Bayesian Computations for DSGE Models

Frank Schorfheide*

*University of Pennsylvania, PIER, CEPR, and NBER

October 23, 2017

This Lecture is Based on

https://web.sas.upenn.edu/schorf/ companion-web-site-bayesian-estimation-of-dsge-models

- DSGE model: dynamic model of the macroeconomy, indexed by θ vector of preference and technology parameters. Used for forecasting, policy experiments, interpreting past events.
- Ingredients of Bayesian Analysis:
 - Likelihood function $p(Y|\theta)$
 - Prior density $p(\theta)$
 - Marginal data density $p(Y) = \int p(Y|\theta) p(\theta) d\phi$
- Bayes Theorem:

$$p(\theta|Y) = rac{p(Y| heta)p(heta)}{p(Y)} \propto p(Y| heta)p(heta)$$

• Implementation: usually by generating a sequence of draws (not necessarily iid) from posterior

 $\theta^i \sim p(\theta|Y), \quad i = 1, \dots, N$

- Algorithms: direct sampling, accept/reject sampling, importance sampling, Markov chain Monte Carlo sampling, sequential Monte Carlo sampling...
- Draws can then be transformed into objects of interest, $h(\theta^i)$, and under suitable conditions a Monte Carlo average of the form

$$ar{h}_{N} = rac{1}{N}\sum_{i=1}^{N}h(heta^{i}) pprox \mathbb{E}_{\pi}[h]\int h(heta)p(heta|Y)d heta.$$

• Strong law of large numbers (SLLN), central limit theorem (CLT)...

Bayesian Inference – Decision Making

• The posterior expected loss of decision $\delta(\cdot)$:

$$\rho(\delta(\cdot)|Y) = \int_{\Theta} L(\theta, \delta(Y)) p(\theta|Y) d\theta.$$

• Bayes decision minimizes the posterior expected loss:

 $\delta^*(Y) = \operatorname{argmin}_d \rho(\delta(\cdot)|Y).$

- Approximate $hoig(\delta(\cdot)|Yig)$ by a Monte Carlo average

$$ar{
ho}_Nig(\delta(\cdot)|Yig) = rac{1}{N}\sum_{i=1}^N Lig(heta^i,\delta(\cdot)ig).$$

• Then compute

$$\delta_N^*(Y) = \operatorname{argmin}_d \bar{\rho}_N(\delta(\cdot)|Y).$$

- Point estimation:
 - Quadratic loss: posterior mean
 - Absolute error loss: posterior median
- Interval/Set estimation $\mathbb{P}_{\pi}\{\theta \in C(Y)\} = 1 \alpha$:
 - highest posterior density sets
 - equal-tail-probability intervals

- Numerical solution of model leads to
 - state-space representation \implies likelihood approximation \implies posterior sampler.
- "Standard" approach for (linearized) models
 - Model solution: log-linearize and use linear rational expectations system solver.
 - Evaluation of $p(Y|\theta)$: Kalman filter
 - Posterior draws θⁱ: MCMC
- Book reviews the "standard approach", but also studies more recently developed sequential Monte Carlo (SMC) techniques.

SMC can help to

- Approximate the likelihood function (particle filtering): Gordon, Salmond, and Smith (1993) ... Fernandez-Villaverde and Rubio-Ramirez (2007)
- approximate the posterior of θ: Chopin (2002) ... Durham and Geweke (2013) ... Creal (2007), Herbst and Schorfheide (2014)
- or both: *SMC*²: Chopin, Jacob, and Papaspiliopoulos (2012) ... Herbst and Schorfheide (2015)

Review – Importance Sampling

Importance Sampling

- Approximate $\pi(\cdot)$ by using a different, tractable density $g(\theta)$ that is easy to sample from.
- For more general problems, posterior density may be unnormalized. So we write

$$\pi(\theta) = \frac{p(Y|\theta)p(\theta)}{p(Y)} = \frac{f(\theta)}{\int f(\theta)d\theta}.$$

• Importance sampling is based on the identity

$$E_{\pi}[h(\theta)] = \int h(\theta)\pi(\theta)d\theta = \frac{\int_{\Theta} h(\theta)\frac{f(\theta)}{g(\theta)}g(\theta)d\theta}{\int_{\Theta} \frac{f(\theta)}{g(\theta)}g(\theta)d\theta}.$$

• (Unnormalized) importance weight:

$$w(heta) = rac{f(heta)}{g(heta)}.$$

Importance Sampling

• For i = 1 to N, draw $\theta^i \stackrel{iid}{\sim} g(\theta)$ and compute the unnormalized importance weights

$$w^i = w(\theta^i) = rac{f(\theta^i)}{g(\theta^i)}.$$

2 Compute the normalized importance weights

$$W^{i} = \frac{w^{i}}{\frac{1}{N}\sum_{i=1}^{N}w^{i}}.$$

An approximation of $\mathbb{E}_{\pi}[h(\theta)]$ is given by

$$ar{h}_{N} = rac{1}{N}\sum_{i=1}^{N}W^{i}h(heta^{i}).$$

Illustration

If θ^i 's are draws from $g(\cdot)$ then

$$\mathbb{E}_{\pi}[h] \approx \frac{\frac{1}{N} \sum_{i=1}^{N} h(\theta^{i}) w(\theta^{i})}{\frac{1}{N} \sum_{i=1}^{N} w(\theta^{i})}, \quad w(\theta) = \frac{f(\theta)}{g(\theta)}.$$

F. Schorfheide Bayesian Computations

Accuracy

• Since we are generating *iid* draws from $g(\theta)$, it's fairly straightforward to derive a CLT:

 $\sqrt{N}(\bar{h}_N - \mathbb{E}_{\pi}[h]) \Longrightarrow N(0, \Omega(h)), \quad \text{where} \quad \Omega(h) = \mathbb{V}_g[(\pi/g)(h - \mathbb{E}_{\pi}[h])].$

• Using a crude approximation (see, e.g., Liu (2008)), we can factorize $\Omega(h)$ as follows:

 $\Omega(h) \approx \mathbb{V}_{\pi}[h](1 + \mathbb{V}_{g}[\pi/g]).$

The approximation highlights that the larger the variance of the importance weights, the less accurate the Monte Carlo approximation relative to the accuracy that could be achieved with an *iid* sample from the posterior.

• Users often monitor

$$ESS = N rac{\mathbb{V}_{\pi}[h]}{\Omega(h)} pprox rac{N}{1 + \mathbb{V}_{g}[\pi/g]}.$$

Likelihood Approximation

State-Space Representation and Likelihood

• Measurement Equation:

$$y_t = \Psi(s_t; \theta) \underbrace{+u_t}_{\text{optional}}$$

• State transition:

$$s_t = \Phi(s_{t-1}, \epsilon_t; \theta)$$

• Joint density for the observations and latent states:

$$p(Y_{1:T}, S_{1:T}|\theta) = \prod_{t=1}^{T} p(y_t, s_t|Y_{1:t-1}, S_{1:t-1}, \theta) = \prod_{t=1}^{T} p(y_t|s_t, \theta) p(s_t|s_{t-1}, \theta).$$

• Need to compute the marginal $p(Y_{1:T}|\theta)$.

Filtering - General Idea

• State-space representation of nonlinear DSGE model

 $\begin{array}{lll} \text{Measurement Eq.} & : & y_t = \Psi(s_t, t; \theta) + u_t, & u_t \sim F_u(\cdot; \theta) \\ \text{State Transition} & : & s_t = \Phi(s_{t-1}, \epsilon_t; \theta), & \epsilon_t \sim F_\epsilon(\cdot; \theta). \end{array}$

• Likelihood function:

$$p(Y_{1:T}|\theta) = \prod_{t=1}^{T} p(y_t|Y_{1:t-1},\theta)$$

- A filter generates a sequence of conditional distributions $s_t|Y_{1:t}$.
- Iterations:
 - Initialization at time t 1: $p(s_{t-1}|Y_{1:t-1}, \theta)$
 - Forecasting t given t 1:
 - **1** Transition equation: $p(s_t|Y_{1:t-1}, \theta) = \int p(s_t|s_{t-1}, Y_{1:t-1}, \theta) p(s_{t-1}|Y_{1:t-1}, \theta) ds_{t-1}$
 - 2 Measurement equation: $p(y_t|Y_{1:t-1},\theta) = \int p(y_t|s_t, Y_{1:t-1},\theta)p(s_t|Y_{1:t-1},\theta)ds_t$
 - Updating with Bayes theorem. Once y_t becomes available:

$$p(s_t|Y_{1:t},\theta) = p(s_t|y_t, Y_{1:t-1},\theta) = \frac{p(y_t|s_t, Y_{1:t-1},\theta)p(s_t|Y_{1:t-1},\theta)}{p(y_t|Y_{1:t-1},\theta)}$$

Conditional Distributions for Kalman Filter (Linear Gaussian State-Space Model)

	Distribution	Mean and Variance
$s_{t-1} (Y_{1:t-1}, \theta) $	$N(\bar{s}_{t-1 t-1}, P_{t-1 t-1})$	Given from Iteration $t-1$
$s_t (Y_{1:t-1},\theta)$	$N(\bar{s}_{t t-1}, P_{t t-1})$	$ar{s}_{t t-1} = \Phi_1 ar{s}_{t-1 t-1} onumber P_{t t-1} = \Phi_1 P_{t-1 t-1} \Phi_1' + \Phi_\epsilon \Sigma_\epsilon \Phi_\epsilon'$
$y_t (Y_{1:t-1},\theta)$	$N(\bar{y}_{t t-1}, F_{t t-1})$	$ar{y}_{t t-1} = \Psi_0 + \Psi_1 t + \Psi_2 ar{s}_{t t-1} \ F_{t t-1} = \Psi_2 P_{t t-1} \Psi_2' + \Sigma_u$
$s_t (Y_{1:t},\theta)$	$N(\bar{s}_{t t}, P_{t t})$	$ \begin{split} \bar{s}_{t t} &= \bar{s}_{t t-1} + P_{t t-1} \Psi_2' F_{t t-1}^{-1} (y_t - \bar{y}_{t t-1}) \\ P_{t t} &= P_{t t-1} - P_{t t-1} \Psi_2' F_{t t-1}^{-1} \Psi_2 P_{t t-1} \end{split} $

Bootstrap Particle Filter

- **1** Initialization. Draw the initial particles from the distribution $s_0^j \stackrel{iid}{\sim} p(s_0)$ and set $W_0^j = 1$, j = 1, ..., M.
- **2 Recursion.** For $t = 1, \ldots, T$:
 - **1** Forecasting s_t . Propagate the period t 1 particles $\{s_{t-1}^j, W_{t-1}^j\}$ by iterating the state-transition equation forward:

$$\tilde{s}_t^j = \Phi(s_{t-1}^j, \epsilon_t^j; \theta), \quad \epsilon_t^j \sim F_\epsilon(\cdot; \theta).$$
(1)

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1},\theta]$ is given by

$$\hat{h}_{t,M} = \frac{1}{M} \sum_{j=1}^{M} h(\tilde{s}_{t}^{j}) W_{t-1}^{j}.$$
(2)

Bootstrap Particle Filter

Initialization.

- **2** Recursion. For $t = 1, \ldots, T$:
 - **1** Forecasting s_t .
 - **2** Forecasting y_t . Define the incremental weights

$$\tilde{w}_t^j = p(y_t | \tilde{s}_t^j, \theta). \tag{3}$$

The predictive density $p(y_t|Y_{1:t-1}, \theta)$ can be approximated by

$$\hat{\rho}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{j=1}^M \tilde{w}_t^j W_{t-1}^j.$$
(4)

If the measurement errors are $N(0, \Sigma_u)$ then the incremental weights take the form

$$\tilde{w}_t^j = (2\pi)^{-n/2} |\Sigma_u|^{-1/2} \exp\left\{-\frac{1}{2} \left(y_t - \Psi(\tilde{s}_t^j, t; \theta)\right)' \Sigma_u^{-1} \left(y_t - \Psi(\tilde{s}_t^j, t; \theta)\right)\right\},\tag{5}$$

where *n* here denotes the dimension of y_t .

Bootstrap Particle Filter

Initialization.

- **2** Recursion. For $t = 1, \ldots, T$:
 - **1** Forecasting *s_t*.
 - **2** Forecasting y_t . Define the incremental weights

$$\tilde{w}_t^j = p(y_t | \tilde{s}_t^j, \theta). \tag{6}$$

3 Updating. Define the normalized weights

$$\tilde{\mathcal{W}}_{t}^{j} = \frac{\tilde{w}_{t}^{j} \mathcal{W}_{t-1}^{j}}{\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_{t}^{j} \mathcal{W}_{t-1}^{j}}.$$
(7)

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t}, \theta]$ is given by

$$\tilde{h}_{t,M} = \frac{1}{M} \sum_{j=1}^{M} h(\tilde{s}_t^j) \tilde{W}_t^j.$$
(8)

- Initialization.
- **2 Recursion.** For $t = 1, \ldots, T$:
 - **1** Forecasting s_t .
 - **2** Forecasting y_t .
 - **3** Updating.
 - ③ Selection (Optional). Resample the particles via multinomial resampling. Let {s^j_{j=1}} denote *M* iid draws from a multinomial distribution characterized by support points and weights {S^j_t, W^j_t} and set W^j_t = 1 for j =, 1..., M. An approximation of E[h(s_t)|Y_{1:t}, θ] is given by

$$\bar{h}_{t,M} = \frac{1}{M} \sum_{j=1}^{M} h(\boldsymbol{s}_{t}^{j}) W_{t}^{j}.$$
(9)

• The approximation of the log likelihood function is given by

$$\ln \hat{p}(Y_{1:T}|\theta) = \sum_{t=1}^{T} \ln \left(\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_t^j W_{t-1}^j \right).$$
(10)

- One can show that the approximation of the likelihood function is unbiased.
- This implies that the approximation of the log likelihood function is downward biased.

- Measurement errors may not be intrinsic to DSGE model.
- Bootstrap filter needs non-degenerate $p(y_t|s_t, \theta)$ for incremental weights to be well defined.
- Decreasing the measurement error variance Σ_u , holding everything else fixed, increases the variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.

1 Initialization. Same as BS PF 2 Recursion. For t = 1, ..., T: 3 Forecasting s_t . Draw \tilde{s}_t^j from density $g_t(\tilde{s}_t|s_{t-1}^j, \theta)$ and define $\omega_t^j = \frac{p(\tilde{s}_t^j|s_{t-1}^j, \theta)}{g_t(\tilde{s}_t^j|s_{t-1}^j, \theta)}.$ (11) An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1}, \theta]$ is given by

$$\hat{h}_{t,M} = \frac{1}{M} \sum_{j=1}^{M} h(\tilde{s}_{t}^{j}) \omega_{t}^{j} W_{t-1}^{j}.$$
(12)

2 Forecasting y_t . Define the incremental weights

$$\tilde{w}_t^j = \rho(y_t | \tilde{s}_t^j, \theta) \omega_t^j.$$
(13)

The predictive density $p(y_t|Y_{1:t-1}, \theta)$ can be approximated by

$$\hat{\rho}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{j=1}^M \tilde{w}_t^j W_{t-1}^j.$$
(14)

3 (...)

• Conditionally-optimal importance distribution:

$$g_t(\tilde{s}_t|s_{t-1}^j) = p(\tilde{s}_t|y_t,s_{t-1}^j).$$

This is the posterior of s_t given s_{t-1}^j . Typically infeasible, but a good benchmark.

- Approximately conditionally-optimal distributions: from linearize version of DSGE model or approximate nonlinear filters.
- Conditionally-linear models: do Kalman filter updating on a subvector of s_t . Example:

$$y_t = \Psi_0(m_t) + \Psi_1(m_t)t + \Psi_2(m_t)s_t + u_t, \quad u_t \sim N(0, \Sigma_u),$$

$$s_t = \Phi_0(m_t) + \Phi_1(m_t)s_{t-1} + \Phi_\epsilon(m_t)\epsilon_t, \quad \epsilon_t \sim N(0, \Sigma_\epsilon),$$

where m_t follows a discrete Markov-switching process.

Distribution of Log-Likelihood Approximation Errors

Notes: Density estimate of $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ based on $N_{run} = 100$ runs of the PF. Solid line is $\theta = \theta^m$; dashed line is $\theta = \theta^I$ (M = 40,000).

Distribution of Log-Likelihood Approximation Errors

Notes: Density estimate of $\hat{\Delta}_1 = \ln \hat{\rho}(Y_{1:T}|\theta) - \ln \rho(Y_{1:T}|\theta)$ based on $N_{run} = 100$ runs of the PF. Solid line is bootstrap particle filter (M = 40,000); dotted line is conditionally optimal particle filter (M = 400)

Great Recession and Beyond

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

Posterior Sampling

Implementation: Sampling from Posterior

DSGE model posteriors are often non-elliptical, e.g., multimodal posteriors may arise

because it is difficult to

- disentangle internal and external propagation mechanisms;
- disentangle the relative importance of shocks.

- Economic Example: is wage growth persistent because
 - **1** wage setters find it very costly to adjust wages?
 - 2 exogenous shocks affect the substitutability of labor inputs and hence markups?

- If posterior distributions are irregular, standard MCMC methods can be inaccurate (examples will follow).
- SMC samplers often generate more precise approximations of posteriors in the same amount of time.
- SMC can be parallelized.
- SMC = importance sampling on steroids
- For now we assume that the likelihood evaluation is exact.

From Importance Sampling to Sequential Importance Sampling

- In general, it's hard to construct a good proposal density $g(\theta)$,
- especially if the posterior has several peaks and valleys.
- Idea Part 1: it might be easier to find a proposal density for

$$\pi_n(\theta) = \frac{[p(Y|\theta)]^{\phi_n} p(\theta)}{\int [p(Y|\theta)]^{\phi_n} p(\theta) d\theta} = \frac{f_n(\theta)}{Z_n}.$$

at least if ϕ_n is close to zero.

Idea - Part 2: We can try to turn a proposal density for π_n into a proposal density for π_{n+1} and iterate, letting φ_n → φ_N = 1.

Illustration: Tempered Posteriors of θ_1

SMC Algorithm: A Graphical Illustration

• $\pi_n(\theta)$ is represented by a swarm of particles $\{\theta_n^i, W_n^i\}_{i=1}^N$:

$$ar{h}_{n,N} = rac{1}{N} \sum_{i=1}^{N} W_n^i h(heta_n^i) \stackrel{a.s.}{\longrightarrow} \mathbb{E}_{\pi_n}[h(heta_n)].$$

• C is Correction; S is Selection; and M is Mutation.

Remarks

- Correction Step:
 - reweight particles from iteration n-1 to create importance sampling approximation of $\mathbb{E}_{\pi_n}[h(\theta)]$
- Selection Step: the resampling of the particles
 - (good) equalizes the particle weights and thereby increases accuracy of subsequent importance sampling approximations;
 - (not good) adds a bit of noise to the MC approximation.
- Mutation Step: changes particle values
 - adapts particles to posterior $\pi_n(\theta)$;
 - imagine we don't do it: then we would be using draws from prior $p(\theta)$ to approximate posterior $\pi(\theta)$, which can't be good!

More on Transition Kernel in Mutation Step

- Transition kernel $K_n(\theta|\hat{\theta}_{n-1};\zeta_n)$: generated by running M steps of a Metropolis-Hastings algorithm.
- Lessons from DSGE model MCMC:
 - blocking of parameters can reduces persistence of Markov chain;
 - mixture proposal density avoids "getting stuck."
- Blocking: Partition the parameter vector θ_n into N_{blocks} equally sized blocks, denoted by $\theta_{n,b}$, $b = 1, \ldots, N_{blocks}$. (We generate the blocks for $n = 1, \ldots, N_{\phi}$ randomly prior to running the SMC algorithm.)
- Example: random walk proposal density:

$$\vartheta_b|(\theta_{n,b,m-1}^i,\theta_{n,-b,m}^i,\Sigma_{n,b}^*) \sim N\left(\theta_{n,b,m-1}^i,c_n^2\Sigma_{n,b}^*\right).$$

Application: Estimation of Smets and Wouters (2007) Model

- Benchmark macro model, has been estimated many (many) times.
- "Core" of many larger-scale models.
- 36 estimated parameters.
- RWMH: 10 million draws (5 million discarded); SMC: 500 stages with 12,000 particles.
- We run the RWM (using a particular version of a parallelized MCMC) and the SMC algorithm on 24 processors for the same amount of time.
- We estimate the SW model twenty times using RWM and SMC and get essentially identical results.

Application: Estimation of Smets and Wouters (2007) Model

- More interesting question: how does quality of posterior simulators change as one makes the priors more diffuse?
- Replace Beta by Uniform distributions; increase variances of parameters with Gamma and Normal prior by factor of 3.

SW Model with DIFFUSE Prior: Estimation stability RWH (black) versus SMC (red)

A Measure of Effective Number of Draws

• Suppose we could generate *iid* N_{eff} draws from posterior, then

$$\hat{\mathbb{E}}_{\pi}[heta] \overset{approx}{\sim} \mathcal{N}\left(\mathbb{E}_{\pi}[heta], \frac{1}{\mathcal{N}_{e\!f\!f}}\mathbb{V}_{\pi}[heta]
ight).$$

- We can measure the variance of $\hat{\mathbb{E}}_{\pi}[\theta]$ by running SMC and RWM algorithm repeatedly.
- Then,

$$N_{eff} pprox rac{\mathbb{V}_{\pi}[heta]}{\mathbb{V}ig[\hat{\mathbb{E}}_{\pi}[heta]ig]}$$

Effective Number of Draws

	SMC				RWMH		
Parameter	Mean	STD(Mean)	N _{eff}	Mean	STD(Mean)	N _{eff}	
σ_l	3.06	0.04	1058	3.04	0.15	60	
1	-0.06	0.07	732	-0.01	0.16	177	
l_p	0.11	0.00	637	0.12	0.02	19	
ĥ	0.70	0.00	522	0.69	0.03	5	
Φ	1.71	0.01	514	1.69	0.04	10	
r_{π}	2.78	0.02	507	2.76	0.03	159	
$ ho_{B}$	0.19	0.01	440	0.21	0.08	3	
arphi	8.12	0.16	266	7.98	1.03	6	
σ_p	0.14	0.00	126	0.15	0.04	1	
ξ_p	0.72	0.01	91	0.73	0.03	5	
L _W	0.73	0.02	87	0.72	0.03	36	
μ_{P}	0.77	0.02	77	0.80	0.10	3	
ρ_w	0.69	0.04	49	0.69	0.09	11	
μ_{w}	0.63	0.05	49	0.63	0.09	11	
ξw	0.93	0.01	43	0.93	0.02	8	

Parameter	Mode 1	Mode 2	
ξw	0.844	0.962	
Lw	0.812	0.918	
$ ho_w$	0.997	0.394	
μ_{w}	0.978	0.267	
Log Posterior	-804.14	-803.51	

- Mode 1 implies that wage persistence is driven by extremely exogenous persistent wage markup shocks.
- Mode 2 implies that wage persistence is driven by endogenous amplification of shocks through the wage Calvo and indexation parameter.
- SMC is able to capture the two modes.

A Closer Look at the Posterior: Internal ξ_w versus External ρ_w Propagation

Stability of Posterior Computations: RWH (black) versus SMC (red)

F. Schorfheide Bayesian Computations

Embedding PF Likelihoods into Posterior Samplers

- Particle MCMC, SMC².
- Distinguish between:
 - $\{p(Y|\theta), p(\theta|Y), p(Y)\}$, which are related according to:

$$p(heta|Y) = rac{p(Y| heta)p(heta)}{p(Y)}, \quad p(Y) = \int p(Y| heta)p(heta)d heta$$

• $\{\hat{p}(Y|\theta), \hat{p}(\theta|Y), \hat{p}(Y)\}$, which are related according to:

$$\hat{p}(heta|Y) = rac{\hat{p}(Y| heta)p(heta)}{\hat{p}(Y)}, \quad \hat{p}(Y) = \int \hat{p}(Y| heta)p(heta)d heta.$$

• Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can replace $p(Y|\theta)$ by $\hat{p}(Y|\theta)$ and still obtain draws from $p(\theta|Y)$.