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� This paper reviews Bayesian methods that have been developed in recent years to estimate
and evaluate dynamic stochastic general equilibrium (DSGE) models. We consider the estimation
of linearized DSGE models, the evaluation of models based on Bayesian model checking,
posterior odds comparisons, and comparisons to vector autoregressions, as well as the non-linear
estimation based on a second-order accurate model solution. These methods are applied to data
generated from correctly specified and misspecified linearized DSGE models and a DSGE model
that was solved with a second-order perturbation method.

Keywords Bayesian analysis; DSGE models; Model evaluation; Vector autoregressions.

JEL Classification C11; C32; C51; C52.

1. INTRODUCTION

Dynamic stochastic general equilibrium (DSGE) models are micro-
founded optimization-based models that have become very popular in
macroeconomics over the past 25 years. They are taught in virtually
every Ph.D. program and represent a significant share of publications in
macroeconomics. For a long time the quantitative evaluation of DSGE
models was conducted without formal statistical methods. While DSGE
models provide a complete multivariate stochastic process representation
for the data, simple models impose very strong restrictions on actual time
series and are in many cases rejected against less restrictive specifications
such as vector autoregressions (VAR). Apparent model misspecifications
were used as an argument in favor of informal calibration approaches
along the lines of Kydland and Prescott (1982).
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Subsequently, many authors have developed econometric frameworks
that formalize aspects of the calibration approach by taking model
misspecification explicitly into account. Examples are Smith (1993),
Watson (1993), Canova (1994), DeJong et al. (1996), Diebold et al.
(1998), Geweke (1999b), Schorfheide (2000), Dridi et al. (2007), and
Bierens (2007). At the same time, macroeconomists have improved the
structural models and relaxed many of the misspecified restrictions of
the first generation of DSGE models. As a consequence, more traditional
econometric techniques have become applicable. The most recent vintage
of DSGE models is not just attractive from a theoretical perspective but
is also emerging as a useful tool for forecasting and quantitative policy
analysis in macroeconomics. Moreover, owing to improved time series fit
these models are gaining credibility in policy-making institutions such as
central banks.

This paper reviews Bayesian estimation and evaluation techniques
that have been developed in recent years for empirical work with DSGE
models.1 We focus on methods that are built around a likelihood function
derived from the DSGE model. The econometric analysis has to cope
with several challenges, including potential model misspecification and
identification problems. We will illustrate how a Bayesian framework can
address these challenges. Most of the techniques described in this article
have been developed and applied in other papers. Our contribution is
to give a unified perspective, by applying these methods successively to
artificial data generated from a DSGE model and a VAR. We provide some
evidence on the performance of Markov Chain Monte Carlo (MCMC)
methods that have been applied to the Bayesian estimation of DSGE
models. Moreover, we present new results on the use of first-order accurate
versus second-order accurate solutions in the estimation of DSGE models.

The paper is structured as follows. Section 2 outlines two versions of
a five-equation New Keynesian DSGE model along the lines of Woodford
(2003) that differ with respect to the monetary policy rule. This model
serves as the foundation for the current generation of large-scale models
that are used for the analysis of monetary policy in academic and central
bank circles. Section 3 discusses some preliminaries, in particular the
challenges that have to be confronted by the econometric framework.
We proceed by generating several data sets that are used subsequently
for model estimation and evaluation. We simulate samples from the first-
order accurate solution of the DSGE model presented in Section 2,
from a modified version of the DSGE model in order to introduce

1There is also an extensive literature on classical estimation and evaluation of DSGE models,
but a detailed survey of these methods is beyond the scope of this article. The interested reader is
referred to Kim and Pagan (1995) and the book by Canova (2007), which discusses both classical
and Bayesian methods for the analysis of DSGE models.
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misspecification, and from the second-order accurate solution of the
benchmark DSGE model.

Owing to the computational burden associated with the likelihood
evaluation for non-linear solutions of the DSGE model, most of the
empirical literature has estimated linearized DSGE models. Section 4
describes a Random-Walk Metropolis (RWM) algorithm and an Importance
Sampler (IS) algorithm that can be used to calculate the posterior
moments of DSGE model parameters and transformations thereof. We
compare the performance of the algorithms and provide an example
in which they explore the posterior distribution only locally in the
neighborhood of modes that are separated from each other by a deep
valley in the surface of the posterior density.

Model evaluation is an important part of the empirical work with
DSGE models. We consider three techniques in Section 5: posterior
predictive model checking, model comparisons based on posterior odds,
and comparisons of DSGE models to VARs. We illustrate these techniques
by fitting correctly specified and misspecified DSGE models to artificial
data. In Section 6 we construct posterior distributions for DSGE model
parameters based on a second-order accurate solution and compare them
to posteriors obtained from a linearized DSGE model. Finally, Section 7
concludes and provides an outlook on future work.

2. A PROTOTYPICAL DSGE MODEL

Our model economy consists of a final goods producing firm, a
continuum of intermediate goods producing firms, a representative
household, and a monetary as well as a fiscal authority. This model has
become a benchmark specification for the analysis of monetary policy
and is analyzed in detail, for instance, in Woodford (2003). To keep the
model specification simple, we abstract from wage rigidities and capital
accumulation. More elaborate versions can be found in Smets and Wouters
(2003) and Christiano et al. (2005).

2.1. The Agents and Their Decision Problems

The perfectly competitive, representative, final goods producing firm
combines a continuum of intermediate goods indexed by j ∈ [0, 1] using
the technology

Yt =
(∫ 1

0
Yt(j)1−�dj

) 1
1−�
� (1)

Here 1/� > 1 represents the elasticity of demand for each intermediate
good. The firm takes input prices Pt(j) and output prices Pt as given.
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Profit maximization implies that the demand for intermediate goods is

Yt(j) =
(
Pt(j)
Pt

)−1/�

Yt � (2)

The relationship between intermediate goods prices and the price of the
final good is

Pt =
(∫ 1

0
Pt(j)

�−1
� dj

) �
�−1

� (3)

Intermediate good j is produced by a monopolist who has access to the
linear production technology

Yt(j) = AtNt(j), (4)

where At is an exogenous productivity process that is common to all
firms and Nt(j) is the labor input of firm j . Labor is hired in a perfectly
competitive factor market at the real wage Wt . Firms face nominal rigidities
in terms of quadratic price adjustment costs

ACt(j) = �

2

(
Pt(j)
Pt−1(j)

− �
)2

Yt(j), (5)

where � governs the price stickiness in the economy and � is the steady-
state inflation rate associated with the final good. Firm j chooses its labor
input Nt(j) and the price Pt(j) to maximize the present value of future
profits

�t

[ ∞∑
s=0

�sQt+s|t

(
Pt+s(j)
Pt+s

Yt+s(j)− Wt+sNt+s(j)− ACt+s(j)
)]
� (6)

Here Qt+s|t is the time t value of a unit of the consumption good in period
t + s to the household, which is treated as exogenous by the firm.

The representative household derives utility from real money balances
Mt/Pt and consumption Ct relative to a habit stock. We assume that the
habit stock is given by the level of technology At . This assumption ensures
that the economy evolves along a balanced growth path even if the utility
function is additively separable in consumption, real money balances,
and leisure. The household derives disutility from hours worked Ht and
maximizes

�t

[ ∞∑
s=0

�s
(
(Ct+s/At+s)

1−� − 1
1 − � + �M ln

(
Mt+s

Pt+s

)
− �HHt+s

)]
, (7)
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where � is the discount factor, 1/� is the intertemporal elasticity of
substitution, and �M and �H are scale factors that determine steady-state
real money balances and hours worked. We will set �H = 1. The household
supplies perfectly elastic labor services to the firms taking the real wage
Wt as given. The household has access to a domestic bond market where
nominal government bonds Bt are traded that pay (gross) interest Rt .
Furthermore, it receives aggregate residual real profits Dt from the firms
and has to pay lump-sum taxes Tt . Thus the household’s budget constraint
is of the form

PtCt + Bt + Mt − Mt−1 + Tt = PtWtHt + Rt−1Bt−1 + PtDt + PtSCt , (8)

where SCt is the net cash inflow from trading a full set of state-contingent
securities. The usual transversality condition on asset accumulation applies,
which rules out Ponzi schemes.

Monetary policy is described by an interest rate feedback rule of the
form

Rt = R ∗ 1−�R
t R �R

t−1e
	R ,t , (9)

where 	R ,t is a monetary policy shock and R ∗
t is the (nominal) target rate.

We consider two specifications for R ∗
t , one in which the central bank reacts

to inflation and deviations of output from potential output:

R ∗
t = r�∗

(�t
�∗

)
1 (
Yt

Y ∗
t

)
2
(output gap rule specification) (10)

and a second specification in which the central bank responds to deviations
of output growth from its equilibrium steady-state �:

R ∗
t = r�∗

(�t
�∗

)
1 (
Yt

�Yt−1

)
2
(output growth rule specification)� (11)

Here r is the steady-state real interest rate, �t is the gross inflation
rate defined as �t = Pt/Pt−1, and �∗ is the target inflation rate, which in
equilibrium coincides with the steady-state inflation rate. Y ∗

t in (10) is the
level of output that would prevail in the absence of nominal rigidities.

The fiscal authority consumes a fraction �t of aggregate output Yt ,
where �t ∈ [0, 1] follows an exogenous process. The government levies a
lump-sum tax (subsidy) to finance any shortfalls in government revenues
(or to rebate any surplus). The government’s budget constraint is given by

PtGt + Rt−1Bt−1 = Tt + Bt + Mt − Mt−1, (12)

where Gt = �tYt .
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2.2. Exogenous Processes

The model economy is perturbed by three exogenous processes.
Aggregate productivity evolves according to

lnAt = ln �+ lnAt−1 + ln zt , where ln zt = �z ln zt−1 + 	z,t � (13)

Thus on average technology grows at the rate �, and zt captures exogenous
fluctuations of the technology growth rate. Define gt = 1/(1 − �t). We
assume that

ln gt = (1 − �g )ln g + �g ln gt−1 + 	g ,t � (14)

Finally, the monetary policy shock 	R ,t is assumed to be serially
uncorrelated. The three innovations are independent of each other at all
leads and lags and are normally distributed with means zero and standard
deviations 
z , 
g , and 
R , respectively.

2.3. Equilibrium Relationships

We consider the symmetric equilibrium in which all intermediate goods
producing firms make identical choices so that the j subscript can be
omitted. The market clearing conditions are given by

Yt = Ct + Gt + ACt and Ht = Nt � (15)

Since the households have access to a full set of state-contingent claims,
Qt+s|t in (6) is

Qt+s|t = (Ct+s/Ct)
−�(At/At+s)

1−�� (16)

It can be shown that output, consumption, interest rates, and inflation have
to satisfy the following optimality conditions

1 = ��t

[(
Ct+1/At+1

Ct/At

)−� At

At+1

Rt

�t+1

]
(17)

1 = 1
�

[
1 −

(
Ct

At

)�]
+ �(�t − �)

[(
1 − 1

2�

)
�t + �

2�

]
− ���t

[(
Ct+1/At+1

Ct/At

)−� Yt+1/At+1

Yt/At
(�t+1 − �)�t+1

]
� (18)

In the absence of nominal rigidities (� = 0) aggregate output is given by

Y ∗
t = (1 − �)1/�Atgt , (19)
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which is the target level of output that appears in the output gap rule
specification.

Since the non-stationary technology process At induces a stochastic
trend in output and consumption, it is convenient to express the model
in terms of detrended variables ct = Ct/At and yt = Yt/At . The model
economy has a unique steady-state in terms of the detrended variables
that is attained if the innovations 	R ,t , 	g ,t , and 	z,t are zero at all times.
The steady-state inflation � equals the target rate �∗ and

r = �

�
, R = r�∗, c = (1 − �)1/�, and y = g (1 − �)1/�� (20)

Let x̂t = ln (xt/x) denote the percentage deviation of a variable xt from its
steady-state x . Then the model can be expressed as

1 = ��t �e−�ĉt+1+�ĉt+R̂t−ẑt+1−�̂t+1� (21)

1 − �
���2

(
e �ĉt − 1

) = (
e �̂t − 1

) [(
1 − 1

2�

)
e �̂t + 1

2�

]
−��t

[(
e �̂t+1 − 1

)
e−�ĉt+1+�ĉt+ŷt+1−ŷt+�̂t+1

]
(22)

e ĉt−ŷt = e−ĝt − ��2g
2

(
e �̂t − 1

)2
(23)

R̂t = �R R̂t−1 + (1 − �R)
1�̂t + (1 − �R)
2(ŷt − ĝt)+ 	R ,t (24)

ĝt = �g ĝt−1 + 	g ,t (25)

ẑt = �z ẑt−1 + 	z,t � (26)

For the output growth rule specification, Equation (24) is replaced by

R̂t = �R R̂t−1 + (1 − �R)
1�̂t + (1 − �R)
2

(
�ŷt + ẑt

) + 	R ,t � (27)

2.4. Model Solutions

Equations (21) to (26) form a non-linear rational expectations system
in the variables ŷt , ĉt , �̂t , R̂t , ĝt , and ẑt that is driven by the vector of
innovations 	t = [	R ,t , 	g ,t , 	z,t ]′. This rational expectations system has to be
solved before the DSGE model can be estimated. Define2

st = [ŷt , ĉt , �̂t , R̂t , 	R ,t , ĝt , ẑt ]′�
2Under the output growth rule specification for R ∗

t the vector st also contains ŷt−1.
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The solution of the rational expectations system takes the form

st = �(st−1, 	t ; �)� (28)

From an econometric perspective, st can be viewed as a (partially latent)
state vector in a non-linear state space model and (28) is the state transition
equation.

A variety of numerical techniques are available to solve rational
expectations systems. In the context of likelihood-based DSGE model
estimation, linear approximation methods are very popular because
they lead to a state–space representation of the DSGE model that can
be analyzed with the Kalman filter. Linearization and straightforward
manipulation of Equations (21) to (23) yields

ŷt = �t [ŷt+1] + ĝt − �t [ĝt+1] − 1
�

(
R̂t − �̂t [�t+1] − �t [ẑt+1]

)
(29)

�̂t = ��t [�̂t+1] + �(ŷt − ĝt) (30)

ĉt = ŷt − ĝt , (31)

where

� = �
1 − �
��2�

� (32)

Equations (29) to (31) combined with (24) to (26) and the trivial
identity 	R ,t = 	R ,t form a linear rational expectations system in st for
which several solution algorithms are available, for instance, Blanchard
and Kahn (1980), Binder and Pesaran (1997), King and Watson (1998),
Uhlig (1999), Anderson (2000), Kim (2000), Christiano (2002), and Sims
(2002). Depending on the parameterization of the DSGE model there are
three possibilities: no stable rational expectations solution exists, the stable
solution is unique (determinacy), or there are multiple stable solutions
(indeterminacy). We will focus on the case of determinacy and restrict
the parameter space accordingly. The resulting law of motion for the j th
element of st takes the form

sj ,t =
J∑

i=1

�(s)
j ,i si ,t−1 +

n∑
l=1

�(	)
j ,l 	l ,t , j = 1, � � � , J � (33)

Here J denotes the number of elements of the vector st and n is the
number of shocks stacked in the vector 	t . Here the coefficients �(s)

j ,i and
�(	)

j ,l are functions of the structural parameters of the DSGE model.
While in many applications first-order approximations are sufficient,

the higher-order refinement is an active area of research. For instance,
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if the goal of the analysis is to compare welfare across policies or market
structures that do not have first-order effects on the model’s steady-state
or to study asset pricing implications of DSGE models, a more accurate
solution may be necessary; see, for instance, Kim and Kim (2003) or
Woodford (2003). A simple example can illustrate this point. Consider a
one-period model in which utility is a smooth function of consumption and
is approximated as

U (ĉ) = U (0)+ U (1)(0)ĉ + 1
2
U (2)(0)ĉ2 + o(|ĉ |2), (34)

where ĉ is the percentage deviation of consumption from its steady-state
and the superscript i denotes the ith derivative. Suppose that consumption
is a smooth function of a zero mean random shock 	 which is scaled by 
.
The second-order approximation of ĉ around the steady-state (
 = 0) is

ĉ = C (1)(c)
	+ 1
2
C (2)(c)
2	2 + op(
2)� (35)

If first-order approximations are used for both U and C , then the expected
utility is simply approximated by the steady-state utility U (0), which, for
instance, in the DSGE model described above, is not affected by the
coefficients 
1 and 
2 of the monetary policy rule (24). A second-order
approximation of both U and C leads to

�[U (ĉ)] = U (0)+ 1
2
U (2)(0)C (1)2(c)
2 + 1

2
U (1)(0)C (2)(c)
2 + o(
2)� (36)

Using a second-order expansion of the utility function together with a first-
order expansion of consumption ignores the second term in (36) and is
only appropriate if either U (1)(0) or C (2)(c) is zero. The first case arises
if the marginal utility of consumption in the steady-state is zero, and the
second case arises if the percentage deviation of consumption from the
steady-state is a linear function of the shock.

A second-order accurate solution to the DSGE model can be obtained
from a second-order expansion of the equilibrium conditions (21) to (26).
Algorithms to construct such solutions have been developed by Judd
(1998), Collard and Juillard (2001), Jin and Judd (2002), Schmitt-
Grohé and Uribe (2006), Kim et al. (2005), and Swanson et al. (2005).
The resulting state transition equation can be expressed as

sj ,t = �(0)
j +

J∑
i=1

�(s)
j ,i si ,t−1 +

n∑
l=1

�(	)
j ,l 	l ,t +

J∑
i=1

J∑
l=1

�(ss)
j ,il si ,t−1sl ,t−1

+
J∑

i=1

n∑
l=1

�(s	)
j ,il si ,t−1	l ,t +

n∑
i=1

n∑
l=1

�(		)
j ,il 	i ,t	l ,t � (37)
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As before, the coefficients are functions of the parameters of the DSGE
model. For the subsequent analysis we use Sims’ (2002) procedure to
compute a first-order accurate solution of the DSGE model and Schmitt-
Grohé and Uribe’s (2006) algorithm to obtain a second-order accurate
solution.

While perturbation methods approximate policy functions only locally,
there are several global approximation schemes, including projection
methods such as the finite-elements method and Chebyshev–polynomial
method on the spectral domain. Judd (1998) covers various solution
methods, and Taylor and Uhlig (1990), Den Haan and Marcet (1994), and
Aruoba et al. (2004) compare the accuracy of alternative solution methods.

2.5. Measurement Equations

The model is completed by defining a set of measurement equations
that relate the elements of st to a set of observables. We assume that
the time period t in the model corresponds to one quarter and that the
following observations are available for estimation: quarter-to-quarter per
capita GDP growth rates (YGR), annualized quarter-to-quarter inflation
rates (INFL), and annualized nominal interest rates (INT). The three
series are measured in percentages, and their relationship to the model
variables is given by the set of equations

YGRt = �(Q ) + 100(ŷt − ŷt−1 + ẑt)

INFLt = �(A) + 400�̂t (38)

INTt = �(A) + r (A) + 4�(Q ) + 400R̂t �

The parameters �(Q ), �(A), and r (A) are related to the steady states of the
model economy as

� = 1 + �(Q )

100
, � = 1

1 + r (A)/400
, � = 1 + �(A)

400
�

The structural parameters are collected in the vector �. Since in the
first-order approximation the parameters � and � are not separately
identifiable, we express the model in terms of �, defined in (32). Let

� = [�, �,
1,
2, �R , �g , �z , r (A), �(A), �(Q ), 
R , 
g , 
z]′�

For the quadratic approximation the composite parameter � will be
replaced by either (�, �) or alternatively by (�, �). Moreover, � will be
augmented with the steady-state ratio c/y, which is equal to 1/g .
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3. PRELIMINARIES

Numerous formal and informal econometric procedures have been
proposed to parameterize and evaluate DSGE models, ranging from
calibration, e.g., Kydland and Prescott (1982), over generalized method of
moments (GMM) estimation of equilibrium relationships, e.g., Christiano
and Eichenbaum (1992), minimum distance estimation based on the
discrepancy among VAR and DSGE model impulse response functions,
e.g., Rotemberg and Woodford (1997) and Christiano et al. (2005), to
full-information likelihood-based estimation as in Altug (1989), McGrattan
(1994), Leeper and Sims (1994), and Kim (2000). Much of the
methodological debate surrounding the various estimation (and model
evaluation) techniques is summarized in papers by Kydland and Prescott
(1996), Hansen and Heckman (1996), and Sims (1996).

We focus on Bayesian estimation of DSGE models, which has three
main characteristics. First, unlike GMM estimation based on equilibrium
relationships such as the consumption Euler equation (21), the price
setting equation of the intermediate goods producing firms (22), or the
monetary policy rule (24), the Bayesian analysis is system-based and fits
the solved DSGE model to a vector of aggregate time series. Second,
the estimation is based on the likelihood function generated by the
DSGE model rather than, for instance, the discrepancy between DSGE
model responses and VAR impulse responses. Third, prior distributions
can be used to incorporate additional information into the parameter
estimation. Any estimation and evaluation method is confronted with the
following challenges: potential model misspecification and possible lack
of identification of parameters of interest. We will subsequently elaborate
these challenges and discuss how a Bayesian approach can be used to cope
with them.

Throughout the paper we will use the following notation: the n × 1
vector yt stacks the time t observations that are used to estimate the DSGE
model. In the context of the model developed in Section 2 yt is composed
of YGRt , INFLt , INTt . The sample ranges from t = 1 to T and the sample
observations are collected in the matrix Y with rows y′

t . We denote the
prior density by p(�), the likelihood function by �(� |Y ), and the posterior
density by p(� |Y ).

3.1. Potential Model Misspecification

If one predicts a vector of time series yt , for instance composed of
output growth, inflation, and nominal interest rates, by a function of past
yt ’s, then the resulting forecast error covariance matrix is non-singular.
Hence any DSGE model that generates a rank-deficient covariance matrix
for yt is clearly at odds with the data and suffers from an obvious form
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of misspecification. This singularity is an obstacle to likelihood estimation.
Hence one branch of the literature has emphasized procedures that can
be applied despite the singularity, whereas the other branch has modified
the model specification to remove the singularity by adding so-called
measurement errors, e.g., Sargent (1989), Altug (1989), Ireland (2004),
or additional structural shocks as in Leeper and Sims (1994) and more
recently Smets and Wouters (2003). In this paper we pursue the latter
approach by considering a model in which the number of structural shocks
(monetary policy shock, government spending shock, technology growth
shock) equals the number of observables (output growth, inflation, interest
rates) to which the model is fitted.

A second source of misspecification that is more difficult to correct
is potentially invalid cross-coefficient restrictions on the time series
representation of yt generated by the DSGE model. Invalid restrictions
manifest themselves in poor out-of-sample fit relative to more densely
parameterized reference models such as VARs. Del Negro et al. (2006)
document that even an elaborate DSGE model with capital accumulation
and various nominal and real frictions has difficulties attaining the fit
achieved with VARs that have been estimated with well-designed shrinkage
methods. While the primary research objectives in the DSGE model
literature is to overcome discrepancies between models and reality, it is
important to have empirical strategies available that are able to cope with
potential model misspecification.

Once one acknowledges that the DSGE model provides merely an
approximation to the law of motion of the time series yt , then it seems
reasonable to assume that there need not exist a single parameter vector
�0 that delivers, say, the “true” intertemporal substitution elasticity or price
adjustment costs and, simultaneously, the most precise impulse responses
to a technology or monetary policy shock. Each estimation method is
associated with a particular measure of discrepancy between the ‘true’
law of motion and the class of approximating models. Likelihood-based
estimators, for instance, asymptotically minimize the Kullback–Leibler
distance (see White, 1982).

One reason that pure maximum likelihood estimation of DSGE models
has not turned into the estimation method of choice is the “dilemma of
absurd parameter estimates.” Estimates of structural parameters generated
with maximum likelihood procedures based on a set of observations Y
are often at odds with additional information that the research may have.
For example, estimates of the discount factor � should be consistent with
our knowledge about the average magnitude of real interest rates, even if
observations on interest rates are not included in the estimation sample
Y . Time series estimates of aggregate labor supply elasticities or price
adjustment costs should be broadly consistent with microlevel evidence.
However, due to the stylized nature and the resulting misspecification
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of most DSGE models, the likelihood function often peaks in regions
of the parameter space that appear to be inconsistent with extraneous
information.

In a Bayesian framework, the likelihood function is reweighted by a
prior density. The prior can bring to bear information that is not contained
in the estimation sample Y . Since priors are always subject to revision, the
shift from prior to posterior distribution can be an indicator of the tension
between different sources of information. If the likelihood function peaks
at a value that is at odds with the information that has been used to
construct the prior distribution, then the marginal data density of the
DSGE model, defined as

p(Y ) =
∫

�(� |Y )p(�)d�, (39)

will be low compared to, say, a VAR, and in a posterior odds comparison
the DSGE model will automatically be penalized for not being able to
reconcile the two sources of information with a single set of parameters.
Section 5 will discuss several methods that have been proposed to assess
the fit of DSGE models: posterior odds comparisons of competing model
specifications, posterior predictive checks, and comparisons to reference
models that relax some of the cross-coefficient restrictions generated by the
DSGE models.

3.2. Identification

Identification problems can arise owing to a lack of informative
observations or, more fundamentally, from a probability model that
implies that different values of structural parameters lead to the same
joint distribution for the observables Y . At first glance the identification
of DSGE model parameters does not appear to be problematic. The
parameter vector � is typically low dimensional compared to VARs and
the model imposes tight restrictions on the time series representation
of Y . However, recent experience with the estimation of New Keynesian
DSGE models has cast some doubt on this notion and triggered a more
careful assessment. Lack of identification is documented in papers by
Beyer and Farmer (2004) and Canova and Sala (2005). The former paper
provides an algorithm to construct families of observationally equivalent
linear rational expectations models, whereas the latter paper compares
the informativeness of different estimators with respect to key structural
parameters in a variety of DSGE models.

The delicate identification problems that arise in rational expectations
models can be illustrated in a simple example adopted from Lubik and
Schorfheide (2006). Consider the following two models, in which yt is
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the observed endogenous variable and ut is an unobserved shock process.
In model �1, the ut ’s are serially correlated:

�1 : yt = 1
�
�t [yt+1] + ut , ut = �ut−1 + 	t , 	t ∼ iid

(
0, (1 − �/�)2) �

(40)

In model �2 the shocks are serially uncorrelated, but we introduce
a backward-looking term �yt−1 on the right-hand side to generate
persistence:

�2 : yt = 1
�
�t [yt+1] +�yt−1 +ut , ut = 	t ,

	t ∼ iid
(
0,

[
�+ √

�2 − 4��
2�

]2)
�

(41)

For both specifications, the law of motion of yt is

yt = 
yt−1 + �t , �t ∼ iid(0, 1)� (42)

Under restrictions on the parameter spaces that guarantee uniqueness of a
stable rational expectations solution3 we obtain the following relationships
between 
 and the structural parameters:

�1 : 
 = �, �2 : 
 = 1
2
(�− √

�2 − 4��)�

In model �1 the parameter � is not identifiable, and in model �2, the
parameters � and � are not separately identifiable. Moreover, models �1

and �2 are observationally equivalent. The likelihood functions of �1 and
�2 have ridges that can cause serious problems for numerical optimization
procedures. The calculation of a valid confidence set is challenging since it
is difficult to trace out the parameter subspace along which the likelihood
function is constant.

While Bayesian inference is based on the likelihood function, even a
weakly informative prior can introduce curvature into the posterior density
surface that facilitates numerical maximization and the use of MCMC
methods. Consider model �1. Here � = [�, �]′ and the likelihood function
can be written as �(�, � |Y ) = ��(�). Straightforward manipulations of the
Bayes theorem yield

p(�, � |Y ) = p(� |Y )p(� | �)� (43)

3To ensure determinacy we impose � > 1 in �1 and | �− √
�2 − 4�� |< 2 and

| �+ √
�2 − 4�� |> 2 in �2.
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Thus the prior distribution is not updated in directions of the parameter
space in which the likelihood function is flat. This is of course well known
in Bayesian econometrics; see Poirier (1998) for a discussion.

It is difficult to detect directly identification problems in large DSGE
models, since the mapping from the vector of structural parameters �
into the state–space representation that determines the joint probability
distribution of Y is highly non-linear and typically can only be evaluated
numerically. The posterior distribution is well defined as long as the
joint prior distribution of the parameters is proper. However, lack of
identification provides a challenge for scientific reporting, as the audience
typically would like to know what features of the posterior are generated
by the prior rather than the likelihood. A direct comparison of priors and
posteriors can often provide valuable insights about the extent to which
data provide information about the parameters of interest.

3.3. Priors

As indicated in our previous discussion, prior distributions will play an
important role in the estimation of DSGE models. They might downweigh
regions of the parameter space that are at odds with observations not
contained in the estimation sample Y . They might also add curvature
to a likelihood function that is (nearly) flat in some dimensions of
the parameter space and therefore strongly influence the shape of the
posterior distribution.4 While, in principle, priors can be gleaned from
personal introspection to reflect strongly held beliefs about the validity
of economic theories, in practice most priors are chosen based on some
observations.

For instance, Lubik and Schorfheide (2006) estimate a two-country
version of the model described in Section 2. Priors for the autocorrelations
and standard deviations of the exogenous processes, the steady-state
parameters �(Q ), �(A), and r (A), as well as the standard deviation of the
monetary policy shock, are quantified based on regressions run on pre-
(estimation)-sample observations of output growth, inflation, and nominal
interest rates. The priors for the coefficients in the monetary policy rule
are loosely centered around values typically associated with the Taylor rule.
The prior for the parameter that governs price stickiness is chosen based
on microevidence on price setting behavior provided, for instance, in Bils
and Klenow (2004). To fine-tune the prior distribution, in particular the
distribution of shock standard deviations, it is often helpful to simulate the
prior predictive distribution for various sample moments and check that

4The role of priors in DSGE model estimation is markedly different from the role of priors
in VAR estimation. In the latter case priors are essentially used to reduce the dimensionality of the
econometric model and hence the sampling variability of the parameter estimates.
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the prior does not place little or no mass in a neighborhood of important
features of the data. Such an occurrence would suggest that the model is
incapable of explaining salient data properties. A formalization of such a
prior predictive check can be found in Geweke (2005).

Table 2 lists the marginal prior distributions for the structural
parameters of the DSGE model, that we will use in the subsequent
analysis. These priors are adopted from Lubik and Schorfheide (2006). For
convenience, it is assumed that all parameters are a priori independent.
In applications in which the independence assumption is unreasonable
one could derive parameter transformations, such as steady rate ratios,
autocorrelations, or relative volatilities, and specify independent priors
on the transformed parameters, which induce dependent priors for the
original parameters. As mentioned before, rational expectations models
can have multiple equilibria. While this may be of independent interest we
do not pursue this direction in this paper. Hence, the prior distribution
is truncated at the boundary of the determinacy region. Prior to the
truncation the distribution specified in Table 2 places about 2% of its
mass on parameter values that imply indeterminacy. The parameters �
(conditional on �) and 1/g only affect the second-order approximation of
the DSGE model.

3.4. The Road Ahead

Throughout this paper we are estimating and evaluating versions of
the DSGE model presented in Section 2 based on simulated data. Table 1
provides a characterization of the model specifications and data sets.

TABLE 1 Model specifications and data sets

�1(L) Benchmark Model with output gap rule, consists of Eqs. (21)–(26), solved by first-order
approximation.

�1(Q ) Benchmark Model with output gap rule, consists of Eqs. (21)–(26), solved by second-order
approximation.

�2(L) DSGE Model with output growth rule, consists of Eqs. (21)–(26), however, Eq. (24) is
replaced by Eq. (27), solved by first-order approximation.

�3(L) Same as �1(L), except that prices are nearly flexible: � = 5.

�4(L) Same as �1(L), except that central bank does not respond to the output gap: 
2 = 0.

�5(L) Same as �1(L), except in first-order approximation Eq. (29)is replaced by

(1 + h)ŷt = �̂t [yt+1] + hŷt−1 + ĝt − �t [ĝt+1] − 1
�

(
R̂t − �̂t [�t+1] − �[ẑt+1]

)
with h = �95.

�1(L) 80 observations generated with �1(L)

�1(Q ) 80 observations generated with �1(Q )

�2(L) 80 observations generated with �2(L)

�5(L) 80 observations generated with �5(L)
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Model �1 is the benchmark specification of the DSGE model in which
monetary policy follows an interest-rate rule that reacts to the output gap.
�1(L) is approximated by a linear rational expectations system, whereas
�1(Q ) is solved with a second-order perturbation method. In �2(L) we
replace the output gap in the interest-rate feedback rule by output growth.
�3 and �4 are identical to �1(L), except that in one case we impose that
the prices are nearly flexible (� = 5) and in the other case the central
bank does not respond to output (
2 = 0). In �5(L) we replace the log-
linearized consumption Euler equation by an equation that includes lagged
output on the right-hand side. Loosely speaking, this specification can be
motivated with a model in which agents derive utility from the difference
between individual consumption and the overall level of consumption in
the previous period.

Conditional on parameter vectors reported in Tables 2 and 3 we
generate four data sets with 80 observations each. We use the labels �1(L),
�1(Q ), �2(L), and �5(L) to denote data sets generated from �1(L),
�1(Q ), �2(L), and �5(L), respectively. By and large, the values for the
DSGE model parameters resemble empirical estimates obtained from post-
1982 U.S. data. The sample size is fairly realistic for the estimation of
monetary DSGE model. Many industrialized countries experienced a high
inflation episode in the 1970s that ended with a disinflation in the 1980s.
Subsequently, the level and the variability of inflation and interest rates
have been fairly stable, so that it is not uncommon to estimate constant
coefficient DSGE models based on data sets that begin in the early 1980s.

TABLE 2 Prior distribution and DGPs—linear analysis (Sections 4 and 5)

Prior DGP
Name Domain Density Para (1) Para (2) �1(L), �2(L), �5(L)

� �+ Gamma 2�00 �50 2�00
� �+ Gamma �20 �10 �15

1 �+ Gamma 1�50 �25 1�50

2 �+ Gamma �50 �25 1�00
�R [0, 1) Beta �50 �20 �60
�G [0, 1) Beta �80 �10 �95
�Z [0, 1) Beta �66 �15 �65
r (A) �+ Gamma �50 �50 �40
�(A) �+ Gamma 7�00 2�00 4�00
�(Q ) � Normal �40 �20 �50
100
R �+ InvGamma �40 4�00 �20
100
G �+ InvGamma 1�00 4�00 �80
100
Z �+ InvGamma �50 4�00 �45

Notes: Paras (1) and (2) list the means and the standard deviations for Beta, Gamma, and Normal
distributions; the upper and lower bound of the support for the Uniform distribution; s and � for
the Inverse Gamma distribution, where p�G (
 | �, s) ∝ 
−�−1e−�s2/2
2 . The effective prior is truncated
at the boundary of the determinacy region.
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TABLE 3 Prior distribution and DGP—Nonlinear analysis (Section 6)

Prior DGP
Name Domain Density Para (1) Para (2) �1(Q )

� �+ Gamma 2�00 �50 2�00
� �+ Gamma �30 �20 �33

1 �+ Gamma 1�50 �25 1�50

2 �+ Gamma �50 �25 �125
�R [0, 1) Beta �50 �20 �75
�G [0, 1) Beta �80 �10 �95
�Z [0, 1) Beta �66 �15 �90
r (A) �+ Gamma �80 �50 1�00
�(A) �+ Gamma 4�00 2�00 3�20
�(Q ) � Normal �40 �20 �55
100
R �+ InvGamma �30 4�00 �20
100
G �+ InvGamma �40 4�00 �60
100
Z �+ InvGamma �40 4�00 �30
� [0, 1) Beta �10 �05 �10
1/g [0, 1) Beta �85 �10 �85

Notes: See Table 2. Parameters � and 1/g only affect the second-order accurate
solution of the DSGE model.

Section 4 illustrates the estimation of linearized DSGE models under
correct specification, that is, we construct posteriors for �1(L) and
�2(L) based on the data sets �1(L) and �2(L). Section 5 considers
model evaluation techniques. We begin with posterior predictive checks
in Section 5.1, which are implemented based on �1(L) for data sets
�1(L) (correct specification of DSGE model) and �5(L) (misspecification
of the consumption Euler equation). In Section 5.2 we proceed with
the calculation of posterior model probabilities for specifications �1(L),
�3(L), and �4(L) conditional on the data set �1(L). Subsequently in
Section 5.3 we compare �1(L) to a vector autoregressive specification
using �1(L) (correct specification) and �5(L) (misspecification). Finally,
in Section 6 we study the estimation of DSGE models solved with a second-
order perturbation method. We compare posteriors for �1(Q ) and �1(L)
conditional on �1(Q ).

4. ESTIMATION OF LINEARIZED DSGE MODELS

We will begin by describing two algorithms that can be used to generate
draws from the posterior distribution of � and subsequently illustrate their
performance in the context of models �1(L)/�1(L) and �2(L)/�2(L).

4.1. Posterior Computations

We consider an RWM algorithm and an IS algorithm to generate draws
from the posterior distribution of �. Both algorithms require the evaluation
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of �(� |Y )p(�). The computation of the non-normalized posterior density
proceeds in two steps. First, the linear rational expectations system is solved
to obtain the state transition equation (33). If the parameter value �
implies indeterminacy (or non-existence of a stable rational expectations
solution), then �(� |Y )p(�) is set to zero. If a unique stable solution
exists, then the Kalman filter5 is used to evaluate the likelihood function
associated with the linear state–space system (33) and (38). Since the
prior is generated from well-known densities, the computation of p(�) is
straightforward.

The RWM algorithm belongs to the more general class of Metropolis–
Hastings algorithms. This class is composed of universal algorithms that
generate Markov chains with stationary distributions that correspond
to the posterior distributions of interest. A first version of such an
algorithm had been constructed by Metropolis et al. (1953) to solve a
minimization problem and was later generalized by Hastings (1970). Chib
and Greenberg (1995) provide an excellent introduction to Metropolis–
Hastings algorithms. The RWM algorithm was first used to generate draws
from the posterior distribution of DSGE model parameters by Schorfheide
(2000) and Otrok (2001). We will use the following implementation based
on Schorfheide (2000):6

Random-Walk Metropolis (RWM) Algorithm
1. Use a numerical optimization routine to maximize ln�(� |Y )+ ln p(�).

Denote the posterior mode by �̃.
2. Let �̃ be the inverse of the Hessian computed at the posterior mode �̃.
3. Draw �(0) from � (�̃, c20 �̃) or directly specify a starting value.
4. For s = 1, � � � ,nsim , draw � from the proposal distribution � (�(s−1), c2�̃).

The jump from �(s−1) is accepted (�(s) = �) with probability
min�1, r (�(s−1),� |Y )� and rejected (�(s) = �(s−1)) otherwise. Here

r (�(s−1),� |Y ) = �(� |Y )p(�)
�(�(s−1) |Y )p(�(s−1))

�

5. Approximate the posterior expected value of a function h(�) by
1

nsim

∑nsim
s=1 h(�

(s)).

5Since according to our model st is stationary, the Kalman filter can be initialized with the
unconditional distribution of st . To make the estimation in Section 4 comparable to the DSGE-
VAR analysis presented in Section 5.3 we adjust the likelihood function to condition on the first
four observations in the sample: �(� |Y )/�(� | y1, � � � , y4). These four observations are later used to
initialize the lags of a VAR.

6This version of the algorithm is available in the user-friendly DYNARE (2005) package, which
automates the Bayesian estimation of linearized DSGE models and provides routines to solve DSGE
models with higher-order perturbation methods.
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Under fairly general regularity conditions, e.g., Walker (1969),
Crowder (1988), and Kim (1998), the posterior distribution of � will be
asymptotically normal. The algorithm constructs a Gaussian approximation
around the posterior mode and uses a scaled version of the asymptotic
covariance matrix as the covariance matrix for the proposal distribution.
This allows for an efficient exploration of the posterior distribution at least
in the neighborhood of the mode.

The maximization of the posterior density kernel is carried out with
a version of the BFGS quasi-Newton algorithm, written by Chris Sims
for the maximum likelihood estimation of a DSGE model conducted in
Leeper and Sims (1994). The algorithm uses a fairly simple line search
and randomly perturbs the search direction if it reaches a cliff caused by
nonexistence or non-uniqueness of a stable rational expectations solution
for the DSGE model. Prior to the numerical maximization we transform
all parameters so that their domain is unconstrained. This parameter
transformation is only used in Step 1 of the RWM algorithm. The elements
of the Hessian matrix in Step 2 are computed numerically for various
values of the increment d�. There typically exists a range for d� over which
the derivatives are stable. As d� approaches zero the numerical derivatives
will eventually deteriorate owing to inaccuracies in the evaluation of
the objective function. While Steps 1 and 2 are not necessary for the
implementation of the RWM algorithm, they are often helpful.

The RWM algorithm generates a sequence of dependent draws from
the posterior distribution of � that can be averaged to approximate
posterior moments. Geweke (1999a, 2005) reviews regularity conditions
that guarantee the convergence of the Markov chain generated by
Metropolis–Hastings algorithms to the posterior distribution of interest
and the convergence of 1

nsim

∑nsim
s=1 h(�

(s)) to the posterior expectations
�[h(�) |Y ].

DeJong et al. (2000) used an IS algorithm to calculate posterior
moments of the parameters of a linearized stochastic growth model. The
idea of the algorithm is based on the identity

�[h(�) |Y ] =
∫

h(�)p(� |Y )d� =
∫

h(�)p(� |Y )
q(�)

q(�)d��

Draws from the posterior density p(� |Y ) are replaced by draws from
the density q(�) and reweighted by the importance ratio p(� |Y )/q(�) to
obtain a numerical approximation of the posterior moment of interest.
Hammersley and Handscomb (1964) were among the first to propose this
method and Geweke (1989) provides important convergence results. The
particular version of the IS algorithm used subsequently is of the following
form.
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Importance Sampling (IS) Algorithm
1. Use a numerical optimization routine to maximize ln�(� |Y )+ ln p(�).

Denote the posterior mode by �̃.
2. Let �̃ be the inverse of the Hessian computed at the posterior mode �̃.
3. Let q(�) be the density of a multivariate t -distribution with mean �̃, scale

matrix c2�̃, and � degrees of freedom.
4. For s = 1, � � � ,nsim generate draws �(s) from q(�).
5. Compute w̃s = �(�(s) |Y )p(�(s))/q(�(s)) and ws = w̃s/

∑nsim
s=1 w̃s .

6. Approximate the posterior expected value of a function h(�) by∑nsim
s=1 w(�

(s))h(�(s)).

The accuracy of the IS approximation depends on the similarity
between posterior kernel and importance density. If the two are equal, then
the importance weights ws are constant and one averages independent
draws to approximate the posterior expectations of interest. If the
importance density concentrates its mass in a region of the parameter
space in which the posterior density is very low, then most of the ws ’s will be
much smaller than 1/nsim and the approximation method is inefficient. We
construct a Gaussian approximation of the posterior near the mode, scale
the asymptotic covariance matrix, and replace the normal distribution with
a fat-tailed t -distribution to implement the algorithm.

4.2. Simulation Results for ���1(L)/���1(L)

We begin by estimating the log-linearized output gap rule specification
�1(L) based on data set �1(L). We use the RWM algorithm (c0 = 1, c =
0�3) to generate 1 million draws from the posterior distribution. The
rejection rate is about 45%. Moreover, we generate 200 independent draws
from the truncated prior distribution. Figure 1 depicts the draws from
the prior as well as every 5,000th draw from the posterior distribution
in two-dimensional scatter plots. We also indicate the location of the
posterior mode in the 12 panels of the figure. A visual comparison of
priors and posteriors suggests that the 80 observations sample contains
little information on the risk-aversion parameter � and the policy rule
coefficients 
1 and 
2. There is, however, information about the degree
of price-stickiness, captured by the slope coefficient � of the Phillips-curve
relationship (30). Moreover, the posteriors of steady-state parameters, the
autocorrelation coefficients, and the shock standard deviations are sharply
peaked relative to the prior distributions. The lack of information about
some of the key structural parameters resembles the empirical findings
based on actual observations.

There exists an extensive literature on convergence diagnostics for
MCMC methods such as the RWM algorithm. An introduction to this
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FIGURE 1 Prior and posterior – Model �1(L), Data �1(L). The panels depict 200 draws from
prior and posterior distributions. Intersections of solid lines signify posterior mode values.

literature can be found, for instance, in Robert and Casella (1999).
These authors distinguish between convergence of the Markov chain to
its stationary distribution, convergence of empirical averages to posterior
moments, and convergence to iid sampling. While many convergence
diagnostics are based on formal statistical tests, we will consider informal
graphical methods in this paper. More specifically, we will compare draws
and recursively computed means from multiple chains.

We run four independent Markov chains. Except for � and 
2, all
parameters are initialized at their posterior mode values. The initial values
for (�,
2) are (3�0, �1), (3�0, 2�0), (�4, �1), and (�6, 2�0), respectively. As
before, we set c = 0�3, generate 1 million draws for each chain, and plot
every 5,000th draw of (�,
2) in Figure 2. Panels (1, 1) and (1, 2) of the
figure depict posterior contours at the posterior mode. Visual inspection of
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FIGURE 2 Draws from multiple chains – Model �1(L), Data �1(L). Panels (1,1) and (1,2): contours
of posterior density at “low” and “high” mode as function of � and 
2. Panels (2,1) to (3,2): 200
draws from four Markov chains generated by the Metropolis Algorithm. Intersections of solid lines
signify posterior mode values.

the plots suggests that all four chains, despite the use of different starting
values, converge to the same (stationary) distribution and concentrate in
the high-posterior density region. Figure 3 plots recursive means for the
four chains. Despite different initializations, the means converge in the
long run.

We generate another set of 1 million draws using the IS algorithm with
� = 3 and c = 1�5. As for the draws from the RWM algorithm, we compute
recursive means. Since neither the IS nor the RWM approximation of the
posterior means are exact, we construct standard error estimates. For the
importance sampler we follow Geweke (1999b), and for the Metropolis
chain we use Newey–West standard error estimates, truncated at 140 lags.7

In Figure 4 we plot (recursive) confidence intervals for the RWM and the
IS approximation of the posterior means. For most parameters the two

7It is not guaranteed that the Newey–West standard errors are formally valid.
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FIGURE 3 Recursive means from multiple chains – Model �1(L), Data �1(L). Each line
corresponds to recursive means (as a function of the number of draws) calculated from one of the
four Markov chains generated by the Metropolis Algorithm.

confidence intervals overlap. Exceptions are, for instance, �, r (A), �g , and

g . However, the magnitude of the discrepancy is generally small relative to,
say, the difference between the posterior mode and the estimated posterior
means.

4.3. A Potential Pitfall: Simulation Results for ���2(L)/���2(L)

We proceed by estimating the output growth rule version �2(L) of the
DSGE model based on 80 observations generated from this model (Data
Set �2(L)). Unlike the posterior for the output gap version, the �2(L)
posterior has (at least) two modes. One of the modes, which we label
the “high” mode, �̃(h), is located at � = 2�06 and 
2 = �97. The value of
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FIGURE 4 RWM algorithm vs. Importance Sampling – Model �1(L), Data �1(L). Panels depict
posterior modes (solid), recursively computed 95% bands for posterior means based on the
metropolis algorithm (dotted) and the importance sampler (dashed).

ln [�(� |Y )p(�)] is equal to −175�48. The second (“low”) mode, �̃(l), is
located at � = 1�44 and 
2 = �81 and attains the value −183�23. The first
two panels of Figure 5 depict the contours of the non-normalized posterior
density as a function of � and 
2 at the low and the high mode, respectively.
Panel (1,1) is constructed by setting � = �̃(l) and then graphing posterior
contours for � ∈ [0, 3] and 
2 ∈ [0, 2�5], keeping all other parameters fixed
at their respective �̃(l) values. Similarly, Panel (1,2) is obtained by exploring
the shape of the posterior as a function of � and 
2, fixing the other
parameters at their respective �̃(h) values. The intersection of the solid
lines in panels (1,1), (2,1), and (3,1) signify the low mode, whereas the
solid lines in the remaining panels indicate the location of the high mode.
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FIGURE 5 Draws from multiple chains – Model �2(L), Data �2(L). Panels (1,1) and (1,2): contours
of posterior density at “low” and “high” mode as function of � and 
2. Panels (2,1) to (3,2): 200
draws from four Markov chains generated by the metropolis algorithm. Intersections of solid lines
signify “low” (left panels) and “high” (right panels) posterior mode values.

The two modes are separated by a deep valley which is caused by complex
eigenvalues of the state transition matrix.

As in Section 4.2 we generate 1 million draws each for model �2 from
four Markov chains that were initialized at the following values for (�; 
2):
(3�0; �1), (3�0; 2�0), (�4; �1), and (�6; 2�0). The remaining parameters were
initialized at the low (high) mode for Chains 1 and 3 (2 and 4).8 We plot
every 5,000th draw of � and 
2 from the four Markov chains in Panels (2,1)
to (3,2). Unlike in Panels (1,1) and (1,2), the remaining parameters are
not fixed at their �̃(l) and �̃(h) values. It turns out that Chains 1 and 3
explore the posterior distribution locally in the neighborhood of the low
mode, whereas Chains 2 and 4 move through the posterior surface near the
high mode. Given the configuration of the RWM algorithm the likelihood

8The covariance matrices of the proposal distributions are obtained from the Hessians
associated with the respective modes.
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of crossing the valley that separates the two modes is so small that it did not
occur. The recursive means associated with the four chains are plotted in
Figure 6. They exhibit two limit points, corresponding to the two posterior
modes. While each chain appears to be stable, it only explores the posterior
in the neighborhood of one of the modes.

We explored various modifications of the RWM algorithm by changing
the scaling factor c and by setting the off-diagonal elements of �̃ to zero.
Nevertheless, 1,000,000 draws were insufficient for the chains initialized
at the low mode to cross over to the neighborhood of the high mode.
Two remarks are in order. First, extremum estimators that are computed
with numerical optimization methods suffer from the same problem as

FIGURE 6 Recursive means from multiple chains – Model �2(L), Data �(L). Each line corresponds
to recursive means (as a function of the number of draws) calculated from one of the four Markov
chains generated by the metropolis algorithm.
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the Bayes estimators in this example. One might find a local rather than
the global extremum of the objective function. Hence, it is good practice
to start the optimization from different points in the parameter space
to increase the likelihood that the global optimum is found. Similarly,
in Bayesian computation it is helpful to start MCMC methods from
different regions of the parameter space, or vary the distribution q(�)
in the importance sampler. Second, in many applications as well as in
this example there exists a global mode that dominates the local modes.
Hence an exploration of the posterior in the neighborhood of the global
mode might still provide a good approximation to the overall posterior
distribution. All subsequent computations are based on the output gap rule
specification of the DSGE model.

4.4. Parameter Transformations for ���1(L)/���1(L)

Macroeconomists are often interested in posterior distributions of
parameter transformations h(�) to address questions such as what fraction
of the variation in output growth is caused by monetary policy shocks, and
what happens to output and inflation in response to a monetary policy
shock. Answers can be obtained from the moving average representation
associated with the state space model composed of (33) and (38). We will
focus on variance decompositions in the remainder of this subsection.

Fluctuations of output growth, inflation, and nominal interest rate
in the DSGE model are due to three shocks: technology growth shocks,
government spending shocks, and monetary policy shocks. Hence variance
decompositions of the endogenous variables lie in a three-dimensional
simplex, which can be depicted as a triangle in �2. In Figure 7 we plot
200 draws from the prior distribution (left panels) and 200 draws from the
posterior (right panels) of the variance decompositions of output growth
and inflation. The posterior draws are obtained by converting every 5,000th
draw generated with the RWM algorithm. The corners Z , G , and R of the
triangles correspond to decompositions in which the shocks 	z , 	g , and 	R
explain 100% of the variation, respectively.

Panels (1,1) and (2,1) indicate that the prior distribution of the
variance decomposition is informative in the sense that it is not uniform
over the simplex. For instance, the output gap policy rule specification �1

implies that the government spending shock does not affect inflation and
nominal interest rates. Hence all prior and posterior draws concentrate on
the R − Z edge of the simplex. While the prior mean of the fraction of
inflation variability explained by the monetary policy shock is about 40%,
a 90% probability interval ranges from 0 to 95%. A priori about 10% of
the variation in output growth is due to monetary policy shocks. A 90%
probability interval ranges from 0 to 20%. The data provide additional
information about the variance decomposition. The posterior distribution
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FIGURE 7 Prior and posterior variance decompositions – Model �1(L), Data �1(L). The panels
depict 200 draws from prior and posterior distributions arranged on a 3-dimensional simplex. The
three corners (Z,G,R) correspond to 100% of the variation being due to the shocks 	z,t , 	g ,t , and
	R ,t , respectively.

is much more concentrated than the prior. The probability interval for
the contribution of monetary policy shocks to output growth fluctuations
shrinks to the range from 1 to 4.5%. The posterior probability interval for
the fraction of inflation variability explained by the monetary policy shock
ranges from 15 to 37%.

4.5. Empirical Applications

There is a rapidly growing empirical literature on the Bayesian
estimation of DSGE models that applies the techniques described in
this paper. The following incomplete list of references aims to give an
overview of this work. Preceding the Bayesian literature are papers that
use maximum likelihood techniques to estimate DSGE models. Altug
(1989) estimates Kydland and Prescott’s (1982) time-to-build model, and
McGrattan (1994) studies the macroeconomic effects of taxation in an
estimated business cycle model. Leeper and Sims (1994) and Kim (2000)
estimated DSGE models that are usable for monetary policy analysis.

Canova (1994), DeJong et al. (1996), and Geweke (1999a) proposed
Bayesian approaches to calibration that do not exploit the likelihood
function of the DSGE model and provide empirical applications that assess
business cycle and asset pricing implications of simple stochastic growth
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models. The literature on likelihood-based Bayesian estimation of DSGE
models began with work by Landon-Lane (1998), DeJong et al. (2000),
Schorfheide (2000), and Otrok (2001). DeJong et al. (2000) estimate a
stochastic growth model and examine its forecasting performance, Otrok
(2001) fits a real business cycle with habit formation and time-to-build to
the data to assess the welfare costs of business cycles, and Schorfheide
(2000) considers cash-in-advance monetary DSGE models. DeJong and
Ingram (2001) study the cyclical behavior of skill accumulation, whereas
Chang et al. (2002) estimate a stochastic growth model augmented with a
learning-by-doing mechanism to amplify the propagation of shocks. Chang
and Schorfheide (2003) study the importance of labor supply shocks
and estimate a home-production model. Fernández-Villaverde and Rubio-
Ramírez (2004) use Bayesian estimation techniques to fit a cattle–cycle
model to the data.

Variants of the small-scale New Keynesian DSGE model presented in
Section 2 have been estimated by Rabanal and Rubio-Ramírez (2005a,b)
for the U.S. and the Euro Area. Lubik and Schorfheide (2004) estimate the
benchmark New Keynesian DSGE model without restricting the parameters
to the determinacy region of the parameter space. Schorfheide (2005)
allows for regime-switching of the target inflation level in the monetary
policy rule. Canova (2004) estimates a small-scale New Keynesian model
recursively to assess the stability of the structural parameters over time.
Galí and Rabanal (2005) use an estimated DSGE model to study the effect
of technology shocks on hours worked. Large-scale models that include
capital accumulation and additional real and nominal frictions along the
lines of Christiano et al. (2005) have been analyzed by Smets and Wouters
(2003, 2005) both for the U.S. and the Euro Area. Models similar to Smets
and Wouters (2003) have been estimated by Laforte (2004), Onatski and
Williams (2004), and Levin et al. (2006) to study monetary policy. Many
central banks are in the process of developing DSGE models along the
lines of Smets and Wouters (2003) that can be estimated with Bayesian
techniques and used for policy analysis and forecasting.

Bayesian estimation techniques have also been used in the open
economy literature. Lubik and Schorfheide (2003) estimate the small
open economy extension of the model presented in Section 2 to examine
whether the central banks of Australia, Canada, England, and New Zealand
respond to exchange rates. A similar model is fitted by Del Negro (2003) to
Mexican data. Justiniano and Preston (2004) extend the empirical analysis
to situations of imperfect exchange rate passthrough. Adolfson et al.
(2004) analyze an open economy model that includes capital accumulation
as well as numerous real and nominal frictions. Lubik and Schorfheide
(2006), Rabanal and Tuesta (2006), and de Walque and Wouters (2004)
have estimated multicountry DSGE models.
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5. Model Evaluation

In Section 4 we discussed the estimation of a linearized DSGE model
and reported results on the posterior distribution of the model parameters
and variance decompositions. We tacitly assumed that model and prior
provide an adequate probabilistic representation of the uncertainty with
respect to data and parameters. This section studies various techniques that
can be used to evaluate the model fit. We will distinguish the assessment of
absolute fit from techniques that aim to determine the fit of a DSGE model
relative to some other model. The first approach can be implemented
by a posterior predictive model check and has the flavor of a classical
hypothesis test. Relative model comparisons, on the other hand, are
typically conducted by enlarging the model space and applying Bayesian
inference and decision theory to the extended model space. Section 5.1
discusses Bayesian model checks, Section 5.2 reviews model posterior odds
comparisons, and Section 5.3 describes a more elaborate model evaluation
based on comparisons between DSGE models and VARs.

5.1. Posterior Predictive Checks

Predictive checks as a tool to assess the absolute fit of a probability
model have been advocated, for instance, by Box (1980). A probability
model is considered as discredited by the data if one observes an
event that is deemed very unlikely by the model. Such model checks
are controversial from a Bayesian perspective. Methods that determine
whether actual data lie in the tail of a model’s data distribution potentially
favor alternatives that make unreasonably diffuse predictions. Nevertheless,
posterior predictive checks have become a valuable tool in applied
Bayesian analysis though they have not been used much in the context of
DSGE models. An introduction to Bayesian model checking can be found,
for instance, in books by Gelman et al. (1995), Lancaster (2004), and
Geweke (2005).

Let Y rep be a sample of observations of length T that we could
have observed in the past or that we might observe in the future. We
can derive the predictive distribution of Y rep given the current state of
knowledge:

p(Y rep |Y ) =
∫
p(Y rep | �)p(� |Y )d�� (44)

Let h(Y ) be a test quantity that reflects an aspect of the data that we
want to examine. A quantitative model check can be based on Bayesian
p-values. Suppose that the test quantity is univariate, non-negative, and
has a unimodal density. Then one could compute probability of the tail
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event by ∫
��h(Y rep) ≥ h(Y )�p(Y rep |Y )dY rep , (45)

where ��x ≥ a� is the indicator function that is 1 if x ≥ � and zero
otherwise. A small tail probability can be viewed as evidence against model
adequacy.

Rather than constructing numerical approximations of the tail
probabilities for univariate functions h(·), we use a graphical approach to
illustrate the model checking procedure in the context of model�1(L). We
use the following data transformations: the correlation between inflation
and lagged interest rates, lagged inflation and current interest rates,
output growth and lagged output growth, and output growth and interest
rates. To obtain draws from the posterior predictive distribution of h(Y rep)
we take every 5,000th parameter draw of �(s) generated with the RWM
algorithm, simulate a sample Y rep of 80 observations9 from the DSGE model
conditional on �(s), and calculate h(Y rep).

We consider two cases: in the case of no mis-specification, depicted in
the left panels of Figure 8, the posterior is constructed based on data set
�1(L), whereas under mis-specification, illustrated in the two right panels
of Figure 8, the posterior is obtained from data set �5(L). Each panel
of the figure depicts 200 draws from the posterior predictive distribution
in bivariate scatter plots. Moreover, the intersections of the solid lines
indicate the actual values h(Y ). Since �1(L) was generated from model
�1(L), whereas �5(L) was not, we would expect the actual values of h(Y )
to lie further in the tails of the posterior predictive distribution in the
right panels than in the left panels. Indeed a visual inspection of the plots
provides some evidence in which dimensions �1(L) is at odds with data
generated from a model that includes lags of output in the household’s
Euler equation. The observed autocorrelation of output growth in �5(L) is
much larger and the actual correlation between output growth and interest
rates is much lower than the draws generated from the posterior predictive
distribution.

5.2. Posterior Odds Comparisons of DSGE Models

The Bayesian framework is naturally geared toward the evaluation
of relative model fit. Researchers can place probabilities on competing
models and assess alternative specifications based on their posterior odds.
An excellent survey on model comparisons based on posterior probabilities

9To obtain draws from the unconditional distribution of yt we initialize s0 = 0 and generate
180 observations, discarding the first 100.
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FIGURE 8 Posterior predictive check for Model �1(L). We plot 200 draws from the posterior
predictive distribution of various sample moments. Intersections of solid lines signify the observed
sample moments.

can be found in Kass and Rafterty (1995). For concreteness, suppose in
addition to the specification �1(L) we consider a version of the New
Keynesian model, denoted by �3(L) in which prices are nearly flexible,
that is, � = 5. Moreover, there is a model �4(L), according to which the
central bank does not respond to output at all and 
2 = 0. If we are willing
to place prior probabilities �i ,0 on the three competing specifications then
posterior model probabilities can be computed by

�i ,T = �i ,0p(Y |�i)∑
j=1,3,4 �j ,0p(Y |�j)

, i = 1, 3, 4� (46)

The key object in the calculation of posterior probabilities is the marginal
data density p(Y |�i), which is defined in (39).

Posterior model probabilities can be used to weigh predictions from
different models. In many instances, researchers take a shortcut and
use posterior probabilities to justify the selection of a particular model
specification. All subsequent analysis is then conditioned on the chosen
model. It is straightforward to verify that under a 0–1 loss function (the
loss attached to choosing the wrong model is one), the optimal decision
is to select the highest posterior probability model. This 0–1 loss function
is an attractive benchmark in situations in which the researcher believes
that all the important models are included in the analysis. However, even
in situations in which all the models under consideration are misspecified,
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the selection of the highest posterior probability model has some desirable
properties. It has been shown under various regularity conditions, e.g.,
Phillips (1996) and Fernández-Villaverde and Rubio-Ramírez (2004), that
posterior odds (or their large sample approximations) asymptotically favor
the DSGE model that is closest to the ‘true’ data generating process in the
Kullback-Leibler sense. Moreover, since the log-marginal data density can
be rewritten as

ln p(Y |�) =
T∑
t=1

ln p(yt |Y t−1,�)

=
T∑
t=1

ln
[∫

p(yt |Y t−1, �,�)p(� |Y t−1,�)d�
]
, (47)

where ln p(Y |�) can be interpreted as a predictive score (Good,
1952) and the model comparison based on posterior odds captures the
relative one-step-ahead predictive performance. The practical difficulty
in implementing posterior odds comparisons is the computation of the
marginal data density. We will subsequently consider two numerical
approaches: Geweke’s (1999b) modified harmonic mean estimator and
Chib and Jeliazkov’s (2001) algorithm.

Harmonic mean estimators are based on the identity

1
p(Y )

=
∫

f (�)
�(� |Y )p(�)p(� |Y )d�, (48)

where f (�) has the property that
∫
f (�)d� = 1 (see Gelfand and Dey,

1994). Conditional on the choice of f (�) an obvious estimator is

p̂G(Y ) =
[

1
nsim

nsim∑
s=1

f (�(s))
�(�(s) |Y )p(�(s))

]−1

, (49)

where �(s) is drawn from the posterior p(� |Y ). To make the numerical
approximation efficient, f (�) should be chosen so that the summands are
of equal magnitude. Geweke (1999b) proposed to use the density of a
truncated multivariate normal distribution,

f (�) = �−1(2�)−d/2 |V� | −1/2 exp
[−0�5(�− �̄)′V −1

� (�− �̄)]
×�

{
(�− �̄)′V −1

� (�− �̄) ≤ F −1
�2d
(�)

}
� (50)

Here �̄ and V� are the posterior mean and covariance matrix computed
from the output of the posterior simulator, d is the dimension of the
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parameter vector, F�2d is the cumulative density function of a �2 random
variable with d degrees of freedom, and � ∈ (0, 1). If the posterior of �
is in fact normal then the summands in (49) are approximately constant.
Chib and Jeliazkov (2001) use the following equality as the basis for their
estimator of the marginal data density:

p(Y ) = �(� |Y )p(�)
p(� |Y ) � (51)

The equation is obtained by rearranging the Bayes theorem and has
to hold for all �. While the numerator can be easily computed, the
denominator requires a numerical approximation. Thus,

p̂CS(Y ) = �(�̃ |Y )p(�̃)
p̂(�̃ |Y ) , (52)

where we replaced the generic � in (51) by the posterior mode �̃. Within
the RWM Algorithm denote the probability of moving from � to � by

�(�,� |Y ) = min�1, r (�,� |Y )�, (53)

where r (�,� |Y ) was in the description of the algorithm. Moreover, let
q(�, �̃ |Y ) be the proposal density for the transition from � to �̃. Then the
posterior density at the mode can be approximated by

p̂(�̃ |Y ) =
1

nsim

∑nsim
s=1 �(�

(s), �̃ |Y )q(�(s), �̃ |Y )
J −1

∑J
j=1 �(�̃, �(j) |Y )

, (54)

where ��(s)�nsims=1 are sampled draws from the posterior distribution with the
RWM algorithm and ��(j)�Jj=1 are draws from q(�̃, � |Y ) given the posterior
mode value �̃.

We first use Geweke’s harmonic mean estimator to approximate
the marginal data density associated with �1(L)/�1(L). The results are
summarized in Figure 9. We calculate marginal data densities recursively
(as a function of the number of MCMC draws) for the four chains that
were initialized at different starting values as discussed in Section 4. For
the output gap rule all four chains lead to estimates of around −196�7�
Figure 10 provides a comparison of Geweke’s versus Chib and Jeliazkov’s
approximation of the marginal data density for the output gap rule
specification. A visual inspection of the plot suggests that both estimators
converge to the same limit point. However, the modified harmonic mean
estimator appears to be more reliable if the number of simulations is small.
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FIGURE 9 Data densities from multiple chains – Model �1(L), Data �1(L). For each Markov
chain, log marginal data densities are computed recursively with Geweke’s modified harmonic mean
estimator and plotted as a function of the number of draws.

FIGURE 10 Geweke vs. Chib–Jeliazkov data densities – Model �1(L), Data �1(L). Log marginal
data densities are computed recursively with Geweke’s modified harmonic mean estimator as well
as the Chib–Jeliazkov estimator and plotted as a function of the number of draws.
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TABLE 4 Log marginal data densities based on �1(L)

Specification ln p(Y |�) Bayes factor versus �1(L)

Benchmark model �1(L) −196�7 1.00
Model with nearly flexible prices �3(L) −245�6 exp[48�9]
No policy reaction to output �4(L) −201�9 exp[5�2]

Notes: The log marginal data densities for the DSGE model specifications are
computed based on Geweke’s (1999a) modified harmonic mean estimator.

Based on data set �1(L) we also estimate specification �3(L) in which
prices are nearly flexible and specification �4(L) in which the central
bank does not respond to output. The model comparison results are
summarized in Table 4. The marginal data density associated with �3(L)
is −245�6, which translates into a Bayes factor (ratio of posterior odds
to prior odds) of approximately e49 in favor of �1(L). Hence, data set
�1(L) provides very strong evidence against flexible prices. Given the
fairly concentrated posterior of � depicted in Figure 1 this result is not
surprising. The marginal data density of model �4(L) is equal to −201�9
and the Bayes factor of model �1(L) versus model �4(L) is ‘only’ e5. The
DSGE model implies that when actual output is close to the target flexible
price output, inflation will also be close to its target value. Vice versa,
deviations of output from target coincide with deviations of inflation from
its target value. This mechanism makes it difficult to identify the policy rule
coefficients and imposing an incorrect value for 
2 is not particularly costly
in terms of fit.

5.3. Comparison of a DSGE Model with a VAR

The notion of potential misspecification of a DSGE model can be
incorporated in the Bayesian framework by including a more general
reference model �0 into the model set. A natural choice of reference
model in dynamic macroeconomics is a VAR, as linearized DSGE models,
at least approximately, can be interpreted as restrictions on a VAR
representation. The first step of the comparison is typically to compute
posterior probabilities for the DSGE model and the VAR, which can be
used to detect the presence of misspecifications. Since the VAR parameter
space is generally much larger than the DSGE model parameter space,
the specification of a prior distribution for the VAR parameter requires
careful attention. Possible pitfalls are discussed in Sims (2003). A VAR with
a prior that is very diffuse is likely to be rejected even against a misspecified
DSGE model. In a more general context this phenomenon is often called
Lindley’s paradox. We will subsequently present a procedure that allows us
to document how the marginal data density of the DSGE model changes as
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the cross-coefficient restrictions that the DSGE model imposes on the VAR
are relaxed.

If the data favor the VAR over the DSGE model then it becomes
important to investigate further the deficiencies of the structural model.
This can be achieved by comparing the posterior distributions of
interesting population characteristics such as impulse response functions
obtained from the DSGE model and from a VAR representation that does
not dogmatically impose the DSGE model restrictions. We will refer to
the latter benchmark model as DSGE-VAR and discuss an identification
scheme that allows us to construct structural impulse response functions
for the vector autoregressive specification against which the DSGE model
can be evaluated. Building on work by Ingram and Whiteman (1994) the
DSGE-VAR approach of Del Negro and Schorfheide (2004) was designed
to improve forecasting and monetary policy analysis with VARs. The
framework has been extended to a model evaluation tool in Del Negro
et al. (2006) and used to assess the fit of a variant of the Smets and Wouters
(2003) model.

To construct a DSGE-VAR we proceed as follows. Consider a vector
autoregressive specification of the form

yt = �0 +�1yt−1 + · · · +�pyt−p + ut , �[utu ′
t ] = �� (55)

Define the k × 1 vector xt = [1, y′
t−1, � � � , y

′
t−p]′, the coefficient matrix

� = [�0,�1, � � � ,�p]′, the T × n matrices Y and U composed of rows y′
t and

u ′
t , and the T × k matrix X with rows x ′

t . Thus the VAR can be written as
Y = X� + U . Let �D

� [·] be the expectation under DSGE model and define
the autocovariance matrices

�XX (�) = �D
� [xtx ′

t ], �XY (�) = �D
� [xt y′

t ]�
A VAR approximation of the DSGE model can be obtained from restriction
functions that relate the DSGE model parameters to the VAR parameters,

�∗(�) = �−1
XX (�)�XY (�), �∗(�) = �YY (�)− �YX (�)�−1

XX (�)�XY (�)� (56)

This approximation is typically not exact because the state–space
representation of the linearized DSGE model generates moving average
terms. Its accuracy depends on the number of lags p, and the magnitude
of the roots of the moving average polynomial. We will document below
that four lags are sufficient to generate a fairly precise approximation of
the model �1(L).10

10In principle one could start from a VARMA model to avoid the approximation error. The
posterior computations, however, would become significantly more cumbersome.
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In order to account for potential misspecification of the DSGE model
it is assumed that there is a vector � and matrices �� and �� such that the
data are generated from the VAR in (55) with the coefficient matrices

� = �∗(�)+��, � = �∗(�)+ ��� (57)

The matrices �� and �� capture deviations from the restriction functions
�∗(�) and �∗(�).

Bayesian analysis of this model requires the specification of a prior
distribution for the DSGE model parameters, p(�), and the misspecification
matrices. Rather than specifying a prior in terms of �� and �� it is
convenient to specify it in terms of � and � conditional on �. We assume

� | � ∼ �W
(
�T�∗(�), �T − k,n

)
(58)

� |�, � ∼ �
(
�∗(�),

1
�T

[
�−1 ⊗ �XX (�)

]−1
)
,

where �W denotes the inverted Wishart distribution.11 The prior
distribution can be interpreted as a posterior calculated from a sample of
�T observations generated from the DSGE model with parameters �; see
Del Negro and Schorfheide (2004). It has the property that its density is
approximately proportional to the Kullback–Leibler discrepancy between
the VAR approximation of the DSGE model and the �-� VAR, which is
emphasized in Del Negro et al. (2006). � is a hyperparameter that scales the
prior covariance matrix. The prior is diffuse for small values of � and shifts
its mass closer to the DSGE model restrictions as � −→ ∞. In the limit the
VAR is estimated subject to the restrictions (56). The prior distribution is
proper provided that �T ≥ k + n.

The joint posterior density of VAR and DSGE model parameters can be
conveniently factorized as

p�(�,�, � |Y ) = p�(�,� |Y , �)p�(� |Y )� (59)

The �-subscript indicates the dependence of the posterior on the
hyperparameter. It is straightforward to show, e.g., Zeller (1971), that the
posterior distribution of � and � is also of the inverted Wishart normal
form:

� |Y , � ∼ �W
(
(1 + �)T �̂b(�), (1 + �)T − k,n

)
� |Y ,�, � ∼ �

(
�̂b(�),� ⊗ (�T�XX (�)+ X ′X )−1

)
,

(60)

11Ingram and Whiteman (1994) constructed a VAR prior from a stochastic growth model
to improve the forecast performance of the VAR. However, their setup did not allow for the
computation of a posterior distribution for �.
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where �̂b(�) and �̂b(�) are the given by

�̂b(�) =
(

�

1 + ��XX (�)+ 1
1 + �

X ′X
T

)−1 (
�

1 + ��XY + 1
1 + �

X ′Y
T

)

�̂b(�) = 1
(1 + �)T �(�T�YY (�)+ Y ′Y )− (�T�YX (�)+ Y ′X )

× (�T�XX (�)+ X ′X )−1(�T�XY (�)+ X ′Y )��

Hence the larger the weight � of the prior, the closer the posterior mean
of the VAR parameters is to �∗(�) and �∗(�), the values that respect
the cross-equation restrictions of the DSGE model. On the other hand,
if � = (n + k)/T , then the posterior mean is close to the OLS estimate
(X ′X )−1X ′Y . The marginal posterior density of � can be obtained through
the marginal likelihood

p�(Y | �) = |�T�XX (�)+ X ′X |− n
2 |(1 + �)T �̂b(�)|− (1+�)T−k

2

|�T�XX (�)|− n
2 |�T�∗(�)|− �T−k

2

×(2�)
−nT /22

n((1+�)T−k)
2

∏n
i=1 �[((1 + �)T − k + 1 − i)/2]

2
n(�T−k)

2
∏n

i=1 �[(�T − k + 1 − i)/2]
�

A derivation is provided in Del Negro and Schorfheide (2004). The paper
also shows that in large samples the resulting estimator of � can be
interpreted as a Bayesian minimum distance estimator that projects the
VAR coefficient estimates onto the subspace generated by the restriction
functions (56).

Since the empirical performance of the DSGE-VAR procedure crucially
depends on the weight placed on the DSGE model restrictions, it is
important to consider a data-driven procedure to determine �. A natural
criterion for the choice of � in a Bayesian framework is the marginal data
density

p�(Y ) =
∫

p�(Y | �)p(�)d�� (61)

For computational reasons we restrict the hyperparameter to a finite grid
�. If one assigns equal prior probability to each grid point then the
normalized p�(Y )’s can be interpreted as posterior probabilities for �.
Del Negro et al. (2006) emphasize that the posterior of � provides a
measure of fit for the DSGE model: high posterior probabilities for large
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values of � indicate that the model is well specified and a lot of weight
should be placed on its implied restrictions. Define

�̂ = argmax
�∈�

p�(Y )� (62)

If p�(Y ) peaks at an intermediate value of �, say between 0.5 and 2,
then a comparison between DSGE-VAR(�̂) and DSGE model impulse
responses can yield important insights about the misspecification of the
DSGE model.

An impulse response function comparison requires the identification
of structural shocks in the context of the VAR. So far, the VAR given in (55)
has been specified in terms of reduced form disturbances ut . According to
the DSGE model, the one-step-ahead forecast errors ut are functions of the
structural shocks 	t , which we represent by

ut = �tr�	t � (63)

�tr is the Cholesky decomposition of �, and � is an orthonormal
matrix that is not identifiable based on the likelihood function associated
with (55). Del Negro and Schorfheide (2004) proposed to construct � as
follows. Let A0(�) be the contemporaneous impact of 	t on yt according to
the DSGE model. Using a QR factorization, the initial response of yt to the
structural shocks can be can be uniquely decomposed into(

�yt
�	′

t

)
DSGE

= A0(�) = �∗
tr (�)�

∗(�), (64)

where �∗
tr (�) is lower triangular and �∗(�) is orthonormal. The initial

impact of 	t on yt in the VAR, on the other hand, is given by(
�yt
�	′

t

)
VAR

= �tr�� (65)

To identify the DSGE-VAR, we maintain the triangularization of its
covariance matrix � and replace the rotation � in (65) with the function
�∗(�) that appears in (64). The rotation matrix is chosen so that in absence
of misspecification the DSGE’s and the DSGE-VAR’s impulse responses
to all shocks approximately coincide. To the extent that misspecification
is mainly in the dynamics, as opposed to the covariance matrix of
innovations, the identification procedure can be interpreted as matching,
at least qualitatively, the short-run responses of the VAR with those from
the DSGE model. The estimation of the DSGE-VAR can be implemented
as follows.
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MCMC Algorithm for DSGE-VAR
1. Use the RWM algorithm to generate draws �(s) from the marginal

posterior distribution p�(� |Y ).
2. Use Geweke’s modified harmonic mean estimator to obtain a numerical

approximation of p�(Y ).
3. For each draw �(s) generate a pair �(s), �(s), by sampling from the

�W − � distribution. Moreover, compute the orthonormal matrix
�(s) = �∗(�) as described above.

We now implement the DSGE-VAR procedure for �1(L) based on
artificially generated data. All the results reported subsequently are based
on a DSGE-VAR with p = 4 lags. The first step of our analysis is to construct
a posterior distribution for the parameter �. We assume that � lies on the
grid � = ��25, �5, �75, 1, 5,∞� and assign equal probabilities to each grid
point. For � = ∞ the misspecification matrices �� and �� are zero and we
estimate the VAR by imposing the restrictions � = �∗(�) and � = �∗(�).

Table 5 reports log marginal data densities for the DSGE-VAR as a
function of � for data sets �1(L) and �5(L). The first row reports the
marginal data density associated with the state space representation of
the DSGE model, whereas the second row corresponds to the DSGE-
VAR(∞). If the VAR approximation of the DSGE model were exact, then
the values in the first and second row of Table 5 would be identical. For
data set �1(L), which has been directly generated from the state space
representation of �1(L), the two values are indeed quite close. Moreover,
the marginal data densities are increasing as a function of �, indicating that
there is no evidence of misspecification and that it is best to dogmatically
impose the DSGE model restrictions.

With respect to data set �5(L) the DSGE model is misspecified. This
misspecification is captured in the inverse U -shape of the marginal data
density function, which is representative for the shapes found in empirical
applications in Del Negro and Schorfheide (2004) and Del Negro et al.
(2006). The value � = 1�00 has the highest likelihood. The marginal data

TABLE 5 Log marginal data densities for �1(L) DSGE-VARs

Specification �1(L) �5(L)

DSGE Model −196�66 −245�62
DSGE-VAR � = ∞ −196�88 −244�54
DSGE-VAR � = 5�00 −198�87 −241�95
DSGE-VAR � = 1�00 −206�57 −238�59
DSGE-VAR � = �75 −209�53 −239�40
DSGE-VAR � = �50 −215�06 −241�81
DSGE-VAR � = �25 −231�20 −253�61

Notes: See Table 4.
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densities drop substantially for � ≥ 5 and � ≤ 0�5. In order to assess the
nature of the misspecification for �5(L) we now turn to the impulse
response function comparison.

In principle, there are three different sets of impulse responses to
be compared: responses from the state–space representation of the DSGE
model, the � = ∞ and the � = �̂ DSGE-VAR. Moreover, these impulse
responses can either be compared based on the same parameter values
� or their respective posterior estimates of the DSGE model parameters.
Figure 11 depicts posterior mean impulse responses for the state–space
representation of the DSGE model as well as the DSGE-VAR(∞). In both

FIGURE 11 Impulse responses, DSGE, and DSGE-VAR(� = ∞) – Model �1(L), Data �5(L).
DSGE model responses computed from state–space representation: posterior mean (solid); DSGE-
VAR(� = ∞) responses: posterior mean (dashed) and pointwise 90% probability bands (dotted).
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cases we use the same posterior distribution of �, namely, the one obtained
from the DSGE-VAR(∞). The discrepancy between the posterior mean
responses (solid and dashed lines) indicates the magnitude of the error
that is made by approximating the state–space representation of the DSGE
model by a fourth-order VAR. Except for the response of output to the
government spending shock, the DSGE and DSGE-VAR(∞) responses are
virtually indistinguishable, indicating that the approximation error is small.
The (dotted) bands in Figure 11 depict pointwise 90% probability intervals
for the DSGE-VAR(∞) and reflect posterior parameter uncertainty with
respect to �.

To assess the misspecification of the DSGE model we compare posterior
mean responses of the � = ∞ (dashed) and �̂ (solid) DSGE-VAR in
Figure 12. Both sets of responses are constructed from the �̂ posterior
of �. The (dotted) 90% probability bands reflect uncertainty with respect
to the discrepancy between the � = ∞ and �̂ responses. A brief description
of the computation can clarify the interpretation. For each draw of �
from the �̂ DSGE-VAR posterior we compute the �̂ and the � = ∞
response functions, calculate their differences, and construct probability
intervals of the differences. To obtain the dotted bands in the figure,
we take the upper and lower bound of these probability intervals and
shift them according to the posterior mean of the � = ∞ response.
Roughly speaking, the figure answers the question: to what extent do the �̂
estimates of the VAR coefficients deviate from the DSGE model restriction
functions �∗(�) and �∗(�). The discrepancy, however, is transformed from
the �–� space into impulse response functions because they are easier
to interpret.

While the relaxation of the DSGE model restrictions has little effect on
the propagation of the technology shock, the inflation and interest rate
responses to a monetary policy shock are markedly different. According to
the VAR approximation of the DSGE model, inflation returns quickly to
its steady-state level after a contractionary policy shock. The DSGE-VAR(�̂)
response of inflation, on the other hand, has a slight hump shape, and the
reversion to the steady-state is much slower. Unlike in the DSGE-VAR(∞),
the interest rate falls below steady-state in period four and stays negative
for several periods.

In a general equilibrium model a misspecification of the households’
decision problem can have effects on the dynamics of all the endogenous
variables. Rather than looking at the dynamic responses of the endogenous
variables to the structural shocks, we can also ask to what extent are the
optimality conditions that the DSGE model imposes satisfied by the DSGE-
VAR(�̂) responses. According to the log-linearized DSGE model output,
inflation, and interest rates satisfy the following relationships in response
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FIGURE 12 Impulse responses, DSGE-VAR(� = ∞), and DSGE-VAR(� = 1) – Model �1(L), Data
�5(L). DSGE-VAR(� = ∞) posterior mean responses (dashed), DSGE-VAR(� = 1) posterior mean
responses (solid). Pointwise 90% probability bands (dotted) signify shifted probability intervals for
the difference between � = ∞ and � = 1 responses.

to the shock 	R ,t :

0 = ŷt − �̂t [yt+1] + 1
�
(R̂t − �̂t [�t+1]) (66)

0 = �̂t − ��t [�̂t+1] − �ŷt (67)

	R ,t = R̂t − �R R̂t−1 − (1 − �R)
1�̂t − (1 − �R)
2ŷt (68)

Figure 13 depicts the path of the right-hand side of Equations (66) to (68)
in response to a monetary policy shock. Based on draws from the joint
posterior of the DSGE and VAR parameters we can first calculate identified
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FIGURE 13 Impulse responses, DSGE-VAR(� = ∞), and DSGE-VAR(� = 1) – Model �1(L), Data
�5(L). DSGE model responses: posterior mean (dashed); DSGE-VAR responses: posterior mean
(solid) and pointwise 90% probability bands (dotted).

VAR responses to obtain the path of output, inflation, and interest rate,
and in a second step use the DSGE model parameters to calculate the
wedges in the Euler equation, the price setting equation, and the monetary
policy rule. The dashed lines show the posterior mean responses according
to the state–space representation of the DSGE model, and the solid lines
depict DSGE-VAR responses. The top three panels of Figure 13 show that
both for the DSGE model as well as the DSGE-VAR(∞) the three equations
are satisfied. The bottom three panels of the figure are based on the DSGE-
VAR(�̂), which relaxes the DSGE model restrictions. While the price setting
relationship and the monetary policy rule restriction seem to be satisfied,
at least for the posterior mean, Panel (2,1) indicates a substantial violation
of the consumption Euler equation. This finding is encouraging for the
evaluation strategy since the data set �5(L) was indeed generated from a
model with a modified Euler equation.

While this section focused mostly on the assessment of a single DSGE
model, Del Negro et al. (2006) use the DSGE-VAR framework also to
compare multiple DSGE models. Schorfheide (2000) proposed a loss-
function-based evaluation framework for (multiple) DSGE models that
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augments potentially misspecified DSGE models with a more general
reference model, constructs a posterior distribution for population
characteristics of interest such as autocovariances and impulse responses,
and then examines the ability of the DSGE models to predict the
population characteristics. This prediction is evaluated under a loss
function and the risk is calculated under an overall posterior distribution
that averages the predictions of the DSGE models and the reference
model according to their posterior probabilities. This loss-function-based
approach nests DSGE model comparisons based on marginal data densities
as well as assessments based on a comparison of model moments to sample
moments, popularized in the calibration literature, as special cases.

6. NONLINEAR METHODS

For a non-linear/nonnormal state–space model, the linear Kalman
filter cannot be used to compute the likelihood function. Instead,
numerical methods have to be used to integrate the latent state vector. The
evaluation of the likelihood function can be implemented with a particle
filter, also known as a sequential Monte Carlo filter. Gordon et al. (1993)
and Kitagawa (1996) are early contributors to this literature. Arulampalam
et al. (2002) provide an excellent survey. In economics, the particle filter
has been applied to analyze the stochastic volatility models by Pitt and
Shephard (1999) and Kim et al. (1998). Recently Fernández-Villaverde
and Rubio-Ramírez (2005) use the filter to construct the likelihood for
DSGE model solved with a projection method. We follow their approach
and use the particle filter for DSGE model �1 solved with a second-order
perturbation method. A brief description of the procedure is given below.
We use Y � to denote the �× n matrix with rows y′

t , t = 1, � � � , �. The vector
st has been defined in Section 2.4.

Particle Filter
1) Initialization: Draw N particles si0, i = 1, � � � ,N , from the initial

distribution p(s0 | �). By induction, in period t we start with the particles{
sit−1

}N
i=1

, which approximate p
(
st−1 |Y t−1, �

)
.

2) Prediction: Draw one-step-ahead forecasted particles
{
s̃ it

}N
i=1

from
p

(
st |Y t−1, �

)
. Note that

p
(
st |Y t−1, �

) =
∫
p (st | st−1, �) p

(
st−1 |Y t−1, �

)
dst−1 ≈ 1

N

N∑
i=1

p
(
st | sit−1, �

)
�

Hence one can draw N particles from p
(
st |Y t−1, �

)
by generating one

particle from p
(
st | sit−1, �

)
for each i .



160 S. An and F. Schorfheide

3) Filtering: The goal is to approximate

p
(
st |Y t , �

) = p
(
yt | st , �

)
p

(
st |Y t−1, �

)
p

(
yt |Y t−1, �

) , (69)

which amounts to updating the probability weights assigned to the particles{
s̃ it

}N
i=1

. We begin by computing the non-normalized importance weights
�̃it = p

(
yt | s̃ it , �

)
. The denominator in (69) can be approximated by

p
(
yt |Y t−1, �

) =
∫

p
(
yt | st , �

)
p

(
st |Y t−1, �

)
dst ≈ 1

N

N∑
i=1

�̃it � (70)

Now define the normalized weights

�it = �̃it∑N
j=1 �̃

j
t

and note that the importance sampler
{
s̃ it , �

i
t

}N
i=1

approximates12 the
updated density p

(
st |Y t , �

)
.

4) Resampling: We now generate a new set of particles
{
sit

}N
i=1

by
resampling with replacement N times from an approximate discrete
representation of p

(
st |Y t , �

)
given by

{
s̃ it , �

i
t

}N
i=1

so that

Pr
(
sit = s̃ it

) = �it , i = 1, � � � ,N �

The resulting sample is in fact an iid sample from the discretized density of
p(st |Y t , �) and hence is equally weighted.

5) Likelihood Evaluation: According to (70) the log likelihood function
can be approximated by

ln�(� |Y T ) = ln p(y1 | �)+
T∑
t=2

ln p
(
yt |Y t−1, �

) ≈
N∑
t=1

(
1
N

N∑
i=1

�̃it

)
�

To compare results from first and second-order accurate DSGE model
solutions we simulated artificial data of 80 observations from the quadratic
approximation of model �1 with parameter values reported in Table 3
under the heading �1(Q ). In the remainder of this section we will refer
to these parameters as “true” values as opposed to “pseudotrue” values to

12The sequential importance sampler (SIS) is a Monte Carlo method which utilized this aspect,
but it is well documented that it suffers from a degeneracy problem, where after a few iterations,
all but one particle will have negligible weight.
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be defined later. These true parameter values by and large resemble the
parameter values that have been used to generate data from the log-linear
DSGE model specifications. However, there are some exceptions. The
degree of imperfect competition, �, is set to 0.1, which implies a steady-state
markup of 11% that is consistent with the estimates of Basu (1995). 1/g
is chosen as .85, which implies that the steady-state consumption amounts
to 85% of output. The slope coefficient of the Phillips curve, �, is chosen
to be .33, which implies less price stickiness than in the linear case. The
implied quadratic adjustment cost coefficient, �, is 53.68. We also make
monetary policy less responsive to the output gap by setting 
2 = �125. �(Q ),
r (A), and �(A) are chosen as .55, 1.0, and 3.2 to match the average output
growth rate, interest rate, and inflation between the artificial data and the
real U.S. data. These values are different from the mean of the historical
observations because in the non-linear version of the DSGE model means
differ from steady states. Other exogenous process parameters, �g , �z , 
R ,

g , and 
z , are chosen so that the second moments are matched to the U.S.
data. For computational convenience, a measurement error is introduced
to each measurement equation, whose standard deviation is set as 20% of
that of each observation.13

6.1. Configuration of the Particle Filter

There are several issues concerning the practical implementation of
the particle filter. First, we need a scheme to draw from the initial state
distribution, p (s0 | �). In the linear case, it is straightforward to calculate the
unconditional distribution of st associated with the vector autoregressive
representation (33). For the second-order approximation we rewrite the
state transition equation (37) as follows. Decompose st = [x ′

t , �
′
t ]′, where �t

is composed of the exogenous processes 	R ,t , ĝt , and ẑt . The law of motion
for the endogenous state variables xj ,t can be expressed as

xj ,t =  (0)
j + (1)

j wt + w ′
t 

(2)
j wt (71)

where wt = [x ′
t−1, �

′
t ]′. We generate x0 by drawing �0 from its unconditional

distribution (the law of motion for �t is linear) and setting x−1 = x , where
x is the steady-state of xt .

Second, we have to choose the number of particles. For a good
approximation of the prediction error distribution, it is desirable to
have many particles, especially enough particles to capture the tails of

13Without the measurement error two complications arise: since p(yt | st ) degenerates to a point-
mass and the distribution of st is that of a multivariate noncentral �2 the evaluation of p(yt |Y t−1)

becomes difficult. Moreover, the computation of p(st |Y t ) requires the solution of a system of
quadratic equations.
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p(st |Y t). Moreover, the number of particles affects the performance
of the resampling algorithm. If the number of particles is too small,
the resampling will not work well. In our implementation, the stratified
resampling scheme proposed by Kitagawa (1996) is applied. It is optimal
in terms of variance in the class of unbiased resampling schemes. If the
measurement errors in the conditional distribution p(yt | st) are small,
more particles are needed to obtain an accurate approximation of the
likelihood function and to ensure that the posterior weights �it do not
assign probability one to a single particle. In our application, we found
that 40,000 particles were enough to get stable evalutaions of the likelihood
given the size of the measurement errors.

Even though the estimation procedure involves extensive random
sampling, the particle filter can be readily implemented on a good desktop
computer. We implement most of the procedure in MATLAB (2005) so
that we can exploit the symbolic toolbox to solve the DSGE model, but it
takes too much time to evaluate the likelihood function using the particle
filter. The filtering step is implemented as FORTRAN mex library, so we
can call it as a function in MATLAB. Based on a sample of 80 observations
we can generate 1,000 draws with 40,000 particles in 1 h and 40min (6.0 sec
per draw) on the AMD64 3000+ machine with 1GB RAM. Linear methods
are more than 200 times faster: 1,000 draws are generated in 24 sec in our
Matlab routines and 3 sec in our GAUSS routines.

6.2. A Look at the Likelihood Function

We will begin our analysis by studying profiles of likelihood functions.
For brevity, we will refer to the likelihood obtained from the first-order
(second-order) accurate solution of the DSGE model as linear (quadratic)
likelihood. It is natural to evaluate the quadratic likelihood function in the
neighborhood of the true parameter values given in Table 3. However, we
evaluate the linear likelihood around the pseudo-true parameter values,
which are obtained by finding the mode of the linear likelihood using
3,000 observations. The parameter values for � and 1/g are fixed at their
true values because they do not enter the linear likelihood. Recall that we
had introduced a reduced-form Phillips curve parameter � in (32) because
� and � cannot be identified with the log-linearized DSGE model.

Figure 14 shows the log-likelihood profiles along each structural
parameter dimension. Two features are noticeable in this comparison.
First, the quadratic log-likelihood peaks around the true parameter values,
while the linear log-likelihood attains its maximum around the pseudo-true
parameter values. The differences between the peaks are most pronounced
for the steady-state parameters r (A) and �(A). While in the linearized
model steady states and long-run averages coincide, they differ if the
model is solved by a second-order approximation. For some parameters
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FIGURE 14 Linear vs. quadratic approximations: likelihood profiles. Data Set �1(Q ). Likelihood
profile for each parameter: �1(L)/Kalman filter (dashed) and �1(Q )/particle filter (solid). 40,000
particles are used. Vertical lines signify true (dotted) and pseudo-true (dashed-dotted) values.
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FIGURE 15 Linear vs. quadratic approximations: Likelihood contours. Data set �1(Q ). Contours
of likelihood (solid) for �1(L) and �1(Q ). 40,000 particles are used. Large dot indicates true and
pseudotrue parameter value. � is constant along dashed lines.

the quadratic log-likelihood function is more concave than the linear
one, which implies that the non-linear approach is able to extract more
information on the structural parameters from the data. For instance,
it appears that the monetary policy parameter such as 
1 can be more
precisely estimated with the quadratic approximation.

As noted before, the quadratic approximation can identify some
structural parameters that are unidentifiable under the log-linearized
model. g does not enter the linear version of the model and hence
the log-likelihood profile along this dimension is flat. In the quadratic
approximation, however, the log-likelihood is slightly sloped in 1/g = c/y
dimension. Moreover, the linear likelihood is flat for the values of � and
� that imply a constant �. This is illustrated in Figure 15, which depicts
the linear and quadratic likelihood contours in �-� space. The contours
of the linear likelihood trace out iso-� lines. The right panel of Figure 15
indicates that the iso-� lines intersect with the contours of the quadratic
likelihood function, which suggests that � and � are potentially separately
identifiable. However, our sample of 80 observations is too short to obtain
a sharp estimate of the two parameters.

6.3. The Posterior

We now compare the posterior distributions obtained from the linear
and non-linear analysis. In both cases we use the same prior distribution
reported in Table 3. Unlike in the analysis of the likelihood function we
now substitute the adjustment cost parameter � with the Phillips-curve
parameter � in the quadratic approximation of the DSGE model. A beta
prior with mean .1 and standard deviation 0.05 is placed on �, which
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roughly covers micro evidences of 10–15% markup. Note that 1 − 1/g is
the steady-state government spending–output ratio, and hence a beta prior
with mean 0.85 and standard deviation .1 is used for 1/g .

We use the RWM algorithm to generate draws from the posterior
distributions associated with the linear and quadratic approximations of
the DSGE model. We first compute the posterior mode for the linear
specification with the additional parameters, � and 1/g , fixed at their true
values. After that, we evaluate the Hessian to be used in the RWM algorithm
at the (linear) mode without fixing � and 1/g , so that the inverse Hessian
reflects the prior variance of the additional parameters. This Hessian is
used for both the linear and the non-linear analysis. We use scaling factors
.5 (linear) and .25 (quadratic) to target an acceptance rate of about 30%.
The Markov chains are initialized in the neighborhood of the pseudo-true
and true parameter values, respectively.

Figures 16 and 17 depict the draws from prior, linear posterior, and
quadratic posterior distribution. 100,000 draws from each distribution are
generated and every 500th draw is plotted. The draws tend to be more
concentrated as we move from prior to posterior. While, for most of our
parameters, linear and quadratic posteriors are quite similar, there are a
few exceptions. The quadratic posterior mean of 
1 is larger than the
linear posterior mean and closer to the true value. The quadratic posterior
means for the steady-state parameters r (A) and �(A) are also greater than the
corresponding linear posterior means, which is consistent with the positive
difference between “true” and “pseudotrue” values of these parameters.

Now consider the parameter � that determines the demand elasticity
for the differentiated products. Conditional on � this parameter is not
identifiable under the linear approximation and hence its posterior is
not updated. The parameter does, however, affect the second-order terms
that arise in the quadratic approximation of the DSGE model. Indeed,
the quadratic posterior of � is markedly different from the prior as it
concentrates around 0.05. Moreover, there is a clear negative correlation
between � and � according to the quadratic posterior.

Table 6 reports the log marginal data densities for our linear (�1(L))
and quadratic (�1(Q )) approximations of the DSGE model based on
Data Set �1(Q ). The log marginal likelihoods are −416�06 for �1(L)
and −408�09 for �1(Q ), which imply a Bayes factor of about e8 in favor
of the quadratic approximation. This result suggests that �1(Q ) exhibits
nonlinearities that can be detected by the likelihood-based estimation
methods. Our simulation results with respect to linear versus non-linear
estimation are in line with the findings reported in Fernández-Villaverde
and Rubio-Ramírez (2005) for a version of the neoclassical stochastic
growth model. In their analysis the non-linear solution combined with
the particle filter delivers a substantially better fit of the model to the
data as measured by the marginal data density, both for simulated as well
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FIGURE 16 Posterior draws: linear vs. quadratic approximation I. Data set �1(Q ). 100,000 draws
from the prior and posterior distributions. Every 500th draw is plotted. Intersections of solid and
dotted lines signify true and pseudotrue parameter values. 40,000 particles are used.
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FIGURE 17 Posterior draws: Linear vs. quadratic approximation II. See Figure 16.
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TABLE 6 Log marginal data densities based on �1(Q )

Specification ln p(Y |�1) Bayes factor vesus �1(Q )

Benchmark model, linear solution �1(L) −416�06 exp[7�97]
Benchmark model, quadratic solution �1(Q ) −408�09 1.00

Notes: See Table 4.

as actual data. Moreover, the authors point out that the differences in
terms of point estimates, although relatively small in magnitude, may have
important effects on the moments of the model.

7. CONCLUSIONS AND OUTLOOK

There exists by now a large and growing body of empirical work on
the Bayesian estimation and evaluation of DSGE models. This paper has
surveyed the tools used in this literature and illustrated their performance
in the context of artificial data. While most of the existing empirical work
is based on linearized models, techniques to estimate DSGE models solved
with non-linear methods have become implementable thanks to advances
in computing technology. Nevertheless, many challenges remain. Model
size and dimensionality of the parameter space pose a challenge for MCMC
methods. Lack of identification of structural parameters is often difficult to
detect since the mapping from the structural form of the DSGE model into
a state–space representation is highly non-linear and creates a challenge
for scientific reporting as audiences are typically interested in disentangling
information provided by the data from information embodied in the
prior. Model misspecification is and will remain a concern in empirical
work with DSGE models despite continuous efforts by macroeconomists
to develop more adequate models. Hence it is important to develop
methods that incorporate potential model misspecification in the measures
of uncertainty constructed for forecasts and policy recommendations.
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