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Extension 1: Alternative Priors

• Giannone, Lenza, Primiceri (2018): “Priors for the Long-Run,” Journal of American
Statistical Association, forthcoming.

• Estimation is typically based on conditional likelihood functions that ignore the likelihood
of the initial observations.

• Example:

yt = c + φyt−1 + ut = φt−1y1 + c
t−2∑
s=0

φs︸ ︷︷ ︸
DCt

+
t−2∑
s=0

φsut−j︸ ︷︷ ︸
SCt

• Write

DCt =

{
y1 + (t − 1)c if φ = 1
c

1−φ + φt−1(y1 − c
1−φ ) if|φ| < 1

• Deterministic component may absorb too much low frequency variation of the time series.
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PRIORS FOR THE LONG RUN 8
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Figure 2.1. Deterministic component for selected variables implied by various 7-
variable VARs. Flat: BVAR with a flat prior; MN: BVAR with the Minnesota prior;
PLR: BVAR with the prior for the long run.

Most economists would be skeptical of this likely spurious explanatory power of determin-

istic trends, and may want to downplay it when conducting inference. In principle, “one way

to accomplish this is to use priors favoring pure unit-root low frequency behavior” (Sims,

2000, pp. 451), according to which implausibly precise long-term forecasts are unlikely.

However, it is not obvious how to formulate such a prior. For example, the undesirable

properties of the deterministic component persist even when using the popular Minnesota

prior, which is centered on the assumption that all variables in the VAR are random walks

with drift (Litterman, 1979, see also appendix B for a detailed description). When the

tightness of this prior is set to conventional values in the literature (see appendix C), the

implied deterministic components are similar to those of the flat-prior case, as shown by

the dashed lines in figure 2.1. In the next section we detail our specific proposal regarding

how to address this problem.



Extension 1: Alternative Priors – The Basic Idea

• Write VAR in VECM form:

∆yt = Π0 + Π∗yt−1 +

p−1∑
j=1

Πi∆yt−j + ut

where Π∗ = αβ′.

• Reasonable prior for columns of α will depend on the rows of β′:

• if i ’th row of β′ corresponds to a linear combination that is stationary, then it makes sense
to choose a prior for i ’th column of α with mass away form zero.

• if i ’th row of β′ corresponds to a linear combination that is non-stationary, then it makes
sense to choose a prior for i ’th column of α with mass away form zero.

• See paper for details on how to implement this.
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Figure 5.1. Mean squared forecast errors in models with three variables. Flat: BVAR
with a flat prior; MN: BVAR with the Minnesota prior; SZ: BVAR with the Minnesota
and sum-of-coefficient priors; DIFF: VAR with variables in first differences; VECM: vector
error-correction model that imposes the existence of a common stochastic trend for Y, C
and I, without any additional prior information; PLR: BVAR with the Minnesota prior
and the prior for the long run.

VAR representation in first differences. Finally, figure 5.1 shows that the PLR-BVAR also

dominates the vector error-correction model of King et al. (1991). This specification cor-

responds to an extreme version of the PLR, which dogmatically imposes the existence of

a common stochastic trend for output, consumption and investment, without introducing

any additional prior information.

The key question for us is understanding why the PLR-BVAR outperforms the SZ-BVAR

and the DIFF-VAR. We address this question in figure 5.2, which plots the realized value

of the log consumption- and investment-to-GDP ratios, and the forecasts of these variables

produced 5 years in advance by the PLR-BVAR and the DIFF-VAR (the SZ-BVAR forecasts

are very close to those of the DIFF-VAR, so we do not report them to avoid clogging the



Extension 2: Sparse versus Dense Models

• Giannone, Lenza, Primiceri (2018): “Economic Prediction With Big Data: The Illusion of
Sparsity,” Manuscript, FRB New York, ECB, and Northwestern University.

• Sparse models: only a few predictors are relevant.

• Dense models: many predictors are relevant but only have small individual effects.

• Model:

yt = x ′tφ+ z ′tβ + ut .

Here xt ’s are included in all specifications (low dimensional), zt ’s are optional (high
dimensional).

• Prior – part 1:

p(σ2) ∝ 1

σ2
, φ ∝ c .
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Extension 2: Sparse versus Dense Models

• Prior – part 2: “spike and slab”

βi |(σ2, γ2, q) ∼
{

N(0, σ2γ2) with prob. q
0 with prob. 1− q

• For q = 1 we obtain our “standard” prior (“Ridge Regression”)

• Rewrite prior as

βi |(σ2, γ2, νi ) ∼ N(0, σ2γ2, νi ), νi ∼ Bernoulli(q).

• By changing the mixing distribution, we can generate a wide variety of priors, including a
Bayesian version of LASSO.
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Extension 2: Sparse versus Dense Models

• In problems of this form it is often good to standardize and orthogonalize the regressors xt
prior to the estimation.

• To specify a prior on the hyperparameters (q, γ2) they suggest to define

R2(γ2, q) =
qkγ2σ̄2

z

qkγ2σ̄2
z + 1

where k is the number of regressors z and σ̄2
z is the average sample variance of the zj ’s.

• The prior takes the form

q ∼ Beta(a, b), R2 ∼ Beta(A,B).

• The paper works out the posterior.
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Table 1. Description of the datasets.

Dependent variable Possible predictors Sample

Macro 1 Monthly growth rate of
US industrial
production

130 lagged macroeconomic
indicators

659 monthly time-series
observations, from
February 1960 to
December 2014

Macro 2 Average growth rate of
GDP over the sample
1960-1985

60 socio-economic, institutional
and geographical
characteristics, measured at
pre-60s value

90 cross-sectional country
observations

Finance 1 US equity premium
(S&P 500)

16 lagged financial and
macroeconomic indicators

58 annual time-series
observations, from 1948 to
2015

Finance 2 Stock returns of US
firms

144 dummies classifying stock
as very low, low, high or very
high in terms of 36 lagged
characteristics

1400k panel observations
for an average of 2250
stocks over a span of 624
months, from July 1963 to
June 2015

Micro 1 Per-capita crime
(murder) rates

Effective abortion rate and 284
controls including possible
covariate of crime and their
transformations

576 panel observations for
48 US states over a span
of 144 months, from
January 1986 to
December 1997

Micro 2 Number of pro-plaintiff
eminent domain
decisions in a specific
circuit and in a specific
year

Characteristics of judicial
panels capturing aspects
related to gender, race, religion,
political affiliation, education
and professional history of the
judges, together with some
interactions among the latter,
for a total of 138 regressors

312 panel circuit/year
observations, from 1975 to
2008

3.2. Macro 2: The determinants of economic growth in a cross-section of coun-

tries. The seminal paper by Barro (1991) initiated a debate on the cross-country determi-

nants of long-term economic growth. Since then, the literature has proposed a wide range

of possible predictors of long-term growth, most of which have been collected in the dataset

constructed by Barro and Lee (1994). As in Belloni et al. (2011), we use this dataset to

explain the average growth rate of GDP between 1960 and 1985 across countries. The

database includes data for 90 countries and 60 potential predictors, corresponding to the
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Figure 4.1. Joint prior and posterior densities of q and log (�) in the
macro-1, macro-2 and finance-1 applications (best viewed in color).

artificially recover sparse model representations simply as a device to reduce estimation

error. Our findings indicate that these extreme strategies might perhaps be appropriate

only for our micro-1 application, given that its posterior in figure 4.2 is tightly concentrated
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Figure 4.2. Joint prior and posterior densities of q and log (�) in the
finance-2, micro-1 and micro-2 applications (best viewed in color).

around extremely low values of q. More generally, however, our results suggest that the best

predictive models are those that optimally combine probability of inclusion and shrinkage.

4.2. Probability of inclusion and out-of-sample predictive accuracy. What is then

the appropriate probability of inclusion, considering that models with different sizes require

differential shrinkage? To answer this question, figure 4.3 plots the marginal posterior of

q, obtained by integrating out �2 from the joint posterior distribution of figures 4.1 and

4.2. Notice that the densities in figure 4.3 behave quite differently across applications. For
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Figure 4.5. Heat map of the probabilities of inclusion of each predictor
(best viewed in color).

percent of the times, although this is more difficult to see from the plot. All other predictors

are included in the model much more rarely.

The important message of figure 4.5, however, is that the remaining five applications do

not exhibit a distinct pattern of sparsity, in the sense that none of the predictors appear

to be systematically excluded. This finding was probably expected for macro 2 and finance

1, since the posterior of q peaks around very high values in these two applications. The

absence of clear sparsity patterns, however, should be more surprising when the posterior

of q has most of its mass on lower values. For example, let us consider the case of macro 1,

in which the best fitting models are those with q around 0.25, according to figure 4.3. This



Extension 3: Time-Varying Coefficients

• Most Common Versions of TVP Models

• Parameters follow AR law of motion.

• Parameters follow regime switching process

• Even though this is a lecture about VARs, we focus mostly on univariate models to discuss
the key ideas.
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From Constant Coefficients to Time-Varying Coefficients

• We previously considered constant-coefficient autoregressive models.

• For instance, a simple model for inflation could be

πt = π∗ + π̃t , π̃t = ρπ̃t−1 + σεεt

• where

• π∗ is steady state or target inflation;

• π̃t captures fluctuations around the target
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Is a Constant π∗ Plausible?
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Let’s Introduce Time-Variation into Inflation Target

• Inflation evolves according to:

πt = π∗t + π̃t

where

π̃t = ρπ̃t−1 + σεεt , π∗t = π∗t−1 + σηηt .

• This looks like a state-space model:

yt =
[

1 1
]
st

st =

[
π∗t
π̃t

]
=

[
1 0
0 ρ

]
st−1 +

[
ση 0
0 σε

] [
ηt
εt

]
.
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Parameter Estimation

• Suppose that all the non-redundant parameters of the state space model are collected in
the vector θ.

• Construct a Gibbs sampler that iterates over parameters and states S1:T :

p(S1:T |Y1:T , θ) ∝ p(S1:T |θ)p(Y1:T |S1:T , θ)

p(θ|Y1:T ,S1:T ) ∝ p(θ)p(S1:T |θ)p(Y1:T |S1:T , θ)
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Estimation: Gibbs-Sampling Algorithm

• Generate draws from p(θ,S1:T |Y1:T ) using Carter and Kohn (1994)’s approach.

• Gibbs-sampling algorithm iterates over the conditional posteriors of θ and S1:T .

• Recall the linear Gaussian state space representation

yt = A + Bst + ut , ut ∼ N(0,H)

st = Φst−1 + et , et ∼ N(0,Q)

with θ = (A,B,H,Φ,Q)

• For i = 1, ..., nsim

(a) Draw θ(i) from p
(
θ | Y1:T , S

(i−1)
1:T

)
• Conditional on S

(i−1)
1:T , drawing θ is a standard linear regression

• (Measurement) yt = A + Bst + ut
• (Transition) st = Φst−1 + et

(b) Draw S
(i)
1:T from p

(
S1:T | Y1:T , θ

(i)
)

• Kalman / simulation smoother
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Drawing the States: Carter and Kohn (1994)

• How can we draw S1:T from the conditional posterior p(S1:T |Y1:T , θ)?

• It turns out that we can draw the states sequentially, starting from sT |Y1:T , which is
obtained in the T ’th iteration of the filter.

• We then continue with

p(st |St+1:T ,Y1:T ) ∝ p(st ,St+1:T ,Y1:T )
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Drawing the States: Carter and Kohn (1994)

Consider the following factorization

p(st ,St+1:T ,Y1:T )

=

∫
p(S1:T ,Y1:T )dS1:t−1

=

∫
p(S1:t ,Y1:t) ·

[
p(st+1|st)p(yt+1|st+1)

]
·
[
p(st+2|st+1)p(yt+2|st+2)

]
. . .
[
p(sT |sT−1)p(yT |sT )

]
dS1:t−1

= p(st ,Y1:t) ·
[
p(st+1|st)p(yt+1|st+1)

]
· terms without st .

We deduce

p(st |St+1:T ,Y1:T ) ∝ p(st ,Y1:t)p(st+1|st)
∝ p(st , st+1,Y1:t)

= p(st |st+1,Y1:t)
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Drawing the States: Carter and Kohn (1994)

• We now can write

p(S1:T |Y1:T ) = p(sT |Y1:T )
T−1∏
t=1

p(st |st+1,Y1:T )

= p(sT |Y1:T )
T−1∏
t=1

p(st |st+1,Y1:t)

• where p(st |st+1,Y1:t) ∝ p(st |Y1:t)p(st+1|st).

• Draw s
(i)
t ∼ p(st | s(i)

t+1,Y1:T ) for t = T , ..., 1.
(a) Run the Kalman filter to get {ŝt|t ,Pt|t}Tt=1 where st |Y1:t ∼ N(ŝt|t ,Pt|t);

(b) Draw s
(i)
T ∼ N(ŝT |T ,PT |T );

(c) For t = T − 1, ..., 1,

s
(i)
t ∼ N

(
ŝt|t+1, Pt|t+1

)
where

ŝt|t+1 = ŝt|t + Pt|tΦ
′P−1

t+1|t(s
(i)
t+1 − Φŝt|t)

Pt|t+1 = Pt|t − Pt|tΦ
′P−1

t+1|tΦPt|t
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Generalizations

• Multivariate instead of univariate framework;

• Time-varying slope coefficients;

• Time-varying shock variances.

• Some references:
• Cogley and Sargent (2002, NBER Macro Annual)
• Cogley and Sargent (2005, RED)
• Primiceri (2005, REStud)

Frank Schorfheide Gibbs Sampling with VAR Applications



A TVP VAR with Stochastic Volatility

• Reduced-form VAR:

yt = Φ1yt−1 + . . .+ Φpyt−p + Φc + ut .

• We defined xt = [y ′t−1, . . . , y
′
t−p, 1]′ and Φ = [Φ1, . . . ,Φp,Φc ]′.

• Let Xt = In ⊗ xt and φ = vec(Φ). Write the VAR as

yt = X ′tφt + ut . (1)

• Parameters evolve according to the random walk process:

φt = φt−1 + νt , νt ∼ iidN(0,Q). (2)

• Q is diagonal; νt and ut are uncorrelated.
• VAR innovations:

ut ∼ N(0,Σt), Σt = B−1Ht(B
−1)′. (3)

B is a lower-triangular matrix with ones on the diagonal; Ht is a diagonal matrix with
elements h2

i,t :

ln hi,t = ln hi,t−1 + ηi,t , ηi,t ∼ iidN(0, σ2
i ). (4)
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A Gibbs Sampler

• φ(s)
1,T conditional on (B(s−1),H

(s−1)
1,T ,Q(s−1), σ

(s−1)
1 . . . σ

(s−1)
n ,Y ).

(1) and (2) provide a state-space representation for yt . Thus, φ1,T can be sampled using
the algorithm developed by Carter and Kohn.

• B(s) conditional on (φ
(s)
1,T ,H

(s−1)
1,T ,Q(s−1), σ

(s−1)
1 . . . σ

(s−1)
n ,Y ).

Conditional on the VAR parameters φt , the innovations to equation (1) are known.
According to (3) But is normally distributed with variance Ht , or:

But = H
1
2
t εt , (5)

where εt is a vector of standard normals.
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A Gibbs Sampler

• H
(s)
1,T conditional on (φ

(s)
1,T ,B

(s),Q(s−1), σ
(s−1)
1 . . . σ

(s−1)
n ,Y ).

Conditional on φt and B we can write the i ’th equation of (5) as
zi,t = B(i.)ut ∼ N(0, h2

i,t). (see literature on stochastic volatility models...)

• Q(s) conditional on (φ
(s)
1,T ,B

(s),H
(s)
1,T , σ

(s−1)
1 . . . σ

(s−1)
n ,Y ).

Use appropriate Inverted Wishart distribution derived from (2).

• σ(s)
1 . . . σs

n conditional on (φ
(s)
1,T ,B

(s),H
(s)
1,T ,Q

(s),Y ).
Use appropriate Inverted Gamma distributions derived from (4).
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Back To Our Inflation Series

0

2

4

6

8

10

12

14

60 65 70 75 80 85 90 95 00 05

Inflation Rate (A%)
HP Trend

Constant Mean
Mean with Breaks

Frank Schorfheide Gibbs Sampling with VAR Applications



A Simple Markov Switching Model

• Suppose

yt = α0 + α1st + εt , εt ∼ iidN(0, 1),

• where st ∈ {0, 1} evolves according to a Markov-switching process with transition
probabilities q00 (from 0 to 0) and q11 (from 1 to 1).

• Priors:

α ∼ N(α,V α)

p(q00, q11) ∝ qα0−1
00 (1− q00)β0−1qα1−1

11 (1− q11)β1−1

• Joint:

p(Y1:T ,S1:T , α, q) = p(Y1:T |S1:T , α)p(S1:T |q)p(q)p(α)
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Gibbs Sampler

• S1:T |(q, α,Y1:T ): use a smoother tailored toward MS models.

• α|(q,S1:T ,Y1:T ): regression on split sample

yt = α0 + εt if st = 0

yt = α0 + α1 + εt if st = 1

• q|(α,S1:T ,Y1:T ): count state transitions n00, n01, . . .; (ignoring initialization of Markov
process) posterior for q has Beta distribution

p(q|·) ∝ qn00+α0−1
00 (1− q00)n01+β0−1qn11+α1−1

11 (1− q11)n10+β1−1.
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Generalization: Markov-Switching VARs

• We add regime-switching to the coefficients of the reduced form VAR:

y ′t = x ′tΦ(st) + u′t , ut ∼ iidN(0,Σ(st)) (6)

• Here st is a discrete M-state Markov process with time-invariant transition probabilities

qlm = P[st = m | st−1 = l ], l ,m ∈ {1, . . . ,M}.

• Suppose that M = 2 and all elements of Φ(st) and Σ(st) switch simultaneously, without
any restrictions. Denote the values of the VAR parameter matrices in state st = l by Φ(l)
and Σ(l), l = 1, 2, respectively. Specify MNIW priors for (Φ(l),Σ(l)) and Beta priors for
q11 and q22
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Gibbs Sampler

For i = 1, . . . , nsim:

1 Draw (Φ(i)(l),Σ(i)(l)) conditional on (s
(i−1)
1,T , q

(i−1)
11 , q

(i−1)
22 ,Y ). Let Tl be a set that

contains the time periods when st = l , l = 1, 2. Under a conjugate prior, the posterior of
Φ(l) and Σ(l) is MNIW, obtained from the regression y ′t = x ′tΦ(l) + ut , ut ∼ N(0,Σ(l)),
t ∈ Tl .

2 Draw s
(i)
1,T conditional on (Φ(i)(l),Σ(i)(l), q

(i−1)
11 , q

(i−1)
22 ,Y ) using a smoother.

3 Draw q
(i)
11 and q

(i)
22 conditional on (Φ(i)(s),Σ(i)(s), s

(i)
1,T ,Y ) from the appropriate Beta

distribution. 2
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Extension 4

In macroeconomic applications, vector autoregressions (VARs) are typically estimated either
exclusively based on

• quarterly observations
=⇒ large set of macroeconomic series is available

• monthly information
=⇒ VAR is able to track the economy more closely in real time
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State-Space Representation of MF-VAR

• State-Transition Equation

• Economy evolves at monthly frequency according to the following VAR(p) dynamics:

xt = Φ1xt−1 + . . .+ Φpxt−p + Φc + ut , ut ∼ iidN
(
0,Σ

)
(7)

• Partition: x ′t = [x ′m,t , x
′
q,t ]

• Measurement Equation

• Actual observations are denoted by yt and subscript indicates the observation frequency

ym,t = xm,t (8)

yq,t =
1

3
(xq,t + xq,t−1 + xq,t−2) if observed in period t
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Bayesian Inference

• Minnesota Prior (Sims and Zha, 1998 IER) for (Φ,Σ) indexed by hyperparameter vector λ

• Gibbs Sampler along the lines of Carter and Kohn (1994)

• Draw latent states (Kalman Smoother)

X
(j)
1:T

∣∣ (Φ(j−1),Σ(j−1),Y1:T )

• Draw VAR parameters (Direct Sampling from MNIW)

(Φ(j),Σ(j))
∣∣ (X

(j)
1:T ,Y1:T )

for j = 1, ..., nsim

• Implementation issues:
• Reduce dimension of state-space by removing observed states xm,t

• Adjustments for ragged edge at the end of estimation sample
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