# Gibbs Sampling with VAR Applications

Frank Schorfheide

University of Pennsylvania

Econ 722 – Part 1

February 7, 2019

## **Extension 1:** Alternative Priors

- Giannone, Lenza, Primiceri (2018): "Priors for the Long-Run," *Journal of American Statistical Association*, forthcoming.
- Estimation is typically based on conditional likelihood functions that ignore the likelihood of the initial observations.
- Example:

$$y_{t} = c + \phi y_{t-1} + u_{t} = \underbrace{\phi^{t-1}y_{1} + c \sum_{s=0}^{t-2} \phi^{s}}_{DC_{t}} + \underbrace{\sum_{s=0}^{t-2} \phi^{s}u_{t-j}}_{SC_{t}}$$

Write

$$DC_t = \begin{cases} y_1 + (t-1)c & \text{if } \phi = 1\\ \frac{c}{1-\phi} + \phi^{t-1}(y_1 - \frac{c}{1-\phi}) & \text{if}|\phi| < 1 \end{cases}$$

• Deterministic component may absorb too much low frequency variation of the time series.



FIGURE 2.1. Deterministic component for selected variables implied by various 7variable VARs. Flat: BVAR with a flat prior; MN: BVAR with the Minnesota prior; PLR: BVAR with the prior for the long run.

#### Extension 1: Alternative Priors - The Basic Idea

• Write VAR in VECM form:

$$\Delta y_t = \Pi_0 + \Pi_* y_{t-1} + \sum_{j=1}^{p-1} \Pi_j \Delta y_{t-j} + u_t$$

where  $\Pi_* = \alpha \beta'$ .

- Reasonable prior for columns of  $\alpha$  will depend on the rows of  $\beta'$ :
  - if *i*'th row of  $\beta'$  corresponds to a linear combination that is stationary, then it makes sense to choose a prior for *i*'th column of  $\alpha$  with mass away form zero.
  - if *i*'th row of  $\beta'$  corresponds to a linear combination that is non-stationary, then it makes sense to choose a prior for *i*'th column of  $\alpha$  with mass away form zero.
- See paper for details on how to implement this.



FIGURE 5.1. Mean squared forecast errors in models with three variables. Flat: BVAR with a flat prior; MN: BVAR with the Minnesota prior; SZ: BVAR with the Minnesota and sum-of-coefficient priors; DIFF: VAR with variables in first differences; VECM: vector error-correction model that imposes the existence of a common stochastic trend for Y, C and I, without any additional prior information; PLR: BVAR with the Minnesota prior and the prior for the long run.

### Extension 2: Sparse versus Dense Models

- Giannone, Lenza, Primiceri (2018): "Economic Prediction With Big Data: The Illusion of Sparsity," *Manuscript*, FRB New York, ECB, and Northwestern University.
- Sparse models: only a few predictors are relevant.
- Dense models: many predictors are relevant but only have small individual effects.
- Model:

$$y_t = x_t'\phi + z_t'\beta + u_t.$$

Here  $x_t$ 's are included in all specifications (low dimensional),  $z_t$ 's are optional (high dimensional).

• Prior – part 1:

$$p(\sigma^2) \propto rac{1}{\sigma^2}, \quad \phi \propto c.$$

### Extension 2: Sparse versus Dense Models

• Prior - part 2: "spike and slab"

$$eta_i|(\sigma^2,\gamma^2,q)\sim \left\{egin{array}{cc} {\sf N}(0,\sigma^2\gamma^2) & {
m with \ prob.} \ q \ 0 & {
m with \ prob.} \ 1-q \end{array}
ight.$$

- For q = 1 we obtain our "standard" prior ("Ridge Regression")
- Rewrite prior as

 $\beta_i | (\sigma^2, \gamma^2, \nu_i) \sim N(0, \sigma^2 \gamma^2, \nu_i), \quad \nu_i \sim \text{Bernoulli}(q).$ 

• By changing the mixing distribution, we can generate a wide variety of priors, including a Bayesian version of LASSO.

### Extension 2: Sparse versus Dense Models

- In problems of this form it is often good to standardize and orthogonalize the regressors x<sub>t</sub> prior to the estimation.
- To specify a prior on the hyperparameters  $(q, \gamma^2)$  they suggest to define

$$R^2(\gamma^2,q)=rac{qk\gamma^2ar{\sigma}_z^2}{qk\gamma^2ar{\sigma}_z^2+1}$$

where k is the number of regressors z and  $\bar{\sigma}_z^2$  is the average sample variance of the  $z_j$ 's.

• The prior takes the form

 $q \sim \text{Beta}(a, b), \quad R^2 \sim \text{Beta}(A, B).$ 

• The paper works out the posterior.

|           | Dependent variable                                                                                        | Possible predictors                                                                                                                                                                                                                                                   | Sample                                                                                                                    |
|-----------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Macro 1   | Monthly growth rate of<br>US industrial<br>production                                                     | 130 lagged macroeconomic<br>indicators                                                                                                                                                                                                                                | 659 monthly time-series<br>observations, from<br>February 1960 to<br>December 2014                                        |
| Macro 2   | Average growth rate of<br>GDP over the sample<br>1960-1985                                                | 60 socio-economic, institutional<br>and geographical<br>characteristics, measured at<br>pre-60s value                                                                                                                                                                 | 90 cross-sectional country<br>observations                                                                                |
| Finance 1 | US equity premium<br>(S&P 500)                                                                            | 16 lagged financial and<br>macroeconomic indicators                                                                                                                                                                                                                   | 58 annual time-series<br>observations, from 1948 to<br>2015                                                               |
| Finance 2 | Stock returns of US<br>firms                                                                              | 144 dummies classifying stock<br>as very low, low, high or very<br>high in terms of 36 lagged<br>characteristics                                                                                                                                                      | 1400k panel observations<br>for an average of 2250<br>stocks over a span of 624<br>months, from July 1963 to<br>June 2015 |
| Micro 1   | Per-capita crime<br>(murder) rates                                                                        | Effective abortion rate and 284<br>controls including possible<br>covariate of crime and their<br>transformations                                                                                                                                                     | 576 panel observations for<br>48 US states over a span<br>of 144 months, from<br>January 1986 to<br>December 1997         |
| Micro 2   | Number of pro-plaintiff<br>eminent domain<br>decisions in a specific<br>circuit and in a specific<br>year | Characteristics of judicial<br>panels capturing aspects<br>related to gender, race, religion,<br>political affiliation, education<br>and professional history of the<br>judges, together with some<br>interactions among the latter,<br>for a total of 138 regressors | 312 panel circuit/year<br>observations, from 1975 to<br>2008                                                              |



- Most Common Versions of TVP Models
  - Parameters follow AR law of motion.
  - Parameters follow regime switching process
- Even though this is a lecture about VARs, we focus mostly on univariate models to discuss the key ideas.

## From Constant Coefficients to Time-Varying Coefficients

- We previously considered constant-coefficient autoregressive models.
- For instance, a simple model for inflation could be

$$\pi_t = \pi^* + \tilde{\pi}_t, \quad \tilde{\pi}_t = \rho \tilde{\pi}_{t-1} + \sigma_\epsilon \epsilon_t$$

- where
  - $\pi^*$  is steady state or target inflation;
  - $\tilde{\pi}_t$  captures fluctuations around the target

### Is a Constant $\pi^*$ Plausible?



### Let's Introduce Time-Variation into Inflation Target

• Inflation evolves according to:

$$\pi_t = \pi_t^* + \tilde{\pi}_t$$

where

$$\tilde{\pi}_t = \rho \tilde{\pi}_{t-1} + \sigma_\epsilon \epsilon_t, \quad \pi_t^* = \pi_{t-1}^* + \sigma_\eta \eta_t.$$

• This looks like a state-space model:

$$\begin{array}{rcl} y_t & = & \left[ \begin{array}{c} 1 & 1 \end{array} \right] s_t \\ s_t & = & \left[ \begin{array}{c} \pi_t^* \\ \pi_t \end{array} \right] = \left[ \begin{array}{c} 1 & 0 \\ 0 & \rho \end{array} \right] s_{t-1} + \left[ \begin{array}{c} \sigma_\eta & 0 \\ 0 & \sigma_\epsilon \end{array} \right] \left[ \begin{array}{c} \eta_t \\ \epsilon_t \end{array} \right].$$

- Suppose that all the non-redundant parameters of the state space model are collected in the vector  $\theta$ .
- Construct a Gibbs sampler that iterates over parameters and states  $S_{1:T}$ :  $p(S_{1:T}|Y_{1:T}, \theta) \propto p(S_{1:T}|\theta)p(Y_{1:T}|S_{1:T}, \theta)$  $p(\theta|Y_{1:T}, S_{1:T}) \propto p(\theta)p(S_{1:T}|\theta)p(Y_{1:T}|S_{1:T}, \theta)$

# Estimation: Gibbs-Sampling Algorithm

- Generate draws from  $p(\theta, S_{1:T}|Y_{1:T})$  using Carter and Kohn (1994)'s approach.
- Gibbs-sampling algorithm iterates over the conditional posteriors of  $\theta$  and  $S_{1:T}$ .
- Recall the linear Gaussian state space representation

$$y_t = A + Bs_t + u_t, \quad u_t \sim N(0, H)$$
  
 $s_t = \Phi s_{t-1} + e_t, \quad e_t \sim N(0, Q)$ 

with  $\theta = (A, B, H, \Phi, Q)$ • For  $i = 1, ..., n_{sim}$ (a) Draw  $\theta^{(i)}$  from  $p\left(\theta \mid Y_{1:T}, S_{1:T}^{(i-1)}\right)$ • Conditional on  $S_{1:T}^{(i-1)}$ , drawing  $\theta$  is a standard linear regression • (Measurement)  $y_t = A + Bs_t + u_t$ • (Transition)  $s_t = \Phi s_{t-1} + e_t$ (b) Draw  $S_{1:T}^{(i)}$  from  $p\left(S_{1:T} \mid Y_{1:T}, \theta^{(i)}\right)$ • Kalman / simulation smoother

# Drawing the States: Carter and Kohn (1994)

- How can we draw  $S_{1:T}$  from the conditional posterior  $p(S_{1:T}|Y_{1:T},\theta)$ ?
- It turns out that we can draw the states sequentially, starting from  $s_T|Y_{1:T}$ , which is obtained in the T'th iteration of the filter.
- We then continue with

 $p(s_t|S_{t+1:T}, Y_{1:T}) \propto p(s_t, S_{t+1:T}, Y_{1:T})$ 

# Drawing the States: Carter and Kohn (1994)

Consider the following factorization

$$p(s_t, S_{t+1:T}, Y_{1:T})$$

$$= \int p(S_{1:T}, Y_{1:T}) dS_{1:t-1}$$

$$= \int p(S_{1:t}, Y_{1:t}) \cdot \left[ p(s_{t+1}|s_t) p(y_{t+1}|s_{t+1}) \right] \cdot \left[ p(s_{t+2}|s_{t+1}) p(y_{t+2}|s_{t+2}) \right]$$

$$\dots \left[ p(s_T|s_{T-1}) p(y_T|s_T) \right] dS_{1:t-1}$$

$$= p(s_t, Y_{1:t}) \cdot \left[ p(s_{t+1}|s_t) p(y_{t+1}|s_{t+1}) \right] \cdot \text{terms without } s_t.$$

We deduce

$$p(s_t|S_{t+1:T}, Y_{1:T}) \propto p(s_t, Y_{1:t})p(s_{t+1}|s_t) \\ \propto p(s_t, s_{t+1}, Y_{1:t}) \\ = p(s_t|s_{t+1}, Y_{1:t})$$

# Drawing the States: Carter and Kohn (1994)

• We now can write

$$\begin{split} p(S_{1:T}|Y_{1:T}) &= p(s_T|Y_{1:T}) \prod_{t=1}^{T-1} p(s_t|s_{t+1}, Y_{1:T}) \\ &= p(s_T|Y_{1:T}) \prod_{t=1}^{T-1} p(s_t|s_{t+1}, Y_{1:t}) \\ \bullet \text{ where } p(s_t|s_{t+1}, Y_{1:t}) \propto p(s_t|Y_{1:t}) p(s_{t+1}|s_t). \\ \bullet \text{ Draw } s_t^{(i)} \sim p(s_t \mid s_{t+1}^{(i)}, Y_{1:T}) \text{ for } t = T, ..., 1. \\ \text{ (a) Run the Kalman filter to get } \{\hat{s}_{t|t}, P_{t|t}\}_{t=1}^T \text{ where } s_t|Y_{1:t} \sim N(\hat{s}_{t|t}, P_{t|t}); \\ \text{ (b) Draw } s_T^{(i)} \sim N(\hat{s}_{T|T}, P_{T|T}); \\ \text{ (c) For } t = T - 1, ..., 1, \\ s_t^{(i)} \sim N(\hat{s}_{t|t+1}, P_{t|t+1}) \end{split}$$

where

$$\hat{s}_{t|t+1} = \hat{s}_{t|t} + P_{t|t} \Phi' P_{t+1|t}^{-1} (s_{t+1}^{(i)} - \Phi \hat{s}_{t|t})$$

$$P_{t|t+1} = P_{t|t} - P_{t|t} \Phi' P_{t+1|t}^{-1} \Phi P_{t|t}$$

- Multivariate instead of univariate framework;
- Time-varying slope coefficients;
- Time-varying shock variances.
- Some references:
  - Cogley and Sargent (2002, NBER Macro Annual)
  - Cogley and Sargent (2005, RED)
  - Primiceri (2005, REStud)

# A TVP VAR with Stochastic Volatility

• Reduced-form VAR:

$$y_t = \Phi_1 y_{t-1} + \ldots + \Phi_p y_{t-p} + \Phi_c + u_t.$$

- We defined  $x_t = [y'_{t-1}, \dots, y'_{t-p}, 1]'$  and  $\Phi = [\Phi_1, \dots, \Phi_p, \Phi_c]'$ .
- Let  $X_t = I_n \otimes x_t$  and  $\phi = vec(\Phi)$ . Write the VAR as

$$y_t = X_t' \phi_t + u_t. \tag{1}$$

• Parameters evolve according to the random walk process:

$$\phi_t = \phi_{t-1} + \nu_t, \quad \nu_t \sim iidN(0, Q). \tag{2}$$

- Q is diagonal;  $\nu_t$  and  $u_t$  are uncorrelated.
- VAR innovations:

$$u_t \sim N(0, \Sigma_t), \quad \Sigma_t = B^{-1} H_t (B^{-1})'.$$
 (3)

*B* is a lower-triangular matrix with ones on the diagonal;  $H_t$  is a diagonal matrix with elements  $h_{i,t}^2$ :

$$\ln h_{i,t} = \ln h_{i,t-1} + \eta_{i,t}, \quad \eta_{i,t} \sim iidN(0,\sigma_i^2).$$
(4)

- φ<sup>(s)</sup><sub>1,T</sub> conditional on (B<sup>(s-1)</sup>, H<sup>(s-1)</sup><sub>1,T</sub>, Q<sup>(s-1)</sup>, σ<sup>(s-1)</sup><sub>1</sub>, ... σ<sup>(s-1)</sup><sub>n</sub>, Y).
   (1) and (2) provide a state-space representation for y<sub>t</sub>. Thus, φ<sub>1,T</sub> can be sampled using the algorithm developed by Carter and Kohn.
- B<sup>(s)</sup> conditional on (φ<sup>(s)</sup><sub>1,T</sub>, H<sup>(s-1)</sup><sub>1,T</sub>, Q<sup>(s-1)</sup>, σ<sup>(s-1)</sup><sub>1</sub>, ... σ<sup>(s-1)</sup><sub>n</sub>, Y). Conditional on the VAR parameters φ<sub>t</sub>, the innovations to equation (1) are known. According to (3) Bu<sub>t</sub> is normally distributed with variance H<sub>t</sub>, or:

$$Bu_t = H_t^{\frac{1}{2}} \epsilon_t, \tag{5}$$

where  $\epsilon_t$  is a vector of standard normals.

- $H_{1,T}^{(s)}$  conditional on  $(\phi_{1,T}^{(s)}, B^{(s)}, Q^{(s-1)}, \sigma_1^{(s-1)} \dots \sigma_n^{(s-1)}, Y)$ . Conditional on  $\phi_t$  and B we can write the *i*'th equation of (5) as  $z_{i,t} = B_{(i,.)}u_t \sim N(0, h_{i,t}^2)$ . (see literature on stochastic volatility models...)
- $Q^{(s)}$  conditional on  $(\phi_{1,T}^{(s)}, B^{(s)}, H_{1,T}^{(s)}, \sigma_1^{(s-1)} \dots \sigma_n^{(s-1)}, Y)$ . Use appropriate Inverted Wishart distribution derived from (2).
- σ<sub>1</sub><sup>(s)</sup>...σ<sub>n</sub><sup>s</sup> conditional on (φ<sub>1,T</sub><sup>(s)</sup>, B<sup>(s)</sup>, H<sub>1,T</sub><sup>(s)</sup>, Q<sup>(s)</sup>, Y).
   Use appropriate Inverted Gamma distributions derived from (4).

# Back To Our Inflation Series



Frank Schorfheide Gibbs Sam

## A Simple Markov Switching Model

• Suppose

$$y_t = \alpha_0 + \alpha_1 s_t + \epsilon_t, \quad \epsilon_t \sim iidN(0,1),$$

- where  $s_t \in \{0, 1\}$  evolves according to a Markov-switching process with transition probabilities  $q_{00}$  (from 0 to 0) and  $q_{11}$  (from 1 to 1).
- Priors:

$$egin{array}{rcl} lpha & \sim & {\sf N}(\underline{lpha}, \underline{V}_{lpha}) \ {\sf p}(q_{00}, q_{11}) & \propto & q_{00}^{lpha_0 - 1} (1 - q_{00})^{eta_0 - 1} q_{11}^{lpha_1 - 1} (1 - q_{11})^{eta_1 - 1} \end{array}$$

• Joint:

$$p(Y_{1:T}, S_{1:T}, \alpha, q) = p(Y_{1:T}|S_{1:T}, \alpha)p(S_{1:T}|q)p(q)p(\alpha)$$

### **Gibbs Sampler**

- $S_{1:T}|(q, \alpha, Y_{1:T})$ : use a smoother tailored toward MS models.
- $\alpha|(q, S_{1:T}, Y_{1:T})$ : regression on split sample

$$y_t = \alpha_0 + \epsilon_t \quad \text{if } s_t = 0$$
  
$$y_t = \alpha_0 + \alpha_1 + \epsilon_t \quad \text{if } s_t = 1$$

q|(α, S<sub>1:T</sub>, Y<sub>1:T</sub>): count state transitions n<sub>00</sub>, n<sub>01</sub>, ...; (ignoring initialization of Markov process) posterior for q has Beta distribution

$$p(q|\cdot) \propto q_{00}^{n_{00}+lpha_0-1}(1-q_{00})^{n_{01}+eta_0-1}q_{11}^{n_{11}+lpha_1-1}(1-q_{11})^{n_{10}+eta_1-1}.$$

## Generalization: Markov-Switching VARs

• We add regime-switching to the coefficients of the reduced form VAR:

$$y'_t = x'_t \Phi(s_t) + u'_t, \quad u_t \sim iidN(0, \Sigma(s_t))$$
(6)

• Here  $s_t$  is a discrete *M*-state Markov process with time-invariant transition probabilities

$$q_{lm} = \mathbb{P}[s_t = m \mid s_{t-1} = l], \quad l, m \in \{1, \dots, M\}.$$

• Suppose that M = 2 and all elements of  $\Phi(s_t)$  and  $\Sigma(s_t)$  switch simultaneously, without any restrictions. Denote the values of the VAR parameter matrices in state  $s_t = l$  by  $\Phi(l)$ and  $\Sigma(l)$ , l = 1, 2, respectively. Specify MNIW priors for  $(\Phi(l), \Sigma(l))$  and Beta priors for  $q_{11}$  and  $q_{22}$  For  $i = 1, \ldots, n_{sim}$ :

- **1** Draw  $(\Phi^{(i)}(I), \Sigma^{(i)}(I))$  conditional on  $(s_{1,T}^{(i-1)}, q_{11}^{(i-1)}, q_{22}^{(i-1)}, Y)$ . Let  $\mathcal{T}_l$  be a set that contains the time periods when  $s_t = l$ , l = 1, 2. Under a conjugate prior, the posterior of  $\Phi(I)$  and  $\Sigma(I)$  is MNIW, obtained from the regression  $y'_t = x'_t \Phi(I) + u_t$ ,  $u_t \sim N(0, \Sigma(I))$ ,  $t \in \mathcal{T}_l$ .
- 2 Draw  $s_{1,T}^{(i)}$  conditional on  $(\Phi^{(i)}(I), \Sigma^{(i)}(I), q_{11}^{(i-1)}, q_{22}^{(i-1)}, Y)$  using a smoother.
- Solution is provided as a straight of the straight of the

In macroeconomic applications, vector autoregressions (VARs) are typically estimated either exclusively based on

- quarterly observations
  - $\implies$  large set of macroeconomic series is available
- monthly information
  - $\Longrightarrow$  VAR is able to track the economy more closely in real time

### State-Space Representation of MF-VAR

- State-Transition Equation
  - Economy evolves at monthly frequency according to the following VAR(p) dynamics:

$$x_t = \Phi_1 x_{t-1} + \ldots + \Phi_p x_{t-p} + \Phi_c + u_t, \quad u_t \sim iidN(0, \Sigma)$$
(7)

- Partition:  $x'_t = [x'_{m,t}, x'_{q,t}]$
- Measurement Equation
  - Actual observations are denoted by  $y_t$  and subscript indicates the observation frequency

$$y_{m,t} = x_{m,t}$$

$$y_{q,t} = \frac{1}{3}(x_{q,t} + x_{q,t-1} + x_{q,t-2})$$
 if observed in period  $t$ 
(8)

- Minnesota Prior (Sims and Zha, 1998 IER) for  $(\Phi, \Sigma)$  indexed by hyperparameter vector  $\lambda$
- Gibbs Sampler along the lines of Carter and Kohn (1994)
  - Draw latent states (Kalman Smoother)

 $X_{1:T}^{(j)} \mid (\Phi^{(j-1)}, \Sigma^{(j-1)}, Y_{1:T})$ 

• Draw VAR parameters (Direct Sampling from MNIW)

 $(\Phi^{(j)}, \Sigma^{(j)}) \mid (X_{1:T}^{(j)}, Y_{1:T})$ 

for  $j = 1, ..., n_{sim}$ 

- Implementation issues:
  - Reduce dimension of state-space by removing observed states x<sub>m,t</sub>
  - Adjustments for ragged edge at the end of estimation sample