DSGE Model Nonlinearities

Frank Schorfheide University of Pennsylvania, CEPR, NBER, PIER

June 2017

JEDC Plenary Lecture 2017 SCE/CEF Conference

Papers and software available at https://web.sas.upenn.edu/schorf/

DSGE Model Nonlinearities

Large body of recent work on DSGE model nonlinearities:

- stochastic volatility;
- effective lower bound on nominal interest rates;
- occasionally-binding financial constraints;
- general nonlinear dynamics in macro-financial models;
- (...)

Three Tasks

- Model Solution
- Model Estimation
- Model Assessment

I will provide an overview of some of my recent collaborative research in these areas.

Task 1 – Model Solution

Nonlinear Model Solution

Reference: B. Aruoba, P. Cuba-Borda, and F. Schorfheide (2017): "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries," *Review of Economic Studies*, forthcoming.

- Example: ZLB/ELB for nominal interest rates

$$R_t = \max\left\{1, \; R_t^* \mathrm{e}^{\epsilon_{R,t}}
ight\}, \quad R_t^* = \left[r \pi_* \left(rac{\pi_t}{\pi_*}
ight)^{\psi_1} \left(rac{Y_t}{Y_t^*}
ight)^{\psi_2}
ight]^{1-
ho_R} R_{t-1}^{
ho_R}.$$

- Two Challenges:
 - capture "kinks" in decision rules;
 - Solution needs to be accurate in region of state-space that is relevant according to model AND according to data.
- Other issue in paper: multiplicity of equilibria, sunspots ...

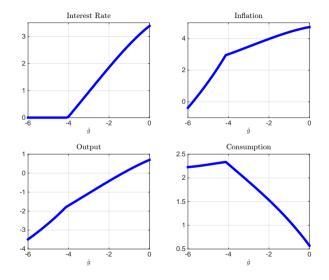
Challenge 1 – Kinks

- Consider decision rule $\pi(S_t)$, states $S_t = (R_{t-1}, y_{t-1}^*, d_t, g_t, z_t, \epsilon_{R,t})$
- "Stitch" two functions for each decision rule (endogenous "seam"):

$$\pi(\mathcal{S}_t;\Theta) = \left\{ egin{array}{ll} f_\pi^1(\mathcal{S}_t;\Theta) & ext{if } R(\mathcal{S}_t) > 1 \ f_\pi^2(\mathcal{S}_t;\Theta) & ext{if } R(\mathcal{S}_t) = 1 \end{array}
ight.$$

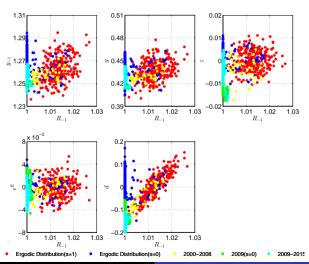
• f_j^i are linear combinations of a complete set Chebyshev polynomials up to 4^{th} order, with weights Θ .

Sample Decision Rules - Small-Scale NK Model for U.S.



Challenge 2 – Accuracy Where it Matters

Choose Θ to minimize sum squared residuals from the (intertemporal) equilibrium conditions over particular grid of points in state space



Task 2 – Model Estimation

Model Estimation – A Plug for Bayesian Inference...

$$p(\theta|Y) = \frac{p(Y|\theta)p(\theta)}{\int p(Y|\theta)p(\theta)d\theta}$$

- Treat uncertainty with respect to shocks, latent states, parameters, and model specifications uncertainty symmetrically.
- Condition inference on what you know (the data Y) instead of what you don't know (the parameter θ).
- Make optimal decision conditional on observed data.
- Large set of computational tools available.

Model Estimation

- Bayesian inference is implemented by sampling draws θ^i from the posterior $p(\theta|Y)$.
- Posterior samplers require evaluation of likelihood function: $\theta \longrightarrow \text{model}$ solution $\longrightarrow \text{state-space}$ representation $\longrightarrow p(Y|\theta)$.
- State-space representation $\longrightarrow p(Y, S|\theta)$:

$$y_t = \Psi(s_t, t; \theta) + u_t, \quad u_t \sim F_u(\cdot; \theta)$$

$$s_t = \Phi(s_{t-1}, \epsilon_t; \theta), \quad \epsilon_t \sim F_{\epsilon}(\cdot; \theta).$$

- In order to obtain $p(Y|\theta) = \prod_{t=1}^{T} p(y_t|Y_{1:t-1}, \theta)$ we need to integrate out latent states S from $p(Y, S|\theta) \longrightarrow$ use filter:
 - Initialization: $p(s_{t-1}|Y_{1:t-1},\theta)$
 - Forecasting: $p(s_t|Y_{1:t-1},\theta)$, $p(y_t|Y_{t-1})$
 - Updating: $p(s_t|y_t, Y_{1:t-1}) = p(s_t|Y_{1:t})$.

Particle Filtering

• Particle Filtering: represent $p(s_{t-1}|Y_{1:t-1})$ by $\{s_{t-1}^j,W_{t-1}^j\}_{j=1}^M$ such that

$$\frac{1}{M}\sum_{j=1}^{M}h(s_{t-1}^{j})W_{t-1}^{j}\approx\int h(s_{t-1})p(s_{t-1}|Y_{1:t-1})ds_{t-1}.$$

- Example: Bootstrap particle filter
 - Mutation/Forecasting: turn s_{t-1}^j into \tilde{s}_t^j : sample $\tilde{s}_t^j \sim p(s_t|s_{t-1}^j)$.
 - Correction/Updating: change particle weights to: $\tilde{W}_t^j \propto p(y_t | \tilde{s}_t^j) W_{t-1}^j$.
 - Selection (Optional): Resample to turn $\{\tilde{s}_t^j, \tilde{W}_t^j\}_{j=1}^M$ into $\{s_t^j, W_t^j = 1\}_{j=1}^M$.

Tempered Particle Filter

Reference: E. Herbst and F. Schorfheide (2017): "Tempered Particle Filtering," NBER Working Paper, 23448.

• Construct a sequence "bridge distributions" with inflated measurement errors. Define

$$\begin{split} \rho_n(y_t|s_t,\theta) &\propto & \phi_n^{d/2}|\Sigma_u(\theta)|^{-1/2} \exp\bigg\{-\frac{1}{2}(y_t - \Psi(s_t,t;\theta))' \\ &\times \phi_n \Sigma_u^{-1}(\theta)(y_t - \Psi(s_t,t;\theta))\bigg\}, \quad \phi_1 < \phi_2 < \ldots < \phi_{N_\phi} = 1. \end{split}$$

• Bridge posteriors given s_{t-1} :

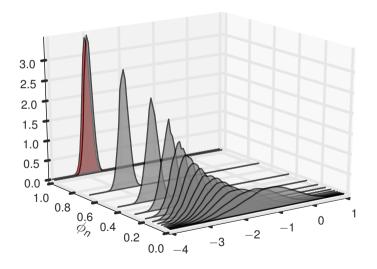
$$p_n(s_t|y_t,s_{t-1},\theta) \propto p_n(y_t|s_t,\theta)p(s_t|s_{t-1},\theta).$$

• Bridge posteriors given $Y_{1:t-1}$:

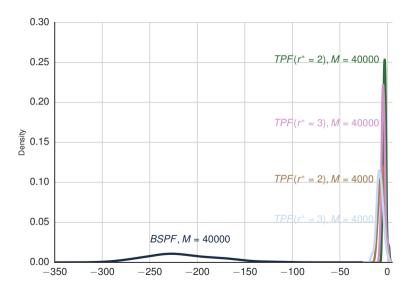
$$p_n(s_t|Y_{1:t}) = \int p_n(s_t|y_t, s_{t-1}, \theta) p(s_{t-1}|Y_{1:t-1}) ds_{t-1}.$$

• Traverse these bridge distributions with "static" Sequential Monte Carlo method (Chopin, 2002). References in stats lit: Godsill and Clapp (2001), Johansen (2016)

Bridge Posteriors: $p_n(s_t|Y_{1:t})$, $n=1,\ldots,N_{\phi}$



Distribution of Log-Ih Approx Error – Great Recession Sample



Putting it All Together

- Once a reasonably accurate likelihood approximation has been obtained, it can be embedded in a posterior sampler.
- The Full Monty is a real pain: see Gust, C., E. Herbst, D. Lopez-Salido, and M. E. Smith (2017): "The Empirical Implications of the Interest-Rate Lower Bound," *American Economic Review*, forthcoming.
- Potential shortcuts:
 - less accurate model solution:
 - cruder state extraction / likelihood approximation;
 - non-likelihood-based parameterization of model.
- Schorfheide, Song, Yaron (2017): slight short-cut in model solution →
 conditionally-linear state-space representation → efficient particle filter approximation of
 likelihood → full Bayesian estimation.

Part III - Model Assessment

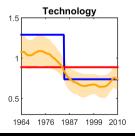
Can the nonlinearities in DSGE models correctly reproduce the nonlinearities in the data?

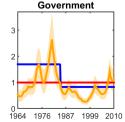
- Model Assessment (see Fernandez-Villaverde, Rubio-Ramirez, and Schorfheide (2016): "Solution and Estimation of DSGE Models," Handbook of Macroeconomics, Vol 2., Elsevier):
 - Relative fit: comparison with other models.
 - Absolute fit: can the DSGE reproduce salient features of the data? Violation of over-identifying restrictions?
- Linear VARs have been useful benchmark / reference model for the evaluation of linearized DSGE models:
 - testing over-identifying restrictions; model odds
 - comparison of model-implied autocovariances, spectra, impulse responses
 - (...)
- No obvious benchmark for evaluation of nonlinear models: generalized autoregressive models?
 bilinear models? ARCH-M? LARCH? regime-switching models? time-varying coefficient models? threshold autoregressions?

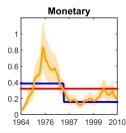
Assessing Nonlinearities Can Be Delicate... An Example

- Many papers argue that it is important to incorporate stochastic volatility in DSGE models.
- Important nonlinearity or device to capture rare events like Great Moderation, Great Recession?
- **Diebold, Schorfheide, Shin (2016):** Evaluate forecast performance of DSGE model with stochastic volatility versus structural break in volatility

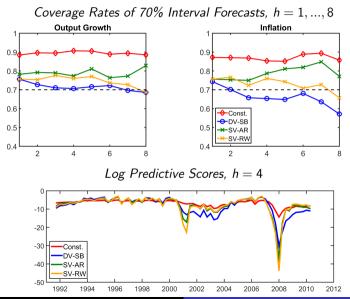
Posterior Mean Structural Shock Volatilities / Final Data Vintage







Assessing Nonlinearities Can Be Delicate... An Example: DSS (2016)



Assessing a DSGE Model With Smooth Nonlinearities

Reference: B. Aruoba, L. Bocola, and F. Schorfheide (2017): "Assessing DSGE Model Nonlinearities," *Manuscript*.

- Small-scale DSGE model with nominal price and wage rigidities.
- Price and wage adjustment costs are potentially asymmetric to capture downward rigidity, see Kim and Ruge-Murcia (JME, 2009):

$$\Phi(x) = \varphi\left(\frac{\exp(-\psi(x-x_*)) + \psi(x-x_*) - 1}{\psi^2}\right).$$

- Model consists of
 - households
 - intermediate goods producers
 - final goods producers
 - central bank / fiscal authority

DSGE Model Estimation

Some evidence for downward nominal rigidities:

	1960:Q1-2007:Q4		1984:Q1-2007:Q4	
Parameter	Mean	90% Interval	Mean	90% Interval
Price Rigidity				
PC Slope $\kappa(\varphi_p)$	0.02	[0.01, 0.04]	0.21	[0.12, 0.35]
Price Asymmetry $\psi_{\it p}$	150	[130, 175]	165	[130, 192]
Wage Rigidity				
Wage Adj Costs φ_w	18.7	[8.47, 38.1]	11.7	[5.34, 20.2]
Wage Asymmetry $\psi_{\it w}$	67.4	[33.2, 99.5]	59.4	[21.7, 90.9]

$$\Phi(x) = \varphi\left(\frac{\exp(-\psi(x-x_*)) + \psi(x-x_*) - 1}{\psi^2}\right).$$

Review: Perturbation Solution

• State $(s_{i,t})$ and control $(c_{i,t})$ variables evolve according to

$$c_{i,t} = \psi_{1i}(\theta) + \psi_{2ij}(\theta)s_{j,t} + \psi_{3ijk}(\theta)s_{j,t}s_{k,t}$$

$$s_{i,t+1}^{\text{end}} = \zeta_{1i}^{\text{end}}(\theta) + \zeta_{2ij}^{\text{end}}(\theta)s_{j,t} + \zeta_{3ijk}^{\text{end}}(\theta)s_{j,t}s_{k,t}$$

$$s_{i,t+1}^{\text{exo}} = \zeta_{2i}^{\text{exo}}(\theta)s_{i,t}^{\text{exo}} + \zeta_{3i}^{\text{exo}}(\theta)\epsilon_{i,t+1}.$$

- Perturbation solutions are easy to compute (DYNARE), improve accuracy near steady state (though not necessarily globally).
- BUT: are $\psi_{3ijk}(\theta)s_{j,t}s_{k,t}$ and $\zeta_{3ijk}^{\text{end}}(\theta)s_{j,t}s_{k,t}$ consistent with data?

Our Approach – Posterior Predictive Checks

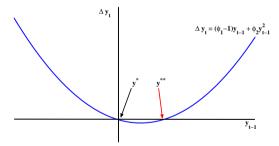
- Develop a nonlinear time series model that mimics structure of DSGE solution.
- Compare estimates of this model based on actual data and DSGE model-generated data.
- Alternative approaches:
 - Barnichon and Matthes (2016): create nonlinear benchmark or DSGE evaluation using Gaussian mixture approximation of moving ave. representation.
 - Ruge-Murcia (2016): indirect inference based on a VAR with higher-order terms and some DSGE model-implied zero restrictions.
 - Time-variation as / versus nonlinearity: literature on TVP VARs building on Cogley and Sargent (2002, 2005) and Primiceri (2005); evidence from time-varying model weights as in Del Negro, Hasegawa, and Schorfheide (2016).

A "Naive" Quadratic Autoregressive Model

 Generalized autoregressive (GAR) models (e.g. Mittnik, 1990): add quadratic terms to a standard autoregressive:

$$y_t = \phi_0 + \phi_1(y_{t-1} - \phi_0) + \phi_2(y_{t-1} - \phi_0)^2 + \sigma u_t$$

• Unattractive features: (i) multiple steady states; (ii) explosive dynamics.



 Problem is well-known in DSGE model solution literature → pruning, e.g., Kim, Kim, Schaumburg, and Sims (2008), Lombardo (2010), Andreasen, Fernandez-Villaverde, and Rubio-Ramirez (2016) (...).

QAR(1,1): Specification

• We set $f_{uu} = 0$ to maintain a conditional Gaussian distribution and consider the system as a nonlinear state-space model:

$$y_t = \phi_0 + \phi_1(y_{t-1} - \phi_0) + \phi_2 s_{t-1}^2 + (1 + \gamma s_{t-1}) \sigma u_t$$

$$s_t = \phi_1 s_{t-1} + \sigma u_t \qquad u_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

- Important properties:
 - Conditional linear structure facilitates calculation of moments; see Andreasen et al.
 - Stationary if $|\phi_1| < 1$.
 - Nonlinear impulse responses and conditional heteroskedasticity.

Relationship Between Nonlinear Dynamics and TVP Models

Write nonlinear model as

$$y_t = f(y_{t-1}) + \sigma u_t = \underbrace{\phi(y_{t-1})}_{\phi_t} y_{t-1} + \sigma u_t.$$

• Could treat the estimation of $\phi(y_{t-1})$ nonparametrically, e.g., with prior

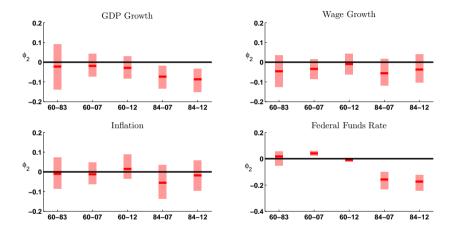
$$\phi(0) \sim N(\rho, \lambda), \quad \phi(y) - \phi(0) \sim N(0, \delta|y|).$$

This is ex ante different from assuming that

$$y_t = \phi_t y_{t-1} + \sigma u_t, \quad \phi_t = \phi_{t-1} + \sigma_\eta \eta_t.$$

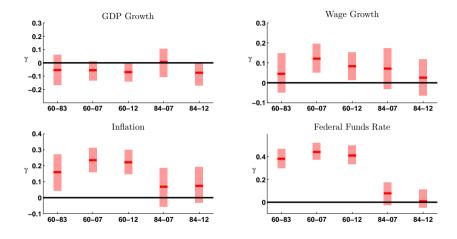
• State (y_t) dependence versus time dependence of ϕ_t .

Estimation of QAR(1,1) Model on U.S. Data – Φ_2



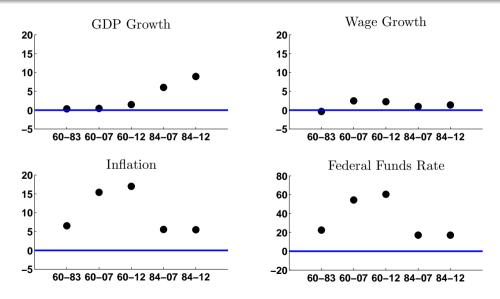
$$y_t = \phi_0 + \phi_1(y_{t-1} - \phi_0) + \frac{\phi_2}{\sigma_{t-1}} s_{t-1}^2 + (1 + \gamma s_{t-1})\sigma u_t, \qquad s_t = \phi_1 s_{t-1} + \sigma u_t$$

Estimation of QAR(1,1) Model on U.S. Data – γ

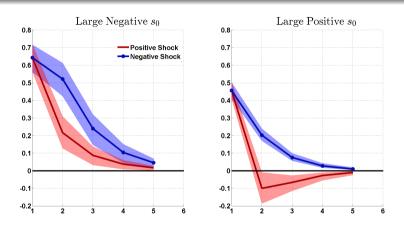


$$y_t = \phi_0 + \phi_1(y_{t-1} - \phi_0) + \frac{\phi_2}{\sigma_t} s_{t-1}^2 + (1 + \gamma s_{t-1}) \sigma u_t, \qquad s_t = \phi_1 s_{t-1} + \sigma u_t$$

Log Marginal Data Density Differentials: QAR(1,1) versus AR(1)



Some Properties: Impulse Responses of GDP Growth (in Absolute Terms), 1984-2012 Sample

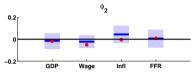


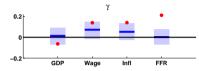
$$y_t = 0.53 + 0.36(y_{t-1} - \phi_0) - 0.09s_{t-1}^2 + (1 - 0.07s_{t-1})0.28u_t$$

 $s_t = 0.36s_{t-1} + 0.28u_t$

Posterior Predictive Checks

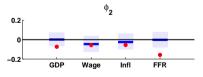
1960-2007 Sample

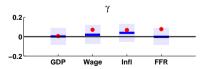




- QAR estimates from actual and model-generated data are similar.
- Only interest rates exhibit noticeable differences.
- Except for wage and inflation $\hat{\gamma}$, nonlinearities are generally weak.

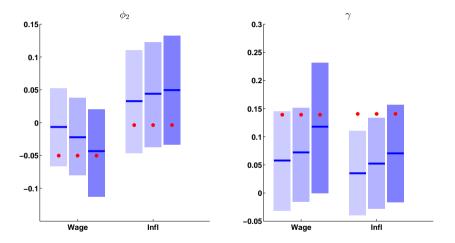
1984-2007 Sample





ullet Model does not generate nonlinearity $(\hat{\phi}_2)$ in GDP dynamics.

Effect of Adjustment Costs on Nonlinearities: 1960-2007 Sample



No asymmetric costs is $\psi_p = \psi_w = 0$ (light blue); high asymmetric costs is $\psi_p = \psi_w = 300$ (dark blue). Large red dots correspond to posterior median estimates based on U.S. data.

Summary of Empirical Results

- Some nonlinearities in U.S. data:
 - Post 1983: output growth displays sharp declines and slow recoveries.
 - 1960-2007: inflation and nominal wage growth display conditional heteroskedasticity.
 - Post 1983: downward adjustments in FFR seem to be easier than upward adjustments.
- DSGE model captures some but not all nonlinearities:
 - Conditional heteroskedasticity in inflation and nominal wage growth through asymmetric adjustment costs that penalize downward movements.
 - But no nonlinearities in model-implied output growth and FFR.

Conclusions

- Literature on methods and applications for DSGE models is well and alive!
- Significant progress in area of model solution and estimation techniques.
- More work needed on the model assessment:
 - Do nonlinearities in one area of model correctly propagate to other areas?
 - Does model perform well in crisis times?
 - Are nonlinearities strong enough so that they are measurable in "short" samples?