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Some Background

• DSGE model: dynamic model of the macroeconomy, indexed by θ – vector of preference
and technology parameters. Used for forecasting, policy experiments, interpreting past
events.

• Ingredients of Bayesian Analysis:

• Likelihood function p(Y |θ)

• Prior density p(θ)

• Marginal data density p(Y ) =
∫
p(Y |θ)p(θ)dφ

• Bayes Theorem:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
∝ p(Y |θ)p(θ)
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Some Background

• Implementation: usually by generating a sequence of draws (not necessarily iid) from
posterior

θi ∼ p(θ|Y ), i = 1, . . . ,N

• Algorithms: direct sampling, accept/reject sampling, importance sampling, Markov chain
Monte Carlo sampling, sequential Monte Carlo sampling...

• Draws can then be transformed into objects of interest, h(θi ), and under suitable
conditions a Monte Carlo average of the form

h̄N =
1

N

N∑
i=1

h(θi ) ≈ Eπ[h]

∫
h(θ)p(θ|Y )dθ.

• Strong law of large numbers (SLLN), central limit theorem (CLT)...
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Bayesian Inference – Decision Making

• The posterior expected loss of decision δ(·):

ρ
(
δ(·)|Y

)
=

∫
Θ

L
(
θ, δ(Y )

)
p(θ|Y )dθ.

• Bayes decision minimizes the posterior expected loss:

δ∗(Y ) = argmind ρ
(
δ(·)|Y

)
.

• Approximate ρ
(
δ(·)|Y

)
by a Monte Carlo average

ρ̄N

(
δ(·)|Y

)
=

1

N

N∑
i=1

L
(
θi , δ(·)

)
.

• Then compute

δ∗N (Y ) = argmind ρ̄N

(
δ(·)|Y

)
.
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Bayesian Inference

• Point estimation:

• Quadratic loss: posterior mean

• Absolute error loss: posterior median

• Interval/Set estimation Pπ{θ ∈ C (Y )} = 1− α:

• highest posterior density sets

• equal-tail-probability intervals
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Computational Challenges

• Numerical solution of model leads to
state-space representation =⇒ likelihood approximation =⇒ posterior sampler.

• “Standard” approach for (linearized) models
• Model solution: log-linearize and use linear rational expectations system solver.
• Evaluation of p(Y |θ): Kalman filter
• Posterior draws θi : MCMC

• Book reviews the “standard approach”, but also studies more recently developed
sequential Monte Carlo (SMC) techniques.
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Sequential Monte Carlo (SMC) Methods

SMC can help to

• Approximate the likelihood function (particle filtering): Gordon, Salmond, and Smith
(1993) ... Fernandez-Villaverde and Rubio-Ramirez (2007)

• approximate the posterior of θ: Chopin (2002) ... Durham and Geweke (2013) ... Creal
(2007), Herbst and Schorfheide (2014)

• or both: SMC 2: Chopin, Jacob, and Papaspiliopoulos (2012) ... Herbst and Schorfheide
(2015)
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Review – Importance Sampling



Importance Sampling

• Approximate π(·) by using a different, tractable density g(θ) that is easy to sample from.

• For more general problems, posterior density may be unnormalized. So we write

π(θ) =
p(Y |θ)p(θ)

p(Y )
=

f (θ)∫
f (θ)dθ

.

• Importance sampling is based on the identity

Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

∫
Θ
h(θ) f (θ)

g(θ)g(θ)dθ∫
Θ

f (θ)
g(θ)g(θ)dθ

.

• (Unnormalized) importance weight:

w(θ) =
f (θ)

g(θ)
.
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Importance Sampling

1 For i = 1 to N, draw θi iid∼ g(θ) and compute the unnormalized importance weights

w i = w(θi ) =
f (θi )

g(θi )
.

2 Compute the normalized importance weights

W i =
w i

1
N

∑N
i=1 w

i
.

An approximation of Eπ[h(θ)] is given by

h̄N =
1

N

N∑
i=1

W ih(θi ).
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Illustration

If θi ’s are draws from g(·) then

Eπ[h] ≈
1
N

∑N
i=1 h(θi )w(θi )

1
N

∑N
i=1 w(θi )

, w(θ) =
f (θ)

g(θ)
.
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Accuracy

• Since we are generating iid draws from g(θ), it’s fairly straightforward to derive a CLT:

√
N(h̄N − Eπ[h]) =⇒ N

(
0,Ω(h)

)
, where Ω(h) = Vg [(π/g)(h − Eπ[h])].

• Using a crude approximation (see, e.g., Liu (2008)), we can factorize Ω(h) as follows:

Ω(h) ≈ Vπ[h]
(
1 + Vg [π/g ]

)
.

The approximation highlights that the larger the variance of the importance weights, the
less accurate the Monte Carlo approximation relative to the accuracy that could be
achieved with an iid sample from the posterior.

• Users often monitor

ESS = N
Vπ[h]

Ω(h)
≈ N

1 + Vg [π/g ]
.
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Likelihood Approximation



State-Space Representation and Likelihood

• Measurement Equation:

yt = Ψ(st ; θ) +ut︸︷︷︸
optional

• State transition:

st = Φ(st−1, εt ; θ)

• Joint density for the observations and latent states:

p(Y1:T ,S1:T |θ) =
T∏

t=1

p(yt , st |Y1:t−1,S1:t−1, θ) =
T∏

t=1

p(yt |st , θ)p(st |st−1, θ).

• Need to compute the marginal p(Y1:T |θ).
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Filtering - General Idea

• State-space representation of nonlinear DSGE model

Measurement Eq. : yt = Ψ(st , t; θ) + ut , ut ∼ Fu(·; θ)

State Transition : st = Φ(st−1, εt ; θ), εt ∼ Fε(·; θ).

• Likelihood function:

p(Y1:T |θ) =
T∏

t=1

p(yt |Y1:t−1, θ)

• A filter generates a sequence of conditional distributions st |Y1:t .
• Iterations:

• Initialization at time t − 1: p(st−1|Y1:t−1, θ)
• Forecasting t given t − 1:

1 Transition equation: p(st |Y1:t−1, θ) =
∫

p(st |st−1,Y1:t−1, θ)p(st−1|Y1:t−1, θ)dst−1

2 Measurement equation: p(yt |Y1:t−1, θ) =
∫

p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)dst

• Updating with Bayes theorem. Once yt becomes available:

p(st |Y1:t , θ) = p(st |yt ,Y1:t−1, θ) =
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)

p(yt |Y1:t−1, θ)
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Conditional Distributions for Kalman Filter (Linear Gaussian State-Space
Model)

Distribution Mean and Variance
st−1|(Y1:t−1, θ) N

(
s̄t−1|t−1,Pt−1|t−1

)
Given from Iteration t − 1

st |(Y1:t−1, θ) N
(
s̄t|t−1,Pt|t−1

)
s̄t|t−1 = Φ1s̄t−1|t−1

Pt|t−1 = Φ1Pt−1|t−1Φ′1 + ΦεΣεΦ
′
ε

yt |(Y1:t−1, θ) N
(
ȳt|t−1,Ft|t−1

)
ȳt|t−1 = Ψ0 + Ψ1t + Ψ2s̄t|t−1

Ft|t−1 = Ψ2Pt|t−1Ψ′2 + Σu

st |(Y1:t , θ) N
(
s̄t|t ,Pt|t

)
s̄t|t = s̄t|t−1 + Pt|t−1Ψ′2F

−1
t|t−1(yt − ȳt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Ψ′2F
−1
t|t−1Ψ2Pt|t−1
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Bootstrap Particle Filter

1 Initialization. Draw the initial particles from the distribution s j
0

iid∼ p(s0) and set W j
0 = 1,

j = 1, . . . ,M.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st . Propagate the period t − 1 particles {s j
t−1,W

j
t−1} by iterating the

state-transition equation forward:

s̃ j
t = Φ(s j

t−1, ε
j
t ; θ), εj

t ∼ Fε(·; θ). (1)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃ j
t )W j

t−1. (2)
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Bootstrap Particle Filter

1 Initialization.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ j

t , θ). (3)

The predictive density p(yt |Y1:t−1, θ) can be approximated by

p̂(yt |Y1:t−1, θ) =
1

M

M∑
j=1

w̃ j
tW

j
t−1. (4)

If the measurement errors are N(0,Σu) then the incremental weights take the form

w̃ j
t = (2π)−n/2|Σu|−1/2 exp

{
− 1

2

(
yt −Ψ(s̃ j

t , t; θ)
)′

Σ−1
u

(
yt −Ψ(s̃ j

t , t; θ)
)}
, (5)

where n here denotes the dimension of yt .
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Bootstrap Particle Filter

1 Initialization.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ j

t , θ). (6)

3 Updating. Define the normalized weights

W̃ j
t =

w̃ j
tW

j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (7)

An approximation of E[h(st)|Y1:t , θ] is given by

h̃t,M =
1

M

M∑
j=1

h(s̃ j
t )W̃ j

t . (8)
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Bootstrap Particle Filter

1 Initialization.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt .
3 Updating.
4 Selection (Optional). Resample the particles via multinomial resampling. Let {s j

t}M
j=1

denote M iid draws from a multinomial distribution characterized by support points and
weights {s̃ j

t , W̃
j
t } and set W j

t = 1 for j =, 1 . . . ,M.
An approximation of E[h(st)|Y1:t , θ] is given by

h̄t,M =
1

M

M∑
j=1

h(s j
t )W j

t . (9)

F. Schorfheide Bayesian Computations



Likelihood Approximation

• The approximation of the log likelihood function is given by

ln p̂(Y1:T |θ) =
T∑

t=1

ln

 1

M

M∑
j=1

w̃ j
tW

j
t−1

 . (10)

• One can show that the approximation of the likelihood function is unbiased.

• This implies that the approximation of the log likelihood function is downward biased.
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The Role of Measurement Errors

• Measurement errors may not be intrinsic to DSGE model.

• Bootstrap filter needs non-degenerate p(yt |st , θ) for incremental weights to be well
defined.

• Decreasing the measurement error variance Σu, holding everything else fixed, increases the
variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.
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Generic Particle Filter

1 Initialization. Same as BS PF
2 Recursion. For t = 1, . . . ,T :

1 Forecasting st . Draw s̃ j
t from density gt(s̃t |s j

t−1, θ) and define

ωj
t =

p(s̃ j
t |s j

t−1, θ)

gt(s̃ j
t |s j

t−1, θ)
. (11)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃ j
t )ωj

tW
j
t−1. (12)

2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ j

t , θ)ωj
t . (13)

The predictive density p(yt |Y1:t−1, θ) can be approximated by

p̂(yt |Y1:t−1, θ) =
1

M

M∑
j=1

w̃ j
tW

j
t−1. (14)

3 (...)
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Adapting the Generic PF

• Conditionally-optimal importance distribution:

gt(s̃t |s j
t−1) = p(s̃t |yt , s

j
t−1).

This is the posterior of st given s j
t−1. Typically infeasible, but a good benchmark.

• Approximately conditionally-optimal distributions: from linearize version of DSGE model
or approximate nonlinear filters.

• Conditionally-linear models: do Kalman filter updating on a subvector of st . Example:

yt = Ψ0(mt) + Ψ1(mt)t + Ψ2(mt)st + ut , ut ∼ N(0,Σu),

st = Φ0(mt) + Φ1(mt)st−1 + Φε(mt)εt , εt ∼ N(0,Σε),

where mt follows a discrete Markov-switching process.
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Distribution of Log-Likelihood Approximation Errors

Bootstrap PF: θm vs. θl

-50 -30 -10 10 30
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) based on Nrun = 100 runs of the
PF. Solid line is θ = θm; dashed line is θ = θl (M = 40, 000).
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Distribution of Log-Likelihood Approximation Errors

θm: Bootstrap vs. Cond. Opt. PF
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Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) based on Nrun = 100 runs of the
PF. Solid line is bootstrap particle filter (M = 40, 000); dotted line is conditionally optimal
particle filter (M = 400). F. Schorfheide Bayesian Computations



Great Recession and Beyond

Log Standard Dev of Log-Likelihood Increments

2003 2006 2009 2012
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Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on Nrun = 100 runs of the filters.
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Posterior Sampling



Implementation: Sampling from Posterior

• DSGE model posteriors are often non-elliptical, e.g., multimodal posteriors may arise

because it is difficult to

• disentangle internal
and external
propagation
mechanisms;

• disentangle the
relative importance of
shocks.
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• Economic Example: is wage growth persistent because

1 wage setters find it very costly to adjust wages?

2 exogenous shocks affect the substitutability of labor inputs and hence markups?
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Sampling from Posterior

• If posterior distributions are irregular, standard MCMC methods can be inaccurate
(examples will follow).

• SMC samplers often generate more precise approximations of posteriors in the same
amount of time.

• SMC can be parallelized.

• SMC = importance sampling on steroids

• For now we assume that the likelihood evaluation is exact.
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From Importance Sampling to Sequential Importance Sampling

• In general, it’s hard to construct a good proposal density g(θ),

• especially if the posterior has several peaks and valleys.

• Idea - Part 1: it might be easier to find a proposal density for

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

=
fn(θ)

Zn
.

at least if φn is close to zero.

• Idea - Part 2: We can try to turn a proposal density for πn into a proposal density for πn+1

and iterate, letting φn −→ φN = 1.
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Illustration: Tempered Posteriors of θ1
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πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

=
fn(θ)

Zn
, φn =

(
n

Nφ

)λ
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SMC Algorithm: A Graphical Illustration

C S M C S M C S M
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φ0 φ1 φ2 φ3

• πn(θ) is represented by a swarm of particles {θi
n,W

i
n}N

i=1:

h̄n,N =
1

N

N∑
i=1

W i
nh(θi

n)
a.s.−→ Eπn [h(θn)].

• C is Correction; S is Selection; and M is Mutation.
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Remarks

• Correction Step:
• reweight particles from iteration n − 1 to create importance sampling approximation of

Eπn [h(θ)]

• Selection Step: the resampling of the particles
• (good) equalizes the particle weights and thereby increases accuracy of subsequent

importance sampling approximations;
• (not good) adds a bit of noise to the MC approximation.

• Mutation Step: changes particle values
• adapts particles to posterior πn(θ);
• imagine we don’t do it: then we would be using draws from prior p(θ) to approximate

posterior π(θ), which can’t be good!
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More on Transition Kernel in Mutation Step

• Transition kernel Kn(θ|θ̂n−1; ζn): generated by running M steps of a Metropolis-Hastings
algorithm.

• Lessons from DSGE model MCMC:
• blocking of parameters can reduces persistence of Markov chain;
• mixture proposal density avoids “getting stuck.”

• Blocking: Partition the parameter vector θn into Nblocks equally sized blocks, denoted by
θn,b, b = 1, . . . ,Nblocks . (We generate the blocks for n = 1, . . . ,Nφ randomly prior to
running the SMC algorithm.)

• Example: random walk proposal density:

ϑb|(θi
n,b,m−1, θ

i
n,−b,m,Σ

∗
n,b) ∼ N

(
θi

n,b,m−1, c
2
n Σ∗n,b

)
.
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Application: Estimation of Smets and Wouters (2007) Model

• Benchmark macro model, has been estimated many (many) times.

• “Core” of many larger-scale models.

• 36 estimated parameters.

• RWMH: 10 million draws (5 million discarded); SMC: 500 stages with 12,000 particles.

• We run the RWM (using a particular version of a parallelized MCMC) and the SMC
algorithm on 24 processors for the same amount of time.

• We estimate the SW model twenty times using RWM and SMC and get essentially
identical results.
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Application: Estimation of Smets and Wouters (2007) Model

• More interesting question: how does quality of posterior simulators change as one makes
the priors more diffuse?

• Replace Beta by Uniform distributions; increase variances of parameters with Gamma and
Normal prior by factor of 3.
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SW Model with DIFFUSE Prior: Estimation stability RWH (black) versus
SMC (red)
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A Measure of Effective Number of Draws

• Suppose we could generate iid Neff draws from posterior, then

Êπ[θ]
approx∼ N

(
Eπ[θ],

1

Neff
Vπ[θ]

)
.

• We can measure the variance of Êπ[θ] by running SMC and RWM algorithm repeatedly.

• Then,

Neff ≈
Vπ[θ]

V
[
Êπ[θ]

]
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Effective Number of Draws

SMC RWMH
Parameter Mean STD(Mean) Neff Mean STD(Mean) Neff

σl 3.06 0.04 1058 3.04 0.15 60
l -0.06 0.07 732 -0.01 0.16 177
ιp 0.11 0.00 637 0.12 0.02 19
h 0.70 0.00 522 0.69 0.03 5
Φ 1.71 0.01 514 1.69 0.04 10
rπ 2.78 0.02 507 2.76 0.03 159
ρb 0.19 0.01 440 0.21 0.08 3
ϕ 8.12 0.16 266 7.98 1.03 6
σp 0.14 0.00 126 0.15 0.04 1
ξp 0.72 0.01 91 0.73 0.03 5
ιw 0.73 0.02 87 0.72 0.03 36
µp 0.77 0.02 77 0.80 0.10 3
ρw 0.69 0.04 49 0.69 0.09 11
µw 0.63 0.05 49 0.63 0.09 11
ξw 0.93 0.01 43 0.93 0.02 8
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A Closer Look at the Posterior: Two Modes

Parameter Mode 1 Mode 2
ξw 0.844 0.962
ιw 0.812 0.918
ρw 0.997 0.394
µw 0.978 0.267
Log Posterior -804.14 -803.51

• Mode 1 implies that wage persistence is driven by extremely exogenous persistent wage
markup shocks.

• Mode 2 implies that wage persistence is driven by endogenous amplification of shocks
through the wage Calvo and indexation parameter.

• SMC is able to capture the two modes.
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A Closer Look at the Posterior: Internal ξw versus External ρw Propagation
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Stability of Posterior Computations: RWH (black) versus SMC (red)
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Embedding PF Likelihoods into Posterior Samplers

• Particle MCMC, SMC 2.

• Distinguish between:
• {p(Y |θ), p(θ|Y ), p(Y )}, which are related according to:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
, p(Y ) =

∫
p(Y |θ)p(θ)dθ

• {p̂(Y |θ), p̂(θ|Y ), p̂(Y )}, which are related according to:

p̂(θ|Y ) =
p̂(Y |θ)p(θ)

p̂(Y )
, p̂(Y ) =

∫
p̂(Y |θ)p(θ)dθ.

• Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can
replace p(Y |θ) by p̂(Y |θ) and still obtain draws from p(θ|Y ).
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