Introduction to DSGE Modeling

Frank Schorfheide

University of Pennsylvania
Econ 722 — Part 1

February 13, 2019



Introduction

o Estimated dynamic stochastic general equilibrium (DSGE) models are now widely used for

e empirical research in macroeconomics;

e quantitative policy analysis and prediction at central banks.

e We will consider a prototypical New Keynesian DSGE model...
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Potential Empirical Questions

@ What is the optimal target inflation rate?

® Was high inflation and output volatility in the 1970s due to loose monetary policy?
© Effects of the zero lower bound on nominal interest rates on monetary policy.

® How large are government spending multipliers?

@ Fiscal policy rules and the effect of a change in the labor tax rate.
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A Small-Scale New Keynesian DSGE Model

e The model consists of

households;

final goods producing firms;
intermediate goods producing firms;
central bank and fiscal authority;
exogenous shock processes

e Let's take a look at the decision problems faced by economic agents...
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Households

e Households maximize

Zﬂfﬂ{mq ot L1+V}

e subject to the constraints:
PiCo+ Br1 < PWiLy + T + R By — T + Q4.

e In a nutshell:
household cares about the future: intertemporal optimization
household likes consumption

household does not like to work...
there is a budget constraint: can't spend more than you earn and borrow; have to pay taxes;
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Households

e Households maximize

Zﬂf T>{In G- L”V}
e subject to the constraints:

PeCo+ Brn < PWeLy + T + R By — T + s

e Possible modifications/generalizations:
o let households on shares to the capital stock;
e introduce money explicitly: cash-in-advance versus money in the utility function;
e make taxes distortionary;
e introduce differentiated labor.
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Households: First-Order Conditions

e Households maximize

- (t—m7) _ d)f 1+v
;5 {mct ook }]

e subject to the constraints:

E,

PiCo+ Bry1n S PWiLy + T + R By — T + Q4.

e Introduce Lagrange multiplier p; for budget constraint.
e Lagrangian
_ (t—7) Pt 1
L = ETL;ﬂ {mq b

_Nt<PtCt + Bl — [PtWtLt + M+ Re—1Be — Tr + Qt]) }:|
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Households: First-Order Conditions

e Lagrangian
[Z,@“ T{InCt O Tk

—,Ut<PtCt + Biy1 — [PtWtLt + M+ Re1Be — Ti + Qt]) }:|
e First-order condition for C;:
L
Ce
e First-order condition for By 1:

He = 5Et[ﬂt+1 Rt]

e Combine to consumption Euler equation (define w11 = Piy1/Pr):

1:%[1 Rt]

C1r+1 Tt41

:,UtPt
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Households: First-Order Conditions

e Lagrangian

- E (t—7) InC, — (bt L1+u
‘C T|:Z/B { nCe 1—|—V t

t=71
—,Ut<PtCt + Biy1 — [PtWtLt + M+ Re1Be — Ti + Qt]) }:|
e Labor supply — first-order condition for L;:

W

Gely = pePeWe = E

Frank Schorfheide Introduction to DSGE Modeling



A Small-Scale New Keynesian DSGE Model

households;

final goods producing firms;

intermediate goods producing firms;

central bank and fiscal authority;

e exogenous shock processes
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Final Goods Production

e Production: (these guys just buy and combine intermediate goods)

Y, = [/01 Yt(i)lixd,}

e Profits

YtPt—/Yt(i)Pt(i)di: [/01 Yt(i)uirdi} Pt—/Yt(i)Pt(i)di.

e Take prices as given and maximize profits by choosing optimal inputs Y;(/):

1+

1+

16,
Pi)\ ™ N
Pt(l) = Pt Yt)\t/(l-"_}\t) Yt(l')i)\t/(l"»)\t) — Yt(l') = ( tP(I)> Yt
t

e Free entry leads to zero profits:
1 At
1
Y:P; = / Yt(l)Pt(I)dl £ P; = |:-/ Pt(/)Md/:| .
0

o Aggregate inflation is defined as m = Py/P;_.



A Small-Scale New Keynesian DSGE Model

households;

final goods producing firms;

intermediate goods producing firms;

central bank and fiscal authority;

e exogenous shock processes
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Intermediate Goods Production

Production (these guys hire to produce something):

Y,(i) = max {AtLt(i) - f,o}.

e Firms are monopolistically competitive; face downward sloping demand curve:

i - (B40)

Firms set prices to maximize profits, but there is a friction:

e firms can only re-optimize their prices with probability 1 — (p;
e remaining 1 — ¢ firms adjust their prices by T

e Once prices are set, firms have to produce whatever quantity is demanded.
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Intermediate Goods Production

e Define the real marginal costs of producing a unit Yj as

Wi

MC, = —
t A,

e Decision problem (3°=.,4; is today’s value of a future dollar)

?;??)( E¢ {Z B Zers|e Yers(i) [’St(")ﬁs - Pt+5MCt+5} }
e s=0

14X,

, P75\
s.t. Yt+s(’) = <t()> Yt+5

Pt+s

e Differentiate with respect to l5t(i) to obtain first-order condition for optimal price.
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Intermediate Goods Production

e First-order condition to determine P,(i):

.- OYers(i) 15 - N
E {Z B Ztrs)e (M(Pt(’)ws — Pty sMCeis) + Yt+s(’)7fs> } =0,
s=0

OPy(i)
e where
B _Lia g
OYers(i) 14+ 7 [(P()7°) ™ 1+ 1 ,
= = Yits = ——— = Yess(i)
OP(i) At Piys Piys At Pi(i)

e Assume all optimizing firms choose the same price: P;(i) = P;.
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Intermediate Goods Production

e Divide FOC by P; and impose symmetry. Let p; = Pt/Pt

o First-order condition to determine p;:

S 2V

Nt s
s|t pem® ~ —5
¢B° Ze Yits | BT — (14 At) Tevj | MGy =0,
Z P by Pt HJ L Tee s J];]l: J s

e New Keynesian Phillips curve: relationship between f;, inflation 7;, and real marginal
costs MC;.
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Intermediate Goods Production

e Recall from final goods producers:

P, = Uol Pt(i)_;:di}

e Fraction ¢, will index previous price P:_1(i) by inflation, whereas fraction (1 — (,) will
charge P;:

—Ae

— ¢

2

P

~— 1 1 1
{(1 — )P T+ Cpﬁ'iT‘/O Pt—l(i))‘fdi:|

e

- [(1 ~G)Pe

e Inflation satisfies (let p; = P;/P;):

1 L]
t ——TP_Tt
+ G APy

me= [ = G)mbe) 4G ]
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Intermediate Goods Production

Most complicated part of the model...
e generates a relationship between real marginal costs and inflation.

e So, it connects nominal and real side of the economy.

Exercise: if (, = 0 prices are flexible. Simplify the formulas!
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A Small-Scale New Keynesian DSGE Model

households;

final goods producing firms;

intermediate goods producing firms;

central bank and fiscal authority;

e exogenous shock processes
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Monetary Policy

e We did not specify a money demand equation, but we could. It would depend on the
nominal interest rate. The higher R;, the lower the demand for money.

e Central bank prints enough money so that demand is satisfied at interest rate implied by
monetary policy rule:

R: = RE,7RRPR exp{ogert}, Rep=(rm.) i3 e\
’ = ' ’ Tx rYYt—l

e r is equilibrium real rate.
e T, is target inflation rate.

e cr: is exogenous monetary policy shock. Interpretation?
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Fiscal Policy

e For now, it's passive and not very interesting.

Budget constraint:

Pth + Rt—lBt + Mt = Tt + Bt + Mt+1

Lump-sum taxes/transfer balance the budget in every period. Seigniorage does not
matter.

e Government spending is exogenous. Re-scale:

Gt - <1 - 1) Yt'
8t
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A Small-Scale New Keynesian DSGE Model

households;

final goods producing firms;

intermediate goods producing firms;

central bank and fiscal authority;

exogenous shock processes.
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Exogenous shock processes

Total factor productivity A;.

Preference / labor demand shifter ¢;.

Mark-up shock A;.

Monetary policy shock €g ;.

Government spending shock g;.

We will specify exogenous laws of motions for these processes, e.g.,

Ing: =(1—pg)Ing™ +pglngi—1+0g€gt, €5~ N(O,1).
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Aggregate Resource Constraint

e Combine household and government budget constraints:
P.Ci + PGy = PtWt/Lt(i)di+/ﬂt(i)di

e Final goods producers make zero profits, which implies:

e Profits of intermediate goods producers:

= Pth_PtWtLt_]:.
e Thus, assuming F = 0:

Ct+Gt: Yt'
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Aggregate Resource Constraint

e Production:
Yt(l) == AtLt(l)
e Using the demand function for Y;(i) we can write

1+t
. v
Yt (PtP(I)) :AtLt(i).
t

e Integrating over the firms / yields:

14A;
1 P.()\ ™ > .
Yt:EtAtLt, Dt:/( ItD(t)) di>1

Price dispersion creates a loss of output!
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Evolution of Price Dispersion

e Recall

P(i)
D, = — d
‘ /(f%) ’

o A fraction of (, firms changes its price in each period. Thus,

. EEOVS
— TP, A

D, = (1- J i

t ( CP)J;OC (’/Ttﬂ-t—l .. ‘ﬂ-t—jJrlPt—j)
o . 14
. Tt At
- (1-¢ G(ﬁ)
( p) jz:; TeTe—1 " Tt—j+1 ‘
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Complete Markets

e Firms discount future profits using the households stochastic discount factor:

— G
—t+s|t = 7Ct+1
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e We now have a small-scale New Keynesian DSGE model! What are the policy trade-offs?
What policies can we study?

e Monetary policy:
e systematic part (react to inflation and output growth): what happens if we change inflation
target 7*? What happens if CB reacts more aggressively to inflation deviations?
o discretionary component: what happens if CB raises interest rates in an unanticipated
fashion, i.e., er, > 07

e Fiscal policy:
e systematic part: what happens if g* increases?
e unanticipated: reaction to €z ;.

e To answer other questions, we need to enrich the model:
ZLB constraint;

role for unconventional monetary policy;

distortionary taxes;

more interesting debt dynamics.
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Model Solution

After deriving the equilibrium conditions of the model, we now need to solve for the
dynamics of the endogenous variables.

System of nonlinear expectational difference equations;

Find solution(s) of system of expectational difference equations:

e global (nonlinear) approximation methods;

e local approximation near steady state.

We will focus on log-linear approximations around the steady state.

e Many more details in FVRRS.
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Our Goal: State-space Representation of DSGE Model

e n, x 1 vector of observables:
ye = M) [log(X:/X:_1),log Ish;, log ¢, log Ry]".
e ng x 1 vector of econometric state variables s;

St = [¢t7 Aty Zt, 6R,t>)?t—1]l

DSGE model parameters:

0= [/63,77 )\,7{'*, ¢p7 v, p¢77pA7pZ7O—¢7JX7JZ7O-R],‘

Measurement equation:

ve = Wo(0) + W1 (0)s,.

State-transition equation:

st = ®1(0)se—1 + Pc(0)er, €= [6¢,t, €Nty €zt ER,t]I
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Our Goal: State-Space Representation of DSGE Model

State-space representation:

ye = Wo(0)+ Vi(0)s;
St = (D]_(G)Stf]. + qDE(H)Gt

System matrices:

log v
log(Ish kpp/B rkp¥p/B pzp
vo(e) = M) \Zi(;*) B L T
log(r* v/ 6) 1—4ppy 1—ppx 1— ppz
X X\ xz 41 Xep -1
141+ v)x (1 + v)xy A+ v)x (1 + vixeq 0
Vi) = My A ekg) () (v +rp(l+ Vixep 0
3 < 3
ﬁ%(lﬂl*-wxw 1%’%(1+<1+V)XA) r"”_-"é%(uy)xz (kp(l+ v)xer/B+oR) 0
by O 0 ) og O o o
0 py O ) 0 oy 0 0
o1(0) = 0 6 pz 0 0 |,e0)=| o 6 o, o0
0 0 0 o o 0 0 0o 1
Xp XA Xz Xep O 0 0 0 0

M}'/ is an ny X 4 selection matrix that selects rows of W and Wy.
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Shut down aggregate uncertainty: set all shock standard deviations 0. = 0.

Technology:
INA:=Iny+InAr1+ 2z, 2zt =pzzi-1+ 026z

Set 0, = 0: In A} = ~t.
Preferences:

Inge = (1 —pg)in e+ pgIn 1 + opeq .

Mark-up:

InAr = (1—pa)in A+ prlInAe_1 + oxers.

Government Spending:

Ing: = (1 - pg)lng* +pgIngi—1+ og€gt
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e Problem: this economy grows... which does not lead to a steady state.
e Solution: detrend model variables by A;.

e Model has steady state in terms of detrended variables.
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Households' Euler Equation

e Recall:
1 R
bl
Cii1 Tyt
e Rewrite:
At |:At+1 At Rt :| 1 |: 1 1 Rt :|
[ = PE: Ciy1 Avg1 Teg1 Ct PE Cep1 V€% Tipq

o Steady state:

R:ﬂ'l:ﬂr.

B
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Households' Labor Supply

e Recall:
W,
LY = —
¢t t Ct
e Rewrite:
Wt/At Wi
LY = LY = —
(bt t Ct/At - ¢t t c
o Steady state:
oLv ==
c
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Intermediate Goods Production

Recall:

W

MG = —.
G 2,

Steady state:

°
P
™
0
L

°
wn
[
®
©
(e

<
0
[wd
Y]
—+
®
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Intermediate Goods Production

e Recall:

RS2

Yers/Ces P’ S >
GE,; sz; Cpﬁs N, HJS_:1 — P — (1 + ) J];[l Teqj | MCips =0,

e Steady state:

s X{ZCW(_S)

1+

|
>

Mﬁ$(1+Mﬁmd}—
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Monetary and Fiscal Policy - Steady States

e Monetary policy rule:

Y1
R— rr. ()
T x

o Government spending;:

1
g—(l—)y
&«
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Aggregate Resource Constraint and Price Dispersion

o Market clearing:
(-2)
c+H|l-—)y=y = c=—y.
* 8
e Aggregate production:

1
S
Y=D

e Price dispersion:
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Combining Bits and Pieces

e Steady state equations are quite complicated.
e Special case: T = 4, i.e., price setters index prices by target inflation rate.
e Verify that 7 = 7, = 7 is an equilibrium:

e Policy rule and Euler equation imply R = 7r, where r = v/3.

e For ™ = 7 the condition

1 172
= |- Q) F 4]
implies p = 1.

Thus, there is no steady state price dispersion: D = 1.
The firms' FOC imply that

me=w=1-+ = p=01Q+A)mec.

A
e Using ¢ = y/g« and y = I, the households’ labor supply condition implies

g 1/(14v)
— T (¢(1+A)>
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Monetary and Fiscal Policy Experiments - Thus Far...

Change the target inflation rate 7., assuming that indexation to 7 does not change.
Crucial parameter: (,.

Change the amount of government spending through g, and compute long-run multipliers.
Crucial parameter v.

Estimate model to obtain policy-effect relevant parameters.

e Parameter uncertainty translates into policy uncertainty.
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(Log) Linearization Around Steady State

e We will now approximate the equilibrium dynamics of the model.
e Taylor series expansion around around the steady state.

e Linear rational exectations system:

G = Eeq[Cqa] — (l/?\t - E[%H»l]) + E¢[z441]

%t = BEt[%t—}—l] + Hp(lsht + At)

ﬁt = T/Jlﬁt + ¢2(?t - }?t—l + Zt) + ORER:t
Ishe = (1+v)¢ + g + ¢

)?t = Et + Et
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State-space Representation of DSGE Model

e n, x 1 vector of observables:
ye = M) [log(X:/X:_1),log Ish;, log ¢, log Ry]".
e ng x 1 vector of econometric state variables s;

St = [¢t7 Aty Zt, 6R,t>)?t—1]l

DSGE model parameters:

0= [/63,77 )\,7{'*, ¢p7 v, p¢77pA7pZ7O—¢7JX7JZ7O-R],‘

Measurement equation:

ve = Wo(0) + W1 (0)s,.

State-transition equation:

st = ®1(0)se—1 + Pc(0)er, €= [6¢,t, €Nty €zt ER,t]I
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State-Space Representation of DSGE Model

State-space representation:

ye = Wo(0)+ Vi(0)s;
St = (D]_(G)Stf]. + qDE(H)Gt

System matrices:

log v
log(Ish kpp/B rkp¥p/B pzp
vo(e) = M) \Zi(;*) B L T
log(r* v/ 6) 1—4ppy 1—ppx 1— ppz
X X\ xz 41 Xep -1
141+ v)x (1 + v)xy A+ v)x (1 + vixeq 0
Vi) = My A ekg) () (v +rp(l+ Vixep 0
3 < 3
ﬁ%(lﬂl*-wxw 1%’%(1+<1+V)XA) r"”_-"é%(uy)xz (kp(l+ v)xer/B+oR) 0
by O 0 ) og O o o
0 py O ) 0 oy 0 0
o1(0) = 0 6 pz 0 0 |,e0)=| o 6 o, o0
0 0 0 o o 0 0 0o 1
Xp XA Xz Xep O 0 0 0 0

M}'/ is an ny X 4 selection matrix that selects rows of W and Wy.
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What is a Local Approximation?

e In a nutshell... consider the backward-looking model

Yt = f(yt—la Uﬁt)- (1)

e Suppose there is a steady state y* satisfies y* = f(y*,0).
Guess that the solution to (1) is of the form

ye=y* + oyt(l) + o(0). (2)

Taylor series expansion of f(-) around steady state:

f(ye—1,0€) =y" + fyyi—1 + feoer + o(lyt—1l) + o(o)

Now plug-in conjectured solution (2) into (1) using approx of f(-):

v + oy +o(0) = y* + foyD + foer + o(0)

e Deduce that yt(l) = fyyt(i)l + feee.
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What is a Log-Linear Approximation?

e Consider Cobb-Douglas production function: Y; = ZtKl?‘Htl_o‘.

e Linearization around Y., Z., K., Hx:
Yi—Y, = Kin_("(Zt —-Z)+ aZ*Kf‘_lHi_a(Kt - K.)
+(1 - @)Z.KIH “(H: — Ky)

o Log-linearization: Let f(x) = f(e") and linearize with respect to v:
f(e") m fe™) + e f'(e”)(v—w).
Thus:
f(x) & F(xe) + xF (x)(In x/x0) = F(xi) + F/ (%)X
e Cobb-Douglas production function:

\N/t = 2t+akt+(1 —Oz):‘:/t
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Let's Try the Log-linearizations

e Euler Equation:

1 1 1 R
— = BE, { ~ t } )
Ct Crt1 Y€ ey

e Log-linearized:
—¢=E; [—Et+1—2t+1+§t—%t+1} = &= Et[EtJrl]_(ﬁt_]E[%Hl])"’Et[th]-

e Labor Supply:

7%
¢)tth/ = 71. .
Ct

e Log-linearized:

¢t+VLt:Wt_Et
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Let's Try the Log-linearizations

e Aggregate Resource Constraint:

L 1
)/t:Et, Ct+<1—))/t_Yt = Ct8t = Y-
¢ t

Log-linearized:

~

ye=L— D, C+8 =y

Monetary Policy Rule:

1o opR T Y1 Y, P2
R: = R, "*R{% exp{orert}, Rie = (rms) p i, )

Log-linearized

'E‘)\t = (1 - pR)ﬁ*,t + pRﬁt—l + ORER,t, ﬁ*,t = /(/)1/77\—1' + wz [j/\t - j/\t—l + Zt]o
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New Keynesian Phillips Curve

This is fairly complicated... let's focus on the result.
e Assume: T =T = T,

Note that

r/n\Ct = Wt = /Sht.

Log-linearized:

(1 =GB = ¢p)

%t = ﬂ]Et[;\Tt-l—l] —+ l{p(@t —+ >\t)7 K'/p = <_
p

We also get ﬁt =0.
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Combining Bits and Pieces

e Notation: write x; instead of y; for output.
o Assume: T =T =y, Y1 =1/8, ¥, =0, pr = 0.
e Linear rational expectations (LRE) system:

G = ]Et+1[/C\t+1] - (ﬁt - E[%t+1]) + Et[2t+1]
/ﬂ:t = ﬁEt[f]ﬂH,l] + Klp(lsht + >\t)
1_
R = Bﬂt + ORERt
Ishe = (1+v)c +vge+ ¢
Xt = CG+&
Et = pggtfl + Og€gt
Gr = Pedr_1 T+ g€yt
At = A1+ OoxEn:
Zy = pPzZt-1+ Oz€z ¢t
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How Can One Solve LRE Systems? A Simple Example

Simple model:

1 .
Ye = EEt[}’tH] +e, e ~iid(0,1), 6#€©=][0,2]

e Method 1: Introduce conditional expectation & = E;[y:11] and forecast error
N =Y: — &1

& = 081 — Oer + Ony.

Nonexplosive solutions:
e Determinacy: 6§ > 1. The only stable solution:

&=0, m=e = yi=e€
e Indeterminacy: # < 1 the stability requirement imposes no restrictions on forecast error:

Nt = M6t+<t =y =0y—1 + M6t+<t — fer—1
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How Can One Solve LRE Systems? A Simple Example

Simple model:

1 .
Ye = gEt[YHI] +e€, € ~iid(0,1), #€©=]0,2]

e Method 2: Construct nonexplosive solutions as follows:
e Determinacy: 6 > 1. Solve equation forward:

1 [1 0 N
ye= e+ GEe | SEealye] + 6t+1} = ;Et [(5) €t+s:| = €.

e Indeterminacy: 6 < 1. Express model in terms of & = E;[y:+1] and solve backward (as in
previous slide).
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How Can One Solve LRE Systems? A Simple Example

Simple model:

1 .
Ve = aI[«jt[ytJrl] +e, e ~iid(0,1), 0#€©=]0,2].

e Method 3: Undetermined coefficients. Guess that y; = y1y:—1 + Y26 + 73€t—1- Thus,

1
Ye = gEt ['Yl)/t + Y2€t41 + 7361:} + €

Nonexplosive solutions:
e [ndeterminacy: 8 <1
Ye oo 71:75/9 = m=0o0ry =80
€ © 2 is unrestricted
€1 : 0=73/0+1 = ~y3=00ry=—0
e Determinacy: § > 1. We cannot set 71 = 6. Thus,

Mm=0 7=1 =0
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More generally...

Linearized DSGE leads to linear rational expectations (LRE) system.

Sims (2002) provides solution algorithm for canonical form
Fo(0)s: = T1(0)st—1 + Wer + My

where
e s; is a vector of model variables, ¢; is a vector of exogenous shocks,
e 7 is a vector of RE errors with elements 7y = % — E;_1[%X¢], and
e s; contains (among others) the conditional expectation terms E;[X¢+1].

Overall the solution in terms of s; is of the form

Sy = ¢1(9)St_1 —+ ¢€(9)€t'

Other solution methods for LREs: Blanchard and Kahn (1980), King and Watson (1998),
Uhlig (1999), Anderson (2000), Klein (2000), Christiano (2002).

Frank Schorfheide Introduction to DSGE Modeling



Solving Our LRE Model

e Assumption: ¢, =1/8, g, = 0.

e Eliminate nominal interest rate from the consumption Euler equation using policy rule

~ ~ 1. ~
Xe = Eeya[Xea1] — (ﬁﬂt + ORER,t — E[Wt+1]> + E¢[ze11].
e Rewrite NKPC:

1

E%t — Et[Fe1] = %((1 + V)Xe + ¢r + At).
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Solving our LRE Model

Substitute NKPC into consumption Euler equation:

Kpp

B

where 0 <, < 1 is given by

Xt = VpEe[Xes1] — (D + Ae) + VpEi[ze1] — Vporer,:,

by = <1+'E(1+u)>1.
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Solving our LRE Model — Output

¢ Recall:
o~ ~ KpYp
Xt = ¢p]Et[Xt+1] - 3 (6t + Ae) + wat[th] — YpORER,t,
e We now need to find a law of motion for output (and, equivalently, consumption) of the

form
Xt = 3<\(¢t, At, Zt, 6R,t) = X¢¢t + XAt + X2 + Xer€R,t
e that solves the functional equation:
0 = E )A(((bt, Ats Zt, 6R,t)

_wp)?(quSt + Op€p,t41, PANt T ONEX t41, PZt + O2€7 141, 6R,t+1)
Kpp

5

(P + Ae) — Vpzey1 + YpoReR |-
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Solving our LRE Model — Output

e Decision rule for output:

Xt = 5<\(¢ta Aty Zt, ER,t) = XpPr + XaAt + XzZt + Xeg€R ¢t

"fpwp/ﬁ X\ — Hp¢p/ﬁ . — PzYp

Xp = — 5 - y Rz — Zt, Xe:—¢UR~
O T oy 1—ppa 1—tppp, 17 TF P
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Solving our LRE Model — Labor Share

e Recall: Eﬂt =(14+v)x + ¢¢.
e Deduce

Eﬁt = [1 +(1+ V)X¢]¢5t + (14 v)xade + (1 + v)xze + (L4 V)Xeg€R, ¢

Frank Schorfheide Introduction to DSGE Modeling



Solving our LRE Model — Inflation

The NKPC yields the following functional equation:
0 = E; [7?(@, Ats Zt €R,t) — BT (Pode + Tp€p e1, PANE + OXEN t415 PZt + 0262111, €R,e41)

7/43;7[977((;51‘7 )‘tv Zt, 6F\’,t’) - K/p>\t )

where //571() was given on previous slide.

The solution takes the form

~ Kp Rp
= 1 1 1 1 A
Tt 1*ﬂp¢[ +( +V)X¢]¢t+lfﬂp>\[ +( +V)X>\] t
kp
" . 1 ere.
+(1 — 5pz)( + U)Xz + Fp(1 4 V)Xep€R ¢
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Solving our LRE Model — Interest Rates

Combining the decision rule for inflation with the monetary policy rule yields

5 _ Kp/B Kp/B
Re = 1_”5% [1+ (1 +v)xs)be + 1_"6m [1+ (1 +v)x]Ae
+%(1 U)Xz + [“p(l + V)XER/ﬂ-FUR] €R,t-
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Linking Model Variables and Observables

e To confront the model with data, one has to account for the presence of the model-implied
stochastic trend in aggregate output and to add the steady states to all model variables.

e Measurement equations:

log(X:/Xe—1) = Xe—Xe—1+ 2zt +logry
log(Ish;) = Ish + log(/sh)
logm: = 7+ logw™
log Ry = R, + log(7*~/B).
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State-space Representation of DSGE Model

e n, x 1 vector of observables:
ye = M) [log(X:/X:_1),log Ish;, log ¢, log Ry]".
e ng x 1 vector of econometric state variables s;

St = [¢t7 Aty Zt, 6R,t>)?t—1]l

DSGE model parameters:

0= [/63,77 )\,7{'*, ¢p7 v, p¢77pA7pZ7O—¢7JX7JZ7O-R],‘

Measurement equation:

ve = Wo(0) + W1 (0)s,.

State-transition equation:

st = ®1(0)se—1 + Pc(0)er, €= [6¢,t, €Nty €zt ER,t]I
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State-Space Representation of DSGE Model

State-space representation:

ye = Wo(0)+ Vi(0)s;
St = (D]_(G)Stf]. + qDE(H)Gt

System matrices:

log v
log(Ish kpp/B rkp¥p/B pzp
vo(e) = M) \Zi(;*) B L T
log(r* v/ 6) 1—4ppy 1—ppx 1— ppz
X X\ xz 41 Xep -1
141+ v)x (1 + v)xy A+ v)x (1 + vixeq 0
Vi) = My A ekg) () (v +rp(l+ Vixep 0
3 < 3
ﬁ%(lﬂl*-wxw 1%’%(1+<1+V)XA) r"”_-"é%(uy)xz (kp(l+ v)xer/B+oR) 0
by O 0 ) og O o o
0 py O ) 0 oy 0 0
o1(0) = 0 6 pz 0 0 |,e0)=| o 6 o, o0
0 0 0 o o 0 0 0o 1
Xp XA Xz Xep O 0 0 0 0

M}'/ is an ny X 4 selection matrix that selects rows of W and Wy.
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