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We document that consumption growth rates are far from i.i.d. and have a highly
persistent component. First, we estimate univariate and multivariate models of cash-
flow (consumption, output, dividends) growth that feature measurement errors, time-
varying volatilities, and mixed-frequency observations. Monthly consumption data are
important for identifying the stochastic volatility process; yet the data are contami-
nated, which makes the inclusion of measurement errors essential for identifying the
predictable component. Second, we develop a novel state-space model for cash flows
and asset prices that imposes the pricing restrictions of a representative-agent endow-
ment economy with recursive preferences. To estimate this model, we use a particle
MCMC approach that exploits the conditional linear structure of the approximate equi-
librium. Once asset return data are included in the estimation, we find even stronger ev-
idence for the persistent component and are able to identify three volatility processes:
the one for the predictable cash-flow component is crucial for asset pricing, whereas the
other two are important for tracking the data. Our model generates asset prices that are
largely consistent with the data in terms of sample moments and predictability features.
The state-space approach allows us to track over time the evolution of the predictable
component, the volatility processes, the decomposition of the equity premium into risk
factors, and the variance decomposition of asset prices.

KEYWORDS: Asset pricing, Bayesian inference, consumption dynamics, long-run
risks, measurement errors, mixed frequency observations, nonlinear state-space model,
particle MCMC, stochastic volatility.

1. INTRODUCTION

THE DYNAMICS OF AGGREGATE CONSUMPTION play a key role in business cycle models,
tests of the permanent income hypothesis, and asset pricing. Perhaps surprisingly, there
is a significant disagreement about the basic time series properties of consumption. First,
while part of the profession holds a long-standing view that aggregate consumption fol-
lows a random walk (e.g., Hall (1978) and Campbell and Cochrane (1999)), the recent
literature on long-run risks (LRR) (e.g., Bansal and Yaron (2004) and Hansen, Heaton,
and Li (2008)) emphasizes the presence of a small persistent component in consumption
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growth.1 Second, while time-varying volatility was a feature that until recently was mainly
associated with financial time series, there is now a rapidly growing literature stressing the
importance of stochastic volatility in macroeconomic aggregates (e.g., Bansal and Yaron
(2004), Bloom (2009), and Fernández-Villaverde and Rubio-Ramírez (2011)) and the oc-
currence of rare disasters (e.g., Barro (2009) and Gourio (2012)).

Studying consumption growth dynamics leads to the following challenge. On the one
hand, it is difficult to identify time variation in volatility based on time-aggregated data
(e.g., Drost and Nijman (1993)), which favors the use of high-frequency monthly data. On
the other hand, monthly consumption growth data are contaminated by measurement er-
rors (e.g., Slesnick (1998) and Wilcox (1992)), which mask the dynamics of the underlying
process. We address this challenge by developing and estimating a novel Bayesian state-
space model with an elaborate measurement error component that is consistent with the
view that annual and quarterly consumption data are more accurate than monthly data.
The model is tailored toward monthly data, but a mixed-frequency approach enables us
to accommodate the longest span of annual consumption growth data starting from the
Great Depression era.

In the first part of our empirical analysis, we provide strong evidence for a persistent
component of consumption growth as well as its time-varying volatility, which contradicts
the commonly held view that consumption follows a random walk. The combination of
measurement errors and the local-level component in “true” consumption growth in our
empirical model allows us to generate the strong second-order moving average (MA(2))
component in observed consumption growth. Our basic empirical finding is robust across
a wide range of model specifications that include univariate models for consumption
growth as well as bivariate models with either output or dividend growth as second observ-
able. The bivariate models feature a common persistent factor in cash-flow growth rates.
An important conclusion from our analysis is that plausible models of observed monthly
consumption growth need to contain a MA(2) component, while macroeconomic models
that confront monthly data should filter out the high-frequency movements attributable
to measurement errors.

In the second part of our empirical analysis, we embed the cash-flow process into a
representative-agent endowment economy as in Bansal and Yaron (2004). This model is
referred to as long-run risks (LRR) model. When asset returns are added to the set of
observables and the LRR model is jointly estimated with the dynamics of consumption
and dividend growth, the credible intervals for a common persistent component in cash-
flow growth rates are further sharpened and three separate volatility components are
identified: one governing dynamics of the persistent cash-flow growth component, and
the other two controlling temporally independent shocks to consumption and dividend
growth. The stochastic volatility process for the persistent component is important for as-
set prices, while the other two volatility processes are important for tracking the data. We
show that the estimated LRR model generates asset prices that are largely consistent with
the data. Moreover, we demonstrate that if we replace the parameters of the cash-flow
processes from the joint estimation by those obtained from the cash-flow-only estimation,
the LRR model still has by-and-large realistic asset pricing implications.

In addition to the empirical results, our paper also contains an important technical in-
novation. To incorporate market returns and the risk-free rate into the state-space model
that is used for the second part of the empirical analysis, we have to solve for the asset

1The literature on robustness (e.g., Hansen and Sargent (2007)) highlights that merely contemplating low-
frequency shifts in consumption growth can be important for macroeconomic outcomes and asset prices.
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pricing implications of the LRR model to obtain measurement equations for these two
series.2 Unlike in the cash-flow-only specifications, the model with asset prices has the fea-
ture that the volatility processes also affect the conditional means of the asset prices. This
considerably complicates the evaluation of the likelihood function with a nonlinear filter
as well as the implementation of Bayesian inference. In fact, due to the high-dimensional
state space that arises from our measurement error model and the mixed-frequency set-
ting, this nonlinear filtering is a seemingly daunting task. We show how to exploit the
partially linear structure of the state-space model to derive a very efficient sequential
Monte Carlo (particle) filter.

Unlike the generalized method of moments (GMM) approach that is common in the
LRR literature, our sophisticated state-space approach lets us track the predictable com-
ponent xt as well as the stochastic volatilities over time. In turn, this allows us to construct
period-by-period decompositions of risk premia and asset price variances. Our Bayesian
approach allows us to account for three types of statistical uncertainties in a unified man-
ner: parameter uncertainty, uncertainty about the hidden states, and uncertainty about fu-
ture (or hypothetical shocks). These three types of uncertainty feature prominently in our
empirical results. Depending on the question at hand, we present in some instances cred-
ible bands for our results reflecting multiple sources of uncertainty, for example, when we
provide bands for the predictable component of cash flows; and in other instances, to fa-
cilitate clear comparisons across parameterizations, we focus on the dominating source of
uncertainty, for example, shock uncertainty when we examine the model-implied sample
moments of asset prices or the sampling distribution of R2’s from predictability regres-
sions.

Our empirical analysis starts with the estimation of a state-space model according to
which consumption growth is the sum of an i.i.d. and an AR(1) component, focusing on
the persistence ρ of the AR(1) component. We show that once we include monthly mea-
surement errors that average out at the annual frequency, the fit of the model improves
significantly, and we obtain an estimate of ρ around 0.92.3 Using a battery of model spec-
ifications, we show that our measurement error model in which measurement errors ac-
count for half of the variation in monthly consumption is the preferred one. We further
show that the estimation of the monthly model with measurement errors leads to a more
accurate estimate of ρ than the estimation with time-aggregated data. Importantly, adding
stochastic volatility leads to a further improvement in model fit, a reduction in the pos-
terior uncertainty about ρ, and an increase in the point estimate of ρ to 0.95. Because
consumption is generally viewed as being influenced by output fluctuations, we use our
framework to show that a similar persistent component is also important for character-
izing quarterly GDP dynamics. When we estimate a common persistent component in
consumption and output growth (imposing cointegration), inference regarding ρ is essen-
tially the same as in the consumption-only specifications. When we augment the state-
space model to include a measurement equation for dividend growth as a precursor to
ultimately pricing equity, the joint estimation based on consumption and dividend growth
based on post-1959 data leads the estimate of ρ to rise to 0.97.

2In order to solve the model, we approximate the exponential Gaussian volatility processes by linear Gaus-
sian processes such that the standard analytical solution techniques that have been widely used in the LRR
literature can be applied. The approximation of the exponential volatility process is used only to derive the
coefficients in the law of motion of the asset prices.

3Without accounting for measurement errors, the estimate of ρ using monthly consumption growth data is
insignificantly different from 0, which can partly account for some view that consumption growth is an i.i.d.
process.
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The LRR model used in the second part of the empirical analysis distinguishes itself
from the existing LRR literature in two important dimensions: our model for the cash
flows includes measurement errors and three volatility processes to improve the fit. More-
over, we specify an additional process for variation in the time rate of preference as in
Albuquerque, Eichenbaum, Luo, and Rebelo (2016), which generates risk-free rate vari-
ation that is independent of cash flows and leads to an improved fit for the risk-free rate.
The estimation of the LRR model delivers several important empirical findings. First, the
estimate of ρ, that is, the autocorrelation of the persistent cash-flow component, is 0.987,
which is higher than what we obtained based on the cash-flow-only estimation.4 Impor-
tantly, we show that the time path of the persistent component looks very similar with and
without asset price data.

Second, the volatility processes partly capture heteroscedasticity of innovations, and in
part they break some of the tight links that the model imposes on the conditional mean
dynamics of asset prices and cash flows. This feature significantly improves the model
implications for consumption and return predictability. An important feature of our esti-
mation is that the likelihood focuses on conditional correlations between the risk-free rate
and consumption—a dimension often not directly targeted in the literature. We show that
because consumption growth and its volatility determine the risk-free rate dynamics, one
requires another independent process to account for the weak correlation between con-
sumption growth and the risk-free rate. The independent time-rate-of-preference shocks
mute the model-implied correlation further and improve the model fit in regard to the
risk-free rate dynamics.

Third, it is worth noting that the median posterior estimate for risk aversion is around
9, while it is around 2 for the intertemporal elasticity of substitution (IES). These esti-
mates are broadly consistent with the parameter values highlighted in the LRR literature
(see Bansal, Kiku, and Yaron (2012), and Bansal, Kiku, and Yaron (2014)). Fourth, at the
estimated preference parameters and those characterizing the consumption and dividend
dynamics, the model is able to successfully generate many key asset pricing moments, and
improve model performance relative to previous LRR models along several dimensions.
In particular, the posterior median of the equity premium is 8.2%, while the model’s pos-
terior predictive distribution is consistent with the observed large volatility of the price-
dividend ratio at 0.45, and the R2’s from predicting returns and consumption growth by
the price-dividend ratio.

Our paper is connected to several strands of the literature. In terms of the LRR lit-
erature, Bansal, Kiku, and Yaron (2014) utilized data that are time-aggregated to an-
nual frequency to estimate the LRR model by GMM, and Bansal, Gallant, and Tauchen
(2007) pursued an approach based on the efficient method of moments (EMM). Both
papers use cash-flow and asset price data jointly for the estimation of the parameters of
the cash-flow process. Our likelihood-based approach provides evidence which is broadly
consistent with the results highlighted in those papers and other calibrated LRR models,
for example, Bansal, Kiku, and Yaron (2012). Our likelihood function implicitly utilizes a
broader set of moments than earlier GMM or EMM estimation approaches. These mo-
ments include the entire sequence of autocovariances as well as higher-order moments of
the time series used in the estimation, and let us measure the time path of the predictable
component of cash flows as well as the time path of the innovation volatilities. Rather
than asking the model to fit a few selected moments, we are raising the bar and force the

4The corresponding half-lives of the cash-flow-only (0.97) and asset pricing based (0.987) estimates for ρ
are 1.9 and 4.4 years, respectively.
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model to track cash-flow and asset return time series. Finally, it is worth noting that our
paper distinguishes itself from previous LRR literature in showing that even by just us-
ing monthly consumption growth data with an appropriate measurement error structure,
we are able to estimate the highly persistent predictable component. In complementary
research, Nakamura, Sergeyev, and Steinsson (2015) showed that an estimation based on
a long cross-country panel of annual consumption data also yields large estimates of the
autocorrelation of the persistent component.

To implement Bayesian inference, we embed a particle-filter-based likelihood approx-
imation into a Metropolis–Hastings algorithm as in Fernández-Villaverde and Rubio-
Ramírez (2007) and Andrieu, Doucet, and Holenstein (2010). This algorithm belongs
to the class of particle Markov chain Monte Carlo (MCMC) algorithms. Because our
state-space system is linear conditional on the volatility states, we can use Kalman-filter
updating to integrate out a subset of the state variables. The genesis of this idea appears in
the mixture Kalman filter of Chen and Liu (2000). Particle filter methods are also utilized
in Johannes, Lochstoer, and Mou (2016), who estimated an asset pricing model in which
agents have to learn about the parameters of the cash-flow process from consumption
growth data. While Johannes, Lochstoer, and Mou (2016) examined the role of parameter
uncertainty for asset prices, which is ignored in our analysis, they used a more restrictive
version of the cash-flow process and did not utilize mixed-frequency observations.5

Our state-space setup makes it relatively straightforward to utilize data that are avail-
able at different frequencies. The use of state-space systems to account for missing
monthly observations dates back to at least Harvey (1989) and has more recently been
used in the context of dynamic factor models (see, e.g., Mariano and Murasawa (2003)
and Aruoba, Diebold, and Scotti (2009)) and VARs (see, e.g., Schorfheide and Song
(2015)). Finally, there is a growing and voluminous literature in macro and finance that
highlights the importance of volatility for understanding the macroeconomy and financial
markets (see, e.g., Bansal, Khatacharian, and Yaron (2005), Bloom (2009), Fernández-
Villaverde and Rubio-Ramírez (2011), Bansal, Kiku, and Yaron (2012), and Bansal, Kiku,
Shaliastovich, and Yaron (2014)). Our volatility specification that accommodates three
processes further contributes to identifying the different uncertainty shocks in the econ-
omy.

The remainder of the paper is organized as follows. Section 2 introduces the state-space
model for consumption growth and presents the empirical findings based on consumption
growth data. In Section 3, we consider multivariate cash-flow models and examine the evi-
dence for a predictable growth rate component in specifications that include GDP growth
and dividend growth. Section 4 introduces the LRR asset pricing model, and describes
the model solution and the particle MCMC approach used to implement Bayesian infer-
ence. Section 5 discusses the empirical findings obtained from the estimation of the LRR
model, and Section 6 provides concluding remarks. A description of our data sources, ana-
lytical derivations, a detailed description of the state-space representations and posterior
inference, and additional empirical results are relegated to the Supplemental Material
(Schorfheide, Song, and Yaron (2018)).

5Building on our approach, Creal and Wu (2015) used gamma processes to model time-varying volatilities
and estimated a yield curve model using particle MCMC. Doh and Wu (2015) estimated a nonlinear asset pric-
ing model in which all the asset prices and the consumption process are quadratic rather than linear function
of the states.
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2. MODELING CONSUMPTION GROWTH

The first step of our analysis is to develop an empirical state-space model for consump-
tion growth. We take the length of the period to be one month. The use of monthly data
is important for identifying stochastic volatility processes. Unfortunately, consumption
data are less accurate at monthly frequency than at the more widely used quarterly or
annual frequencies. In this regard, the main contribution in this section is a novel spec-
ification of a measurement error model for consumption growth, which has the feature
that monthly measurement errors average out under temporal aggregation. Moreover,
because monthly consumption data have only been published since 1959, we use annual
consumption growth rates prior to 1959 and adapt the measurement equation to the data
availability.6 We develop our measurement error model in Section 2.1 and present the
empirical results in Section 2.2.

2.1. A Measurement Equation for Consumption

We proceed in two steps. First, we derive a measurement equation for consumption
growth at the annual frequency, which is used for pre-1959 data. Second, we specify a
measurement equation for consumption growth at the monthly frequency, which is used
for post-1959 data. We use Co

t and Ct to denote the observed and the “true” level of
consumption, respectively. Moreover, we represent the monthly time subscript t as t =
12(j − 1)+m, where m= 1� � � � �12. Here j indexes the year and m the month within the
year.

Measurement of Annual Consumption Growth. We define annual consumption as the
sum of monthly consumption over the span of one year, that is, Ca

(j) = ∑12
m=1C12(j−1)+m.

Log-linearizing this relationship around a monthly value C∗ and defining lowercase c as
percentage deviations from the log-linearization point, that is, c = logC/C∗, we obtain
ca(j) = 1

12

∑12
m=1 c12(j−1)+m. Defining monthly consumption growth as the log difference

gc�t = ct − ct−1�

we can deduce that annual growth rates are given by

gac�(j) = ca(j) − ca(j−1) =
23∑
τ=1

(
12 − |τ− 12|

12

)
gc�12j−τ+1� (1)

We assume a multiplicative i.i.d. measurement error model for the level of annual con-
sumption, which implies that, after taking log differences, observed annual consumption
growth (o superscript)

ga�oc�(j) = gac�(j) + σaε
(
εa(j) − εa(j−1)

)
� (2)

Measurement of Monthly Consumption Growth. Consistent with the practice of the
Bureau of Economic Analysis (BEA), we assume that the levels of monthly consumption
are constructed by distributing annual consumption over the 12 months of a year. We ap-
proximate the BEA’s data construction by assuming that this distribution is based on an
observed monthly proxy series zt , where zt is a noisy measure of monthly consumption.

6In principle, we could utilize the quarterly consumption growth data from 1947 to 1959, but we do not in
this version of the paper.
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The monthly levels of consumption are determined such that the growth rates of monthly
consumption are proportional to the growth rates of the proxy series and monthly con-
sumption adds up to annual consumption. A measurement error model that is consistent
with this assumption is the following (a detailed derivation is provided in the Supplemen-
tal Material):

goc�12(j−1)+1 = gc�12(j−1)+1 + σε(ε12(j−1)+1 − ε12(j−2)+12)

− 1
12

12∑
m=1

σε(ε12(j−1)+m − ε12(j−2)+m)+ σaε
(
εa(j) − εa(j−1)

)
�

goc�12(j−1)+m = gc�12(j−1)+m + σε(ε12(j−1)+m − ε12(j−1)+m−1)� m= 2� � � � �12�

(3)

The term ε12(j−1)+m can be interpreted as the error made by measuring the level of monthly
consumption through the monthly proxy variable, that is, in log deviations c12(j−1)+m =
z12(j−1)+m + ε12(j−1)+m. The summation of monthly measurement errors in the second line
of (3) ensures that monthly consumption sums up to annual consumption. It can be ver-
ified that converting the monthly consumption growth rates into annual consumption
growth rates according to (1) averages out the measurement errors and yields (2).

2.2. Empirical Analysis

We use the per capita series of real consumption expenditure on nondurables and ser-
vices from the NIPA tables available from the Bureau of Economic Analysis. Annual
observations are available from 1929 to 2014, quarterly from 1947:Q1 to 2014:Q4, and
monthly from 1959:M1 to 2014:M12. Growth rates of consumption are constructed by
taking the first difference of the corresponding log series.

Autocorrelation of Consumption Growth. Figure 1 displays the sample autocorrelation
of consumption growth for monthly, quarterly, and annual data, respectively. The figure
clearly demonstrates that at the annual frequency, consumption growth is strongly posi-
tively autocorrelated, while at the monthly frequency, consumption growth has a negative
first autocorrelation. These autocorrelation plots provide prima facie evidence for a neg-
ative moving average component at the monthly frequency, which is consistent with the

FIGURE 1.—Sample autocorrelation. Notes: Monthly data available from 1959:M2 to 2014:M12, quarterly
from 1947:Q2 to 2014:Q4, annual from 1930 to 2014.
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measurement error model described in Section 2.1. Our measurement error model can
reconcile the monthly negative autocorrelation with a strongly positive autocorrelation
for time-aggregated annual consumption. The right panel in Figure 1 also shows that the
strong positive autocorrelation in annual consumption growth is robust to using the long
pre-war sample as well as the post-war data. Given these features of the data, we focus
our analysis of measurement errors in consumption using the post-1959 monthly series.

A State-Space Model for Consumption Growth. In our subsequent analysis, we will
consider several different laws of motion for “true” consumption growth. The benchmark
specification takes the following form:

gc�t+1 = μc + xt + σc�tηc�t+1� ηc�t+1 ∼N(0�1)�

xt+1 = ρxt +
√

1 − ρ2ϕxσc�tηx�t+1� ηx�t+1 ∼N(0�1)�

σc�t = σ exp(hc�t)� hc�t+1 = ρhchc�t + σhcwc�t+1� wc�t+1 ∼N(0�1)�

(4)

This specification is based on Bansal and Yaron (2004) and decomposes consumption
growth gc�t+1 into a persistent component, xt , and a transitory component, σc�tηc�t+1. The
state-transition equation is augmented by the measurement equations (2) and (3) to form
a state-space model.

The combination of measurement and state-transition equations leads to a high-
dimensional state-space model; see the Supplemental Material for details. The data that
we are using for the estimation have the property that monthly consumption is consistent
with annual consumption. While the statistical agency may have access to the monthly
proxy series zt in real time, it can only release the monthly consumption series that is
consistent with the corresponding annual consumption observation at the end of each
year. Thus, we specify the state-space model such that, every 12 months, the econometri-
cian observes 12 consumption growth rates. This implies that in addition to tracking the
monthly measurement errors ε12(j−1)+m for m= 1� � � � �12, the state-space model also has
to track 12 lags of xt .

Throughout this paper, we use Bayesian inference for the model parameters and the
hidden states. In addition to the latent monthly consumption growth rates and measure-
ment errors, the state space also comprises the latent volatility process hc�t . Define the
parameter vectors

Θcf = [μc�ρ�ϕx�σ]′� Θh = [ρhc �σhc ]�
and the sequence of latent volatilities H0:T−1. To sample from the posterior distribution
of (Θcf �Θh�H0:T−1), we use a Metropolis-within-Gibbs algorithm that iterates over three
conditional distributions: First, a Metropolis–Hastings step is used to draw from the pos-
terior of Θcf conditional on (Y�Θ(s−1)

h �H(s−1)
0:T−1). Here the likelihood p(Y |Θcf �H

(s−1)
0:T−1) is

evaluated with the Kalman filter. Second, we draw the sequence of stochastic volatili-
ties H0:T−1 conditional on (Y�Θ(s)

cf �Θ
(s−1)
h ) using the algorithm developed by Kim, Shep-

hard, and Chib (1998). This step involves the use of a simulation smoother (e.g., Carter
and Kohn (1994)) for a linear state-space model to obtain draws from the conditional
posterior distributions of the “residuals” gc�t+1 − μc − xt and xt+1 − ρxt . Conditional on
these residuals, it is possible to draw from the posterior of H0:T−1. Finally, we draw from
the posterior of the coefficients of the stochastic volatility processes, Θh, conditional on
(Y�H(s)

0:T−1�Θ
(s)
cf ).

The Likelihood Function. We simplify the law of motion of consumption growth in (4)
by assuming that the innovations are homoscedastic, that is, σhc = 0 and hc�t = 0 for all t.
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FIGURE 2.—Log-likelihood contour. Notes: We use maximum likelihood estimation to estimate the ho-
moscedastic version (σhc = 0, hc�t = 0) of model (4) with and without allowing for measurement errors. We
then fix σ = σ̂ and σε = σ̂ε at their point estimates and vary ρ and ϕx to plot the log-likelihood function con-
tour. Without measurement errors, we find that the log-likelihood function is bimodal at positive and negative
values of ρ. Therefore, we obtain two sets of σ̂ .

In Figure 2, we plot likelihood function contours based on a sample of monthly consump-
tion growth rates that ranges from 1959:M2 to 2014:M12. We consider two specifications:
with and without measurement errors. To isolate the role of measurement errors for infer-
ence about ρ, we set μc to the sample mean and fix σ and σε to their respective maximum
likelihood estimates, while varying the two parameters, ρ and ϕx, that govern the dynam-
ics of xt . In the absence of measurement errors, the log-likelihood function is bimodal.
The first mode is located at ρ = −0�23, which matches the negative monthly sample au-
tocorrelation (see Figure 1). The location of the second mode is at ρ= 0�96, but the log-
likelihood function is flat across a large set of values of ρ between −1 and 1. Importantly,
when we allow for monthly measurement errors according to (3), setting σaε = 0, the log-
likelihood function has a very sharp peak, displaying a very persistent expected consump-
tion growth process with ρ = 0�92. Measurement errors at the monthly frequency help
identify a large persistent component in consumption by allowing the model to simulta-
neously match the negative first-order autocorrelation observed at the monthly frequency
and the large positive autocorrelation at the annual frequency.

Bayesian Estimation of Homoscedastic Models. We now proceed with the Bayesian es-
timation of variants of (4) using the monthly sample ranging from 1959:M2 to 2014:M12.
Table I reports quantiles of the prior distribution7 as well as posterior median estimates
of the model parameters. Estimates for the benchmark specification with monthly and
annual measurement errors are reported in column (1). We briefly comment on some
important aspects of the prior distribution. The prior for ρ (persistence of xt) is uni-
form over the interval (−1� 1) and encompasses values that imply near i.i.d. consumption
growth as well as values for which xt is almost a unit root process. The parameter ϕx can
be interpreted as the square root of a “signal-to-noise ratio,” meaning the ratio of the
variance of xt over the variance of the i.i.d. component σcηc�t+1. We use a uniform prior
for ϕx that allows for “signal-to-noise ratios” between 0 and 1. At an annualized rate,
our a priori 90% credible interval for σ and σε ranges from 0.3% to 2.1% and the prior

7In general, our priors attempt to restrict parameter values to economically plausible magnitudes. The judg-
ment of what is economically plausible is, of course, informed by some empirical observations, in the same way
the choice of the model specification is informed by empirical observations.



626 F. SCHORFHEIDE, D. SONG, AND A. YARON

TABLE I

POSTERIOR MEDIAN ESTIMATES OF CONSUMPTION GROWTH PROCESSESa

Posterior Estimates

State-Space Model

No ME M M
Prior Distribution M&A AR(2) ρε �= 0 ρη �= 0 IID ARMA(1�2)

Distr. 5% 50% 95% (1) (2) (3) (4) (5) (6)

μc N −0�007 0�0016 0�0100 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

ρ U −0�90 0 0�90 0.918 −0�684 0.918 0.919 - 0.913

ρ2 U −0�90 0 0�90 - −0�353 - - - -

ϕx U 0�05 0�5 0�95 0.681 0.704 0.644 - -

U 0�1 1�0 1�9 - 0.482 - - - -

σ IG 0�0008 0�0019 0�0061 0.0018 0.0027 0.0017 0.0019 0.0033 0.0032

σε IG 0�0008 0�0019 0�0061 0.0018 0.0019 0.0018 - -

σaε IG 0�0007 0�0029 0�0386 0.0011 - - - - -

ρε U −0�90 0 0�90 - - 0.060 - - -

ρη U −0�90 0 0�90 - - - −0�046 - -

ζ1 N −8�2 0 8�2 - - - - - −1�14

ζ2 N −8�2 0 8�2 - - - - - 0.302

lnp(Y) 2887.1 2870.3 2883.9 2885.8 2863.2 2884.0

aThe estimation sample is from 1959:M2 to 2014:M12. We denote the persistence of the growth component xt by ρ (and ρ2 if
follows an AR(2) process), the persistence of the measurement errors by ρε , and the persistence of ηc�t by ρη . We report posterior
median estimates for the following measurement error specifications of the state-space model: (1) monthly and annual measurement
errors (M&A); (2) no measurement errors with AR(2) process for xt (no ME AR(2)); (3) serially correlated monthly measurement
errors (M, ρε �= 0); (4) serially correlated consumption shocks ηc�t (M, ρη �= 0, ρ > ρη). In addition, we report results for the following
models: (5) consumption growth is i.i.d.; (6) consumption growth is ARMA(1�2).

for the σaε covers the interval 0.07% to 3.9%. For comparison, the sample standard de-
viations of annualized monthly consumption growth and annual consumption growth are
approximately 1.1% and 2%.

The estimate of ρ obtained from our benchmark specification is approximately 0.92,
pointing toward a fairly persistent predictable component in consumption growth. The
estimate of ϕx is 0.68 and implies that the variance of xt is roughly 50% smaller than
the variance of the i.i.d. component of consumption growth. At first glance, the large es-
timate of ρ in the benchmark model may appear inconsistent with the negative sample
autocorrelation of monthly consumption growth reported in Figure 1. However, the sam-
ple moment confounds the persistence of the “true” consumption growth process and the
dynamics of the measurement errors. Our state-space framework is able to disentangle
the various components of the observed monthly consumption growth, thereby detecting
a highly persistent predictable component xt that is hidden under a layer of measurement
errors.

To assess the robustness of this finding, we now modify the benchmark specification
in several dimensions. If we shut down the measurement errors and generalize xt to an
AR(2) process (see column (2)), then the estimates of the autoregressive coefficients
turn negative, thereby confirming the graphical pattern in Figure 2. Reverting back to an
AR(1) process for xt and allowing for serially correlated measurement errors (see col-
umn (3)) does not change the estimates of the benchmark model. In fact, the estimated
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autocorrelation for the measurement error is close to zero. Likewise, if we allow for some
serial correlation in the transitory component of “true” consumption growth (see column
(4)), the estimate of ρ stays around 0.92. Finally, in the last two columns of Table I, we re-
port estimates for an i.i.d. model of consumption growth and an ARMA(1�2) model. We
compute log marginal data densities for each specification. Differentials of lnp(Y) can
be interpreted as log posterior odds (under the assumption that the prior odds are 1). The
last row of Table I shows that the benchmark specification dominates all of the alterna-
tives. In particular, the i.i.d. specification and the state-space model without measurement
errors are strongly dominated with log odds of 23.9 and 16.8 in favor of the benchmark.8

In order to examine the degree to which measurement errors contribute to the variation
in the observed consumption growth, we conduct variance decomposition of monthly and
annual consumption growth using measurement error specification of column (1) in Ta-
ble I. We find that more than half of the observed monthly consumption growth variation
is due to measurement errors.9 For annual consumption growth data, this fraction drops
below 1%. On the other hand, the opposite pattern holds true for the persistent growth
component. While the variation in the persistent growth component only accounts for
13% of the monthly consumption growth variation, this fraction increases to 87% for an-
nual consumption growth data.

Informational Gain Through Temporal Disaggregation. The observation that monthly
consumption growth data are strongly contaminated by measurement errors which to a
large extent average out at quarterly or annual frequency, suggests that one might be
able to estimate ρ equally well based on time-aggregated data. We examine this issue
in Table II. The first row reproduces the ρ estimate from Specification (1) of Table I.
However, we now also report the 5% and 95% quantile of the posterior distribution.
Keeping the length of a period equal to a month in the state-space model, we change the
measurement equation to link it with quarterly and annual consumption growth data. As
the data frequency drops from monthly to annual, the posterior median estimate of ρ falls
from 0.92 to 0.89. Moreover, the width of the equal-tail probability 90% credible interval
increases from 0.12 to 0.36, highlighting that the use of high-frequency data sharpens
inference about ρ.

Hansen, Heaton, and Li (2008) estimated a cointegration model for log consumption
and log earnings to extract a persistent component in consumption. The length of a time
period in their reduced-rank vector autoregression (VAR) is a quarter and the model
is estimated based on quarterly data. The authors found that the ratio of long-run to
short-run response of log consumption to a persistent growth shock, ηx�t in our nota-
tion, is about 2, which would translate into an estimate of ρ of approximately 0.5 for a
quarterly model. As a robustness check, we estimate two quarterly versions of the ho-
moscedastic state-space model: without quarterly measurement errors and with quarterly
measurement errors. The posterior median estimates of ρ are 0.649 and 0.676, respec-
tively. These results are by and large consistent with the low value reported in Hansen,

8In a preliminary data analysis, we estimated a variety of ARMA(p�q) models using maximum likelihood
estimation. We used the Schwarz Information Criterion (BIC) to estimate p and q, which led us to the
ARMA(1�2) specification. In the Supplemental Material, we report results for other variants of the bench-
mark state-space model. Among them, the specification in which the monthly measurement errors are not
restricted to average out over the year is at par with the benchmark specification in terms of fit. For reasons
explained above, we find the benchmark specification more appealing.

9Wilcox (1992) found that more than a quarter of the variation in the retail sales series from Detroit and
Philadelphia is due to measurement error. For New York, this figure is around 50%, and for LA, around 67%.
Our estimates are of a similar order of magnitude.
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TABLE II

INFORMATIONAL GAIN THROUGH HIGH-FREQUENCY OBSERVATIONSa

Data Posterior of ρ

Frequency 5% 50% 95% 90% Intv. Width

Without Stochastic Volatility

Monthly 0.847 0.918 0.963 0.116

Quarterly 0.843 0.917 0.962 0.119

Annual 0.621 0.893 0.983 0.362

With Stochastic Volatility

Monthly 0.904 0.951 0.980 0.076

Quarterly 0.872 0.931 0.971 0.099

aThe estimation sample ranges from 1959:M2 to 2014:M12. The model frequency is monthly. For monthly data, we use both
monthly and annual measurement errors (specification (1) in Table I). For quarterly (annual) data, we use quarterly (annual) mea-
surement errors only. The model specification is provided in (4).

Heaton, and Li (2008) as well as the estimate in Hansen (2007) under the “loose” prior.
Using a crude cube-root transformation, the quarterly ρ estimates translate into 0.866
and 0.878 at monthly frequency and thereby somewhat lower than the estimates obtained
by estimating a monthly model on quarterly data.

Accounting for Stochastic Volatility. We now re-estimate the benchmark model (4) al-
lowing for stochastic volatility. Our prior interval for the persistence of the volatility pro-
cesses ranges from 0.27 to 0.999. The prior for the standard deviation of the consumption
volatility process implies that the volatility may fluctuate either relatively little, over the
range of 0.7 to 1.2 times the average volatility, or substantially, over the range of 0.4 to 2.4
times the average volatility.

According to Table II, the width of the 90% credible interval for ρ shrinks from 0.116 to
0.076 for monthly data and from 0.119 to 0.099 for quarterly data.10 At the same time, the
posterior median of ρ increases from 0.918 to 0.951 for monthly data and from 0.917 to
0.931 for quarterly data. Without stochastic volatility, sharp movements in consumption
growth must be accounted for by large temporary shocks reducing the estimate of ρ;
however, the presence of stochastic volatility allows the model to account for these sharp
movements by fluctuations in the conditional variance of the shocks enabling ρ to be
large. We conclude that allowing for heteroscedasticity reduces the posterior uncertainty
about ρ and raises the point estimate.

As a by-product, we also obtain an estimate for the persistence, ρhc , of the stochastic
volatility process in (4). The degree of serial correlation of the volatility also has important
implications for asset pricing. Starting from a truncated normal distribution that implies
a 90% prior credible set ranging from 0.27 to 0.99, based on monthly observations the
posterior credible set ranges from 0.955 to 0.999, indicating that the data favor a highly
persistent volatility process hc�t . Once the observation frequency is reduced from monthly
to quarterly, the sample contains less information about the high-frequency volatility pro-

10We found that the state-space model with stochastic volatility is poorly identified if the observation fre-
quency is annual, which is why we do not report this case in Table I.
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cess and there is less updating of the prior distribution. Now the 90% credible interval
ranges from 0.73 to 0.97.11

Estimation Based on Mixed-Frequency Data. To measure the small persistent compo-
nent in consumption growth, one would arguably want to use the longest span of data
possible. Adopting a mixed-frequency approach, we now add annual consumption growth
data from 1930 to 1959 to our estimation sample. It is well known from Romer (1986)
and Romer (1989) that pre-war data on consumption are known to be measured with sig-
nificantly greater error that exaggerates the size of cyclical fluctuations. To cope with the
criticism, we allow for annual measurement errors during 1930–1948 but restrict them to
be zero afterwards. This break in measurement errors is also motivated by Amir-Ahmadi,
Matthes, and Wang (2016) who provided empirical evidence for larger measurement er-
rors in the early sample before the end of World War II. Importantly, we always account
for monthly measurement errors whenever we use monthly data.

Prior credible intervals and posterior estimates are presented in Table III. Note that the
ρ estimate reported under the 1959:M2–2014:M12 posterior is the same as the estimate
reported in Table II based on monthly data and the model with stochastic volatility. Ex-
tending the sample period reduces the posterior median estimate of ρ slightly, from 0.95
to 0.94. We attribute this change to the large fluctuations around the time of the Great
Depression. The width of the credible interval stays approximately the same. Note that
at this stage, we are adding 30 annual observations to a sample of 671 monthly obser-
vations (and we are losing 11 monthly observations from 1959). The standard deviation

TABLE III

POSTERIOR ESTIMATES: CONSUMPTION ONLYa

Posterior Posterior 1930–1959
Prior 1959:M2–2014:M12 1960:M1–2014:M12

Distr. 5% 50% 95% 5% 50% 95% 5% 50% 95%

Consumption Growth Process

μc N −0�007 0�0016 0�0100 0�0009 0�0016 0�0019 0�0010 0�0016 0�0018

ρ U −0�9 0 0�9 0�904 0�951 0�980 0�891 0�940 0�971

ϕx U 0�05 0�50 0�95 0�357 0�509 0�778 0�369 0�535 0�759

σ IG 0�0008 0�0019 0�0061 0�0017 0�0021 0�0025 0�0017 0�0022 0�0028

ρhc NT 0�27 0�80 0�999 0�955 0�988 0�999 0�949 0�984 0�996

σ2
hc

IG 0�0011 0�0043 0�0283 0�0007 0�0014 0�0030 0�0022 0�0054 0�0242

Consumption Measurement Error

σε IG 0�0008 0�0019 0�0061 0�0010 0�0013 0�0016 0�0010 0�0013 0�0016

σaε IG 0�0007 0�0029 0�0386 0�0010 0�0015 0�0020 0�0010 0�0198 0�0372

aWe report estimates of model (4). We adopt the measurement error model of Section 2.1. N , NT , G, IG, and U denote normal,
truncated (outside of the interval (−1�1)) normal, gamma, inverse gamma, and uniform distributions, respectively. We allow for
annual consumption measurement errors εat during the periods from 1930 to 1948. We impose monthly measurement errors εt when
we switch from annual to monthly consumption data from 1960:M1 to 2014:M12.

11We conducted a small Monte Carlo experiment in which we repeatedly simulated data from a consumption
growth model with stochastic volatility and then estimated models without and with stochastic volatility. For
both specifications, the estimate of ρ is downward biased, and for the misspecified version without stochastic
volatility, the downward bias is slightly larger.
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of the monthly measurement error σε is estimated to be about half of σ and is robust
to different estimation samples because it is solely identified from monthly consumption
growth data. The standard deviation of the annual measurement error is larger than that
of monthly measurement error by a factor of 4 (recall that to compare σε and σaε , one
needs to scale the latter by

√
12). This finding is consistent with Amir-Ahmadi, Matthes,

and Wang (2016) who found significant presence of measurement errors in output growth
during 1930 and 1948.

3. INFORMATION FROM OTHER CASH-FLOW SERIES

Because aggregate consumption is typically thought of as an endogenous variable that
responds to fluctuations in aggregate income, we examine in Section 3.1 whether our
evidence for a predictable component in consumption growth can be traced back to GDP
and whether estimating a joint model for consumption and GDP has important effects
on our inference. In Section 3.2, we include dividend growth data in the estimation of
the cash-flow model to set the stage for the subsequent asset pricing analysis. Finally,
we provide a brief summary of the cash-flow estimation results in Section 3.3. Posterior
inference for the models considered in this section is implemented with a Metropolis-
within-Gibbs sampler that is similar to the one described in Section 2.2.

3.1. Real GDP

We begin the analysis with a monthly model for GDP growth gy�t+1 that is identical
to the benchmark consumption growth model in (4). Because GDP is only available at
quarterly frequency, the measurement equation is

goy�t+1 =
5∑
j=1

(
3 − |j − 3|

3

)
gy�t+2−j� t = 1�4�7� � � � � (5)

We estimate this model without measurement errors (this was the preferred specifica-
tion based on marginal data density comparisons) using observations on per capita GDP
growth from 1959:Q1 to 2014:Q4.12 The estimation results are provided in Table IV. The
posterior median is 0.874 and the equal-tail 90% credible interval ranges from 0.698
to 0.966. These estimates can be compared to those obtained from quarterly consump-
tion growth reported in Table II where the posterior median estimate of ρ is 0.921 (with
stochastic volatility) and the upper bound of the credible interval is 0.963. Thus, while the
median of ρ for GDP is smaller than for consumption, the 95% quantiles are in fact very
similar.

So far, we have considered univariate models of consumption and income growth. Next,
we examine the joint dynamics of these two series. In most models, consumption and in-
come are cointegrated. We impose this cointegration relationship in the empirical analysis
below. Specifically, the consumption dynamics are given by (4), while the log income-
consumption ratio yct ≡ yt − ct takes the form

yct+1 = μyc +φycxt+1 + st+1� st+1 = ρsst +
√

1 − ρ2
sσs�tηs�t+1� ηs�t+1 ∼N(0�1)� (6)

12We take log differences of the real GDP per capita series provided by FRED.
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TABLE IV

POSTERIOR ESTIMATES: GDP GROWTH ONLYa

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

μy N −0�007 0�0016 0�0100 0�0011 0�0017 0�0022

ρ U 0�05 0�50 0�95 0�698 0�874 0�966

ϕx U 0�05 0�50 0�95 0�117 0�259 0�418

σ IG 0�0008 0�0019 0�0061 0�0040 0�0045 0�0051

ρhy NT 0�27 0�80 0�999 0�928 0�970 0�992

σ2
hy

IG 0�0013 0�0043 0�0283 0�0026 0�0086 0�0228

aWe report estimates of model (4) for GDP growth. N , NT , IG, and U denote normal, truncated (outside of the interval (−1�1))
normal, inverse gamma, and uniform distributions, respectively. The estimation sample ranges from 1959:Q1 to 2014:Q4.

We assume that the log of stochastic volatility σs�t follows an AR(1) process and adopt
the measurement error model of Section 2.1 for consumption growth. For GDP, the mea-
surement equation time-aggregates monthly growth rates gy�t = gc�t + yct to average
quarterly growth rates as in (5).

The estimated parameters for the cointegration model based on monthly consumption
growth and quarterly GDP growth data are reported in Table V. The posterior median
estimate of ρ is 0.948 and the equal-tail probability 90% credible interval ranges from
0.913 to 0.970. Here, the strong evidence in monthly consumption in favor of a predictable

TABLE V

POSTERIOR ESTIMATES: CONSUMPTION AND OUTPUTa

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

Consumption

μ N −0�007 0�0016 0�0100 0�0012 0�0016 0�0020

ρ U −0�9 0 0�9 0�913 0�948 0�970

ϕx U 0�05 0�50 0�95 0�419 0�593 0�796

σ IG 0�0008 0�0019 0�0061 0�0015 0�0018 0�0022

σε IG 0�0008 0�0019 0�0061 0�0013 0�0015 0�0018

ρhc NT 0�27 0�80 0�999 0�949 0�979 0�996

σ2
hc

IG 0�0013 0�0043 0�0283 0�0024 0�0091 0�0235

Output

ρs U −0�9 0 0�9 0�943 0�965 0�983

ϕs U 5 50 95 6�65 8�82 13�25

φyc U −90 0 90 −1�83 −1�57 −1�18

ρhs NT 0�27 0�80 0�999 0�943 0�982 0�996

σ2
hs

IG 0�0013 0�0043 0�0283 0�0015 0�0039 0�0187

aThe estimation sample ranges from 1959 to 2014. We report estimates of model (6). N , NT , IG, and U denote normal, truncated
(outside of the interval (−1�1)) normal, inverse gamma, and uniform distributions, respectively.
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component xt seems to dominate the estimation result. There is no information in GDP
growth that contradicts this information. The log-GDP consumption ratio itself is fairly
persistent with median estimate of ρs of 0.965. Thus, deviations from the steady-state ratio
are relatively long-lived.

How does our evidence relate to common views on GDP dynamics? U.S. GDP growth
is well described as an AR(1) model with an autocorrelation coefficient of about 0.3. In
our cointegration model, the implied posterior predictive quantiles (0.05%, 0.50%, and
0.95%) for the autocorrelation of output growth at the quarterly frequency are 0.156,
0.273, and 0.389, which is consistent with this conventional wisdom. Thus, on balance, we
view the dynamics of output and consumption to be consistent with our LRR specification
with both series containing a small persistent component, and with models that imply a
transmission from income to consumption.13

3.2. Dividends

As our subsequent asset pricing analysis focuses on the U.S. aggregate equity market,
we now include dividend growth data in the estimation of the cash-flow model. We use
monthly observations of dividends of the CRSP value-weighted portfolio of all stocks
traded on the NYSE, AMEX, and NASDAQ. Dividend series are constructed on the per
share basis as in Campbell and Shiller (1988b) and Hodrick (1992). Following Robert
Shiller, we smooth out dividend series by aggregating three months’ values of the raw
nominal dividend series.14 We then compute real dividend growth as log difference of the
adjusted nominal dividend series and subtract CPI inflation. Further details are provided
in the Supplemental Material.

Measurement Equation for Dividend Growth. Dividend data are available at monthly
frequency for the estimation period from 1930 to 2014. There is a consensus in the finance
literature that aggregate dividend series for a broad cross-section of stocks exhibit a strong
seasonality. This seasonality is generated by payout patterns which are not uniform over
the calendar year. Much of this seasonality, in particular its deterministic component, can
be removed by averaging observed dividend growth over the span of a year. To do so, we
utilize the same “tent” function as for consumption growth in (1) and define

ga�od�t+1 =
23∑
j=1

(
12 − |j − 12|

12

)
god�t−j+2� gad�t+1 =

23∑
j=1

(
12 − |j − 12|

12

)
gd�t−j+2� (7)

Our measurement equation then takes the form

ga�od�t+1 = gad�t+1 + σad�εεad�t+1� εad�t+1 ∼N(0�1)� (8)

For computational reasons that arise in the estimation of the asset pricing model in Sec-
tion 4, we allow for some additional measurement errors, which we assume to be i.i.d.

13It is well known that, in production models, consumption is not a Martingale sequence and the predictable
component in consumption growth can be generated by a predictable component in productivity growth; see
Croce (2014). In a frictionless environment, both labor and capital income are determined by their respective
marginal products, which in turn depend on the exogenous productivity process.

14We follow Shiller’s approach despite the use of the annualization in (8) because we found that the annu-
alization did not remove all the anomalies in the data.
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across periods. We fix these measurement errors at 1% of the sample variance of divi-
dend growth rates. Note that (8) does not imply god�t+1 = gd�t+1, even for σad�ε = 0. For in-
stance, there could be a deterministic seasonal pattern in the observed monthly dividend
growth data god�t+1 that is not part of the model-implied process gd�t+1. The tent-shaped
transformation would remove the seasonal component from observed data such that we
are effectively equating the non-seasonal component of the observed data to the model-
implied data.

State-Transition Equation. We will model consumption and dividend growth as a joint
process. The law of motion for consumption growth is identical to (4), except for the
fact that now we will have separate volatility processes for the persistent and transitory
components. Dividend streams have levered exposures to both xt and ηc�t+1, which is cap-
tured by the parametersφ and π, respectively. We allow σd�tηd�t+1 to capture idiosyncratic
movements in dividend streams. Overall, the cash-flow dynamics follow:

gc�t+1 = μc + xt + σc�tηc�t+1�

xt+1 = ρxt +
√

1 − ρ2σx�tηx�t+1�

gd�t+1 = μd +φxt +πσc�tηc�t+1 + σd�tηd�t+1�

σi�t = ϕiσ exp(hi�t)� hi�t+1 = ρhihi�t + σhiwi�t+1� i= {c�x�d}�

(9)

where the shocks are assumed to be ηi�t+1�wi�t+1 ∼N(0�1), i= {c�x�d} and we impose the
normalization ϕc = 1. For now, we will also restrict hx�t = hc�t and only report estimates
for ρh�c and σ2

h�c .
Estimation Results. Table VI provides percentiles of the prior distribution and the pos-

terior distribution for the post-1959 estimation sample and for the mixed frequency sam-
ple starting in 1930. The priors for φ and π, parameters that determine the comovement
of dividend and consumption growth, are uniform distributions on the interval [−10� 10].
The parameter ϕd determines the standard deviation of the i.i.d. component of dividend
growth relative to consumption growth. Here we use a prior that is uniform on the interval
[0� 10], thereby allowing for dividends to be much more volatile than consumption. The
prior for the standard deviation of the dividend volatility process implies that the volatility
may fluctuate either relatively little, over the range of 0.5 to 2.1 times the average volatil-
ity, or substantially, over the range of 0.1 to 13 times the average volatility. Finally, we fix
the measurement error variance (σad�ε)

2 at 1% of the sample variance of dividend growth.
The most important finding is that the posterior median ρ increases as we add dividend

growth data in the estimation. In addition, we find significant reduction in our uncertainty
about ρ captured by the distance between 95% and 5% posterior quantiles. The posterior
median of ρ is around 0.97 for the post-1959 sample and is 0.95 for the longer sample, both
of which are higher than those in Table III. The 5%–95% distance dropped from 0.076
to 0.054 as we include dividend growth in the estimation (compare with Table III). The
posterior median of the standard deviation of the unconditional volatility of the persistent
component ϕx is around 0.43, slightly lower than before.

The dividend leverage ratio on expected consumption growth φ is estimated to be
around 2.8–3.5 and the standard deviation of the idiosyncratic dividend shocks ϕd is
around 4.8. The estimation results also provide strong evidence for stochastic volatility.
According to the posteriors reported in Table VI, both σc�t and σd�t exhibit significant time
variation. The posterior medians of ρhc and ρhd range from 0.98 to 0.99.

Cointegration of Dividends and Consumption. In our analysis, aggregate consumption
is measured per capita and dividends are computed per share. Thus, there is no theo-
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TABLE VI

POSTERIOR ESTIMATES: CONSUMPTION AND DIVIDEND GROWTHa

Posterior Posterior 1930–1959
Prior 1959:M2–2014:M12 1960:M1–2014:M12

Distr. 5% 50% 95% 5% 50% 95% 5% 50% 95%

Consumption Growth Process

ρ U −0�90 0 0�90 0.937 0.967 0.991 0�923 0�952 0�978

ϕx U 0�05 0�50 0�95 0.285 0.430 0.834 0�291 0�430 0�684

σ IG 0�0008 0�0019 0�0061 0.0019 0.0022 0.0025 0�0021 0�0029 0�0036

ρhc NT 0�27 0�80 0�999 0.952 0.985 0.997 0�976 0�992 0�998

σ2
hc

IG 0�0013 0�0043 0�0283 0.0015 0.0053 0.0185 0�0013 0�0034 0�0132

Dividend Growth Process

φ U −9�0 0�0 9�0 2.13 2.85 3.55 3�31 3�52 3�64

π U −9�0 0�0 9�0 0.136 0.358 0.751 0�642 0�819 0�932

ϕd U 0�50 5�0 9�5 3.51 4.69 6.16 3�31 4�82 7�66

ρhd NT 0�27 0�80 0�999 0.939 0.977 0.994 0�951 0�977 0�992

σ2
hd

IG 0�015 0�0445 0�208 0.0166 0.0418 0.1076 0�0146 0�0357 0�0835

Consumption Measurement Error

σε IG 0�0008 0�0019 0�0062 0.0009 0.0011 0.0014 0�0009 0�0012 0�0015

σaε IG 0�0007 0�0029 0�0389 - - - 0�0006 0�0067 0�0134

aWe utilize the mixed-frequency approach in the estimation: For consumption we use annual data from 1930 to 1959 and monthly
data from 1960:M1 to 2014:M12; we use monthly dividend annual growth data from 1930:M1 to 2014:M12. For consumption we adopt
the measurement error model of Section 2.1. We allow for annual consumption measurement errors εat during the periods from 1930
to 1948. We impose monthly measurement errors εt when we switch from annual to monthly consumption data from 1960:M1 to
2014:M12. We fix μc = 0�0016 and μd = 0�0010 at their sample averages. Moreover, we fix the measurement error variance (σa

d�ε
)2

at 1% of the sample variance of dividend growth. N , NT , G, IG, and U denote normal, truncated (outside of the interval (−1�1))
normal, gamma, inverse gamma, and uniform distributions, respectively.

retical reason for the two series to be cointegrated. Nonetheless, we examined the pres-
ence of a cointegration relationship between the observed series cot and dot . First, we con-
ducted two frequentist cointegration tests based on post-1959 monthly data. The first test
is an augmented Dickey–Fuller test that imposes the cointegration vector [1� −1] and
the second test is an Engle–Granger test based on an estimated cointegration vector of
[1� −0�55]. None of these tests can reject the null hypothesis of no cointegration. Second,
we estimate a modified state-space model with a hardwired cointegration restriction. This
model retains the consumption growth dynamics of (9), but the law of motion of dividends
is modified as follows:

dct+1 = μdc +φdcxt+1 + st+1� st+1 = ρsst +
√

1 − ρ2
sσs�tηs�t+1� ηs�t+1 ∼N(0�1)� (10)

where dct+1 ≡ dt+1 − ct+1 is the error correction representation for dividends and con-
sumption. dct+1 loads on xt+1, and a stationary AR(1) process st+1, which has its own
stochastic volatility process σs�t . Under this structure, it can be easily verified that div-
idend growth can be written as gd�t+1 = dct+1 + gc�t+1. The measurement equation for
dividends then follows equation (8). A full set of estimates of the cointegration specifi-
cation is reported in the Supplemental Material. The estimate of ρ, as well as the other
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estimates of the consumption parameters, are essentially unaffected by the cointegra-
tion specification. The marginal likelihood for the cointegration specification is 6041.1,
whereas the marginal likelihood for the original specification is 6101.2. Thus, there is no
evidence in the data in favor of the cointegration restriction.

3.3. Summary of Cash-Flow-Only Analysis

Aggregate consumption is a key macroeconomic variable, and it is therefore important
for macroeconomists to understand its dynamic properties. There are several important
implications that are robust across our analyses of consumption, consumption and output,
and consumption and dividends. At the monthly frequency, consumption growth has a
very strong MA(2) component. Ignoring this MA(2) component distorts inference. There
is clear evidence against the hypothesis that consumption is a random walk at monthly
frequency. Our interpretation of the MA(2) component is that it is generated by MA(1)
measurement errors and a highly persistent “local level” component.15 Empirically, our
measurement error specification is preferred to the ARMA(1�2) specification. Thus, if
the goal is to create a reduced-form model of consumption, it is important to capture the
MA component. If the goal is to confront a macro model with monthly consumption data,
it is important to apply a “filter” that removes the high-frequency movements in consump-
tion growth that we attribute to measurement error, because a typical macro model is not
equipped to capture these dynamics. Overall, the posterior interval for the parameter es-
timates essentially encompass those used in the LRR literature (e.g., Bansal, Kiku, and
Yaron (2012)). Importantly, the various estimation results (univariate consumption, con-
sumption and GDP, and consumption and dividends) provide supportive evidence for a
small persistent component in both consumption growth rate and its stochastic volatility.
Consistent with previous LRR work, this evidence is distinctly different from a commonly
held view in which consumption growth is an i.i.d. process.

4. THE LONG-RUN RISKS MODEL

We now embed the cash-flow process (9) into an endowment economy, which allows us
to price financial assets. The preferences of the representative household are described in
Section 4.1. Section 4.2 describes the model solution. Section 4.3 presents the state-space
representation of the asset pricing model and its Bayesian estimation.

4.1. Representative Agent’s Optimization

We consider an endowment economy with a representative agent that has Epstein and
Zin (1989) recursive preferences and maximizes her lifetime utility,

Vt = max
Ct

[
(1 − δ)λtC

1−γ
θ

t + δ(Et[V 1−γ
t+1

]) 1
θ
] θ

1−γ �

subject to budget constraint

Wt+1 = (Wt −Ct)Rc�t+1�

15This interpretation is consistent with studies that examine the quality of consumption data (e.g., Wilcox
(1992)), but from a pure time series perspective, we cannot rule out that the MA(2) component is partly due
to transient dynamics in “true” consumption growth.
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where Wt is the wealth of the agent, Rc�t+1 is the return on all invested wealth, γ is risk
aversion, θ = 1−γ

1−1/ψ , and ψ is intertemporal elasticity of substitution. As highlighted in
Albuquerque et al. (2016), we also allow for a preference shock, λt , to the time rate of
preference. The endowment stream is given by the law of motion for consumption and
dividend growth in (9), and the growth rate of the preference shock, denoted by xλ�t ,
follows an AR(1) process with shocks that are independent of the shocks to cash flows:

xλ�t+1 = ρλxλ�t + σληλ�t+1� ηλ�t+1 ∼N(0�1)� (11)

The Euler equation for any asset ri�t+1 takes the form

Et

[
exp(mt+1 + ri�t+1)

] = 1� (12)

where mt+1 = θ logδ + θxλ�t+1 − θ
ψ
gc�t+1 + (θ − 1)rc�t+1 is the log of the real stochastic

discount factor (SDF), and rc�t+1 is the log return on the consumption claim. We reserve
rm�t+1 for the log market return—the return on a claim to the market dividend cash flows.16

4.2. Solution

Our goal is to devise a solution method that strikes a balance between accuracy and
computational time. The solution described subsequently meets this requirement: it can
be computed quickly because it relies on analytical approximations; it leads to a condition-
ally linear state-space representation for which the likelihood function can be efficiently
evaluated with a particle filter (see below); and it is accurate for the empirically relevant
parameter values.

Conditional on the cash-flow dynamics in (9) and the Euler equation (12), we have
to derive the asset prices for the model economy. In order to fit the cash-flow specifi-
cation to consumption and dividend growth data, we assumed that the volatilities follow
log Gaussian processes: σi�t = ϕiσ exp(hi�t), where hi�t is a linear autoregressive process
with normally-distributed innovations. This specification has been empirically successful
in capturing conditional heteroscedasticity in a broad set of financial and macroeconomic
time series.

The advantage of the exponential transformation is that it ensures that volatilities are
nonnegative. The disadvantage is that, under this specification, the expected value of the
level of consumption and dividends is infinite, which creates problems with the existence
of continuation values in the endowment economy. This issue has been pointed out, for
instance, in Chernov, Gallant, Ghysels, and Tauchen (2003) and Andreasen (2010), who
proposed to splice the exponential transformation of hi�t together with a non-exponential
function, for example, a square-root function, for hi�t exceeding some large threshold
h̄i. To obtain a solution for the asset prices, we proceed slightly differently, by taking a

16Formally, markets are complete in the sense that all income and assets are tradable and add up to total
wealth for which the return is Rc�t . In particular, let Rj�t+1 = (dj�t+1 + pj�t+1)/pj�t be the return to a claim that
pays the dividend stream {dj�τ}∞

τ=t and has the price pj�t . Let qj�t be the number of shares. Then Wt − Ct =∑
j pj�tqj�t . Wealth next period, Wt+1, equals

∑
j pj�tqj�tRj�t+1, and it follows that Rc�t+1 =

∑
j pj�t qj�tRj�t+1∑

j pj�t qj�t
. As in

Lucas (1978), we normalize all shares qj�t to 1 and the risk-free asset to be in zero net supply such that in
equilibrium Ct =Dm +Do, where Dm are the dividends to all tradable financial assets and Do are dividends
on all other assets (e.g., labor, housing, etc.). Rm, the return we utilize in our empirical work, is the return on
the claims that pay dividends Dm.
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linear approximation of the exponential transformation σ2
i�t = (ϕiσ)

2 exp(2hi�t) around
the steady state hi�∗ = 0 and replacing the innovation variances in (9) with a process that
follows Gaussian dynamics:

σ2
i�t+1 = (ϕiσ)2(1 − ρhi)+ ρhiσ2

i�t + σwiwi�t+1� i= {c�x�d}� (13)

Just as the above-mentioned approaches of modifying the exponential transformation,
the linear approximation effectively generates thinner tails for the variance processes and
facilitates valuations to be finite.17 After this linearization, the volatility process is identi-
cal to the one used in Bansal and Yaron (2004) and the subsequent work that builds on
their paper.

Asset prices can now be derived by using the approximate analytical solution described
in Bansal, Kiku, and Yaron (2012) which utilizes the Campbell and Shiller (1988a) log-
linear approximation for returns. This solution serves our purpose well, because it can
be computed very quickly, which facilitates the Bayesian estimation below. The log price-
consumption ratio takes the form

pct =A0 +A1xt +A1�λxλ�t +A2�cσ
2
c�t +A2�xσ

2
x�t � (14)

As discussed in Bansal and Yaron (2004), A1 = 1− 1
ψ

1−κ1ρ
, the elasticity of prices with respect

to growth prospects, will be positive whenever the IES, ψ, is greater than 1. A1�λ = ρλ
1−κ1ρλ

,
the elasticity of prices with respect to the growth rate of the preference shock, is always
positive. Further, the elasticity of pct with respect to the two volatility processes σ2

c�t and

σ2
x�t is θ

2

(1− 1
ψ )

2

1−κ1νc
and θ

2
(κ1A1)

2

1−κ1νx
, respectively; both will be negative—namely, prices will decline

with uncertainty—whenever θ is negative. A condition that guarantees a negative θ is
that γ > 1, and ψ > 1—a configuration relevant for our parameter estimates and one in
which agents exhibit preference for early resolution of uncertainty. The innovations to
the log stochastic discount factor (SDF) are linear in the shocks to consumption growth
ηc , ηx, the preference shocks ηλ, and the shocks to volatilities wc and wx. Denoting λ’s

as their respective market prices of risk, it is instructive to note that λc = γ, λx = (γ− 1
ψ )κ1

1−κ1ρ
,

λλ = − θ−κ1ρλ
1−κ1ρλ

(and λwc and λwx) are positive (negative) whenever γ > 1 and ψ > 1. Fur-
thermore, when preferences are time separable, namely, when θ= 1, λx, λwx , and λwc are
all zero.

Risk premia are determined by the negative covariation between the innovations to
returns and the innovations to the SDF. It can be shown that the risk premium for the
market return, rm�t+1, is

Et(rm�t+1 − rf�t)+ 1
2

vart(rm�t+1)

= − covt(mt+1� rm�t+1)

= βm�cλcσ2
c�t︸ ︷︷ ︸

short-run risk

+ βm�xλxσ
2
x�t︸ ︷︷ ︸

long-run growth risk

+βm�λλλσ2
λ︸ ︷︷ ︸

preference risk

+βm�wxλwxσ2
wx

+βm�wcλwcσ2
wc︸ ︷︷ ︸

volatility risks

�

(15)

where the β’s reflect the exposures of the market return to the underlying consumption
risks. Equation (15) highlights that the conditional equity premium can be attributed to (i)

17A quantitative comparison among the various approaches of thinning the tails of the σ2
i�t processes is

beyond the scope of this paper.
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short-run consumption growth, (ii) long-run growth, (iii) preference shock, (iv) short-run
and long-run volatility risks.

A key variable for identifying the model parameters is the risk-free rate. Under the
assumed dynamics in (9), the risk-free rate is affine in the state variables and follows

rf�t = B0 +B1xt +B1�λxλ�t +B2�cσ
2
c�t +B2�xσ

2
x�t � (16)

It can be shown that B1 = 1
ψ
> 0 and the risk-free rate rises with good economic prospects,

while B1�λ = −ρλ < 0 and the risk-free rate falls with positive preference shock. Under
ψ > 1 and γ > 1, B2�c and B2�x are negative so the risk-free rate declines with a rise in
economic uncertainty. Further details of the solution are provided in the Supplemental
Material (Schorfheide, Song, and Yaron (2018)).

The accuracy of the log-linearization depends on the parameterization of the LRR
model. Taking the linear volatility process in (13) as given, Pohl, Schmedders, and Wilms
(2016) compared the quantitative implications of our model solution to that of a non-
linear solution obtained by a projection method. They found that discrepancies for key
asset pricing moments between the solutions are small (less than 6%) conditional on a
parameterization that is similar to the posterior medians reported in Table VII. However,
the discrepancies become larger if the persistence parameters ρ and ρh are increased and
pushed toward the upper bound of credible sets derived from marginal posterior distribu-
tions. Thus, strictly speaking, the parameter estimates that we are reporting below should
be interpreted as parameter estimates for the approximation.18

4.3. State-Space Representation and Bayesian Inference

While the state-space models for the cash-flow dynamics analyzed in Sections 2 and 3
can be analyzed with a fairly straightforward Metropolis-within-Gibbs sampler, posterior
computations for the model with asset returns are considerably more complicated because
the stochastic volatility process ht = [hc�t� hx�t� hd�t]′ affects the conditional mean of the
asset prices.

The measurement equation can be expressed as

yt+1 =At+1

(
D+Zst+1 +Zvsvt+1(ht+1�ht)+Σuut+1

)
� ut+1 ∼N(0� I)� (17)

The vector of observables yt comprises consumption and dividend growth, the observed
market return rom�t , and the risk-free rate rof�t . ut+1 is a vector of measurement errors and
At+1 is a selection matrix that accounts for deterministic changes in the data availability.
svt+1(·) is a vector of conditional variances that depend on the log volatilities of the cash
flows, ht+1 and ht . The remaining “linear” state variables are collected in the vector st+1,
which essentially consists of the persistent cash-flow component xt (see (9)) and the pref-
erence shock xλ�t . However, in order to express the observables yt+1 as a linear function of
st+1, to capture the elaborate measurement error model of consumption, and to account

18A similar issue arises in the literature on dynamic stochastic general equilibrium (DSGE) models: the vast
majority of DSGE models are estimated based on log-linear approximations, which facilitate a speedy evalua-
tion of the likelihood function with the Kalman filter. The caveat that, strictly speaking, the resulting parameter
estimates are estimates for the log-linear approximation has been widely accepted in this literature. An imme-
diate consequence is that one should not plug parameter estimates obtained from a log-linear approximation
into the nonlinear version of the model, because it will lead to a mismatch between model-implied moments
and the moments in the data; see An and Schorfheide (2007) for more details.
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TABLE VII

PRIOR AND POSTERIOR ESTIMATESa

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

Household Preferences

ψ G 0�30 1�30 3�45 1�25 1�97 3�22

γ G 2�75 7�34 15�46 5�44 8�89 14�44

Preference Risk

ρλ U −0�90 0 0�90 0�933 0�959 0�974

σ2
λ IG 0�0003 0�0005 0�0015 0�0003 0�0004 0�0005

Consumption Growth Process

ρ U −0�90 0 0�90 0�949 0�987 0�997

ϕx U 0�05 0�50 0�95 0�120 0�215 0�382

σ IG 0�0008 0�0019 0�0061 0�0027 0�0035 0�0042

ρhc NT 0�27 0�80 0�999 0�977 0�991 0�998

σ2
hc

IG 0�0011 0�0043 0�0283 0�0075 0�0096 0�0109

ρhx NT 0�27 0�80 0�999 0�982 0�992 0�998

σ2
hx

IG 0�0011 0�0043 0�0283 0�0022 0�0039 0�0044

Dividend Growth Process

φ N −9�0 0�0 9�0 2�14 3�65 6�43

π N −9�0 0�0 9�0 0�75 1�47 2�37

ϕd U 0�50 5�0 9�5 3�19 4�54 6�55

ρhd NT 0�28 0�80 0�999 0�943 0�969 0�974

σ2
hd

IG 0�015 0�0445 0�208 0�0404 0�0447 0�0565

Consumption Measurement Error

σε IG 0�0008 0�0019 0�0062 0�0009 0�0014 0�0020

σaε IG 0�0007 0�0029 0�0389 0�0038 0�0141 0�0213

aThe estimation results are based on annual consumption growth data from 1930 to 1960 and monthly consumption growth data
from 1960:M1 to 2014:M12. We allow for annual consumption measurement errors εat during the periods from 1930 to 1948. We
impose monthly measurement errors εt when we switch from annual to monthly consumption data from 1960:M1 to 2014:M12. For
the other three series, we use monthly data from 1930:M1 to 2014:M12. We fix δ= 0�999. We fix μc = 0�0016 and μd = 0�0010 at their
sample averages. We also fix the measurement error variances (σa

d�ε
)2 and (σf�ε)

2 at 1% of the sample variance of dividend growth

and the risk-free rate, respectively. B, N , NT , G, and IG are beta, normal, truncated (outside of the interval (−1�1)) normal, gamma,
and inverse gamma distributions, respectively.

for potentially missing observations, it is necessary to augment st+1 by lags of xt and xλ�t as
well as the innovations for the cash-flow process and measurement errors. This leads to a
high-dimensional state vector st (see the Supplemental Material for a precise definition).

The solution of the LRR model sketched in Section 4.2 provides the link between the
state variables and the observables yt+1. The state variables themselves follow vector au-
toregressive processes of the form

st+1 =�st + vt+1(ht)� ht+1 =Ψht +Σhwt+1� wt+1 ∼N(0� I)� (18)

where vt+1(·) is an innovation process with a variance that is a function of the log volatility
process ht and wt+1 is the innovation of the stochastic volatility process.
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The key difference between the nonlinear state-space model given by (17) and (18) and
the state-space models estimated in Sections 2 and 3 is that the volatility states (ht+1�ht)
enter the conditional mean of yt+1 through the model-implied asset returns. This means
that the Metropolis-within-Gibbs sampler that we used previously is not valid for the
model with asset prices. Instead, we will use a particle filter to approximate the likelihood
function of the state-space model and then embed the likelihood approximation into a
Metropolis–Hastings algorithm.

Our particle filter exploits the particular structure of the state-space model. Conditional
on the volatility states (ht+1�ht), the model is linear. Building on ideas in Chen and Liu
(2000), we use Kalman-filtering steps to track the Gaussian distribution of st |(hjt �Y1:t),
where {hjt �W j

t }Mj=1 is a set of particle values and weights for the volatility states. Because
conditional on the three-dimensional volatility vector hjt one can integrate over the high-
dimensional vector st analytically (Rao–Blackwellization), the particle filter approxima-
tion p̂(Y |Θ) of the likelihood function tends to be sufficiently accurate so that it can
be embedded into a random-walk Metropolis–Hastings algorithm. Here Θ comprises the
parameters of the cash-flow process, the volatility parameters, and the preference pa-
rameters of the representative household. The resulting sampler belongs to the class of
particle MCMC samplers. Andrieu, Doucet, and Holenstein (2010) have shown that the
use of p̂(Y |Θ) in MCMC algorithms can still deliver draws from the actual posterior
p(Θ|Y) because these approximation errors essentially average out as the Markov chain
progresses. Further details of the posterior sampler are provided in the Supplemental
Material.

5. EMPIRICAL RESULTS BASED ON THE LONG-RUN RISKS MODEL

We now turn to the empirical analysis based on the LRR model. Section 5.1 describes
the asset price data that are used in addition to the cash-flow data. We discuss the esti-
mation results in Section 5.2 and present the asset pricing implications of the estimated
model in Section 5.3.

5.1. Data

In addition to the consumption and dividend data used in Sections 2 and 3, we now also
use financial market data from 1930:M1 to 2014:M12. This includes monthly observations
of returns and prices of the CRSP value-weighted portfolio of all stocks traded on the
NYSE, AMEX, and NASDAQ. Prices are also constructed on the per share basis as in
Campbell and Shiller (1988b) and Hodrick (1992). The stock market data are converted
to real using the consumer price index (CPI) from the Bureau of Labor Statistics. Finally,
the ex ante real risk-free rate is constructed as a fitted value from a projection of the ex
post real rate on the current nominal yield and inflation over the previous year. To run
the predictive regression, we use monthly observations on the three-month nominal yield
from the CRSP Fama Risk Free Rate tapes and CPI series. Data sources and summary
statistics are available in the Supplemental Material.

5.2. Model Estimation

Parameter Estimates. The prior distribution for the parameters associated with the ex-
ogenous cash-flow process is the same as the ones used in Section 3.2. Thus, we focus
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FIGURE 3.—Posterior distribution of ρ and ρhx . Notes: We plot posterior densities of ρ from the estimation
with cash-flow data only from post-1930 (squared-line) and from post-1959 samples (circled-line), respectively,
and from the estimation with cash-flow and asset return data from post-1930 sample (solid-line).

on the preference parameters that affect the asset pricing implications of the model. Per-
centiles for the prior are reported in the left-side columns of Table VII. The prior for the
discount rate δ reflects beliefs about the magnitude of the risk-free rate. For the asset
pricing implications of our model, it is important whether the IES is below or above 1.
Thus, we choose a prior that covers the range from 0.3 to 3.5. The 90% prior credible
interval for the risk-aversion parameter γ ranges from 3 to 15, encompassing the values
that are regarded reasonable in the asset pricing literature. The prior for the persistence
and the innovation standard deviation of the preference shock is identical to the prior for
the cash-flow parameters ρ and σ . Finally, we fix the variance σ2

f�ε of the measurement
error of the risk-free rate at 1% of the risk-free rate’s sample variance.

The remaining columns of Table VII summarize the percentiles of the posterior dis-
tribution for the model parameters. While the estimated cash-flow parameters are, by
and large, similar to those reported in Table VI when asset prices are not utilized, a few
noteworthy differences emerge. First, the estimate of ρ, the persistence of the predictable
cash-flow component, increases from 0.952 to 0.987 to better capture the equity premium
and persistence of the price-dividend ratio. The left panel of Figure 3 overlays the poste-
rior densities of ρ obtained with (post-1930 sample) and without asset prices (post-1930
and post-1959 samples, respectively).19 Interestingly, the figure shows that although the
mode of the posterior increases and shifts to the right when asset prices are used in es-
timation, the 90% credible interval ranging from 0.949 to 0.997 contains the posterior
medians of ρ from the cash-flow-only estimations.20

Second, the right panel of Figure 3 shows the posterior distribution of ρhx , the per-
sistence of the stochastic volatility process for xt . The modes of the three posteriors are

19Results from the post-1959 sample with asset prices are virtually identical to the results from the post-1930
sample. For this reason, they are not plotted separately in Figure 3.

20In the Supplemental Material, we present additional misspecification tests for the consumption dynamics.
To assess the extent to which the increase in ρ leads to a decrease in fit of the consumption growth process, we
re-estimate model (4) conditional on various choices of ρ between 0.90 and 0.99 and recompute the marginal
data density for consumption growth. The key finding is that the drop in the marginal data density by changing
ρ from ρ̂ to 0.99 is small, indicating that there essentially is no tension between the parameter estimates
obtained with and without asset prices.
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quite similar, with the cash-flow-only posteriors having a longer left tail. Again, the pos-
terior becomes more concentrated as asset returns are added to the estimation. Third, in
the cash-flow-only estimation, we imposed a common stochastic log volatility process for
the transitory and persistent component of consumption growth, that is, hx�t = hc�t , which
led to an estimate σ̂2

hc
= 0�0034. Once we add the returns to the set of observables and

remove the restriction, we obtain σ̂2
hx

= 0�0039 and σ̂2
hc

= 0�0096, reflecting asset price in-
formation about the volatility of volatilities. Fourth, the estimate of ϕx drops from 0.430
to 0.215, which reduces the model-implied predictability of consumption growth by the
price-dividend ratio and brings it more in line with the data. Finally, the estimate of σ
increases somewhat from 0.0029 to 0.0035 to explain the highly volatile asset price data.

Overall, the information from the market returns and risk-free rate reduces the pos-
terior uncertainty about the cash-flow parameters and strengthens the evidence in favor
of a time-varying conditional mean of cash-flow growth rates as well as time variation in
the volatility components. Table VII also provides the estimated preference parameters.
Importantly, the IES is estimated above 1 with a credible interval ranging from 1.3 to 3.2,
while the posterior median estimate of the risk-aversion parameter γ is 8.9 and its interval
estimate is 5.4 to 14.4.

Smoothed Mean and Volatility States. Figure 4 depicts smoothed estimates of the pre-
dictable growth component xt . Because the estimate of xt is, to a large extent, deter-

FIGURE 4.—Smoothed states. Notes: Black lines represent posterior medians of smoothed states and
gray-shaded areas correspond to 90% credible intervals. Shaded bars indicate NBER recession dates. In the
top panel, we overlay the smoothed state xt obtained from the estimation without asset prices (red dashed
line) and monthly consumption growth data (blue solid line).
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mined by the time path of consumption, the 90% credible bands (reflecting uncertainty
about parameters and the latent states) are much wider prior to 1960, when only annual
consumption growth data were used in the estimation. Post 1959, xt tends to fall in re-
cessions (indicated by the shaded bars in Figure 4), but periods of falling xt also occur
during expansions. We overlay the smoothed estimate of xt obtained from the estimation
without asset price data. It is very important to note that the two estimates are similar,
which highlights that xt is, in fact, detectable based on cash-flow data only. We also depict
the monthly consumption growth data post 1959, which confirms that xt indeed captures
low-frequency movements in consumption growth.

The smoothed volatility processes are plotted in Figure 4. Recall that our model has
three independent volatility processes, hc�t , hd�t , and hx�t , associated with the innovations
to consumption growth, dividend growth, and the predictable component, respectively.
The most notable feature of hc�t is that it captures a drop in consumption growth volatil-
ity that occurred between 1940 and 1960. In magnitude, this drop in volatility is much
larger than a subsequent decrease around 1984, the year typically associated with the
Great Moderation. The stochastic volatility process for dividend growth hd�t seems to ex-
hibit more medium- and high-frequency movements than hc�t . Finally, the volatility of the
persistent component, hx�t , exhibits substantial fluctuations over our sample period, and
it tends to peak during NBER recessions.

5.3. Asset Pricing Implications

Risk-Free Rate Estimate and Preference Shock. Figure 5 overlays the actual risk-free
rate, which is assumed to be subject to measurement errors, and the smoothed “true” or
model-implied risk-free rate. We find that the measurement errors are fairly small. To
highlight the importance of the preference shock, we also plot a counterfactual risk-free
rate that would prevail in the absence of xλ�t . It turns out that ex post much of the risk-free
rate fluctuations are explained by the preference shock. In the absence of the preference
shock, the process for the expected stochastic discount factor implied by the predictable
component of cash-flow growth and the stochastic volatilities is too smooth relative to the
observed risk-free rate. The preference shock can generate additional fluctuations in the
expected discount factor without having a significant impact on asset returns (as we will
see below).

FIGURE 5.—Model-implied risk-free rate. Notes: Blue line depicts the actual risk-free rate, and black line
depicts the smoothed, model-implied risk-free rate without measurement errors. Red dashed line depicts the
model-implied risk-free rate with xλ�t = 0. The parameters are fixed at their posterior median estimates.
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FIGURE 6.—Decomposition of the equity risk premium. Notes: We provide the decomposition of the risk
premium (15). We compute β’s and λ’s based on the median posterior parameter estimates and multiply
with the median volatility state estimates σ̂2

c�t and σ̂2
x�t to construct the model-implied risk premium. On aver-

age, the risk premium is accounted for by the short-run risk (0.3%), long-run growth risk (5.0%), preference
risk (1.1%), and volatility risk (1.8%), respectively. The total in-sample market risk premium (annualized) is
around 8.2%.

We assumed that the preference shock is independent of cash flows. In a production
economy, this assumption will typically not be satisfied. Stochastic fluctuations in the dis-
count factor generate fluctuations in consumption and investment, which in turn affect
cash flows. We assess the independence as follows. First, we compute the ex post cor-
relation between the smoothed preference shock innovations ηλ�t and the cash-flow in-
novations ηc�t and ηx�t . We can do so for every parameter draw Θs from the posterior
distribution. The 90% posterior predictive intervals range from −0�09 to 0.03 for the cor-
relation between ηλ�t and ηc�t and from 0 to 0.2 for the correlation between ηλ�t and ηx�t .
Second, we re-estimate our model under the assumption that ηλ�t and ηx�t are negatively
correlated. The resulting parameter estimates as well as the asset pricing moments are
essentially unaltered. According to a marginal data density comparison, the more par-
simonious specification in which preference shocks and cash flows are independent is
preferred. Based on these results, we conclude that there is no evidence that contradicts
the independence assumption.

Determinants of the Equity Risk Premium. Figure 6 depicts the contribution of short-
run risk, σ2

c�t , the long-run growth risk, σ2
x�t , the preference risk, σ2

λ , and the volatility risks,
σ2
wc

and σ2
wx

, to the risk premium at the posterior median parameter estimates; see (15).
We compute β’s and λ’s based on the median posterior parameter estimates and multiply
them by the median volatility state estimates to construct the risk premium. The total
(annualized) equity risk premium is around 8.2%.21 The two major sources of the risk
premium are the long-run growth risk and the volatility risks, and when combined they
account for 83% of the risk premium. More specifically, the 8.2% equity premium can
be decomposed as follows. On average, the long-run growth risk generates a premium of
5.0%, the volatility risks account for 1.8%, the preference shock generates 1.1%, and the
short-run volatility risk contributes 0.3%.

21The gross equity premium is E[rm�t+1 − rf�t ] + 1/2σ2
rm

≈ 0�0615 + 0�5 ∗ 0�2262 − 0�0047 = 8�2%. If we were
to attribute the moving-average fluctuations in observed monthly consumption growth to “true” consumption
growth instead of measurement errors, the asset pricing implications of the model would essentially remain
unchanged. The equity premimum would rise by approximately 0.06%.
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FIGURE 7.—Variance decomposition for market returns and risk-free rate. Notes: Fraction of volatility fluc-
tuations (in percent) in the price-dividend ratio and the risk-free rate that is due to xt , xλ�t , and σ2

x�t , respec-
tively. We do not present the graphs for σ2

c�t , σ
2
d�t since their time-varying shares are less than 1% on average.

See the main text for computational details.

Determinants of Asset Price Volatility. Figure 7 depicts the time-varying contribution
of the fluctuations in growth prospects, xt , the preference shock, xλ�t , and the conditional
variability of growth prospects, σx�t , to the volatility of the price-dividend ratio and the
risk-free rate.22 We generate counterfactual volatilities by shutting down the estimated xt ,
xλ�t , and σx�t processes, respectively. The ratios of the counterfactual and the actual as-
set price volatilities measure the contribution of the non-omitted risk factors. We subtract
this ratio from 1 to obtain the relative contribution of the omitted risk factor shown in Fig-
ure 7. The credible bands reflect parameter uncertainty and uncertainty about the latent
states. While the preference shocks are important for the risk-free rate, they contribute
very little to the variance of the price-dividend ratio. Most of the variability of the price-
dividend ratio is, in equal parts, due to the variation in xt and σx�t . The remaining risk
factors σ2

c�t and σ2
d�t have negligible effects (less than 1% on average) on the asset price

volatilities, but are important for tracking the consumption and dividend growth data.
Matching Asset Price Moments. While asset pricing moments implicitly enter the like-

lihood function of our state-space model, it is instructive to examine the extent to which
sample moments implied by the estimated state-space model mimic the sample moments
computed from our actual data set. To do so, we report percentiles of the posterior pre-

22The decomposition of market return volatility (not shown in Figure 7) is qualitatively similar to that of the
price-dividend ratio.
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TABLE VIII

ASSET RETURN MOMENTSa

Parameter Estimates are Based On

Cash Flows & Asset Returns Cash Flows Only

Data 5% 50% 95% 5% 50% 95%

Mean (rm) 6�06 2�56 6�15 10�29 1�99 4�61 7�55

StdDev (rm) 19�8 14�9 22�6 46�1 11�0 16�6 28�3

AC1 (rm) −0�01 −0�30 −0�05 0�18 −0�29 −0�02 0�19

Corr (c, rm) 0�11 −0�10 0�10 0�29 −0�10 0�12 0�32

Mean (pd) 3�40 2�63 3�14 3�41 3�26 3�42 3�51

StdDev (pd) 0�45 0�17 0�32 0�76 0�11 0�18 0�39

AC1 (pd) 0�87 0�49 0�75 0�89 0�32 0�62 0�82

Mean (rf ) 0�37 −0�56 0�47 1�32 0�22 0�97 1�64

StdDev (rf ) 2�85 1�54 2�09 2�90 1�61 1�93 2�41

AC1 (rf ) 0�64 0�38 0�57 0�73 0�35 0�52 0�67

aWe present descriptive statistics for log returns of the aggregate stock market (rm), its correlation with consumption growth
(c), the log risk-free rate (rf ), and the log price-dividend ratio (pd). We report means (Mean), standard deviations (StdDev), first-
order sample autocorrelations (AC1), and correlations (Corr). Market returns, the risk-free rate, and the price-dividend ratio refer
to 12-month averages (in percent). Computing asset pricing implications for the cash-flow-only estimates requires calibration of the
preference parameters and the preference shock xλ�t . We set δ, ψ, γ, ρλ , σ2

λ to the median posterior estimates from Table VII.

dictive distribution for various sample moments based on simulations from the posterior
distribution of the same length as the data.23 Typically, the posterior predictive distribu-
tion is computed to reflect both parameter and shock uncertainty. In our application, the
effect of the parameter uncertainty is an order of magnitude smaller than the effect of
the shock (or sampling) uncertainty. Thus, we decided to fix the parameters at their pos-
terior median values as this facilitates a clear comparison between the two types of model
parameterization.

Results are summarized in Table VIII. Means and standard deviations refer to annu-
alized asset prices. We first focus on the results from estimating the full model based on
cash-flow data and asset returns (full model estimation). All of the “actual” sample mo-
ments are within the 5th and the 95th percentile of the corresponding posterior predictive
distribution.24 In particular, the model generates a sizable mean log market return with
median value of 6.2%, and a sizable equity risk premium with a median value of about
8.2%. Consistent with the data, the model’s return variability is about 22%. The high
volatility of the market returns translates into a large variability of the sample moments.
As in the data, the model generates both a highly variable and persistent price-dividend
ratio. The median and 95th percentile of the price-dividend volatility distribution are sig-
nificantly larger than in other LRR calibrated models with Gaussian shocks. This feature

23This is called a posterior predictive check; see Geweke (2005) for a textbook treatment. Specifically, the
percentiles are obtained using the following simulation: draw parameters Θs from the posterior distribution;
for each Θs , simulate a trajectory Ys (same number of observations as in the actual sample) and compute the
sample statistics S(Y s) of interest.

24Although not reported in the table, this is also the case for the mean, standard deviation, and first auto-
correlation moments of consumption and dividend growth.
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FIGURE 8.—Posterior distribution of market prices of risks. Notes: We plot posterior densities of λxσx and
λwxσwx from the estimation with cash-flow data only from post-1930 (squared-line) and from post-1959 samples
(circled-line), respectively, and from the estimation with cash-flow and asset return data from post-1930 sample
(solid-line).

owes in part to the fact that the model contains an independent dividend volatility process.
Finally, partly due to the preference shocks, the model is able to reproduce the observed
sample moments of the risk-free rate.

In Section 5.2, we noted that the parameter estimates for the cash-flow processes
change a bit once asset pricing data are included. To assess the economic implications
of the parameter differentials, we combine the cash-flow process parameter estimates
reported in Table VI (1930–2014 sample) with the posterior median estimates of the
preference parameters and the preference shock xλ�t from the full estimation. Because
the cash-flow-only model was estimated without the third volatility process σ2

x�t , we set
hc�t = hx�t when recomputing the asset pricing implications of the LRR model. The last
three columns of Table VIII show that, due to a lower persistence ρ, the cash-flow-only es-
timates generate a slightly lower mean and variance for the market return, and a slightly
higher and less volatile price-dividend ratio and risk-free rate. The standard deviation
and autocorrelation of the price-dividend ratio and the standard deviation of the risk-free
rate lie just outside the posterior predictive bands, whereas all other sample moments
continue to fall within the bands. This confirms that even the cash-flow-only estimates of
the endowment process parameters can generate realistic asset price fluctuations.25

Figure 8 compares the posterior distributions for the appropriately-scaled market
prices of risk, λxσx and λwxσwx , based on the estimation with and without asset prices.
The posterior densities are remarkably similar. In fact, the modes of the distributions are
almost identical; the main difference lies in the dispersion of the densities. This indicates
that the lower risk premium (see Table VIII) obtained under the cash-flow-only estimate
is due to smaller return exposures to the shocks (β’s in (15)).26

25Chen, Dou, and Kogan (2015) formalized this comparison by developing a measure of model fragility,
roughly speaking based on the discrepancy between the posterior medians obtained under the cash-flow-only
estimation and the estimation with asset returns.

26For completeness, using the SDF decomposition in Equation (A.18) in the Supplemental Material, we
also report λi and λiσi for i = {c�x�λ�ww�wc} at our median parameter estimates. The resulting values are
{8�9�695�2�406�3�−26,572,824�−3391�0} and {0�03�0�07�0�16�−0�03�−0�01}, respectively. These figures are
consistent with the variance decomposition of the risk-free rate and equity return presented earlier, whereby
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Consumption Growth and Excess Return Predictability. Asset pricing models are of-
ten evaluated based on their implications for the predictability of future cash flows and
returns. In the model, the price-dividend ratio is determined by multiple state variables.
Consequently, a VAR-based predictive regression is a natural starting point. As in Bansal,
Kiku, and Yaron (2012), we estimate a first-order VAR that includes consumption growth,
the price-dividend ratio, the real risk-free rate, and the market return. Based on the es-
timated VAR coefficients, we compute R2’s for cumulative H-step-ahead consumption
growth and excess returns:

H∑
h=1

ct+h and
H∑
h=1

(rm�t+h − rf�t+h−1)�

While the VAR-based predictive checks are appealing from a theoretical perspective,
much of the empirical literature focuses on R2’s from univariate predictive regressions
using the price-dividend ratio as the only regressor. We subsequently consider both mul-
tivariate and univariate regressions.

Predictive checks are graphically summarized in Figure 9. We begin with a discussion
of the results depicted in the four panels of the top row of the figure. The sample statis-
tics considered are the R2 values obtained from predictability regressions. The top and
bottom ends of the boxes correspond to the 5th and 95th percentiles, respectively, of the
posterior predictive distribution, and the horizontal bars signify the medians. The predic-
tive intervals reflect the fact that we are repeatedly generating data from the model and
computing a sample statistic for each of these simulated trajectories.27 The small squares
correspond to R2 statistics computed from “actual” U.S. data.

The top left panel of Figure 9 depicts results for the VAR-based predictability regres-
sions for consumption growth. Based on multiple variables, consumption growth is highly
predictable in the data. At the one-year horizon, theR2 is about 52% (see also Bansal et al.
(2014)). While the predictability diminishes over time, it is still nontrivial with an R2 of
12% at the 10-year horizon. The key finding is that the data R2’s lie within the 90% credi-
ble intervals constructed from the model-implied predictive distribution. At the one-year
horizon, the median of the model-implied R2 is somewhat lower than its data estimate,
whereas over horizons of three years or more, the medians are slightly larger than the
data estimates.

Panel 2 in the top row of Figure 9, labeled “Univariate,” provides results for univari-
ate consumption growth predictability regressions. As for the VAR-based predictability
checks, we simulate the LRR model with all of its five state variables: xt , xλ�t , σ2

x�t , σ
2
c�t ,

and σ2
d�t . However, we only use the price-dividend ratio to predict future consumption

growth. As is well known, when the price-dividend ratio is used as a single regressor, it
produces low R2’s. They are less than 5% for horizons from one to eight years and reach
almost 10% at the 10-year horizon.28 The median R2 values obtained from regressions on
model-generated data are between 10% to 15%, slightly higher than in the actual data.

the former has a relatively large exposure (β) to the preference shock while the latter has a large exposure to
the growth and volatility shock.

27To ease subsequent comparisons, we condition on the posterior median estimates of the LRR model. This
is innocuous because the contribution of parameter uncertainty to the variability of the posterior predictive
distributions is small.

28The univariate-based low R2’s for the first several years are consistent with the findings in Table 4 of Beeler
and Campbell (2012)—the slight differences attributed to the longer sample available here.
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However, the posterior predictive intervals range from 0 to 30% for the one-year horizon
and from 0 to about 50% for horizons longer than three years, which means that there is
no evidence in the data that contradicts our estimated asset pricing model.

Panels 3 and 4 in the top row of Figure 9 show the respective VAR and univariate
predictive R2’s for future excess returns. It is noteworthy that the VAR median R2’s of
the model-based estimates are almost perfectly aligned with the data-based estimates.
The model also performs quite well in terms of the univariate excess return predictability
regressions. Specifically, for all horizons, the median of the model-implied distribution of
R2’s is quite close to actual data R2’s and the model-based credible intervals contain the
R2 obtained from the actual data. The good performance is obtained because, according
to the model, the price-dividend ratio is the most important predictor of long-horizon
excess returns among the observables.29

FIGURE 9.—Predictability checks. Notes: We fix the parameters at their posterior median estimates and
simulate data sets. The red squares represent R2 values obtained from the actual data. The boxes represent
90% posterior predictive intervals and the horizontal lines represent medians. The “Benchmark” case is based
on simulations with all five state variables xt , xλ�t , σ2

x�t , σ
2
c�t , and σ2

d�t ; the horizon is measured in years. The
VAR-based R2’s are constructed as in Hodrick (1992). In the bottom panel, the intersection of the solid lines
indicates the R2 values obtained from the actual data.

29In the Supplemental Material, we explore the relative importance of “growth” and “volatility” risks by
simulating model specifications that are only driven by (i) xt and σ2

x�t or (ii) xt . In Case (i), the posterior
predictive distributions are quite close to the ones in the two “univariate” subplots of Figure 9 because xt and
σ2
x�t represent the key pricing state variables. In Case (ii), the credible intervals are often too small and do not

encompass the data estimates. Driven by xt only, the model generates too much consumption predictability,
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While our model passes the predictive checks, the credible intervals depicted in Fig-
ure 9 are wide. The high variability of the sampling distribution of the R2 measures under
the LRR model implies that, despite their popularity, the predictability regressions have
little power to detect model misspecifications. The diffuse and skewed sampling distri-
butions of the R2 statistics are caused by various non-standard features of predictive re-
gressions. Due to overlapping time periods, residuals are typically serially correlated and
lagged residuals may be correlated with the predictor. Moreover, the persistent compo-
nent of the dependent variable (consumption growth or excess returns) is dominated by
i.i.d. shocks and the right-hand-side regressor (price-dividend ratio) is highly persistent—
a feature that can render the predictive regressions spurious (see Hodrick (1992) and
Stambaugh (1999)).30

As a final check, the bottom row of Figure 9 illustrates the model-implied joint distri-
bution of R2’s for predicting consumption growth and excess returns. Each dot in these
scatter plots is obtained by computing the two R2’s based on a single model simulation.
The intersection of the solid lines indicates the R2 values computed from the actual data.
The figure shows that the R2 values at the 1-year and 5-year horizon are almost uniformly
distributed over a rectangle. For every horizon, the observed R2’s do not lie in the far tails
of the posterior predictive distribution, which means that the model is also able to jointly
generate the observed consumption growth and excess return predictability.

Dividend-Growth Predictability. Cochrane (2011) argued that there is very little
dividend-growth predictability at all horizons. This view is based on a univariate regres-
sion with the price-dividend ratio as a predictor of future dividend growth. The data
feature modest predictability, with an R2 in the range of 4% to 9%, depicted by the red
squares in the left panel of Figure 10. However, dividend growth is found to be highly
predictable both at short and long horizons, once additional predictors are included in a
VAR-based predictive regression, with adjusted R2’s as large as 35% at the 10-year hori-
zon (see Column 2 of Figure 10).31 Importantly, in both the univariate and VAR-based
predictive regressions, the model implications for dividend growth predictability line up
with the data and cover the data R2’s.

The strong evidence for dividend growth predictability has important implications for
the variability of the log dividend yield dpt . Based on the Campbell and Shiller (1988a)
approximate present value identity, it follows that

dpt ≈
k∑
j=1

�j−1rt+j −
k∑
j=1

�j−1dt+j +�kdpt+k� (19)

where � is an approximation constant based on the average dividend yield. Multiply-
ing both sides of (19) by the log dividend yield and taking expectations implies that the
variance of the current dividend yield can be attributed to its covariance with expected

thereby highlighting that volatility shocks play an important role in lowering the model-implied predictability
to a more realistic level.

30Valkanov (2003) derived an asymptotic distribution of the R2 under the assumption that the regressor
follows a local-to-unity process. He showed that the goodness-of-fit measure converges to a random limit as
the sample size increases. More recently, Bauer and Hamilton (2015) studied the sampling distribution of R2

measures in predictive regressions for bond returns, which exhibit similar distortions.
31This evidence is consistent with Lettau and Ludvigson (2005), Koijen and van Binsbergen (2010), and

Jagannathan and Liu (2016) who reported R2 values from a VAR-based regression that range from 10% to
40%.
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FIGURE 10.—Dividend growth predictability and dividend yield variance decomposition. Notes: (Pre-
dictability) We fix the parameters at their posterior median estimates and simulate data sets. The horizon
is measured in years. We run a univariate regression with the price-dividend ratio as predictor of future
dividend growth. For the multivariate regression, we consider a first-order VAR that includes consumption
growth, dividend growth, the price-dividend ratio, and the real risk-free rate. Based on the estimated co-
efficients, we compute R2’s for cumulative H-step-ahead dividend growth. The red squares represent R2

values obtained from the actual data. The boxes represent 90% posterior predictive intervals and the hor-
izontal lines represent medians. The VAR-based R2’s are constructed as in Hodrick (1992). (Variance De-
composition, Direct) We regress 15-year ex post returns, dividend growth, and dividend yield, respectively,
on a constant term and the dividend yield. (Variance Decomposition, VAR-based) We infer long-run coef-
ficients (k → ∞) from 1-year coefficients of the same VAR used for the predictability analysis. Using the
Campbell–Shiller approximation, the fractions of dividend yield variation attributed to each source are pro-

vided as 1 ≈ Cov(dpt �
∑k
j=1 �

j−1rt+j )
Var(dpt )

− Cov(dpt �
∑k
j=1 �

j−1dt+j )
Var(dpt )

+ �k Cov(dpt �dpt+k)
Var(dpt )

. These components are marked as R, D,
and DP, respectively.

future returns, dividend growth rates, and the expected future dividend yield, respec-
tively, marked as “R,” “D,” and “DP” in Figure 10 (see figure notes for details). As k
approaches infinity, the dividend yield variability is explained completely by covariation
with expected returns and cash-flow growth. We compute the fraction of variability ex-
plained by the three covariances via “Direct” regression (setting k equal to 15 years and
separately regressing the “R,” “D,” and “DP” components on the dividend yield) and
“VAR-based” regression (inferring the k = ∞ decomposition from the coefficients of a
VAR estimated based on annual data). The estimates based on the direct regressions at-
tribute much of the variation in dividend yield to variation in discount rates (although not
entirely), whereas the point estimates of the VAR attribute about half of the variation to
discount rates and the other to dividend growth. Again, it is important to note that, in
both cases, the model credible intervals contain the data point estimates. Moreover, in
both cases, the credible intervals around the point estimates are consistent with a view in
which a large portion (about half) of the dividend yield variability is driven by cash flows.32

6. CONCLUSION

We developed a nonlinear Bayesian state-space model that utilizes mixed-frequency
data to study the time series dynamics of consumption and its implications for asset pric-
ing. We show that after accounting for monthly measurement errors, there is strong evi-

32Albuquerque et al. (2016) also examined the 7- and 10-year correlations between cumulative return and
cumulative consumption and dividend growth. For brevity, we defer this analysis to the Supplemental Material
where we show the model’s credible confidence bands contain the data estimates.
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dence for both a small persistent predictable component as well as a stochastic volatility
component in consumption growth. Importantly, this evidence emerges when the esti-
mation uses information just from cash flows, namely, consumption, consumption and
output, and consumption and dividends. It is further reinforced and sharpened when
the estimation uses consumption, dividends, and asset return data jointly. The estima-
tion identifies three volatility processes: one governing dynamics of the persistent cash-
flow growth component, and the other two controlling temporally independent shocks to
consumption and dividend growth. The model is able to successfully capture many asset
pricing moments and improve upon key predictability moments of previous LRR models.

Our findings raise the broader question of whether DSGE models, more generally,
should have a predictable component built into one or more of the exogenous processes
that drive macroeconomic fluctuations. If the goal of the modeling endeavor is to capture
business cycle fluctuations at the quarterly level, then the answer is no, because the signal
in the data is not strong enough to render macroeconomic predictions from a model with-
out this predictable component to be inaccurate. But if the goal is to rely on long-horizon
implications of the model, for instance, with respect to asset prices, then the answer is
affirmative.
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