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Statistical Inference

• Frequentist:
• pre-experimental perspective;
• condition on “true” but unknown θ0;
• treat data Y as random;
• study behavior of estimators and decision rules under repeated sampling.

• Bayesian:
• post-experimental perspective;
• condition on observed sample Y ;
• treat parameter θ as unknown and random;
• derive estimators and decision rules that minimize expected loss (averaging over θ)

conditional on observed Y .
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Bayesian Inference

• Ingredients of Bayesian Analysis:

• Likelihood function p(Y |θ)

• Prior density p(θ)

• Marginal data density p(Y ) =
∫
p(Y |θ)p(θ)dφ

• Bayes Theorem:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
∝ p(Y |θ)p(θ)

• Implementation: usually by generating a sequence of draws (not necessarily iid) from
posterior

θi ∼ p(θ|Y ), i = 1, . . . ,N

• Algorithms: direct sampling, accept/reject sampling, importance sampling, Markov chain
Monte Carlo sampling, sequential Monte Carlo sampling...
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Bayesian Inference

• We previously discussed the evaluation of the likelihood function: given a parameter θ

• solve the DSGE model to obtain the state-space representation;

• use the Kalman filter to evaluate the likelihood function.

• Let’s talk a bit about prior distributions.
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Prior Distributions

• Ideally: probabilistic representation of our knowledge/beliefs before observing sample Y .

• More realistically: choice of prior as well as model are influenced by some observations.
Try to keep influence small or adjust measures of uncertainty.

• Views about role of priors:

1 keep them “uninformative” (???) so that posterior inherits shape of likelihood function;

2 use them to regularize the likelihood function;

3 incorporate information from sources other than Y ;
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Prior Elicitation for DSGE Models

• Group parameters:

• steady-state related parameters

• parameters assoc with exogenous shocks

• parameters assoc with internal propagation

• Non-sample information p(θ|X 0):

• pre-sample information

• micro-level information

• To guide the prior for θ, you can ask: what are its implications for observables Y ?
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Prior Distribution

Name Domain Prior
Density Para (1) Para (2)

Steady-State-Related Parameters θ(ss)

100(1/β − 1) R+ Gamma 0.50 0.50
100 log π∗ R+ Gamma 1.00 0.50
100 log γ R Normal 0.75 0.50
λ R+ Gamma 0.20 0.20

Endogenous Propagation Parameters θ(endo)

ζp [0, 1] Beta 0.70 0.15
1/(1 + ν) R+ Gamma 1.50 0.75

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2) list the means and

the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support

for the Uniform distribution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The joint prior distribution of θ is truncated at the boundary of the determinacy region.
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Prior Distribution

Name Domain Prior
Density Para (1) Para (2)

Exogenous Shock Parameters θ(exo)

ρφ [0, 1) Uniform 0.00 1.00
ρλ [0, 1) Uniform 0.00 1.00
ρz [0, 1) Uniform 0.00 1.00
100σφ R+ InvGamma 2.00 4.00
100σλ R+ InvGamma 0.50 4.00
100σz R+ InvGamma 2.00 4.00
100σr R+ InvGamma 0.50 4.00

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2) list the means and

the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support

for the Uniform distribution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The joint prior distribution of θ is truncated at the boundary of the determinacy region.
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Draws from Posterior

• We will focus on Markov chain Monte Carlo (MCMC) algorithms that generate draws
{θi}Ni=1 from posterior distributions of parameters.

• Draws can then be transformed into objects of interest, h(θi ), and under suitable
conditions a Monte Carlo average of the form

h̄N =
1

N

N∑
i=1

h(θi ) ≈ Eπ[h] =

∫
h(θ)p(θ|Y )dθ.

• Strong law of large numbers (SLLN), central limit theorem (CLT)...
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Markov Chain Monte Carlo (MCMC)

• Main idea: create a sequence of serially correlated draws such that the distribution of θi

converges to the posterior distribution p(θ|Y ).
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Generic Metropolis-Hastings Algorithm

For i = 1 to N:

1 Draw ϑ from a density q(ϑ|θi−1).

2 Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p(Y |θi−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise.

Recall p(θ|Y ) ∝ p(Y |θ)p(θ).

We draw θi conditional on a parameter draw θi−1: leads to Markov transition kernel K (θ|θ̃).
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Benchmark Random-Walk Metropolis-Hastings (RWMH) Algorithm for
DSGE Models

• Initialization:

1 Use a numerical optimization routine to maximize the log posterior, which up to a constant
is given by ln p(Y |θ) + ln p(θ). Denote the posterior mode by θ̂.

2 Let Σ̂ be the inverse of the (negative) Hessian computed at the posterior mode θ̂, which can
be computed numerically.

3 Draw θ0 from N(θ̂, c2
0 Σ̂) or directly specify a starting value.

• Main Algorithm – For i = 1, . . . ,N:

1 Draw ϑ from the proposal distribution N(θi−1, c2Σ̂).
2 Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p(Y |ϑ)p(ϑ)

p(Y |θi−1)p(θi−1)

}
and θi = θi−1 otherwise.
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Benchmark RWMH Algorithm for DSGE Models

• Initialization steps can be modified as needed for particular application.

• If numerical optimization does not work well, one could let Σ̂ be a diagonal matrix with
prior variances on the diagonal.

• Or, Σ̂ could be based on a preliminary run of a posterior sampler.

• It is good practice to run multiple chains based on different starting values.

Frank Schorfheide Bayesian Inference



Numerical Illustration

• Generate a single sample of size T = 80 from the stylized DSGE model.

• Combine likelihood and prior to form posterior.

• Draws from this posterior distribution are generated using the RWMH algorithm.

• Chain is initialized with a draw from the prior distribution.

• The covariance matrix Σ̂ is based on the negative inverse Hessian at the mode. The
scaling constant c is set equal to 0.075, which leads to an acceptance rate for proposed
draws of 0.55.
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Parameter Draws from MH Algorithm

ζ ip Draws σi
φ Draws

Notes: The posterior is based on a simulated sample of observations of size T = 80. The top panel shows the

sequence of parameter draws and the bottom panel shows recursive means.
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Parameter Draws from MH Algorithm

Recursive Mean 1
N−N0

∑N
i=N0+1 ζ

i
p Recursive Mean 1

N−N0

∑N
i=N0+1 σ

i
φ

Notes: The posterior is based on a simulated sample of observations of size T = 80. The top panel shows the

sequence of parameter draws and the bottom panel shows recursive means.
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Prior and Posterior Densities

Posterior ζp Posterior σφ

Notes: The dashed lines represent the prior densities, whereas the solid lines correspond to the posterior

densities of ζp and σφ. The posterior is based on a simulated sample of observations of size T = 80. We

generate N = 37, 500 draws from the posterior and drop the first N0 = 7, 500 draws.

Frank Schorfheide Bayesian Inference



Why Does it Work?

• Algorithm generates a Markov transition kernel K (θ|θ̃): it takes a draw θi−1 and uses
some randomization to turn it into a draw θi .

• Important invariance property: if θi−1 is from posterior p(θ|Y ), then θi ’s distribution will
also be p(θ|Y ).

• Contraction property: if θi−1 is from some distribution πi−1(θ), then the discrepancy
between the “true” posterior and

πi (θ) =

∫
K (θ|θ̃)πi−1(θ̃)d θ̃

is smaller than the discrepancy between πi−1(θ) and p(θ|Y ).
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The Invariance Property

• It can be shown that

p(θ|Y ) =

∫
K (θ|θ̃)p(θ̃|Y )d θ̃.

• Write

K (θ|θ̃) = u(θ|θ̃) + r(θ̃)δθ̃(θ).

• u(θ|θ̃) is the density kernel (note that u(θ|·) does not integrated to one) for accepted
draws:

u(θ|θ̃) = α(θ|θ̃)q(θ|θ̃).

• Rejection probability:

r(θ̃) =

∫ [
1− α(θ|θ̃)

]
q(θ|θ̃)dθ = 1−

∫
u(θ|θ̃)dθ.
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The Invariance Property

• Reversibility: Conditional on the sampler not rejecting the proposed draw, the density
associated with a transition from θ̃ to θ is identical to the density associated with a
transition from θ to θ̃:

p(θ̃|Y )u(θ|θ̃) = p(θ̃|Y )q(θ|θ̃) min

{
1,

p(θ|Y )/q(θ|θ̃)

p(θ̃|Y )/q(θ̃|θ)

}
= min

{
p(θ̃|Y )q(θ|θ̃), p(θ|Y )q(θ̃|θ)

}
= p(θ|Y )q(θ̃|θ) min

{
p(θ̃|Y )/q(θ̃|θ)

p(θ|Y )/q(θ|θ̃)
, 1

}
= p(θ|Y )u(θ̃|θ).

• Using the reversibility result, we can now verify the invariance property:∫
K (θ|θ̃)p(θ̃|Y )d θ̃ =

∫
u(θ|θ̃)p(θ̃|Y )d θ̃ +

∫
r(θ̃)δθ̃(θ)p(θ̃|Y )d θ̃

=

∫
u(θ̃|θ)p(θ|Y )d θ̃ + r(θ)p(θ|Y )

= p(θ|Y )
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A Discrete Example

• Suppose parameter vector θ is scalar and takes only two values:

Θ = {τ1, τ2}

• The posterior distribution p(θ|Y ) can be represented by a set of probabilities collected in
the vector π, say π = [π1, π2] with π2 > π1.

• Suppose we obtain ϑ based on transition matrix Q:

Q =

[
q (1− q)

(1− q) q

]
.
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Example: Discrete MH Algorithm

• Iteration i : suppose that θi−1 = τj . Based on transition matrix

Q =

[
q (1− q)

(1− q) q

]
,

determine a proposed state ϑ = τs .

• With probability α(τs |τj) the proposed state is accepted. Set θi = ϑ = τs .

• With probability 1− α(τs |τj) stay in old state and set θi = θi−1 = τj .

• Choose (Q terms cancel because of symmetry)

α(τs |τj) = min

{
1,
πs
πj

}
.
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Example: Transition Matrix

• The resulting chain’s transition matrix is:

K =

[
q (1− q)

(1− q)π1

π2
q + (1− q)

(
1− π1

π2

) ]
.

• Straightforward calculations reveal that the transition matrix K has eigenvalues:

λ1(K ) = 1, λ2(K ) = q − (1− q)
π1

1− π1
.

• Equilibrium distribution is eigenvector associated with unit eigenvalue.

• For q ∈ [0, 1) the equilibrium distribution is unique.
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Example: Convergence

• The persistence of the Markov chain depends on second eigenvalue, which depends on the
proposal distribution Q.

• Define the transformed parameter

ξi =
θi − τ1

τ2 − τ1
.

• We can represent the Markov chain associated with ξi as first-order autoregressive process

ξi = (1− k22) + λ2(K )ξi−1 + ν i .

• Conditional on ξi = j , j = 0, 1, the innovation ν i has support on kjj and (1− kjj), its
conditional mean is equal to zero, and its conditional variance is equal to kjj(1− kjj).
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Example: Convergence

• Autocovariance function of h(θi ):

COV (h(θi ), h(θ(i−l)))

=
(
h(τ2)− h(τ1)

)2
π1(1− π1)

(
q − (1− q)

π1

1− π1

)l

= Vπ[h]

(
q − (1− q)

π1

1− π1

)l

• If q = π1 then the autocovariances are equal to zero and the draws h(θi ) are serially
uncorrelated (in fact, in our simple discrete setting they are also independent).
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Example: Convergence

• Define the Monte Carlo estimate

h̄N =
1

N

N∑
i=1

h(θi ).

• Deduce from CLT
√
N(h̄N − Eπ[h]) =⇒ N

(
0,Ω(h)

)
,

where Ω(h) is the long-run covariance matrix

Ω(h) = lim
L−→∞

Vπ[h]

(
1 + 2

L∑
l=1

L− l

L

(
q − (1− q)

π1

1− π1

)l
)
.

• In turn, the asymptotic inefficiency factor is given by

InEff∞ =
Ω(h)

Vπ[h]
= 1 + 2 lim

L−→∞

L∑
l=1

L− l

L

(
q − (1− q)

π1

1− π1

)l

.
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Example: Autocorrelation Function of θi , π1 = 0.2

0 1 2 3 4 5 6 7 8 9
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Example: Asymptotic Inefficiency InEff∞, π1 = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
q

10−1

100

101

102
π1 = 0.2
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Example: Small Sample Variance V[h̄N ] versus HAC Estimates of Ω(h)

10−4 10−3 10−210−5

10−4

10−3

10−2

10−1
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Benchmark Random-Walk Metropolis-Hastings (RWMH) Algorithm for
DSGE Models

• Initialization:

1 Use a numerical optimization routine to maximize the log posterior, which up to a constant
is given by ln p(Y |θ) + ln p(θ). Denote the posterior mode by θ̂.

2 Let Σ̂ be the inverse of the (negative) Hessian computed at the posterior mode θ̂, which can
be computed numerically.

3 Draw θ0 from N(θ̂, c2
0 Σ̂) or directly specify a starting value.

• Main Algorithm – For i = 1, . . . ,N:

1 Draw ϑ from the proposal distribution N(θi−1, c2Σ̂).
2 Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p(Y |ϑ)p(ϑ)

p(Y |θi−1)p(θi−1)

}
and θi = θi−1 otherwise.
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Observables for Small-Scale New Keynesian Model
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Notes: Output growth per capita is measured in quarter-on-quarter (Q-o-Q) percentages.
Inflation is CPI inflation in annualized Q-o-Q percentages. Federal funds rate is the average
annualized effective funds rate for each quarter.
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Convergence of Monte Carlo Average τ̄N|N0
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Posterior Estimates of DSGE Model Parameters

Parameter Mean [0.05, 0.95] Parameter Mean [0.05,0.95]
τ 2.83 [ 1.95, 3.82] ρr 0.77 [ 0.71, 0.82]
κ 0.78 [ 0.51, 0.98] ρg 0.98 [ 0.96, 1.00]
ψ1 1.80 [ 1.43, 2.20] ρz 0.88 [ 0.84, 0.92]
ψ2 0.63 [ 0.23, 1.21] σr 0.22 [ 0.18, 0.26]
r (A) 0.42 [ 0.04, 0.95] σg 0.71 [ 0.61, 0.84]
π(A) 3.30 [ 2.78, 3.80] σz 0.31 [ 0.26, 0.36]
γ(Q) 0.52 [ 0.28, 0.74]

Notes: We generated N = 100, 000 draws from the posterior and discarded the first 50,000
draws. Based on the remaining draws we approximated the posterior mean and the 5th and
95th percentiles.
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DSGE Model Estimation: Effect of Scaling Constant c
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Notes: Results are based on Nrun = 50 independent Markov chains. The acceptance rate
(average across multiple chains), HAC-based estimate of InEff∞[τ̄ ] (average across multiple
chains), and InEffN [τ̄ ] are shown as a function of the scaling constant c .
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DSGE Model Estimation: Acceptance Rate α̂ versus Inaccuracy InEffN
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Notes: InEffN [τ̄ ] versus the acceptance rate α̂.
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What Can We Do With Our Posterior Draws?

• Store them on our harddrive!

• Convert them into objects of interest:

• impulse response functions;

• government spending multipliers;

• welfare effects of target inflation rate changes;

• forecasts;

• (...)
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Parameter Transformations: Impulse Responses
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Notes: The figure depicts pointwise posterior means and 90% credible bands. The responses of
output are in percent relative to the initial level, whereas the responses of inflation and interest
rates are in annualized percentages.
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Bayesian Inference – Decision Making

• The posterior expected loss of decision δ(·):

ρ
(
δ(·)|Y

)
=

∫
Θ

L
(
θ, δ(Y )

)
p(θ|Y )dθ.

• Bayes decision minimizes the posterior expected loss:

δ∗(Y ) = argmind ρ
(
δ(·)|Y

)
.

• Approximate ρ
(
δ(·)|Y

)
by a Monte Carlo average

ρ̄N
(
δ(·)|Y

)
=

1

N

N∑
i=1

L
(
θi , δ(·)

)
.

• Then compute

δ∗N(Y ) = argmind ρ̄N
(
δ(·)|Y

)
.
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Computation of Marginal Data Densities: Modified Harmonic Mean

• Consider the following identity:

1

p(Y )
=

∫
f (θ)

p(Y |θ)p(θ)
p(θ|Y )dθ,

where
∫
f (θ)dθ = 1.

• Conditional on the choice of f (θ) an obvious estimator is

p̂G (Y ) =

[
1

N

N∑
i=1

f (θi )

p(Y |θi )p(θi )

]−1

,

where θi is drawn from the posterior p(θ|Y ).

• Geweke (1999):

f (θ) = τ−1(2π)−d/2|Vθ|−1/2 exp
[
−0.5(θ − θ̄)′V−1

θ (θ − θ̄)
]

×
{

(θ − θ̄)′V−1
θ (θ − θ̄) ≤ F−1

χ2
d

(τ)
}
.
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Challenges Due to Irregular Posteriors

• A stylized state-space model:

yt = [1 1]st , st =

[
φ1 0
φ3 φ2

]
st−1 +

[
1
0

]
εt , εt ∼ iidN(0, 1).

where

• Structural parameters θ = [θ1, θ2]′, domain is unit square.

• Reduced-form parameters φ = [φ1, φ2, φ3]′

φ1 = θ2
1, φ2 = (1− θ2

1), φ3 − φ2 = −θ1θ2.
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Challenges Due to Irregular Posteriors

• s1,t looks like an exogenous technology process.

• s2,t evolves like an endogenous state variable, e.g., the capital stock.

• θ2 is not identifiable if θ1 = 0 because θ2 enters the model only multiplicatively.

• Law of motion of yt is restricted ARMA(2,1) process:(
1− θ2

1L
)(

1− (1− θ2
1)L
)
yt =

(
1− θ1θ2L

)
εt .

• Given θ1 and θ2, we obtain an observationally equivalent process by switching the values
of the two roots of the autoregressive lag polynomial.

• Choose θ̃1 and θ̃2 such that

θ̃1 =
√

1− θ2
1, θ̃2 = θ1θ2/θ̃1.
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Posteriors for Stylized State-Space Model

Local Identification Problem Global Identification Problem
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Notes: Intersections of the solid lines indicate parameter values that were used to generate the
data from which the posteriors are constructed. Left panel: θ1 = 0.1 and θ2 = 0.5. Right
panel: θ1 = 0.8, θ2 = 0.3.
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Improvements to MCMC: Blocking

• In high-dimensional parameter spaces the RWMH algorithm generates highly persistent
Markov chains.

• What’s bad about persistence?√
N(h̄N − E[h̄N ])

=⇒ N

(
0,

1

N

n∑
i=1

V[h(θi )] +
1

N

N∑
i=1

∑
j 6=i

COV
[
h(θi ), h(θj)

])
.

• Potential Remedy:
• Partition θ = [θ1, . . . , θK ].
• Iterate over conditional posteriors p(θk |Y , θ<−k>).

• To reduce persistence of the chain, try to find partitions such that parameters are strongly
correlated within blocks and weakly correlated across blocks or use random blocking.
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Improvements to MCMC: Blocking

• Chib and Ramamurthy (2010, JoE):
• Use randomized partitions
• Use simulated annealing to find mode of p(θk |Y , θ<−k>). Then construct Hessian to obtain

covariance matrix for proposal density.

• Herbst (2011, Penn Dissertation):
• Utilize analytical derivatives
• Use information in Hessian (evaluated at an earlier parameter draw) to construct parameter

blocks. For non-elliptical distribution partitions change as sampler moves through parameter
space.

• Use Gauss-Newton step to construct proposal densities
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Block MH Algorithm

Draw θ0 ∈ Θ and then for i = 1 to N:

1 Create a partition B i of the parameter vector into Nblocks blocks θ1, . . . , θNblocks
via some

rule (perhaps probabilistic), unrelated to the current state of the Markov chain.

2 For b = 1, . . . ,Nblocks :

1 Draw ϑb ∼ q(·|
[
θi<b, θ

i−1
b , θi−1

≥b

]
).

2 With probability,

α = max

{
p(
[
θi<b, ϑb, θ

i−1
>b

]
|Y )q(θi−1

b , |θi<b, ϑb, θ
i−1
>b )

p(θi<b, θ
i−1
b , θi−1

>b |Y )q(ϑb|θi<b, θ
i−1
b , θi−1

>b )
, 1

}
,

set θib = ϑb, otherwise set θib = θi−1
b .
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Random-Block MH Algorithm

1 Generate a sequence of random partitions {B i}Ni=1 of the parameter vector θ into Nblocks

equally sized blocks, denoted by θb, b = 1, . . . ,Nblocks as follows:

1 assign an iidU[0, 1] draw to each element of θ;
2 sort the parameters according to the assigned random number;
3 let the b’th block consists of parameters (b − 1)Nblocks , . . . , bNblocks .

1

2 Execute Algorithm Block MH Algorithm.

1If the number of parameters is not divisible by Nblocks , then the size of a subset of the blocks has to be
adjusted.
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Run Times and Tuning Constants for MH Algorithms

Algorithm Run Time Acceptance Tuning
[hh:mm:ss] Rate Constants

1-Block RWMH-I 00:01:13 0.28 c = 0.015
1-Block RWMH-V 00:01:13 0.37 c = 0.400
3-Block RWMH-I 00:03:38 0.40 c = 0.070
3-Block RWMH-V 00:03:36 0.43 c = 1.200
3-Block MAL 00:54:12 0.43 c1 = 0.400, c2 = 0.750
3-Block Newton MH 03:01:40 0.53 s̄ = 0.700, c2 = 0.600

Notes: In each run we generate N = 100, 000 draws. We report the fastest run time and the
average acceptance rate across Nrun = 50 independent Markov chains.
See book for MAL and Newton MH Algorithms.
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Autocorrelation Function of τ i
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Notes: The autocorrelation functions are computed based on a single run of each algorithm.
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Inefficiency Factor InEffN [τ̄ ]
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Notes: The small sample inefficiency factors are computed based on Nrun = 50 independent
runs of each algorithm.
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IID Equivalent Draws Per Second

iid-equivalent draws per second =
N

Run Time [seconds]
· 1

InEffN
.

• 3-Block MAL: 1.24

• 3-Block Newton MH: 0.13

• 3-Block RWMH-V: 5.65

• 1-Block RWMH-V: 7.76

• 3-Block RWMH-I: 0.14

• 1-Block RWMH-I: 0.04
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Performance of Different MH Algorithms

RWMH-V (1 Block) RWMH-V (3 Blocks)
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Notes: Each panel contains scatter plots of the small sample variance V[θ̄] computed across
multiple chains (x-axis) versus the HAC[h̄] estimates of Ω(θ)/N (y -axis).
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