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Extension 1: Alternative Priors

e Giannone, Lenza, Primiceri (2018): “Priors for the Long-Run,” Journal of American
Statistical Association, forthcoming.

e Estimation is typically based on conditional likelihood functions that ignore the likelihood
of the initial observations.

o Example:
t—2 t—2
e=ct oy tu=0"yi+cd ¢+ Pup
s=0 s=0
DG, S5G
o Write
DC, — yi+(t—1)c ifop=1
£ 1f¢ + (bt_l(yl - 1f¢) If‘(bl <1

e Deterministic component may absorb too much low frequency variation of the time series.
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FIGURE 2.1. Deterministic component for selected variables implied by various 7-
variable VARs. Flat: BVAR with a flat prior; MN: BVAR with the Minnesota prior;
PLR: BVAR with the prior for the long run.



Extension 1: Alternative Priors — The Basic Idea

e Write VAR in VECM form:

p—1
Ay, = Mo +Tye—1 + Z M;Ay:—j + u;

=1
where N, = af’.
e Reasonable prior for columns of « will depend on the rows of 3’:

e if i"th row of 8’ corresponds to a linear combination that is stationary, then it makes sense
to choose a prior for i'th column of o with mass away form zero.

e if i"th row of 3’ corresponds to a linear combination that is non-stationary, then it makes
sense to choose a prior for i"th column of o with mass away form zero.

e See paper for details on how to implement this.

Frank Schorfheide Gibbs Sampling with VAR Applications



0.014 0.02
0012

001 0.015
0,008

& 0.01
= 0.006

0.004 0.005

0.002

Y |
02 +C+ 0.002

10,0015

0.001

MSFE

0.0005

[ 10 20 30 40 0 10 20 30 40 0 10 2 30 40
Quarters ahead Quarters ahead Quarters ahead
* Flat MN — — SZ — = DIFF VECM F‘LH‘

FIGURE 5.1. Mean squared forecast errors in models with three variables. Flat: BVAR,
with a flat prior; MN: BVAR with the Minnesota prior; SZ: BVAR with the Minnesota
and sum-of-coefficient priors; DIFF: VAR with variables in first differences; VECM: vector
error-correction model that imposes the existence of a common stochastic trend for Y, C
and I, without any additional prior information; PLR: BVAR with the Minnesota prior
and the prior for the long run.



Extension 2: Sparse versus Dense Models

e Giannone, Lenza, Primiceri (2018): “Economic Prediction With Big Data: The lllusion of
Sparsity,” Manuscript, FRB New York, ECB, and Northwestern University.

e Sparse models: only a few predictors are relevant.
e Dense models: many predictors are relevant but only have small individual effects.
o Model:

Ve = X(0+ 210 + ue.

Here x;'s are included in all specifications (low dimensional), z;'s are optional (high
dimensional).

e Prior — part 1:

1
p(c?) pex ¢ x c.
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Extension 2: Sparse versus Dense Models

e Prior — part 2: “spike and slab”

N(0,024?) with prob. g
N2 A2 ) )
Bil(e*, 7%, q) { 0 with prob. 1 — g

For g = 1 we obtain our “standard” prior ( “Ridge Regression”)

Rewrite prior as

Bil(o%, 7%, vi) ~ N(0,0%4%, 1), v; ~ Bernoulli(q).

By changing the mixing distribution, we can generate a wide variety of priors, including a
Bayesian version of LASSO.
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Extension 2: Sparse versus Dense Models

In problems of this form it is often good to standardize and orthogonalize the regressors x;
prior to the estimation.

To specify a prior on the hyperparameters (q,~?) they suggest to define

k252
R2(~2. ) = 1 z
(7", 9) k2o 4 1

2

where k is the number of regressors z and 77

is the average sample variance of the z;'s.
e The prior takes the form

q ~ Beta(a, b), R’ ~ Beta(A,B).

The paper works out the posterior.
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TABLE 1.

Description of the datasets.

Dependent variable

Possible predictors

Sample

Macro 1| Monthly growth rate of | 130 lagged macroeconomic 659 monthly time-series
US industrial indicators observations, from
production February 1960 to

December 2014

Macro 2 | Average growth rate of | 60 socio-economic, institutional | 90 cross-sectional country
GDP over the sample | and geographical observations
1960-1985 characteristics, measured at

pre-60s value

Finance 1 | US equity premium 16 lagged financial and 58 annual time-series

(S&P 500) macroeconomic indicators observations, from 1948 to
2015

Finance 2 | Stock returns of US 144 dummies classifying stock | 1400k panel observations

firms as very low, low, high or very | for an average of 2250
high in terms of 36 lagged stocks over a span of 624
characteristics months, from July 1963 to

June 2015
Micro 1 | Per-capita crime Effective abortion rate and 284 | 576 panel observations for
(murder) rates controls including possible 48 US states over a span
covariate of crime and their of 144 months, from
transformations January 1986 to
December 1997
Micro 2 | Number of pro-plaintiff | Characteristics of judicial 312 panel circuit,/year

eminent domain
decisions in a specific
circuit and in a specific

year

panels capturing aspects

related to gender, race, religion,
political affiliation, education
and professional history of the

judges, together with some

interactions among the latter,
for a total of 138 regressors

observations, from 1975 to
2008
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Extension 3: Time-Varying Coefficients

e Most Common Versions of TVP Models

e Parameters follow AR law of motion.

e Parameters follow regime switching process

e Even though this is a lecture about VARs, we focus mostly on univariate models to discuss
the key ideas.
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From Constant Coefficients to Time-Varying Coefficients

e We previously considered constant-coefficient autoregressive models.
e For instance, a simple model for inflation could be

* ~ ~ ~
My =T + T, Tp = PTt—1 1+ Oc€t

e where

e 7" is steady state or target inflation;

e 7, captures fluctuations around the target
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Is a Constant 7* Plausible?
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Let's Introduce Time-Variation into Inflation Target

o Inflation evolves according to:
| =
Ty = Ty + Tt
where
~ ~ * *
Tt = PTt—1 + Oc€t, Ty =T 1+ Oplt.

e This looks like a state-space model:
ve = [1 1]s

. m | |10 op, O Nt
= [ﬁt}_[o p]st_1+[0 O € |
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Parameter Estimation

e Suppose that all the non-redundant parameters of the state space model are collected in
the vector 6.

e Construct a Gibbs sampler that iterates over parameters and states S;.7:
p(S1.7|Y1.T,0) o p(S1.7(|0)p(Y1.7|S1:T,0)
p(0|Yi.T,S17) o p(0)p(S1:710)p(Y1.7|S1:7,0)
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Estimation: Gibbs-Sampling Algorithm

Generate draws from p(6, S1.7|Y1.7) using Carter and Kohn (1994)'s approach.

Gibbs-sampling algorithm iterates over the conditional posteriors of 6 and S;.7.

Recall the linear Gaussian state space representation

yt:A+Bst+ut, UtNN(O7H)
St = (Dstfl + et; €t ~ N(07 Q)

with 0 = (A, B, H, ®, Q)
Fori=1,..., nsim
(a) Draw 0Y) from p (0 | ler,Sl(:";l))
e Conditional on Sg;l), drawing 6 is a standard linear regression

e (Measurement) y; = A+ Bs; + ut
o (Transition) st = ®s;_1 + et

(b) Draw Sf')T from p (51;7 | ler,(i("))

e Kalman / simulation smoother
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Drawing the States: Carter and Kohn (1994)

e How can we draw S;.7 from the conditional posterior p(Sy.7|Y1.7,60)?

e It turns out that we can draw the states sequentially, starting from st|Y1.7, which is
obtained in the T'th iteration of the filter.

e We then continue with

p(5t|5t+1:T7 Yl:T) X P(5t7 St+1:T7 Yl:T)
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Drawing the States: Carter and Kohn (1994)

Consider the following factorization

p(se, Sev1:1, Y1.7)
= /P(51:T,Y1:T)d51:t—1

= /P(51;t, Yiit) - [P(5t+1|5t)l3()’t+1|5t+1)} : [P(5t+2\5t+1)P(Yt+2|5r+2)}

. [p(st|sT—1)p(yr|sT)] dS1:e-1
= p(st, Yit) - [p(st+1|st)p(yt+1|st+1)] - terms without s;.

We deduce

o p(st, Yi:e)p(se+1]5t)
o p(st;Se+1, Y1it)
p(5t|st+1a Yl:t)

p(5t|5t+1:T7 Yl:T)
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Drawing the States: Carter and Kohn (1994)

e \We now can write

T-1
p(S1:7|Y1T) p(stIYar) [] p(stlses, Yar)

t=1
T-1

= P(5T|Y1 T H p 5t|5t+17 Y. t)

e where p(5t|5t+17 Yi. t) X P(St‘ Yl:t) (5t+1|5t)
e Draw SE) ~ p(st | st(+)1, Yir)fort=T,..., 1.
(a) Run the Kalman filter to get {5, Pt|t}tT:1 where s Yi.e ~ N(8y¢, Pyje);
(b) Draw s ~ N(37i7, Pri7);
(c) Fort=T-1,..,1,
SEi) ~ N (gt\t+17 Pt\t+1)
where
5t|t+l = St\t + Pt\t‘1> Pt+1|t( t+1 ¢5t\t)

Pt|t+1 = Pt\t Pt|t¢ Pt+1\t¢Pt|t
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Generalizations

Multivariate instead of univariate framework;

e Time-varying slope coefficients;
e Time-varying shock variances.

Some references:
o Cogley and Sargent (2002, NBER Macro Annual)
e Cogley and Sargent (2005, RED)
e Primiceri (2005, REStud)
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A TVP VAR with Stochastic Volatility

e Reduced-form VAR:
Ye=®ye1+... + q>pyt—p + &+ .

o We defined x; = [y{_1,---,Yi—p, 1] and ® = [®y,... &), & ]".
o Let X; =1, ® x; and ¢ = vec(®P). Write the VAR as

Ye = X{be + ur. (1)
e Parameters evolve according to the random walk process:

Ot = P11+ v, v~ iidN(0, Q). (2)

Q is diagonal; v; and u; are uncorrelated.
VAR innovations:

Uy ~ N(O7 Zt)a zt = B_lHt(B_l)/. (3)

B is a lower-triangular matrix with ones on the diagonal; H; is a diagonal matrix with
elements h?,:

Inhie=Inhie 1 +nie, 7~ iildN(O,0?). (4)
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A Gibbs Sampler

;

(1) and (2) provide a state-space representation for y;. Thus, ¢1 1 can be sampled using
the algorithm developed by Carter and Kohn.

° ¢§S)T conditional on (B(s_l), Hf;l)7 QLY 0?71) e 02571)7 Y).

e B() conditional on (gbgs)T, H{f?l), Q1 gl ol ).

Conditional on the VAR parameters ¢, the innovations to equation (1) are known.
According to (3) Bu; is normally distributed with variance H;, or:

Bu; = Her, (5)

where ¢; is a vector of standard normals.
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A Gibbs Sampler

o HfS)T conditional on (¢(1S)T, B(), Q(s_l),agsfl) oY, Y).
Conditional on ¢ and B we can write the i/'th equation of (5) as
zj+ = Bjyur ~ N(O, h%t). (see literature on stochastic volatility models...)

o Q) conditional on (¢{7, B®), H), o™V ..ol v),
Use appropriate Inverted Wishart distribution derived from (2).

o ags) ... oS conditional on (¢55)T, B(), HS)T, Q¥ Y).
Use appropriate Inverted Gamma distributions derived from (4).
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Back To Our Inflation Series
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A Simple Markov Switching Model

e Suppose
Yt = Qg + a1s: + €t € ”dN(O, 1)7

where s; € {0,1} evolves according to a Markov-switching process with transition
probabilities goo (from 0 to 0) and gy1 (from 1 to 1).

e Priors:
Qo N(Q’Ma)

p(qoos g11) < g5 (1 — qoo)™ tagr N1 — qu) !

e Joint:

p(Yi.7, 5171, ,q) = p(Yi.7|S1:7,0)p(51:7|9) p(q) p()
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Gibbs Sampler

e S1.7/(g, @, Yi.7): use a smoother tailored toward MS models.

e «|(q, S1.7, Y1.7): regression on split sample

Yi = Qo + € if St = 0
v = agtarte ifsg=1
e qg|(c, S1.7, Y1.7): count state transitions ngg, nos, - - .; (ignoring initialization of Markov

process) posterior for g has Beta distribution

noo+ap—1

plalr) o B0 (1 — qoo) gt (1 — gy,

q 1—qn
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Generalization: Markov-Switching VARs

o We add regime-switching to the coefficients of the reduced form VAR:
yi = x®(st) + up,  up ~ iidN(0, X(s;)) (6)
e Here s; is a discrete M-state Markov process with time-invariant transition probabilities
Gm=Plss=m|si_1=1], I,me {1,..., M}

e Suppose that M = 2 and all elements of ®(s;) and X(s;) switch simultaneously, without
any restrictions. Denote the values of the VAR parameter matrices in state s, = / by ®(/)
and X(/), I =1,2, respectively. Specify MNIW priors for (®(/), X(/)) and Beta priors for
g11 and g2
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Gibbs Sampler

Fori=1,..., nsm:

® Draw (00)(/), £ (1)) conditional on (5](_’;'1)7 Q§’1_1), qu—l)’ Y). Let 7; be a set that
contains the time periods when s; =/, I'= 1,2. Under a conjugate prior, the posterior of
®(/) and X(/) is MNIW, obtained from the regression y; = x;®(/) + v, uy ~ N(0,X(/)),
te 7.

® Draw s\ conditional on (¢ (1), =M (1), ¢, ¢80, Y) usin th

LT , JG11 Gy s g a smoother.

© Draw q\? and q{) conditional on (¢()(s), £()(s),s!")., ¥) from the appropriate Beta

distribution. O 7
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In macroeconomic applications, vector autoregressions (VARs) are typically estimated either
exclusively based on

e quarterly observations
== large set of macroeconomic series is available

e monthly information
= VAR is able to track the economy more closely in real time
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State-Space Representation of MF-VAR

e State-Transition Equation
e Economy evolves at monthly frequency according to the following VAR(p) dynamics:
Xt = Pixe—1+ ...+ Ppxe—p + P+ ur, U~ iidN(O7 Z) (™
e Partition: x{ = [Xp, ¢, X0 ¢)
o Measurement Equation

e Actual observations are denoted by y; and subscript indicates the observation frequency

Ymt =  Xmt (8)
1 . . .
Yg,r = g(xq,t + Xq,t—1 + Xq,t—2) if observed in period t
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Bayesian Inference

e Minnesota Prior (Sims and Zha, 1998 IER) for (¢, X) indexed by hyperparameter vector A

e Gibbs Sampler along the lines of Carter and Kohn (1994)
e Draw latent states (Kalman Smoother)
X0 [ (@979, 597Y, vir)
e Draw VAR parameters (Direct Sampling from MNIW)

(@9, 59 | (X, vi.7r)

forj=1,...; nsim

e Implementation issues:

e Reduce dimension of state-space by removing observed states xpm
e Adjustments for ragged edge at the end of estimation sample
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