delta(\cdot)ig).$$

• Then compute

$$\delta_N^*(Y) = \operatorname{argmin}_d \bar{\rho}_N(\delta(\cdot)|Y).$$

• Consider the following identity:

$$\frac{1}{p(Y)} = \int \frac{f(\theta)}{p(Y|\theta)p(\theta)} p(\theta|Y) d\theta,$$

where $\int f(\theta) d\theta = 1$.

• Conditional on the choice of $f(\theta)$ an obvious estimator is

$$\hat{p}_G(Y) = \left[rac{1}{N}\sum_{i=1}^N rac{f(heta^i)}{p(Y| heta^i)p(heta^i)}
ight]^{-1},$$

where θ^i is drawn from the posterior $p(\theta|Y)$.

• Geweke (1999):

$$\begin{split} f(\theta) &= \tau^{-1}(2\pi)^{-d/2} |V_{\theta}|^{-1/2} \exp\left[-0.5(\theta-\bar{\theta})' V_{\theta}^{-1}(\theta-\bar{\theta})\right] \\ &\times \left\{ (\theta-\bar{\theta})' V_{\theta}^{-1}(\theta-\bar{\theta}) \leq F_{\chi_{d}^{-1}}^{-1}(\tau) \right\}. \end{split}$$

• A stylized state-space model:

$$y_t = \begin{bmatrix} 1 \ 1 \end{bmatrix} s_t, \quad s_t = \begin{bmatrix} \phi_1 & 0 \\ \phi_3 & \phi_2 \end{bmatrix} s_{t-1} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \epsilon_t, \quad \epsilon_t \sim \textit{iidN}(0, 1).$$

where

- Structural parameters $\theta = [\theta_1, \theta_2]'$, domain is unit square.
- Reduced-form parameters $\phi = [\phi_1, \phi_2, \phi_3]'$

$$\phi_1 = \theta_1^2, \quad \phi_2 = (1 - \theta_1^2), \quad \phi_3 - \phi_2 = -\theta_1 \theta_2.$$

Challenges Due to Irregular Posteriors

- $s_{1,t}$ looks like an exogenous technology process.
- $s_{2,t}$ evolves like an endogenous state variable, e.g., the capital stock.
- θ_2 is not identifiable if $\theta_1 = 0$ because θ_2 enters the model only multiplicatively.
- Law of motion of y_t is restricted ARMA(2,1) process:

$$(1- heta_1^2 L)(1-(1- heta_1^2)L)y_t = (1- heta_1 heta_2 L)\epsilon_t.$$

- Given θ_1 and θ_2 , we obtain an observationally equivalent process by switching the values of the two roots of the autoregressive lag polynomial.
- Choose $\tilde{\theta}_1$ and $\tilde{\theta}_2$ such that

$$ilde{ heta}_1 = \sqrt{1- heta_1^2}, \quad ilde{ heta}_2 = heta_1 heta_2/ ilde{ heta}_1.$$

Posteriors for Stylized State-Space Model

Notes: Intersections of the solid lines indicate parameter values that were used to generate the data from which the posteriors are constructed. Left panel: $\theta_1 = 0.1$ and $\theta_2 = 0.5$. Right panel: $\theta_1 = 0.8$, $\theta_2 = 0.3$.

Improvements to MCMC: Blocking

- In high-dimensional parameter spaces the RWMH algorithm generates highly persistent Markov chains.
- What's bad about persistence?

$$\sqrt{N}(\bar{h}_N - \mathbb{E}[\bar{h}_N]) \implies N\bigg(0, \frac{1}{N}\sum_{i=1}^n \mathbb{V}[h(\theta^i)] + \frac{1}{N}\sum_{i=1}^N \sum_{j\neq i} COV[h(\theta^i), h(\theta^j)]\bigg).$$

- Potential Remedy:
 - Partition $\theta = [\theta_1, \ldots, \theta_K].$
 - Iterate over conditional posteriors $p(\theta_k|Y, \theta_{<-k>})$.
- To reduce persistence of the chain, try to find partitions such that parameters are strongly correlated within blocks and weakly correlated across blocks or use random blocking.

Improvements to MCMC: Blocking

- Chib and Ramamurthy (2010, JoE):
 - Use randomized partitions
 - Use simulated annealing to find mode of $p(\theta_k | Y, \theta_{<-k>})$. Then construct Hessian to obtain covariance matrix for proposal density.
- Herbst (2011, Penn Dissertation):
 - Utilize analytical derivatives
 - Use information in Hessian (evaluated at an earlier parameter draw) to construct parameter blocks. For non-elliptical distribution partitions change as sampler moves through parameter space.
 - Use Gauss-Newton step to construct proposal densities

Draw $\theta^0 \in \Theta$ and then for i = 1 to N:

1 Create a partition B^i of the parameter vector into N_{blocks} blocks $\theta_1, \ldots, \theta_{N_{blocks}}$ via some rule (perhaps probabilistic), unrelated to the current state of the Markov chain.

2 For
$$b = 1, ..., N_{blocks}$$
:

1 Draw
$$\vartheta_b \sim q(\cdot | \left[\theta^i_{< b}, \theta^{i-1}_b, \theta^{i-1}_{\geq b}
ight]).$$

With probability,

$$\alpha = \max\left\{\frac{p(\left[\theta_{< b}^{i}, \vartheta_{b}, \theta_{> b}^{i-1}\right] | \mathbf{Y})q(\theta_{b}^{i-1}, |\theta_{< b}^{i}, \vartheta_{b}, \theta_{> b}^{i-1})}{p(\theta_{< b}^{i}, \theta_{b}^{i-1}, \theta_{> b}^{i-1}| \mathbf{Y})q(\vartheta_{b}|\theta_{< b}^{i}, \theta_{b}^{i-1}, \theta_{> b}^{i-1})}, 1\right\},$$

set
$$\theta_b^i = \vartheta_b$$
, otherwise set $\theta_b^i = \theta_b^{i-1}$.

- **1** Generate a sequence of random partitions $\{B^i\}_{i=1}^N$ of the parameter vector θ into N_{blocks} equally sized blocks, denoted by θ_b , $b = 1, \ldots, N_{blocks}$ as follows:
 - **1** assign an *iidU*[0, 1] draw to each element of θ ;
 - 2 sort the parameters according to the assigned random number;
 - **3** let the *b*'th block consists of parameters $(b-1)N_{blocks}, \ldots, bN_{blocks}$.
- 2 Execute Algorithm Block MH Algorithm.

¹If the number of parameters is not divisible by N_{blocks} , then the size of a subset of the blocks has to be adjusted.

Algorithm	Run Time	Acceptance	Tuning
	[hh:mm:ss]	Rate	Constants
1-Block RWMH-I	00:01:13	0.28	c = 0.015
1-Block RWMH-V	00:01:13	0.37	c = 0.400
3-Block RWMH-I	00:03:38	0.40	c = 0.070
3-Block RWMH-V	00:03:36	0.43	c = 1.200
3-Block MAL	00:54:12	0.43	$c_1 = 0.400, c_2 = 0.750$
3-Block Newton MH	03:01:40	0.53	$ar{s}=0.700, c_2=0.600$

Notes: In each run we generate N = 100,000 draws. We report the fastest run time and the average acceptance rate across $N_{run} = 50$ independent Markov chains. See book for MAL and Newton MH Algorithms.

Autocorrelation Function of τ^i

Notes: The autocorrelation functions are computed based on a single run of each algorithm.

Inefficiency Factor $InEff_N[\bar{\tau}]$

Notes: The small sample inefficiency factors are computed based on $N_{run} = 50$ independent runs of each algorithm.

iid-equivalent draws per second = $\frac{N}{\text{Run Time [seconds]}} \cdot \frac{1}{\text{InEff}_N}$.

- 3-Block MAL: 1.24
- 3-Block Newton MH: 0.13
- 3-Block RWMH-V: 5.65
- 1-Block RWMH-V: 7.76
- 3-Block RWMH-I: 0.14
- 1-Block RWMH-I: 0.04

Performance of Different MH Algorithms

Notes: Each panel contains scatter plots of the small sample variance $\mathbb{V}[\bar{\theta}]$ computed across multiple chains (x-axis) versus the HAC[\bar{h}] estimates of $\Omega(\theta)/N$ (y-axis).