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DSGE Model Nonlinearities

Large body of recent work on DSGE model nonlinearities:

stochastic volatility;

effective lower bound on nominal interest rates;

occasionally-binding financial constraints;

general nonlinear dynamics in macro-financial models;

(...)
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Three Tasks

1 Model Solution

2 Model Estimation

3 Model Assessment

I will provide an overview of some of my recent collaborative research in these areas.
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Task 1 – Model Solution
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Nonlinear Model Solution

Reference: B. Aruoba, P. Cuba-Borda, and F. Schorfheide (2017): “Macroeconomic Dynamics Near the ZLB: A

Tale of Two Countries,” Review of Economic Studies, forthcoming.

Perturbation solutions capture some nonlinearities but not all
−→ not well suited for occasionally-binding constraints.

Example: ZLB/ELB for nominal interest rates

Rt = max {1, R∗t eεR,t} , R∗t =

[
rπ∗

(
πt
π∗

)ψ1
(
Yt

Y ∗t

)ψ2
]1−ρR

RρRt−1.

Two Challenges:
1 capture “kinks” in decision rules;
2 solution needs to be accurate in region of state-space that is relevant according to model

AND according to data.

Other issue in paper: multiplicity of equilibria, sunspots ...
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Challenge 1 – Kinks

Consider decision rule π(St), states St = (Rt−1, y
∗
t−1, dt , gt , zt , εR,t)

“Stitch” two functions for each decision rule (endogenous “seam”):

π(St ; Θ) =

 f 1
π (St ; Θ) if R(St) > 1

f 2
π (St ; Θ) if R(St) = 1

f ij are linear combinations of a complete set Chebyshev polynomials up to 4th order, with
weights Θ.
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Sample Decision Rules - Small-Scale NK Model for U.S.

ĝ
-6 -4 -2 0

0

1

2

3

Interest Rate

ĝ
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Challenge 2 – Accuracy Where it Matters

Choose Θ to minimize sum squared residuals from the (intertemporal) equilibrium conditions
over particular grid of points in state space
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Task 2 – Model Estimation
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Model Estimation – A Plug for Bayesian Inference...

p(θ|Y ) =
p(Y |θ)p(θ)∫
p(Y |θ)p(θ)dθ

Treat uncertainty with respect to shocks, latent states, parameters, and model
specifications uncertainty symmetrically.

Condition inference on what you know (the data Y ) instead of what you don’t know (the
parameter θ).

Make optimal decision conditional on observed data.

Large set of computational tools available.
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Model Estimation

Bayesian inference is implemented by sampling draws θi from the posterior p(θ|Y ).

Posterior samplers require evaluation of likelihood function:
θ −→ model solution −→ state-space representation −→ p(Y |θ).

State-space representation −→ p(Y ,S |θ):

yt = Ψ(st , t; θ) + ut , ut ∼ Fu(·; θ)

st = Φ(st−1, εt ; θ), εt ∼ Fε(·; θ).

In order to obtain p(Y |θ) =
∏T

t=1 p(yt |Y1:t−1, θ)
we need to integrate out latent states S from p(Y ,S |θ) −→ use filter:

Initialization: p(st−1|Y1:t−1, θ)

Forecasting: p(st |Y1:t−1, θ), p(yt |Yt−1)

Updating: p(st |yt ,Y1:t−1) = p(st |Y1:t).
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Particle Filtering

Particle Filtering: represent p(st−1|Y1:t−1) by {s jt−1,W
j
t−1}Mj=1 such that

1

M

M∑
j=1

h(s jt−1)W j
t−1 ≈

∫
h(st−1)p(st−1|Y1:t−1)dst−1.

Example: Bootstrap particle filter

Mutation/Forecasting: turn s jt−1 into s̃ jt : sample s̃ jt ∼ p(st |s jt−1).

Correction/Updating: change particle weights to: W̃ j
t ∝ p(yt |s̃ jt )W j

t−1.

Selection (Optional): Resample to turn {s̃ jt , W̃ j
t }Mj=1 into {s jt ,W j

t = 1}Mj=1.

Problem: naive forward simulation of Bootstrap PF leads to uneven particle weights
−→ inaccurate likelihood approximation!

F. Schorfheide DSGE Model Nonlinearities



Tempered Particle Filter

Reference: E. Herbst and F. Schorfheide (2017): “Tempered Particle Filtering,” NBER Working Paper, 23448.

Construct a sequence “bridge distributions” with inflated measurement errors. Define

pn(yt |st , θ) ∝ φd/2
n |Σu(θ)|−1/2 exp

{
− 1

2
(yt −Ψ(st , t; θ))′

×φnΣ−1
u (θ)(yt −Ψ(st , t; θ))

}
, φ1 < φ2 < . . . < φNφ = 1.

Bridge posteriors given st−1:

pn(st |yt , st−1, θ) ∝ pn(yt |st , θ)p(st |st−1, θ).

Bridge posteriors given Y1:t−1:

pn(st |Y1:t) =

∫
pn(st |yt , st−1, θ)p(st−1|Y1:t−1)dst−1.

Traverse these bridge distributions with “static” Sequential Monte Carlo method (Chopin,
2002). References in stats lit: Godsill and Clapp (2001), Johansen (2016)
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Bridge Posteriors: pn(st |Y1:t), n = 1, . . . ,Nφ
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Distribution of Log-lh Approx Error – Great Recession Sample
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Putting it All Together

Once a reasonably accurate likelihood approximation has been obtained, it can be
embedded in a posterior sampler.

The Full Monty is a real pain: see Gust, C., E. Herbst, D. Lopez-Salido, and M. E. Smith
(2017): “The Empirical Implications of the Interest-Rate Lower Bound,” American
Economic Review, forthcoming.

Potential shortcuts:

less accurate model solution;

cruder state extraction / likelihood approximation;

non-likelihood-based parameterization of model.

Schorfheide, Song, Yaron (2017): slight short-cut in model solution −→
conditionally-linear state-space representation −→ efficient particle filter approximation of
likelihood −→ full Bayesian estimation.
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Part III – Model Assessment
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Can the nonlinearities in DSGE models correctly reproduce the
nonlinearities in the data?

Model Assessment (see Fernandez-Villaverde, Rubio-Ramirez, and Schorfheide (2016): “Solution and

Estimation of DSGE Models,” Handbook of Macroeconomics, Vol 2., Elsevier):

Relative fit: comparison with other models.

Absolute fit: can the DSGE reproduce salient features of the data? Violation of
over-identifying restrictions?

Linear VARs have been useful benchmark / reference model for the evaluation of linearized
DSGE models:

testing over-identifying restrictions; model odds
comparison of model-implied autocovariances, spectra, impulse responses
(...)

No obvious benchmark for evaluation of nonlinear models: generalized autoregressive models?

bilinear models? ARCH-M? LARCH? regime-switching models? time-varying coefficient models? threshold

autoregressions? smooth transition autoregressions?
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Assessing Nonlinearities Can Be Delicate... An Example

Many papers argue that it is important to incorporate stochastic volatility in DSGE
models.

Important nonlinearity or device to capture rare events like Great Moderation, Great
Recession?

Diebold, Schorfheide, Shin (2016): Evaluate forecast performance of DSGE model with
stochastic volatility versus structural break in volatility

Posterior Mean Structural Shock Volatilities / Final Data Vintage
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Assessing Nonlinearities Can Be Delicate... An Example: DSS (2016)

Coverage Rates of 70% Interval Forecasts, h = 1, ..., 8

Log Predictive Scores, h = 4
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Assessing a DSGE Model With Smooth Nonlinearities

Reference: B. Aruoba, L. Bocola, and F. Schorfheide (2017): “Assessing DSGE Model Nonlinearities,”

Manuscript.

Small-scale DSGE model with nominal price and wage rigidities.

Price and wage adjustment costs are potentially asymmetric to capture downward rigidity,
see Kim and Ruge-Murcia (JME, 2009):

Φ(x) = ϕ

(
exp(−ψ(x − x∗)) + ψ(x − x∗)− 1

ψ2

)
.

Model consists of

households
intermediate goods producers
final goods producers
central bank / fiscal authority
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DSGE Model Estimation

Some evidence for downward nominal rigidities:

1960:Q1-2007:Q4 1984:Q1-2007:Q4
Parameter Mean 90% Interval Mean 90% Interval

Price Rigidity
PC Slope κ(ϕp) 0.02 [0.01, 0.04] 0.21 [0.12, 0.35]
Price Asymmetry ψp 150 [130, 175] 165 [130, 192]

Wage Rigidity
Wage Adj Costs ϕw 18.7 [8.47, 38.1] 11.7 [5.34, 20.2]
Wage Asymmetry ψw 67.4 [33.2, 99.5] 59.4 [21.7, 90.9]

Φ(x) = ϕ

(
exp(−ψ(x − x∗)) + ψ(x − x∗)− 1

ψ2

)
.
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Review: Perturbation Solution

State (si,t) and control (ci,t) variables evolve according to

ci,t = ψ1i (θ) + ψ2ij(θ)sj,t + ψ3ijk(θ)sj,tsk,t

send
i,t+1 = ζend

1i (θ) + ζend
2ij (θ)sj,t + ζend

3ijk(θ)sj,tsk,t

sexo
i,t+1 = ζexo

2i (θ)sexo
i,t + ζexo

3i (θ)εi,t+1.

Perturbation solutions are easy to compute (DYNARE), improve accuracy near steady
state (though not necessarily globally).

BUT: are ψ3ijk(θ)sj,tsk,t and ζend
3ijk(θ)sj,tsk,t consistent with data?
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Our Approach – Posterior Predictive Checks

Develop a nonlinear time series model that mimics structure of DSGE solution.

Compare estimates of this model based on actual data and DSGE model-generated data.

Alternative approaches:

Barnichon and Matthes (2016): create nonlinear benchmark or DSGE evaluation using
Gaussian mixture approximation of moving ave. representation.

Ruge-Murcia (2016): indirect inference based on a VAR with higher-order terms and some
DSGE model-implied zero restrictions.

Time-variation as / versus nonlinearity: literature on TVP VARs building on Cogley and
Sargent (2002, 2005) and Primiceri (2005); evidence from time-varying model weights as in
Del Negro, Hasegawa, and Schorfheide (2016).
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A “Naive” Quadratic Autoregressive Model

Generalized autoregressive (GAR) models (e.g. Mittnik, 1990): add quadratic terms to a
standard autoregressive:

yt = φ0 + φ1(yt−1 − φ0) + φ2(yt−1 − φ0)2 + σut

Unattractive features: (i) multiple steady states; (ii) explosive dynamics.

Δ y
t

y**y*

Δ y
t
 = (φ

1
−1)y

t−1
 + φ

2
y2

t−1
 

y
t−1

Problem is well-known in DSGE model solution literature −→ pruning, e.g., Kim, Kim,

Schaumburg, and Sims (2008), Lombardo (2010), Andreasen, Fernandez-Villaverde, and Rubio-Ramirez

(2016) (...).

F. Schorfheide DSGE Model Nonlinearities



QAR(1,1): Specification

We set fuu = 0 to maintain a conditional Gaussian distribution and consider the system as
a nonlinear state-space model:

yt = φ0 + φ1(yt−1 − φ0) + φ2s
2
t−1 + (1 + γst−1)σut

st = φ1st−1 + σut ut
i.i.d.∼ N (0, 1)

Important properties:

Conditional linear structure facilitates calculation of moments; see Andreasen et al.

Stationary if |φ1| < 1.

Nonlinear impulse responses and conditional heteroskedasticity.
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Relationship Between Nonlinear Dynamics and TVP Models

Write nonlinear model as

yt = f (yt−1) + σut = φ(yt−1)︸ ︷︷ ︸
φt

yt−1 + σut .

Could treat the estimation of φ(yt−1) nonparametrically, e.g., with prior

φ(0) ∼ N(ρ, λ), φ(y)− φ(0) ∼ N
(
0, δ|y |

)
.

This is ex ante different from assuming that

yt = φtyt−1 + σut , φt = φt−1 + σηηt .

State (yt) dependence versus time dependence of φt .
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Estimation of QAR(1,1) Model on U.S. Data – Φ2
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yt = φ0 + φ1(yt−1 − φ0) + φ2s
2
t−1 + (1 + γst−1)σut , st = φ1st−1 + σut
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Estimation of QAR(1,1) Model on U.S. Data – γ
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Log Marginal Data Density Differentials: QAR(1,1) versus AR(1)
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Some Properties: Impulse Responses of GDP Growth (in Absolute Terms),
1984-2012 Sample

yt = 0.53 + 0.36(yt−1 − φ0)−0.09s2
t−1 + (1−0.07st−1)0.28ut

st = 0.36st−1 + 0.28ut
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Posterior Predictive Checks
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QAR estimates from actual and model-generated data are similar.
Only interest rates exhibit noticeable differences.
Except for wage and inflation γ̂, nonlinearities are generally weak.
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Effect of Adjustment Costs on Nonlinearities: 1960-2007 Sample
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(dark blue). Large red dots correspond to posterior median estimates based on U.S. data.
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Summary of Empirical Results

Some nonlinearities in U.S. data:

Post 1983: output growth displays sharp declines and slow recoveries.

1960-2007: inflation and nominal wage growth display conditional heteroskedasticity.

Post 1983: downward adjustments in FFR seem to be easier than upward adjustments.

DSGE model captures some but not all nonlinearities:

Conditional heteroskedasticity in inflation and nominal wage growth through asymmetric
adjustment costs that penalize downward movements.

But no nonlinearities in model-implied output growth and FFR.
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Conclusions

Literature on methods and applications for DSGE models is well and alive!

Significant progress in area of model solution and estimation techniques.

More work needed on the model assessment:

Do nonlinearities in one area of model correctly propagate to other areas?

Does model perform well in crisis times?

Are nonlinearities strong enough so that they are measurable in “short” samples?
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