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1.1 Define the problem, FOCs, and equilibrium conditions
1.1.1 Final goods producers

The final good Y; is a composite made of a continuum of goods:

1 1 1+)‘f,t
Y, = [/ Yy (i) T di] (1.1.1)
0

The final goods producers buy the intermediate goods on the market, package Y;,
and resell it to consumers. These firms maximize profits in a perfectly competitive

environment. Their problem is:

maxy, v, ) PV — Jy P()Yi(i)di
1 1 I+Ap ¢ (1.1.2)
st Y= [Rn@™aa] G
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The FOCs are:

(oY) Py = gy (1.1.3)
>‘f,t

(OVi(0)) —Puli) + pupa(l + Ap)l.. Po¥i() e =0 (1.1.4)

At
1+)‘f,t

Note that [... ]t =, . From the FOCs one obtains:

1+>‘f,t

o - (%) 7w (1.1.5)

Combining this condition with the zero profit condition (these firms are competitive)

one obtains an expression for the price of the composite good:

1 1 —Aft
P, = |:/ Pt(Z) At dl:| (116)
0

1+>\f,t

Note that the elasticity is PYYRE As+ = 0 corresponds to the linear case. Ap; — oo

corresponds to the Cobb-Douglas case. We will constrain Ay, € (0,00). Ay follows the
€X0genous process:

InApe =InAp +exs, exe ~ ... (1.1.7)

1.1.2 Intermediate goods producers
Intermediate goods producers ¢ uses the following technology:
Y; (i) = max{Z} " K(i)*Li(i) = — Z; ®,0}, (1.1.8)

where

z; = 2,750 v > 1, (1.1.9)
Call z; = log(Z:/Zi—1). 2 follows the process:
(2t =) = p=(zt-1 =) + €2ty €20 ~ o0 (1.1.10)
The firm’s profit is given by:

Py(i)Yy (i) — WiLy (i) — Ry Ky(d).



Cost minimization subject to 1.1.8 yields the conditions:

(OL(i)) V(i) (1 = ) 2} Ky (i) Ly (i)~ = W,
(OK:(1)) Vi(i)aZ! K (i)* ' Ly(i)'~> = RF

where V;(7) is the Lagrange multiplier associated with 1.1.8. In turn, these conditions

imply:
Kt(Z) - (6 %
Li(i) 1—aRF

Note that if we integrate both sides of the equation wrt di and define K; = [ Ky(i)di

and Ly = [ Ly(i)di we obtain a relationship between aggregate labor and capital:

_ oW
T T-aRrE"

. (1.1.11)

Total variable cost is given by

Variable Costs = (W; + Rf [Lit((f)) )L (7)

D o r—(1—ar i)\ ¢
= (W + RESSD )7, (5) 27 0 (H) ™

where Y;(i) = Z}7*K;(i)*L¢(i)'~® is the “variable” part of output. The marginal cost

MC} is the same for all firms and equal to:

MCy = (Wi + RERS) 2 (543

) (1.1.12)
= a1 —a)~(-wl-agk az (1),

Profits can then be expressed as (P.(i) — MCy) Yy (i) — MC,Z;®. Note that since the
last part of this expression does not depend on the firm’s decision, it can be safely
ignored. Prices are sticky as in Calvo (1983). Specifically, each firm can readjust prices
with probability 1 — (, in each period. We depart rfom Calvo (1983) in assuming that
for those firms that cannot adjust prices, P;(i) will increase at the geometric weighted
average (with weigths 1 — ¢, and ¢, respectively) of the steady state rate of inflation
and of last period’s inflation m;_1. For those firms that can adjust prices, the problem

is to choose a price level ]5,5(1) that maximizes the expected present discounted value of



profits in all states of nature where the firm is stuck with that price in the future:
maxp, = (P(i) — MC;) (i)
- 5. 1— .
FETE GO (B0 (Tymyym ™) = MO ) Vi )

= 1— DY
Pt(Z) (Hf:]_ﬂ-;ililﬂ-* Lp) fit+s
}/t-i-su

s.t. }/754_5(2) = Pt+s

(1.1.13)
where 3°Z7, is today’s value of a future dollar for the consumers (Zf, , is the Lagrange
multiplier associated with the consumer’s nominal budget constraint - remember there

are complete markets so 3°Zf,  is the same for all consumers). The FOC for the firm is:

IEDY
N S .
= (20) 0 (Bui) — (L A MG Vi) +
s . _14;)\f’t+s— .
L . — L —t
LS00 psgerp Pt(z)(Hleﬂ'tililﬂ* P) Fitts (H;:lfrtil,lm ”) (1.1.14)
t 2520 Cp —t+s Py >\f,t+spt+s

~ s L 1— .
(Pl (T2 4 ™) = (L4 Agera) MCays ) Yirs(3) = 0

Note that all firms readjusting prices face an indentical problem. We will consider only
the symmetric equilibrium in which all firms that can readjust prices will choose the

same P;(i), so we can drop the i index from now on. From 1.1.6 it follows that:

1

Pi=[1-G)P 7 +Gm " Pey)

1
AT (1.1.15)

1.1.3 Households

The objective function for household j is given by:

0 Moo () \ v
B 0bess [ 18(Crsald) = WCusama () = 755 Lens)' ™ + 25 ( Z;:}(tﬁ)
(1.1.16)
where C}(7) is consumption, L;(j) is labor supply (total available hours are normalized to
one), and M, (j) are money holdings. Note that the household is a “habit” guy for h > 0.
oy affects the marginal utility of leisure: it is model as a stochastic preference shifter.

Real money balances enter the utility function deflated by the (stochastic) trend growth

of the economy, so to make real money demand stationary. yx; is another stochastic

—_



preference shifter that affects the marginal utility from real money balances. b; is yet
another stochastic preference shifter that scales the overall period utility. The preference

shifters are exogenous processes (common to all households) that evolve as follows:

Ing, = (1—pp)lne+polng_1+epyp, €pp ~ ... (1.1.17)
Inx; = (I—py)Inx+pylnxe—1+ens, e~ ... (1.1.18)
Inby = pplnbi_1 + €bty Ebt ™ - (1119)

The household’s budget constraint, written in nominal terms, is given by:

P sCiis(J) + Pigsliys(§) + Biys(§) + Migs(j) < Rigs—1Bi4s-1(7) + Mits—1(5)

+ ips + Wirs(G) Lers(d) + (BEy sty s (1) Kes—1(5) — Prrsa(urys (7)Y " Kis1(4))
(1.1.20)

where I;(7) is investment, By(7) is holdings of government bonds, R; is the gross nominal
interest rate paid on government bonds, II; is the per-capita profit the household gets
from owning firms (assume household pool their firm shares, so that they all receive
the same profit) W;(j) is the wage earned by household j. The term within parenthesis
represents the return to owning K;(j) units of capital. Households choose the utilization
rate of their own capital, u.(j), and end up renting to firms in period ¢ an amount of

“effective” capital equal to:

K1(j) = wi(§)Ki-1(5), (1.1.21)

and getting RFus(j)K;_1(j) in return. They however have to pay a cost of utilization
in terms of the consumption good which is equal to a(u;(j))Y¢K;_1(j). Households

accumulate capital according to the equation:

Ki(5) = (1 = 0)K—1(§) + Tt <1 - S(}ﬁi&)) L(j), (1.1.22)

where § is the rate of depreciation, and S(-) is the cost of adjusting investment, with
S’() > 0,5”(-) > 0. The term p is a stochastic disturbance to the price of investment

relative to consumption, which follows the exogenous process:

Inp =0 —pu)Inp+puInp1+€eus, €ur ~ ... (1.1.23)



Call =7 (j) the Lagrange multiplier associated with the budget constraint 1.1.20 (the
marginal value of a dollar at time ¢). We assume there is a complete set of state con-
tingent securities in nominal terms, although we do not explicitly write them in the
household’s budget constraint. This assumption implies that ZF(j) must be the same
for all households in all periods and across all states of nature: =/(j) = =¥ for all j
and t. Although we so far kept the j index for all the appropriate variables, we will see
that the assumption of complete markets implies that the index will drop out of most
of these variables: In equilibrium households will make the same choice of consumption,

money demand, investment and capital utilization. As we will see, wage rigidity 4 la

Calvo implies that leisure and the wage will differ across households.

We first write the first order conditions for consumption and money demand. The

FOCs for consumption, money holdings, and bonds are:

L

(0C (7)) 2] (b:(Cy(4) — hCy1(4)) ! (1.1.24)

—BhIE[bi+1(Coia (§) — hCi(4)) 1)) = =7 (1.1.25)
(OM,(1)  xubi <A§(Iﬁt>>_ym Z;Pt — =P BEE, (1.1.26)
(0Bi(i))  E} = BREY[E], 4] (1.1.27)

The first FOC equates the marginal utility of consumption at time ¢, times the relative
price of money in terms of the consumption good, to the marginal utility of one dollar
at time ¢t. FOCs 1.1.25 through 1.1.27 show that the quantity of consumption, money
holdings, and bonds will also be the same apparent across households since the lagrange
multiplier is the same, so that we can drop the j index. Separability in the utility func-
tion is key for this result: if the marginal utility of consumption depended on leisure,
then equalling the marginal utility of consumption across households would not imply
equal consumption, since leisure differs across j (depending on whether they can change

their wage or not).

Now define Z; = P,=F. The FOCs for consumption, money and bonds can be rewrit-



ten as:

S = — hCi_1)"' — BRIE[bi1(Cyy1 — hCy) ™Y (1.1.28)
R 1

. = xtb — 1.1.29

< Zi P > Xtth_lzt:t ( )

E = RtEt[._t+17rt+1] (1130)

where inflation is defined as m = P;/P;_;.

Let us now address the capital accumulation/utilization problem. Call ZF the La-
grange multiplier associated with constraint 1.1.22. The FOC with respect to investment,

capital, and capital utilization are:

=kt oo It Iy \ I
(91) =T (1 S(Itfl) s (It 1)It71>
- I 1 -
+BEE AT e ' (D (7)) = B (1.1.31)
_ _ _ RE B _
(0K:) Ef = 5Et[:t+1(p:j:11 U1 — a(ug) YD) £ 28 (1-0)]  (1.1.32)
(Ouy) Tt% = a'(uy) (1.1.33)

The first FOC is the law of motion for the shadow value of capital. Note that if adjust-
ment cost were absent, the FOC would simply say that ZFY*s; is equal to the marginal
utility of consumption. In other words, in absence of adjustment costs the shadow cost
of taking resources away from consumption equals the shadow benefit (abstracting from
YTtu) of putting these resources into investment: Tobin’s Q is equal to one. The second
FOC says that if I buy a unit of capital today I have to pay its price in real terms, ZF,
but tomorrow I will get the proceeds from renting capital, plus I can sell back the capital

that has not depreciated.

Now to the wage/leisure decision. Before going into the household’s problem, more

details on the labor market are needed. Labor used by the intermediate goods producers

1 1 1+)\w,t
Lt = |:/ Lt(]) 2w, d’L:| .
0

There are labor packers who buy the labor from the households, package L, and resell

L; is a composite:

it to the intermediate goods producers. Labor packers maximize profits in a perfectly



competitive environment. From the FOCs of the labor packers one obtains:

1+ Xy ¢

Li(j) :<W> L, (1.1.34)

t

Combining this condition with the zero profit condition one obtains an expression for

the wage:
1 1 e
Wy = [/ Wt(j)Aw7tdi:| (1135)
0

We will set Ayt = Ay € (0,00). Given the structure of the labor market, the household
has market power: she can choose her wage subject to 1.1.34. However, she is also
subject to nominal rigidities & la Calvo. Specifically, households can readjust wages
with probability 1 — ¢, in each period. For those that cannot adjust wages, Wy(j) will
increase at a geometrically weighted average of the steady state rate increase in wages
(equal to steady state inflation 7, times the growth rate of the economy e”Tﬁ) and
of last period’s inflation times last period’s productivity (Trt,lezgfl). For those that can
adjust, the problem is to choose a wage Wt(j) that maximizes utility in all states of

nature where the household is stuck with that wage in the future:

maXWt(j) E; E;io(gw/@)sbt—l—s |:_ l/glpisl Lt+s(j)yl+1 + .. :|

s.t. 1.1.20 and 1.1.34 for s =0, ..., 00, and
N . ~ (1.1.36)
Wirs(7) = (T (ree? X T50) 100 (g i) ) Wi )
fors=1,...,00
where the ... indicate the terms in the utility function that are irrelevant for this prob-
lem. The FOC for this problem are:
(OW4(4))
= _ . X Wi(j b Liis(5)"”
):,jﬁ}t F, Z;)O:()(Cwﬂ)s:t—&-s[/(])t—&—s . t,})t+l;(]) + (14 Aw) t+s§0tJé§t+i+s(.7) ] = 0.
(1.1.37)
where

1 ifs=0
th:

)

Hle(w*eWTﬁ)1*Lw(7rt+l,1ezf+l*1)bw otherwise.
In absence of nominal rigidities this condition would amount to setting the real wage

equal to ratio of the marginal utility of leisure over the marginal utility of consumption



times the markup (1 + Ay). All agents readjusting wages face an indentical problem.
We will again consider only the symmetric equilibrium in which all agents that can
readjust their wage will choose the same Wt( j), so we can drop the i index from now on.

From 1.1.35 it follows that:

s S 2 \1—y 25\ +
Wy = [(1 = G + Gul(mae 75 )t iyl )% (11.39)

1.1.4 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in

response to deviations of inflation and output from their respective target levels:

&7 Ri4 PR m Y1 E 2
R* R* T« Yy

where R* is the steady state nominal rate and Y;* is nominal output. The parameter pr

1-pr
eRit (1.1.39)

determines the degree of interest rate smoothing. The monetary policy shock e is iid:
ERE ™ - (1.1.40)

The central bank supplies the money demanded by the household to support the desired

nominal interest rate.

The government budget constraint is of the form
PGy + Ri—1Bi—1 + My =Ty + My + By, (1.1.41)

where T; are nominal lump-sum taxes (or subsidies) that also appear in household’s

budget constraint. Government spending is given by:
Gi=(1-1/g)Y; (1.1.42)
where g; follows the process:

Ing: =(1—pg)Ing+pgInge—1+egr, €9 ~ ... (1.1.43)



1.1.5 Resource constraints

To obtain the market clearing condition for the final goods market first integrate the HH

budge constraint across households, and combine it with the gvmt budget constraint:

PtCt+BIt+PthS+Ht+th L()dj
+Rtht d]—PtCL’LLt thtl d]

Next, realize that

I, = / (i)di = / P(i);Y (i)di — Wi Ly — RF K,

where Ly = [ L().di is total labor supplied by the labor packers (and demanded by the
firms), and K; = [ K(i)idi = [ K(j)dj. Now replace the defintion of II; into the HH
budget constraint, realize that by the labor and goods’ packers’ zero profit condition

WtLt = f Wt(])Lt(j)d], and PtY;f fP dZ and obtain:
P.Cy + PI; + PGy + Pia(w)Y 'K,y = PY;,

or

_ 1
Co+ I +alu)Y 'Ky 1 = —Y, (1.1.44)
gt

where Y; is defined by (1.1.1). The relationship between output and the aggregate

inputs, labor anc capital, is:

Y = [Z7OK () Ly(i) di — Z;
— 7} [(K/L)*L(i)di — Z{® (1.1.45)
-z KL - e,

where I used the fact that the capital labor ratio is constant across firms (also, since

K(i) = (K/L)L(i) it must be the case that &fg))j — K/L; = (K/L)). The problem

with these resource constraints is that what we observe in the data is ¥; = [ Yi(i)di and

= [ Li(j)dj, as opposed to Y; and L;. But note that from 1.1.5:

14+Xpy CLbAgy
. X X .
}/t —_ Y; It fp It di
M _M

A . A
— fit fit
=Y,P, " P,

)

10



Afit

) A Ry
where P, = | [ Pi(i) 1t di , and

Ly = [ Li(j)dj

1+ ¢ 1+ ¢
o Nw,t N At .
= LW, W), di
T+Aw ¢ _1+>\w’t

_ ’\w,t T ’\w,t
= LW, ™t W, :

Aw,t

] e T I Nt
where W; = (f W), dj> .

11



1.1.6 Exogenous Processes

The model is supposed to be fitted to data on output, consumption, investment, em-

ployment, wages, prices, nominal interest rates, and money.

e Technology process: let z; =1nZ;/Z; 4
(ze =) = p2(ze —7) + €zt
(We will probably restrict p, to zero.)

e Preference for leisure:
Inpr = (1—py)Inp+pylnpi 1+ et

e Money Demand:

Inx; = (L= py)Inx + pyInxe—1 + e

e Price Mark-up shock:
ln/\f’t = ln)\f + et

e Capital adjustment cost process:
e = (1—pu)Inp+pplnpe—1 + €yt
e Intertemporal preference shifter:

Inb; = ppInbi1 + €y
e Government spending process:
Ingi = (1 —pg)Ing+pglng 1 +egy

e Monetary Policy Shock €g .

e Equation for z; = 2z, + {2, In T

o . o
o) = =7 -2

(25 — v — InYT)+e.,

(We will probably restrict p, to zero.)

12

(1.1.46)

(1.1.47)

(1.1.48)

(1.1.49)

(1.1.50)

(1.1.51)

(1.1.52)

(1.1.53)



1.2 Detrending and steady state

We detrend the variables as in Altig et al. Lower case variables are all detrended variables

— i.e., stationary stuff. Specifically:
Cy Y, . Iy —t KK,
C * ) 7% ? * I k T "é ’
t = Z Yt = Z; t = Z; t = 7

k
k_ th - W M s B W
T't—T Ptywt*PtZt*vmt*Ptzghpt*Ptawt*”/ta

& = 547, §t == Zt T, 2 = log(Z;"/Zf,l),

th
kt T Z*a

Denote with . the steady state values of the variables. Realize that at st.st. z,

2y =7+ 125 1logT.

1.2.1 Intermediate goods producers

We start by expressing 1.1.12 in terms of detrended variables:

MCYy
=«
Py

mep = 1 - oz)_(l_o‘)wt1 O‘rf @,

Hence

me, = a~ (1 — )" Imdyl-apk e

Expression 8.8 becomes:

_ A
L p M (B — (14 Ape)mer) y(i)
* Dy (Bt — (L4 Ape)mer) ye
¢ N ! 1y et
+Et ZS ICp/BS )\ftjjs (Hfjtwm) fit+s (Hls 17Tt+l 177* P) fit+s
~ I—[ls 1 zil lﬂ*_bp 1 )\ -\ 0
P — (L Apps)meirs ) yers(i) =

this implies that:
— (14 Ap)a (1 — )1yl opk

Expression 8.9 becomes:

1

1= [(1 - Cp)ﬁt ek + Cp(ﬁéilﬂi p7rt_1) Af,t]_Af,t'

which means that:

(1.2.1)

= and

(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)

(1.2.6)

(1.2.7)



Equation 1.1.11 becomes:

ky =

and at st.st.:

k.

o Wt

_ k
1 Ty

o Wy

S l—arkT

Recall that aggregate profits are equal to:

Il; = PY; — WiL; — RFK;.

In terms of detrended variables we then

11

have :

D % :yt—tht—Tfkt

Pz

= kLT — O —w Ly — 2

= (7 1

At steady state we can use 1.2.5 to get that st. st. profits are:

11

Af

Pz

1.2.2 Households

1—«a

Expression 1.1.28, 1.1.29, and 1.1.30 become:

& =bi(cr — hepre ™)™ — BRIE[bryq (copre™+t — her) ™,

1Z
my"™ = Xtbs

Ry 1
Ry — 7o
& = BRUE[Epae % im

respectively. At steady state:

€, = ((1 ~heTTTTE) L BT TR — h)—l),

R* _1
R* _ 15* Y
R, = B lr.e’ 1A,

mym =X

-1
t+1]7

14

1 wt)Lt—®

= ((peg)owprf = -

wt> L —®

Wy Ly —

(1.2.8)

(1.2.9)

(1.2.10)

(1.2.11)
(1.2.12)

(1.2.13)

(1.2.14)

(1.2.15)

(1.2.16)



Equation 1.1.21 and 1.1.22 become:

ky = w Y e # ky_q, (1.2.17)
ki=1—=0)Y ek + <1 — S(,Ztezt*)> it. (1.2.18)
-1
which deliver the steady state relationships:
1 —
ke = use 7Y T-ak,, (1.2.19)

b= 1 (1 (1- 5)eﬂr‘ﬁ> k.. (1.2.20)

under the assumption that S(e”T%) =0.

Equation 1.1.31, 1.1.32, and 1.1.33 become:

ehuf (1= 50 e%) = 5o o)
-1 Li—1 -1
+ BIE[e” t+1§t+1ﬂt+1sl( - e+ )(%64“)2] =& (1.2.21)
t
& = BIE, { i <§t+1(7’f+1Ut+1 —a(upyr)) + & (1 - 5))} (1.2.22)
rf = d(u) (1.2.23)

which deliver the steady state relationships:

b ( S(VTTR) — S’(ewﬁ)ewﬁ)

+ Be Y T a gk S (YT ) (VT Ta )2 = ¢, (1.2.24)
¢k = Be 1T e (5*(Tfu* — aluy)) + €51 - 5)) (1.2.25)
¥ = a'(uy) (1.2.26)

Under the assumptions that S/(e'yTﬁ) =0, ux = 1 and a(us) = 0, the above equations

become:
eh— ¢, (1.2.27)
P (5—1ewﬁ (- 5)) (1.2.28)
rF = d(uy). (1.2.29)

15



Expressed in terms of detrended variables, equation 1.1.37 becomes:

o) s . v~ b S sL s )"
FE; > 72 0 (CwB) L) t+5t+s [ — X sWpwe + (1 + Ay) rsPresLits(7) =0,

gt—i—s
where
1 ifs=0
X s = s YT\ 1 z; L
; ' (mee?’ T T-a (e tri-1)lw )
=1 (T 8) (ZfH 1 ) otherwise
)y et
and
142w
. - 15 X
Lt+s(]) = <wtwtwt+59(t,s> Y Lits

Equation 1.1.38 becomes:

1 o . _ w1
1= (1= o)™ + Cu(mae? T2 ) 100 (g e )i S ol o2y s Ao
Wt
which imply at steady state:
L
&’

we = (14 Ay)

1.2.3 Resource constraints

The resource constraint(s) become:

gi(ce +ip + Q(Ut)é_zzktfl) = Yt

and
g = kLT — @,
1+Af,t
P\ Mt
Yi=|—+ Y;
Py
becomes
1+)‘f,t
. >\ .
yr = (pe) Mt
where
. _ P
Pt =P
B 1+X ¢y . 14+X ¢y Art
I e Py~ 3t T
— t t—1 +
=[(1=G)FE) Mt +Gmept) Mt ] T
_ g LAr,  Agy

X ) _ -
=[1-G)py "+ Gmapram; 1) At ] AL
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(1.2.30)

(1.2.31)

(1.2.32)

(1.2.33)

(1.2.34)

(1.2.35)

(1.2.36)

(1.2.37)



While

1+>‘w,t
Wt Aw,t
Li=|— L
t (Wt t
becomes
1+>‘w,t .
Lt = (U)t) Aw,t Lt (1238)
where
Wy =t
~ _1+>‘w,t o . _1+)‘w,t _ )‘w,t
= (1= Gu) (W)™ ™ 4 Gy (e T T8 W) ™ ™| " o (1.2.39)
_1‘;’\w,t N Ol Ayt
=[(1—Cu)w, ™" + Cu(me?YTam; e Cotbg—r) et ] TPRwe
At steady state we have:
g (Cx +0s) = Yu. (1.2.40)
and
Yo = KSLY — O (1.2.41)
and

1.2.4 Government Policies

The Taylor rule 1.1.39 becomes:

1-p
Rt . Rt—l PR Tt ¥1 Yt ¥2 ) €R,t 1.2.42
R\ R’ - v ‘ (1.2.42)
* t
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1.3 Steady state

Define ¢ implicitly by defining L* (note that you can only to consider policy changes
that leave L* unchanged). From 1.2.28 (if 4 = 1):

k_ p=1 9y
ry =07 e’YT-a — (1 -9). (1.2.43)
From 1.2.5: .
1 e
Wy = (1 Y a®(1 —a)=)pk _a) (1.2.44)
From 1.2.9
a Wy
ke = — L, 1.2.45
1—ark ( )
From 1.2.41:
Yo = KCLIY — @ (1.2.46)
From 1.2.19 and 1.2.20:
k= I TTak,, (1.2.47)
io= (1= (1= 87T 70 ) . (1.2.48)
Hence it follows that:
§=1—eIYTa(l— I%*). (1.2.49)
From 1.2.40:
Y
Cx = = — . (1.2.50)
* g

Given 7, (objective of central bank) and r* (rreal interest rate) we have that 1.2.14,

1.2.16, and 1.2.15 deliver:

£ =l ((1 — he T T8) ! BR(eI T TR — h)_1>,

*

= c:l(ez* — h)_l(ez

)

(1.2.51)
(1.2.52)

(1.2.53)

(1.2.54)
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From 1.2.27:

k=, (1.2.55)
From 1.2.32:
Wy s
= > 1.2.56
P A ALY (1.2:56)
The definition of the labor share LS; is LS; = V]Z:éf:
Wi Ly wely
LS; = = 1.2.57
! PY; Yt ( )
In absence of fixed costs, i.e. F =0, at steady state we have:
LS* = wy* - kg]Llfa - w*(?*)a
— Ozia(l _ Oé)a’l“f 704w>’1<7a — (1 _ a)mc* (1258)

=1 =a)/(1+ )

The following derivations are also obtained for F = 0. We want to get the st.st. capital

output ratio in this economy. Divide 1.2.9 by output (1.2.41), and obtain:

=) ()
Y« — \1l—« ,r.k

k—1 (1.2.59)

where we used the st.st. values of w, and rf computed above. Hence from the definition

of k,: -
k. 1 _ 1 _
= e’Y1-a T _S/\f (B e YT — (1 —6))7!

1 _
A (7 e R (L= )

(1.2.60)
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1.4 Log-linearized model

Eq. 1.2.2 becomes:

me = (1—a) W +a Tty
e Fq. 1.2.6 becomes:
~ G - ~
C =1 —pCp( Tt — LpTe—1)

e Eq. 1.2.4 becomes (see appendix):
ﬁt = (1 =GB+ Ap)mesmey + (1 — Cpﬂ))‘fmc*}:f,t — 1pCpBT
+ GBE 1] + GBE[Py1]
Combining 1.2.62 with 1.2.63 we obtain:

I T e e N PURD VI
S TR RBG | T TR A M

lp  ~ I3 ~
M e I ey E2UURY
Eq. 1.2.8 becomes:
k‘t = ’(/ljt — ?f =+ Et.
Eq. 1.2.11 becomes:

(% = hB)(e¥ — W& = (% —h)by — (€ + Bh%)e

+he¥ Gy — he* 2 — Bh(e* — h)IEy[byyi)
+ﬁheZ:IEt[5t+1] _|_5heZ:]Et[z;‘+1].

Eq. 1.2.12 becomes:

UmMe = Xt + b — I —lﬁt - &

Eq. 1.2.13 becomes:
& =R + Eifén] — Bilzin] — Eoffen).

Eq. 1.2.17 becomes:

20

(1.2.61)

(1.2.62)

(1.2.63)

(1.2.64)

(1.2.65)

(1.2.66)

(1.2.67)

(1.2.68)

(1.2.69)



Eq. 1.2.18 becomes:

Et = —(1 — Lk) Z;tk + (1 — ]%‘7*) I;Jt_l
; * i * (1.2.70)
Lx i
+k*,ut + i,
Eq. 1.2.21 becomes:
1 % 1 1 ¢ * n -
77 221 & S//ezz::ut G/ 221 & t t—1 ( B) t (1.2‘71)

—BIE[zf, ] — BE[it1].
Eq. 1.2.22 becomes:

T’k k

“k * r k
= —-F - —F
S el + ri+(1-9) bl + i+ (1-9) el (1.2.72)
1—46 k o
—-—F .
+rf F1—0) £
Eq. 1.2.23 becomes:
rRER = oy (1.2.73)

Eq. 1.2.30 becomes:

(1 + 2 )iy + (14 Cufr 520 )%y = (1 — CuB)( by + Be + mLe — &)
—CuB(1 + 22 By 1Ty + twzf — Tia — 2] + CuB(1 + i 2e) B, [@m + zﬁm}
(1.2.74)
Eq. 1.2.31 becomes:

! ;fw Wy (1.2.75)

Wy = W1 — T — 2 + twfi—1 + twzi_q +

Substituting 17),5 from 1.2.75 into 1.2.74 we obtain:

—~ —~ ~ —~ 1—¢ 1— ~ R ~ o~ .
Wy — We—1 + Tt + 27 — bwT—1 = lwZ{_| = ( wa) (Hylcfigw) < b+ o1 +vily — & — wt)
N

+ BIE; [wt—i-l —w + 41 + ?[+1 — LTt — szf]

(1.2.76)
where Wy — w—1 + T + z; is nominal wage inflation. Eq. 1.2.34 becomes:
. k
Cx 1y ke
U = G ¢ * . 1.2.77
ot 9t Cx + Uy o+ Ci + 14 et Cx + s u ( )
Eq. 1.2.35 becomes (remember ; = 3,):
~ * D~ * D~
Yx Yx
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Eq. 1.2.42 becomes:

Ry = prRio1i + (1= pr)(1T: + 20i) + €ra (1.2.79)

In absence of fixed costs, i.e. F = 0, log-deviations the labor share equals marginal

costs in terms of log deviations from steady state:

I//B’t = Wy + Et — U
=@+ Ly — oy — (1 — )Ly
= @ — ok — Ly) (1.2.80)
=Wy + Oé(?k,t — W)

—

= Ty
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1.5 Measurement

Output growth (log differences, quarter-to-quarter, in %):

100X ( nY; —InY;1) =100x ( Iny+InZf —Iny,—y —InZ; )
:100)((gt%—h’ly*—gt,l—]ny*—{—z;) (1281)
=100 x ( ¢ — Ge—1 + 2; ) + 100y + 10072 In T

where Zf = 2z — v — 125 InT and is modeled in the transition equation.

Consumption growth (log differences, quarter-to-quarter, in %):

100 % ( InCy —InCyy ) =100 x (& — &1+ 4 ) + 100y +1007% In YT (1.2.82)
Investment growth (log differences, quarter-to-quarter, in %):

100 x ( InIy —Inf—y ) =100 x (i — 441 + 2f ) + 100y + 10072 In T (1.2.83)

Hours worked (log):
InL;= Ly +InL* +In LY (1.2.84)

Nominal wage growth (log differences, quarter-to-quarter, in %):

100 x ( 1HWt —IDWtfl ) = 100 x ( lnwt+lnwt71 ‘|‘Z£k+h'lpt —h’lpt,1 )

=100 x ( Wy — W1 + 2f + 7 ) + 100 * In 7, + 100y + 100%111T
(1.2.85)

Inflation (quarter-to-quarter, in %):

100x ( InP,—InP,—y) =100Inm
= 10074 + 100 In 7.

(1.2.86)

Nominal M2 growth (log differences, quarter-to-quarter, in %):

100x ( InMy—InM;—q ) =100x ( Inmg+Inme_1+2f +InP,—InP_y )

=100 x ( 1y — My—1 + 2f + & ) + 100 x In 7, + 1007y + 100ﬁlnT
(1.2.87)
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Nominal interest rate (annualized, in %):

400 x ( InRy ) =4 x 100R; + 400 % In R*. (1.2.88)

Cointegrating relationships.

Log consumption - Log output (in %):

100 x ( InCy —InY; ) =100 x ( é& — g ) + 100(In¢* — Iny*) (1.2.89)
Log investment - Log output (in %):

100 x ( Inf; —InY; ) =100 x (i; — 9 ) + 100(Iné* — Iny*) (1.2.90)
Log nominal wage - Log output - Log Price (in %):
100x ( nWy—InY; —InP, ) =100 x (@ — g )+ 100(lnw* —Iny*)  (1.2.91)
Log M2 - Log output - Log Price (in %):
100 x ( InMy —InY; —InP; ) =100 x ( iy — 9¢ ) +100(Inm* — Iny*)  (1.2.92)

Note that the transition equation has no constant. So we can rescale all the variables
by 100, and correspondingly make sure that the standard deviations of the exogenous

shocks are measured in %.
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2 Log-linearization of Eq. 1.2.4

Log-linearization of Eq. 1.2.4, which is reproduced here:

& (Pr — (1 + Ap)mer) ye (i)

L 1—¢p

o] sQs ~ Hlszlﬂ—t‘il—lﬂ—* . (21)
+IE, 23:1 Cpﬁ tts th —(1+ )‘f,t—i-s)mct-i-s Yers(i) =0

Note that at st.st. the term within (...) (namely ptnfjii

1T (14 Afe4s)meeys) is equal

to 0, so we need not bother with all the terms outside the parenthesis and we can set

them to their st.st values. Call d1lnz; = ;. Now note that:

ss =Bt (S22 G B = 1=

8?&}7}5@ = — (14 Ap)memey

% = —(1 4 Ap)me. (2211 C;/BsEt[mct-f—S])
818r}}ijt = _)\fmc*//\\f,t

#}M = —Arme. (Z?L C;ﬁsEt[Xf,Hs])
% == (ZE; szﬁsEt[Z?:l(%m - Lp%t+l—1)])

Putting all together we get:
p =(1-— GB) (L + Ap)mesmer + (1 — Cpﬁ))\fmc*xf,t
+ (1= GB) > 6B [(1 + ApmeBylics) + Apmes By Ao s) + By Y5y (Revt — tpFeri-1)]
= (1= GB) (1 + Ap)mesine; + (1 — GB)Armeahs + GBEFii1] — 1p7)
+ GO (1= G+ Ag)meaicess + (1= G\ me. Ry o
+ (1= GB) 25 B° {(1 + Ap)Bme By [fice1ys) + Apme Bt Mg pi14s)
+ B3 (T — Lﬁtﬂ)]]]

or
B = (1= GB) L+ Ap)mesine, + (1 — GB)Apmes,

‘ (22)
+ GBI R 1] + GBI [Py ]

3 Log-linearization of Eq. 1.2.30

Log-linearization of Eq. 1.2.30, which is reproduced here:

00 s . v b S sL s )"
FE; Es:o(cw/@) Liys(3)&t+s [ — X swrwy + (1+ >‘w) L ‘PtEtJr;f—i- () =0, (3-1)
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where
1 ifs=0

/.E‘t s = s 0 ah e Y z} L
) (e’ T-a W (g e’tti=1)tw .
=1 (s S) (Zf+l L ) otherwise.
lelﬂ't_i_le t+1

(1+ /\w)bt+s¢t+sLt+s(j)Vl) s

At st.st. the term within [...] (namely —./f’tvstbtwt + i
S

equal to 0, so we need not bother with all the terms outside the parenthesis and we can

set them to their st.st values. Loglinearizing:

E; Eiio(Cwﬁ)s [ - w*@t — W Wy — Wy Zle (Lw%t—i-l—l + Lw7ATt+l—1 - %t+l - ?tk+l)

Fw. ( 3t+5 + Drys + VlEtJrs(j) - gﬁ+8)j| =0,
(3.2)

Realize that in terms of detrended variables:

_ 14w
Liys(j) = <wtwtw;Llth,s> M Liss,
hence
~ . 1+ Ay =~ . N ® ~ ~ s ~
Lits(j) = — h\ = (wt + Wi — Wiys + Z(bwﬂt+l—1 + bwZipi1 — Tl — Zt+l)) + Liys-
w =1

Substituting in 3.2 we obtain:
ﬁ(l Ty LKi\w)(wt + W) = by + o +vly — &+ 1J,(:,\Jw Wy

14y, ~ ~
+IE: 372 (CwB)? [ — (L4 w2 2) S0 (b1 + iy — Tt — Zry)
~ R = ~ N
Hbiys + Pros + viLips — Epps + mAAe wt-}—s}
1+ @t

1 T L
W(l—i_w o) (W + W) = by + Py + vl — &+ v

Cuw (1+y 1;/)“) VE Lot + twzf — Tey1 — 251

T —CupB

+CuwBIE} [/b\t+1 + @r1 +viLey — Em) +y IJ,(i“’ Wey1 + Y oey (CuB)®[= D001 (twTerri1 +--+)
+/b\t+1+s +.. ﬂ
or

(1 + v 2 ), + (1 + CuBr 20 )iy = (1 - CuB)( by + B + Ly — &)
_@ﬁu+w%%mﬂwﬁ+%4—ﬁﬂ—2@+Qﬁu+w%%mﬂﬁﬂ+wwy
(3.3)
This expression can be further simplified as:

Wy = D (b + By + Ly — & — )
(3.4)

O

-~ ~ ~ o~ ¢ ~
+CuwBIE; [wt+1 + W1 — Wy + M1 + 2441 — LwTt — szz‘].
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4 The flexible price/wage version of the model

In the flexible price/wage version of the model (P = ¢* = 0.

e The price-setting problem of the intermediate good producer under flexible prices
is:
max g, (Pt(i) - MCt) Yi(i)
gt (4.1)

s.t. V(i) = (1533@)_ oy,

The FOC becomes:

1+/\f,t

= (P}(f)> " Afipt (B) = L+ Ap)MC) Vi) =0, (42)

This affects the equilibrium conditions as follows. Equation 8.41 becomes:

pr = (14 Age)mey, (4.3)
and expression 1.2.6 becomes:
1 =17y, (4.4)
which implies:
1= (14 Xpy)mey, (4.5)

e The nominal interest rate and money need not be introduced, hence we can skip

condition 1.2.13 .Same applies to 1.2.12.

e The wage-setting problem of the workers under flexible wages is:

maxy, ;) —wﬁ 1Le()" 4+ st 1.1.20 and 1.1.34 for s = 0. (4.6)

The FOC becomes:

wwy = (1+ o) bts@gthVl : (4.7)
and equation 1.2.31 becomes:
1 =y, (4.8)
which together imply:
we = (1+ o) bt‘PgtLtul . (4.9)
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The steady state is unchanged. The log-linearized conditions are modified as follows:
e Eq. 1.2.64 drops out and is replaced by:
0= (14 Ap)inct + AfAs (4.10)

e Fq. 1.2.67, 1.2.68, and 1.2.79 drop out.

e Expressions 1.2.74 and 1.2.75 both drop out and are replaced by:

@y =b+ 0+l —&. (4.11)

5 Normalizations

We redefine the shocks as follows:

3. (1-— Cp)(l - 5Cp))‘f’):

Aft DY fit (5.1)

. 1

Mt = W#t (5.2)

o e

by = m (5.3)
= (1= CuwB)Pt (5.4)

X;ﬁ (5.5)

6 Introducing Capital Producers (decentralizing the in-

vestment decision)

In this section we decentralize the investment decision by introducing capital producers
who buy goods, transform them into installed capital, and sell it back to the households
at a price QF. We will see that QF is Tobin’s Q — that is, the value of installed capital in
terms of consumption, which previously was equal to ZF/Z;. The household’s problem
is the same as before except that now they do not decide about investment, but only on

how much capital to buy from the capital goods producers.
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The household’s budget constraint, written in nominal terms, is given by:

PrisCiis(5) + Biis(f) + Mits(§) < RisBris—1(7) + Migs—1(5)
+ s+ Wigs () Legs () + (BE sty s(5) — Prgsa(uers(5) Y1) Kipso1(5) (6.1)
+P s QF s (1= 0)Kiys1(j) — Kirs(d) )

where QF is the price of capital in terms of consumption goods. Note that households
at the beginning of period t (but after the realization of the shocks) sell undepreciated
capital from the previous period ((1 —&)K;_1(j)) to capital producers and at the end of
the period purchase the new stock of capital K;(j). Their FOC wrt K; ¢(j) are:

k

o R B a
(0Ky) EiQF = B[S (P u — a(ur) T-0D) + 20,1Q1,(1-9)]. - (6.2)

Note that this FOC is identical to 1.1.32 if we replace QF with ZF/=,.
Capital Producers produce new capital by transforming general output, which
they buy from final goods producers, into new capital via the technology:

D o (1 — S(It)) I;. (6.3)
I

where z is the initial capital purchased from households at the beginning of the period,
and 2’ is the new stock of capital, which they sell back to households at the end of the
period. Their period profits are therefore given by:

ik = Qkx' — QFr — 1,

(6.4)
= QF Yy (1 — S(ﬁ)) I — 1.

Note that these profits do not depend on the initial level of capital x purchased, so
effectively the only decision variable for capital producers is I;. Since they discount

profits using the households’ discount rate 5'=Z;, their FOC wrt I; are:

= Okt oAy o Iy I
On) 2P (1- S - (40 )
- I I -
+ 5Et[:t+1Qf+1TtHMt+1SI(%)(%1)2] =E (6.5)

Note that this FOC is identical to 1.1.31 if we replace Qf with =f /=,.
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7 Adding BGG-type financial frictions as in Christiano,
Motto, Rostagno

7.1 Households

The objective function for household j is unchanged (expression 1.1.16). The household’s
problem is different as households no longer hold the capital stock, and make investment
and capital utilization decisions. Rather, they invest in deposits to the banking sector
D, (in addition to government bonds and money), which pay a gross nominal interest

rate RY. Household j’s budget constraint is:

Py sCiis(j) + Bigs(j) + Dis(§) + Mirs(j) < RiqsBegs—1(j) + Ry (Digs—1(5) + Miegs—1(j)

+ Ht+s + Wt+s (j)Lt—I—s (]) + Trt—i—s;
(7.1)

where the term T'ry; s represents transfers from the entrepreneurs, which we will discuss
later. Households’ first order conditions for consumption, money holdings, bonds, and

wages, are unchanged. [deposits FOC?]

7.2 Capital Producers

There is a representative, competitive, capital producer who produces new capital by
transforming general output — which is bought from final goods producers at the nominal

price Qf — into new capital via the technology:

1
A o G <1 — S(t)> I. (7.2)
I

where z is the initial capital purchased from entrepreneurs in period ¢, and z’ is the new
stock of capital, which they sell back to entrepreneurs at the end of the same period.

Their period profits, expressed in terms of consumption goods, are therefore given by:

(7.3)

30



Note that these profits do not depend on the initial level of capital x purchased, so
effectively the only decision variable for capital producers is I;. Since they discount

profits using the households’ discount rate 5¢=;, their FOC wrt I; are:

Qt t _ It _ ! L L
(01 T (1-S(72) - 571072
+ BB E, I%Ttﬂut 151(1t+1)(1t+1)2] _ (7.4)
P + I Iy

Note that this FOC is identical to 1.1.31 if we replace - Qt with ZF /=,.

7.3 Entrepreneurs

There is a continuum of entrepreneurs indexed by e. Each entrepreneur buys installed
capital K;_1(e) from the capital producers at the end of period ¢ — 1 using her own net

worth Ny_1(e) and a loan B{ ,(e) from the banking sector:

QF 1 Ki-1(e) = Biy(e) + Ne-1(e)

where net worth is expressed in nominal terms. In the next period she rents capital
out to firms, earning a rental rate RY per unit of effective capital. In period ¢ she
is subject to an i.i.d. (across entrepreneurs and over time) shock w(e); that increases
or shrinks her capital, where logw(e); ~ N(my;t1,02, ;) where my; 1 is such that
Fw(e); = 1.Denote by F;_i(w) the cumulative distribution function of w at time ¢,
where the distribution needs to be known at time ¢t — 1. In addition, after observing
the shock she can choose a level of utilization u(e); by paying a cost in terms of general
output equal to a(u(e);)Y ¢ per-unit-of-capital. At the end of period ¢ the entrepreneurs
sells undepreciated capital to the capital producers. Entrepreneurs’ revenues in period ¢

are therefore:

{REu(e)e + (1= 0)Qf = Pa(u(€)) 1™} w(e)eK ()i
or equivalently
w(e) R () Qb K (€)1
where

Rk(e)t _ Rfu(e)t +(1- (S)thC — Pa(u(e)) Y™
Qi
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is the gross nominal return to capital for entrepreneurs. From the profit function it is
clear that the choice of the utilization rate is independent from the amount of capital

purchased or the w shock, and is given by the FOC:
=a'(u(e)) YT, (7.6)

which is the same condition as 1.1.33. Consequently we can drop the index from the

return RY.

The debt contract undertaken by the entrepreneur in period ¢ — 1 consists of the
triplet (B%(e);_1, R%(e)s, @(e);) where RY(e) represents the contractual interest rate, and
w(e); the theshold level of w(e); below which the entrepreneur cannot pay back, which

is therefore defined by the equation:
@(e)eRFQF K (e)i—1 = R¥(e):B%(e)s-1. (7.7)

For w(e); < w(e); the bank monitors the entrepreneurs and extracts a fraction (1 — pf)
of its revenues Rf@f_lf( (e)t—1, where uf represents exogenous bankrupcty costs. The

bank’s zero profit condition implies that [state by state?]:

w(e)t - _
[1— Fa(w(e))] Rd(e)th(e)t—lJr(l—Mteﬁ/o wdFy 1 (W)REQY 1 K (€)1 = Ri-1B% ()11

where R;_1 is the rate paid by the bank to the depositors. If we define leverage as:

Bi(e
ole)e = N((C))t 7
use the definitions
[ig (@ ) = W[l - F- 1(%)] + Gr-1(@r)
Gioi(@) = [ wdF_y(
as well as the definiton of @(e)t, the zero-profit condition can be rewritten as:
[Ti-1(@(e)s) — pi_1 Gr—1(@(e)r)] Rtkl (1+ o(e)i—1) = o(e)t—1. (7.8)

Entrepreneurs’ expected profits (before the realization of the shock w;) can be written

S, [0 RH QK (€)1 — R B e)en | dFia(w(e)r) =
(25, (el (w(e)) = @(e)l1 = Fr(@(e))]] REen@b Kle)i1 =

(1T (@(e)0)] s [1+ e(€)e—1] Rt N(€)r—1
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The contract that maximizes expected net worth for the entrepreneurs is given by:

. (1~ o1 (@(e)0)] s [1+ e(€)e—1] Re-1 N (€)1
max t—1 ) . 7k
{e(e)er.2(e):) 1 { [e1(@(€)e) = By Geor(@(0)0)] 7ty [1+ e(e)e1] — e(e)emn }

so that the FOCs are:

o) 0=Fp1 [[1 =T (@(e))] g | RaN ()

B [m { [T (@(0)) = w1 Gra@(e))] 7 — 1]

1
(o _ YNCION
Ble) = o GE o e RN (e

Substituting the second FOC into the first we obtain:

_ Réﬁ‘ Fg—l(a}t) — e — Rf‘
Br-1|[L = Tema (@) Ry * D1 (@) = pi_1 Gy (@) [Fe1(@) = i1 G () Ry
(7.9)

where we omit the the indicator (e) since the condition implies that w(e); only depends
on aggregate variables and is the same across entrepreneurs. From the zero profits
condition 7.8 this implies that leverage p(e):—; is also the same, hence we can rewrite 7.8
as a function of aggregate variables only:

Rf  QF | Ki1— N

[Ti—1(we) — w1 Gr1(@t)] Rt oF K, .
- t—1 18—

(7.10)

Aggregate entrepreneurs’ equity evolves according to:

Vi = [0 wiRFQF K (e)i1dF1(wr) — [1 — Fy1(@)]R(e): B (€)1
=RFQF Ky 1 — |Rioy + p§_ G (@) Rf% (QF_1Ki—1 — Ni—1) .

(7.11)
A fraction 1 —~; of entrepreneurs exits the economy and fraction ~; survives to continue
operating for another period. A fraction © of the total net worth owned by exiting
entrepreneurs is consumed upon exit and the remaining fraction of their networth is
transfered as a lump sum to the households. Each period new entrepreneurs enter and
receive a net worth transfer W. Because W is small, this exit and entry process ensures
that entrepreneurs do not accumulate enough net worth to escape the financial frictions.

Aggregate entrepreneurs’ net worth evolves accordingly as:
Ny = Vi + WY (7.12)
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7.4 Detrending and steady state
We detrend the additional variables introduced by this extension as follows:
k e
N, Vi e
qf = %Tt, nt = 7PtZtt*’ ’Ut = t wt = PtZt; (713)

All other variables are detrended as in 8.38. Expressions 7.4, 7.5, 7.8, 7.11, and 7.12

become

fth,ut <1 - S(Lezf) B S/(Lez;‘) 1t ezf)

11 11 141
_Z* 7/ Z* 7, Z*
+ BE,[e t+1§t+1qf_~_lut+1sl(%le t+1)(%le t+1)2] =& (7.14)
k k
. 1-8d —
Rf — rt Ut + ( k )Qt a’(ut)ﬂ,t (715)
T
¥ = d (w) (7.16)
L -
- ki1 —mng_
o RE = pidim1tel T (7.17)
qt_1kt—1
_ e _ RY qk, ki1 — e
[Ti1 (@) = s Groa(@)] 7= = T (7.18)

R qF ki1

L
o _ pkk T -\ pk__ d—1ki—1
vt = Riqr k-1 — | Rey + piy Goo (@) BY b= —

(Qf_ﬂ%tfl - ntfl)

(7.19)
ny = v + wy. (7.20)
Expression 7.9 is already expressed in terms of detrended variables.
The steady state relationships are:
X (1 — S(eVTTE) — s/(evrﬁ)ewﬁ)
+ BT TR L gl pS (TR () = €, (7.21)

which implies since S(.) = S’(.) = 0 at steady state that ¢¥ = 1. We also parameterize
a(.) so that us, = 1 and a(u,) = 0. With this information, and after some simplification,
we can rewrite the remaining steady state equations as

RE i+ (1-9)

22
p T (7.22)
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E = \I/((I)*, Ows; ,ui) (723)

N Rk
=1 [0 @) - G (@) ” (7.24)

N RF we
(L=mB™) = =np™ {R [ = pSGa (@) — 1} + = (7.25)
vy = 75 (e — wE). (7.26)
with
Ou O e — Pik ((D*)
Ve ) = T GO (@) — 120 (@2)] + T (@) [T (@) — 0 (@)

_ L (7.27)

1 g Gy [1 = T (@4)] - G (@)

Our strategy for computing the steady state is going to be the following: find a

Dk
solution for the real return to capital % and use 7.22 to find r*:
Rk
k=1 _(1-9). (7.28)
Tx

Once we have r¥ we can proceed exactly as in section 1.3 to find the steady state for the

other variables. Recall that from the Euler equation the steady state real rate is given

by:

R, 1
- = ex .,
Tk b
o ee R, R¥ o o
In absence of financial friction = and = would be identical, but frictions induce

a spread between the two, which we will compute subsequently as a function of the

primitives in the economy (037*, e, Yy WE).

We solve for the steady state according to the following steps:

1. Set
F, (0,) = F. (7.29)
and define
Inw, + o2 _
o= DT 2% g1 (p) (7.30)
Owx
which we can use to write
1
@ (0ws) = exp {Jw*zf - 203*} (7.31)
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2. Given the value for the spread for debt contracts, R%/R., we can use equation

(7.17) to write
ki

Ry R G

7.32
R, R. (@ ( )

(Note: this second step can be skipped if instead we calibrate/estimate R¥/R,

directly.)

3. Given R¥/R,, we can use (7.23) to write

=1 —1 ’ o
(R*> = 1w @) - el @)

R.

which we can use to set

e\ —1
- (i)
e R*

/’[/* O-UJ* == (o
) S ST T @l + 6 o

and plugging in the exact expressions we get

1o (B
<R*) _ (7.33)
{1-®(2¢ —0wi) 0 (1= Fo) } + @ (2 — o)

i (00) = 1 6(z%)
O 1—Fy

4. Given the above and equation (7.24) we get

N . _ o RE
T (0w) =1—{@s [1 = F] 4+ (1 — p$) @ (22 — 0uws) } R (7.34)

5. Given the elasticity of the spread w.r.t. leverage, (s, derived below in equation
(7.42), we get the following expression

l—q’(z‘;)jvw*)

1—Fy —Wx [17 Li¢(2’if)} +1 5

‘*+(1, 3)@(2’557‘,%*) ok
w. 2 17522“) g:: — 1 _ <Sf71b (7'35)
ne TR 6 [ (%) —1

Gu02, {1_ﬁ q>(zsy)r (1-F.)

owx 1—Fy

which we can solve for o, Once we find this value we can plug back into the

previous expressions, that depend on ..
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6. Given 7, and using equation (7.25) we get

* 0

IZ_

718

T« _ Rk
= (1—np™") B {R* [1— pS® (2 — ows)] — 1} (7.36)

and from equation (7.26)
% — A1 (” _ w*) (7.37)
rh=_1=% —(1-9) (7.38)

7.5 Log-linearization

Log-linearization of the FOC w.r.t. leverage (expression 7.9) yields:

~k N - R e
0=FE (Rt—H - Rt> + CoBtwit1 + Cooy, 0wt + Cope fiy (7.39)
with
_ (@ _ e/ — RE (@
L 2 {1 -T@) + vpries; [[@) - 16@))} # - o)
b =

. T, (@ N e o RE
{1~ D@+ e (@) - FCL@)) | 7
defined for z € {Q,ag,ue}. Log-linearization of the zero profit condition (expres-
sion 7.18) yields:

~k R R R R 1/ & ~

Rt — Ry 1+ Cz,wa)t + Cz,awo'w,tfl + Cz,,ueﬂf_l = - (Q*) (ntfl — 41— kt71> (7'40)
with
£ M@ - 46@)
D (@s) — peGa(s)
defined for = € {@, o2, ,ue} . We can further write

CZ,CE =

(7.41)

~ 1 . ok =
Wt = — (nt—l — Qi1 — kt—l) —
CZ,QQ* =

z,W

~k .
<Rt - Rt—l + Cz,zm,&wnf—l + Cz,u‘f/:‘;’l)
and plug this expression into 7.39 to obtain:

=~k N
0 = E; |:Rt+1 - Rt] + Cb,awa'w,t + Cb,/ﬁ/lf
B = ~k ~
—ng’; [91* (ﬁt — G — kt) + E: |:Rt+1 - Rt] + (2000wt + Cz,ueﬂf]
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hence

~k . ~
E; |:Rt+1 - Rt] = Copyb ((ff + ky — ﬁt) + Cop,ow, 0wt + Coppe f5 (7.42)

where
$bo

¢ = __%w 1
sp,b 1_Sb@ O«

C (Z w
&Cz ow Cb oW
1— Cb @

Cz&)

Cspow =

9
(ZZCZ pne— Cb,u,

Qe = | b

CZ,LD

Log-linearization of the expression 7.20, characterizing net worth, yields:

R Vs ooy Wh e

e = ve— (3¢ + 0¢) + —wy. (7.43)
Nk T

Log-linearization of the expression 7.19, characterizing the evolution of entrepreneurial

equity, is

~

_ . ~ ~k

b = —g - AR (R - )+ B (1 G (@) (Rt - m) + B e
(WR:*( — G ( ))—ﬁ_1>&<% 1+kt 1)

_N*G ( ) R [,U't 1 + CG wwt + CG Uwo'wt 1]

Tae®r Vs
(7.44)
Plugging in the expression for @; we obtain
-~ 1kse—n > RF L =k 1n
Oy = —3 — flEenx . (Rt_l_ﬁt) +7r*e*z:: v*( —pSGy (W) | Ry —me ) + 8~ 77% 1

RE _ 1\ ke (4 A ~\ Rtk
(= G @) = B7Y) B (@) + Rt — G (@) 2B [, + G
_ RF N - 7
— 115G (@4) ﬁv* CGW[ - (nt—l —df - kt—l)
k

~ e (B = Rt Gomrwan + oo )

Collecting terms yields

~k R ~
0 = —E 4G, pr <Rt - 7Tt> — Cu,R (th - 7Tt> + QoK (@f_1 + ktfl) + Cunnit—1

_Cv,ue/lgfl - Cfu,aw 6'w,t—1

(7.45)
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with

_ R’j (G.@
G = e [1- G @) (1- €2))]
_\ RFCao

Gr = B~ 1&[ — B Gy (@) 7 E“f

G = B [1- 6. @) (1- S5 )] - 7%
G = 51%:: Tl G €2
Gope =BG (@) ke (1- (gl
Gow = HG (@ Mi*’;x o (1-%)

Finally, substituting this expression into 7.43 we get:

e = Y=Y+ 7wt — V2t
+C ok (Rt - 7Tt> — Cu,R (Rt—l - 7Tt> + Cn,qi (Qf_1 + E‘t—l) + Cnnfe—1

_gn,ue /lgfl - gn,aw a'w,t— 1

(7.46)
with
~ e * 1 eG —, 1 _ CG,@
Cuir = T or(4ed) |1 — piGa (@) s
Dk _
Gun = BTN+ ) [1— B 4+ Gl (@) B 502
Rk — ) —
Grak = e (L4 00) [1 - G (@) (1- 222 )| 8711 + o)
- Rk - ®
Cnn = BN+ V¥ oo (1 + 0:) G (@4) CE,G@’Q*
i )
G = G (@) (14 0) (1 - oo )
_ Rk 2,00
Cnow = YaHsGa (@) Tr*;:: (1+0:)lca (1 - C@T)
Now normalize the shocks,
&w,t = Csp,awa'w,t (747)
[i§ = Cspyue il (7.48)
~ Vs .
Yo = Ye—H (7.49)
T
so that the relevant log-linear equations, (7.42) and (7.46), become:
~k . ~
E, [Rt+1 - Rt] = Csp,b (Qf + ke — ﬁt> + Oyt + fif (7.50)
and
N =k 5 o T N
e = G, pk <Rt - 7Tt> — Cu,R <Rt71 - 7Tt) + Cngk (qt_l + ktq) + Cnnfie—1 (751)
R R e
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Log-linearization of 7.15 and 7.14 yield:

~k rk (1-9)
R — T+ = * ik "k_ Akf ,
t t Tf+(1_5)Qt i1

and

1, 1

7.6 Log-linear distribution

Consider

Inw ~ N (my,, O'i)

which has the properties

Ew] = et 2ol

In order to get E [w] = 1 we need to set

The CDF is

Further notice that

=1
D (2) = / e 2% dy

—oo V2T

et Ut + gt = 2 — i1+ (14 B)ir — B[z — BE[ir).

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

for which we can use matlab functions normpdf and normcdf. We also need the following

expression

z=0 1 (F)

for which we can use an inverse cdf function also available in matlab as norminv.
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The partial expectation obeys

1.2 —, — 1.2
E[w,ww]_q)(m—lmu)_l_@(m—z%)

which implies that

G (®)

Il
C\g
€
&h
E
joH
)
I
S—
3
€
<
E
joH
)
|
T
3
€
(g
E
joH
€

Finally we define

'w) = /wf(w)dw—i—w/ f(w)dw
0 @
Inw+ o2
Ow
If we define
w lnw+%03)
Y =
Ow
then we get
G (W)= (¥ —o0y,)
and

FNw)=w[l-o ()] +®(z¥—0y,)
In order to compute the derivatives, first notice that we can write
¢ (2% —0w) = we ()

and
8 (2) = —26(2), ¥z

Using this result we can write the derivatives as follows:

G (@) = -6 ()
G (@) =~ G (@) = = 5 6(:")
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(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

(7.69)

(7.70)



and

&l

where we use notation f/' (@) = 9f (

7.7 Elasticities

First notice that we have several elasticities defined as

Ut B e _ */:
- 2{1-T @) + p [0 (@) - 16 @)}
br =

(@)

I (@) —psG' (@)

{1—F(@)+%[F(@)—M§G(w

which we can rewrite as

N}

Chw = {

with
- o N
U = {1 —T@+ g (Q)F—(ug)G’ & 0 (@) — psG (w)]} Zz
k (s
= [1-T'(w)] R: + (Q)F—(MG)G’ & [[F (@) — psG ()]

Elasticities w.r.t. @
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(7.72)

(7.73)
(7.74)

(7.75)
(7.76)

(7.77)

) /0w and f,, (@) = df (w) /00, for f € {G,T}.




First write

o RE
-~ = _1 s Tk
o\ . RE I (@) [IV (@) — peG (@)] = TV (@) [ (@) — uG" (@)]
N PRI LCT JOR: TR,
Ry [ (@) — psG' (@)
I (@) . ;o BE
r — usG —
TE wee @I
and simplify to
v B _ Rk G (@) T (@) — G (@) I (@)
o = KA @)~ G @) o - f ST S C
0 R. I (@) - psG' (@)
() G (@) - G" (@) T (@)
The [V (@) - ps@ (@)
which we can plug into the elasticity to get
'uegrl/(@*)Gl (Q*)*GZ(GJ*)F’* (@x)
* K I, (@4 ) —pE G, (@4 -
G = : [/(_) ‘;*(wf) E G @. (7.79)
We also have
I (@) — PG (@)
o= R AT 7.80
5 =T (@) — G (@) (750
Notice that if we plug everything into
Cb,@ N
CZ,@ _*
Csp,b:*1 R (7.81)
which becomes
Csp b — Ex — (782)
[l—w*[l <I>(z )] CD(Z* o'w*)] _P (s _i S _ (s Riﬁ
1— (T e s o] n-een |
nio(x2) o(%)-=¢[1-2( :’)] N
Ox 08y [1*4)(52)) O‘l:k*d)( ‘f)} *
Elasticity of w.r.t. o,
First we compute the derivative
oA RE I’ (@) RE
— I, (@) == Iy, (@) — psGy, (@) ==
I, @) @) - i@ @) =T @) [T, @) —psG, @) [ R
T @1 (@) = i @) =1 @) [Ty, O i) — ey 2
[ (@) — psG' (@)] R,
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hence

- e Goy, (@ - _ _ _ _
b (L-mTEE \ B G @), @) - @) G, @)
80' - (:‘G/((D) Ow (w) R /"L* ]2‘ F/ _ EG/ —\12

so that
il AT (@) 2 4 pone CH@ITl e (@) TL@)Gl . (@)
1—pg Cx(@2) Tw V) R T Pk [T (@) —ps G (@)
Cb _ T (@x) o
0w = _ \1 Rk I, (@« N “r
[1—F*(w*>]m+m<l_i)
(7.83)
We also have
Doy (0s) = pSGo s (@4)
2,00 — —— - w .84
o Ly (@4) — p$Gas (05) 7 (7:84)
and finally we can write
Sha = Gb
Coip 0510w Ow
Csppw = [ (785)
1 o Czyi:
Elasticity of w.r.t. u°
First solve
oV IV'@G @ n  I'@Gw RE
o~ V(@) -G @F ke T (®)— 4G (@) R
so that
I (@)GL (@) e A -\ RE
Tonea oo e T I (@) Ga (ws)
Cho = — e mGEI R Il R (7.86)
LD @] [ (@)~ Gl @] 7 + T4 (@) (1- %)
We also have
CZ, e — — — — Hi 787
g Dy (ws) — psGa (04) ( )
Finally we write
Ch,@
ﬁ(z,ue - Cb,ue
Coppe = == s (7.88)
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8 SW original model

In this section we describe in detail the Smets and Wouters (2007) model, henceforth

SW), and emphasize the differences with the model presented in Section 1 of these notes.

8.1 Model
8.1.1 Intermediate firms
We follow SW and assume the production function to be:
Yi(i) = max{e™ Ky (i) (Li(i)e?")' ™" — @Ot a8 o}, (8.1)

where
Zy = ,Oz/gt—l + Oz€xt, €t ™~ N(O, 1) (82)
(Note that what SW call “y” in our notation is e€”, and that they assume T = 1.) SW

assume that productivity Z; is stationary. Define Z; as follows:

In Zt == 215. (83)

For p, € (0,1) the process In Z; is stationary, as in SW. For p, = 1 it follows a random
walk. This specification accomodates both. Note that we can rewrite the production

function as:

Yi(i) = max{ K, (i)® (Ly(1)Z)™ — @e~ a7 2,0 125 10811 g1, (8.4)

Cost minimization subject to 8.4 yields the conditions:

(OLi(1))  Vi(i)(1 — ) Z} =Ky (i)* Ly (i) = W,
(0K:(i)) Vi(i)aZ K (i)* ' Li(i)' = = R}

where V,(i) is the Lagrange multiplier associated with 1.1.8. In turn, these conditions
imply:

Kt(l) o « %

Li(i) 1—aRF
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Note that if we integrate both sides of the equation wrt di and define K; = [ K¢(i)di

and Ly = [ Ly(i)di we obtain a relationship between aggregate labor and capital:

(% Wt

Ky = ——+—1L,.
¢ 1—aRF K

(8.5)

Total variable cost is given by
Variable Costs = (W; + R} [sz((f)) )L (7)

Ki() o ro r—(1—a) [ Ki(i) ™%
= (W} +Ré€ Lz((i)))yz(l)zt e (Lt((Z))) ’

where Y;(i) = Z}7*K;(i)*L:(i)'~® is the “variable” part of output. The marginal cost

MC} is the same for all firms and equal to:

t L(7) Ly (4)
_ a—a(l _ a)—(l—a)thfaRig oth*(lfa)'

MGy = (W, + RS 2,07 () 6

[TO DO WITH KIMBALL] Prices are sticky as in Calvo (1983). Specifically, each
firm can readjust prices with probability 1 — (, in each period. We depart rfom Calvo
(1983) in assuming that for those firms that cannot adjust prices, P;(i) will increase at
the geometric weighted average (with weigths 1 — ¢, and ¢, respectively) of the steady
state rate of inflation 7, and of last period’s inflation 7;_1. For those firms that can
adjust prices, the problem is to choose a price level Pt(z) that maximizes the expected
present discounted value of profits in all states of nature where the firm is stuck with

that price in the future:

THAXP, (i) =4 (Pt(l) - MCt) Yi (i)

+ Er 3ol GBEL (Pt(i) (Hlszlﬂéizfﬂiﬂﬁ B MCH—g) Yol

_1+>\fﬂf+s (87)

Py(i) (st:ﬂ;il—lﬂiﬂp> Nt
Pt+s

s.t. }/;5+S(Z) = thJrSa

where $°Z7, , is today’s value of a future dollar for the consumers (=7, , is the Lagrange

multiplier associated with the consumer’s nominal budget constraint - remember there
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are complete markets so 35Z '+ is the same for all consumers). The FOC for the firm is:

1+Ag

~ [EE— L
=p ( E2() Af, ;
= () 7w (PO - () MG) Y+
— fotts
B, S sgsEP Pt(i)<1‘[l5 17 iil 17ri Lp) Motk (Hls 17rzil 17ri Lp) (8.8)
t ZS:O Cp “tts Py AftrsPits

(pt(i) (Hz T ) -1+ )‘f,t+s)MCt+s> Yigs(i) =0

Note that all firms readjusting prices face an indentical problem. We will consider only
the symmetric equilibrium in which all firms that can readjust prices will choose the

same P;(i), so we can drop the i index from now on. From 1.1.6 it follows that:

1
5 Af

Bo= (1= )P, ¥+ Glnt? w7 Puy) M, (8.9)

8.1.2 Households

Household j’s utility is (as opposed to 1.1.16):

EtZBS[

where Ci(j) is consumption, L.(j) is labor supply. Three observations are in order

(Cnsl) = 1) (S L)) (820

regarding this utility function. First, utility is increasing in consumption and leisure
regardless of the value of o.. Second, there are no “discount rate” or “leisure” shocks in

the utility function. Third, SW have external (as opposed to internal) habit.

The household’s budget constraint, written in real terms, is given by:

Biis(g Biis_1(j
Cirs(J) + Trrs () + propzth— < Brptl)

. R > .
L) + (s () Kot () = 0l s )Y Rrrea (7)) + Hets = Lot
(8.11)

where I;(j) is investment, By(j) is holdings of government bonds, R; is the gross nominal
interest rate paid on government bonds, II; is the per-capita profit the household gets
from owning firms (assume household pool their firm shares, T; is lump-sum taxes, so
that they all receive the same profit) W/ (j) is the wage earned by household j. b; is

a “risk premium shock”. The term within parenthesis represents the return to owning
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K(j) units of capital. Households choose the utilization rate of their own capital, u;(j),

and end up renting to firms in period ¢ an amount of “effective” capital equal to:

Ki(j) = u () Kir (), (8.12)

and getting RFu;(j)K;_1(j) in return. They however have to pay a cost of utilization
in terms of the consumption good which is equal to a(u;(j))Y¢K;_1(j). Households

accumulate capital according to the equation:

I(j) ,
200 1) (813

where § is the rate of depreciation, and S(-) is the cost of adjusting investment, with

Ko() = (1 - 9)Kor () + T <1 s

S’(+) > 0,58”(-) > 0. The term p; is a stochastic disturbance to the price of investment

relative to consumption

Households are all identical, so the j subscript is pretty redundant except for the

fact that we have external habits. We will drop the j subsequently.

The FOCs for consumption, bonds, and labor are:

) o o.—1 y _
(8Ci(j))  (Cr—hCi_1) 7“exp (1 - L l> == (8.14)
0Bi(5)) == ﬁRtbtzEt[;Zi] (8.15)
. -0 oc.—1 v v —_ Wh
(OL:(5))  (Ct — hCi_1) "¢ exp (1 — L+ l) L = :t?i. (8.16)

Note that households take W} as given and maximize with respect to L;. The wage
stickiness part will be discussed below. Using 8.14 we can rewrite 8.16 as:
Wh
(Cy —hCyq) L = —L-. (8.17)
P
Let us now address the capital accumulation/utilization problem. Call ZF the La-

grange multiplier associated with constraint 8.13. The FOC with respect to investment,

capital, and capital utilization are:

(81) SHa (1 - S(%) - 5’(%>%>

+ BEt[EfHTt“MtHS/(ItTJ?)(ItT?)Q] =5t (8.18)
(0K:) E=F =B, [Et+1(}]§§11 st = a(uer) YD) = (1 6)] (8.19)
(0w v ) (8.20)
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The first FOC is the law of motion for the shadow value of capital. Note that if adjust-
ment cost were absent, the FOC would simply say that E,’th,ut is equal to the marginal
utility of consumption. In other words, in absence of adjustment costs the shadow cost
of taking resources away from consumption equals the shadow benefit (abstracting from
Ytu) of putting these resources into investment: Tobin’s Q is equal to one. The second
FOC says that if I buy a unit of capital today I have to pay its price in real terms, ZF,
but tomorrow I will get the proceeds from renting capital, plus I can sell back the capital
that has not depreciated. Define Qf = %ﬂ: Qf has the interpretation of the value of
installed capital relative to consumption goods (i.e., Tobin’s Q). Then condition 8.19 can

be rewritten as:

= RY
Qf = BIE, [ = (ptHI w1 — a(u) YD 4 QF (1 - 5))] : (8.21)
Jr

—t

8.1.3 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in

response to deviations of inflation and output from their respective target levels:

" 1—pr -
R (Rea\" | (m\" (v )" v, YIO\© Lo (8.22)
— = — — - e .
R R T v,/ Vi1 v/

where the parameter prp determines the degree of interest rate smoothing, R* is the

steady state nominal rate and th is output under flexible/prices and wages. Note that
policy reacts to both level differences between Y; and Y;f (2(1 — pRr) coefficient) as well
as growth differences (1o coefficient). Note also that the exogenours part of monetary
policy is captured by the process ri"*, which follows an autoregressive process. The cen-
tral bank supplies the money demanded by the household to support the desired nominal

interest rate.

The government budget constraint is of the form

B
PGy + By = PT} + —-, (8.23)
bR
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where T} are nominal lump-sum taxes (or subsidies) that also appear in household’s bud-
get constraint. SW, who assume technology is stationary, express government spending

relative to the deterministic trend in output:
Gt = gty*ezit (824)

where y, is the steady state of detrended output. Since we detrend everything (see
below) by Z;, we need to be careful. Define

G
= T (8.25)
*

gt =

At steady state g, = g«. Note the difference with DSSW, where ¢; = v X—/th and g, =
> 1. In SW g, € (0,1).

c+z

8.1.4 Resource constraints

To obtain the market clearing condition for the final goods market first integrate the HH

budge constraint across households, and combine it with the gvmt budget constraint:
P.Cy + Py + PGy < +1IL + [ Wi(4)Le(5)dy
+ RF [ Ki(j)dj — Pra(u) Yt [ Ki—1(5)dj.
Next, realize that
I, = /H(z’)tdi = /P(i)tY(i)tdz' — WiL; — RFK;,

where L, = [ L(i).di is total labor supplied by the labor packers (and demanded by the

firms), and Ky = [ K(i);di = [ K;(j)dj. Now replace the defintion of II; into the HH
budget constraint, realize that by the labor and goods’ packers’ zero profit condition
WiLy = [ Wi(§)Le(j)dj, and PY; = [ P(3) )idi and obtain:

Ct + It + a(ut)T*tK't_l + Gt = Yi (826)

where Y; is defined by (1.1.1). The relationship between output and the aggregate
inputs, labor anc capital, is:
Y = [Z} T K(i)*Le(i) 0di — Z; @
= Z}7* [(K/L)*L(i)di — Z;® (8.27)
= Z} 7KLY — 77D,

50



where I used the fact that the capital labor ratio is constant across firms (also, since

K(i) = (K/L)L(7) it must be the case that &IL(((Z));IZ = K;/Ly = (K/L)). The problem

with these resource constraints is that what we observe in the data is Y; = [ Yi(i)di and

Ly = [ L(j)dj, as opposed to Y; and L;. But note that from 1.1.5:

1+Af,t 1+Af7t
. X DY
— fit ; fit :
Y, =YD | P(i), di
1+>\f,t _1+)‘f,t

A . A
_ fit £t
=Y P, P, ,
Afit

. A T A
where P, = [ [P(i) vt di , and

Lt = th(j)dj

1+Aw7t _ 1+Aw7t
_ >‘w,t . Aw,t -
= LW, JW (), di
Hrwe 1w

_ Aw,t T Aw,t
= LW, "t W, :

/\w,t

] e T T e
where W; = <f W), vt dj> .

8.1.5 Exogenous Processes

When technology is stationary or has a unit root, its process is given by 8.3, which we
report here:

Zt = pzZt—1 + O2E%t-

We now discuss the process for g;. SW assume a stationary process for g, = log(j—i),

which is correlated with shocks in technology:

ét = pgét—l + 0g€gt + Ng202E2 ¢ (828)

If technology is not stationary, this process does not make sense since g, is non stationary.

Hence we replace it by the assumption that g, = log(g—i) is stationary

Gt = Pggi—1 + 0g€gt + Ng202624. (8.29)
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We express all remaining processes in log deviations from their steady state value,

which is assumed to be 1:

by = pybi—1 + oven s, (8.30)
fiy = p,u,&t—l + ouEpts (831)
,’gln = prmfﬁl + OrEpm ¢, (832)

The mark-up shocks follow ARMA(1,1) processes:

Aft = PasAfi—1 + 0N Expt + 00N EN -1 (8.33)

~ ~

Aw,t = Prow Mwt—1 F OrpErwt T Mo TNy E N t—15 (8.34)
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8.2 Detrending

SW detrend the variables by the deterministic trend €7 (or by eT 7= 198D if there is
a trend in the relative price of capital). We detrend by
7 = ZyeOtralos Dt p 5 (8.35)

Define z; = log(Z;/Z;_ ;). Denote with , the steady state values of the variables, and
realize that at st.st. 2i = v+ ;2 log Y. From 8.2 and 8.3 we see that

o% * * 1 1
HEa A= a(p 1)Z-1 + T g0t (8.36)
and
. 1 -
Bz = TPz =D (8.37)

Note that for p, = 1 Z; has no impact on Z;.

Specifically:
Ct gia Yt = %/zka ) Z*, kt T té(%’ kt T té(%’
Ry W, wh - _ B - W,
’I“f = Tt?ia Wy = PZ*7 w? PtZ*a bt = Piv Wy = th (838)

gt = Etzzacv é.t = EfZ:UCTta Qt = Q{?Tt
Note that this implies that some of the equilibrium conditions will look different from

SW.

Intermediate goods producers

We start by expressing 8.6 in terms of detrended variables:

MCy
P

mey = (1 — ) @)yl apk (8.39)

Hence
me, = a1 —a)~yl-apk e (8.40)
oo (TQ BE DONE) #ttttsttttfofoffofofok

Expression 8.8 becomes:

(1+)‘f,t)_1
§& = Aft 5 (14 )\ ;
Pt (Be — (L4 Age)mer) yi(i)
(1+>\f,t+s)71 (A+Ap 1)

s Stts Dt Af,t+s s T—tp Afitts 8.41

B 2 G )‘ft+s <st=17rt+l> <HZ 17Tt+l 170 ) (841
II$ A .

<ptlng+lwt1+l -1+ )\f,t+s)m0t+s> Yeys(i) =0
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this implies that:
Bo= (14 Ap)a (1 - a) (-l erk e

Expression 77 becomes:

1

T Xy 1
1=1[(1-G)py ez + Cp(ﬂéilwi_%wfl) >‘f,t]_>‘f,t‘

which means that:
P = 1.
Recall that aggregate profits are equal to:
I; = PY; — WiL; — RFK;.
In terms of detrended variables we then have :

11

PtZ;‘ =y —wi Ly — Tfkt

= kL% — ® —wi Ly — 72w Ly

- (- ) o

= <(1ga)aw?7“f - 1lawt>Lt—‘I’

At steady state we can use 8.42 to get that st. st. profits are:

IT; )‘f

F3 = ’UJ*L* — @.
P.Z] 11—«
stk ok R KR KRR kR KR KKK K
Equation 8.5 becomes:
o Wt
kt — 7
I—arg
and at st.st.:
a wy
ke = —L,.
T l—ark™

Households
Expressions 8.14, 8.15, and 8.17 become:

1—|—Vl

+\ “Oc - 1
& = (ct - hct,le_zt> exp <UCLt1+Vl

& = BRib B [§t+1€7062:+17ﬂ;11],

—zF vp _ ..h
(Ct — hei_qe t) L' =wy,
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(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)

(8.48)
(8.49)

(8.50)



respectively. At steady state:

. 1
& =1¢.7°(1 —he ™) 7cexp <?C+VIL,1F+”Z> , (8.51)
R, = B e, (8.52)
e (1 ~ he i ) L = wh, (8.53)

Equation 8.12 and 8.13 become:

k‘t = utT_le_Z?l_ft_l, (854)

ke= (1= 0T e ko1 + e (1 - S(i”ezi‘)> ie. (8.55)
t—1

which deliver the steady state relationships:

ky = e VY Tk, (8.56)

i = 1 (1 —(1- 5)e—vrfﬁ) k.. (8.57)

under the assumption that S(e?TT°a) = 0.

Equation 8.18, 8.21, and 8.20 become:

ff,u,t <1—S(,it ezt*) —S/(—,it ezz) ,it ezt*)
1t—1 -1 -1
BB ey 8 () (e = & (8.59)
t t

qf = B, [T_le_oczt*“ggl (Tf+1ut+1 —a(ug1) + qf+1(1 — 5))} (8.59)

rf = a' (). (8.60)

Under the assumptions that S’(e'yTﬁ) =0, ux = 1 and a(u,) = 0, the above equations

at steady state imply

éff =&, (8.61)
k= gl — (1 - 6) (8.62)
k= (uy). (8.63)

where 8.61 implies ¢¥ = 1 (note the a(.) function can be normalized so to make a’(1) be

whatever the steady state r¥ is).
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Expressed in terms of detrended variables, equation 1.1.37 becomes:

o0 s y Y. . b s SL s )"
B S 0(GoB) L | — Bystbi + (14 Ay sl inslIT) 5 64)

€t+s
where
1 ifs=0
Xy s = s YT N1 z L
) (e’ Y T-a W ( Ty e tH-1)tw .
=1 (T S) <Zf+l ! ) otherwise
Iy ettt
and
1Ay
. ~ 15 Xw
Lt+s(]) = (wtwtthrth,s) Liys
Equation 1.1.38 becomes:
* Wg—1 L

1 @ *
1=[(1—=Co)0™ + Co((meed T T=a ) tw (ry_jePi-1)tw e ) e 8.65
t t

Wt

which imply at steady state:

L
we = (14 A\y) g (8.66)
Wy = 1. (8.67)
Resource constraints
If the technology process is stationary, the resource constraint become:
1 .
Yegre” o 4o iy + alu)e ko = yr, (8.68)
otherwise it becomes:
Y«gt + ¢t + 1t + a(ut)é*Z; kt—l = Y. (869)
Detrended output is also given as a function of inputs by:
G = KOLI® — @e a2, (8.70)
L e
P\ M
Yi=|= Y;
t ( P, t
becomes
1+)‘f,t
ye = (Br) Mt o (8.71)



where

P
_ _1+>‘f,i P _1+>\f,t _ >‘f,t
=[(1=G)F) Mt Gpmpt) e ] T (8.72)
71+>‘f,t 1+>‘f,t Af,t

X ) _ -
=[1=-G)py "+ Gmapram; 1) At ] AL

While
1+>‘w,t
W Aw,t .
L= (Wt Ly
t
becomes
At
Le = (i) oo L (8.73)
where
W =t
- M _a Ol Awg
= [(1 = Cu)(t) ot + Gulmee? TTa L) Fue | Tt (8.74)
14+ Ay
- iw tﬁt 2 1 rwi—1 . *iAw’t 7113”
= [(1 - C’w)wt ’ + Cw(ﬂ'*€'yT1_o‘ Ty e “t Ttwt_l) w,t ] w,t
At steady state we have:
- (Cx + 1x) = Ys. (8.75)
and
ye = KOLI72 — . (8.76)
and

8.3 Steady State

For now treat L* as a parameter (we will see that the real variables are all defined as a

ratio to Ly, so L, is just a normalization constant). Define the real rate

R,
Te = —, (8.77)
Tk
then from &.52 we have:
Ty = 5_16‘7621. (8.78)
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From 8.62:

k=X —(1-9). (8.79)
From 8.42: L
1 Ta
Wy = <1 Y a®(1—a)1=)pk _a> (8.80)
From 8.47
Wy
ki = — L. 8.81
1—ark (8:81)
From 8.56 and 8.57:
k, = 'Y ok, (8.82)
i = (1 (- 5)6—73(‘%) .. (8.83)
From 8.76:
ye = kOLI7Y — . (8.84)
SW use the reparameterization ®, = y*gj; (D, implying that steady state output is given
by:
k’aLl_a
= 8.85
y 3, (8.85)
From 8.75:
e = (1 — gu)Ys — i, (8.86)

(as opposed to ¢, = g—I — i, in DSSW). (Aside: note that 8.53 implies

ce(1— he_z:)L‘*’l = W,.

Since we already have ¢, and w, it would seem L, is given. In fact, this is because SW

do not use the parameter ¢, which would make 8.53 hold for any L..)

8.4 Log-linear

1. If technology is stationary, eq. 8.68 becomes:

b,
= (8.87)

A~

=

]. - C* ~ 7/* i
Zt + —Ct + — 1t +
11—« Y Y Yse

NeTH

 —
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If technology has a unit root, eq. 8.69 becomes:

: k
N “ Cx . Tk~ Ty k. N
Yt = gt + —Ct+ —1 + Ut, (888)

* * *

This is one of the two equilibrium conditions for which we need to write two
different versions for the stationary and non-stationary case (the other being the

production function). The difference with DSSW (eq. 1.2.77) are due to a different

definition of the government spending process which in SW is given by ¢g; = y*G—th,
with g, = 1 — % (in our case, g = Y}fGt and g. = _%7). Note that in SW
g« € (0,1). This is eq. (1) in SW using the reparameterizations
Cx . 7% & Kox
Cy=—, by =—, 2y =Ty —.
Y Y Y Y Y Y
. Eq. 8.49 becomes:
& = Ry + by + By[&11] — Eyfftrs] — 0By 2], (8.89)
and eq. 8.48 becomes:
ét == —O'C(]. — he_’z:)_l (ét - he_zzét_l + h6_212t> + (O'c - ]_)Li‘i‘l’lf/t’
which becomes using 8.53:
1—-h = o * * -1 *L* 7
A=hem™)e (at<— he—ﬂ*ét,1<+-he—%*zt) L loe=Dwilep g g0
Oc Oc Cx
Putting 8.89 and 8.90 two together we obtain:
S T P S
= Ry — F b ) — (-1 —
Ct Uc(l T he—z*) t t[77t+1] + 0t ) + (1 T he—z*) (Ct 1 Zt)
1 (0c—1)  wils

FEy [ét41 + Ze41] +

@—Emm)(wn

T T Fhe =) ool + he ) o

This corresponds to eq. (2) in SW, and to the combination of eqs 1.2.68 and 1.2.66

in DSSW. In the code we follow SW’s code and use the normalization:

(aktd

— he %) .
= —(1 he )bt. (8.92)

T oe(1 + he=)
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3. Eq. 8.58 becomes:

2 1 o . )
"= S//62ZI(1 + ﬁe(l_%)z:)qt T 14+ ,86(1_06)2: (thl - Zt)
ﬂe(lfac)zz

1 + Be(l—ac)z:

FE, ['zt—i-l + ét—i—l} + fig, (8.93)

where we follows SW and renormalize the process ji; by dividing it for S”e2% (1 4
Bel=9¢)2) | This is eq. (3) in SW, and corresponds to eq. 1.2.71 in DSSW (which
was expressed in terms of £F). The equation can be expressed, perhaps more
intuitively, in terms of F:
qf — Gle27t (1 + lge(l_ac)zi) (it — ]M (%t—l — 5’15)
B e T s =
1+ pe—ooz ! [““ * Zt“} “t>’ (8.54)

4. Eq. 8.59 becomes

¥ X 1-0

- IF - B¢ - =R, +b — E,7 i
k1 (1—0) elria] + rf+(1—5) tlaria] — @ = Re + b t[fiea]  (8.95)

where we used 8.89. This is eq. (4) in SW (using the value of 7¥ one can see they
correspond) and is the same as eq. 1.2.72 in DSSW, except that this was expressed

in terms of £t’“. In the code we use the normalization 8.92, consistently with 8.91.

5. Eq. 1.2.78 becomes:

) ) ) 1
g o= o, (akt (- a)Lt> + (@ - D2 (8.96)

This is eq. (5) in SW. Note that the last term in 8.96 is non-stationary if p, = 1.
So in this case it needs to be dropped (which amounts to assuming the fixed costs

are proportional to Z; as opposed to just €??) and the eq. becomes
g o= @, (akt T (- a)it) : (8.97)
6. Eq. 1.2.69 remains the same:
o = e — 2+ k1 (8.98)
This is eq. (6) in SW.
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7. Equations 8.99 becomes:

Ty = Uy. (8.99)

T

k
where % is simply a reparameterization of the ratio - that appears in 1.2.73.

This is eq. (7) in SW with z; = %, and eq. 1.2.73 in DSSW.

8. Eq. 8.55 becomes:

- _ Zj Lo 2 Z;*A' L* "2z (1—0e)ziy g
3 (1 %*)(k’t,l zt) e 78R pe )iie.  (8.100)

This is eq. (8) in SW, and corresponds to eq. 1.2.70 in DSSW, except for the
renormalization of the exogenous process p;. Note that in SW’s code the term

(1+ Be(l_”“)zi) is erroneously omitted from the coeflicient multiplying muy.
9. Eq. 1.2.61 remains the same as in DSSW:
me; = (1—a) Wy + a #r. (8.101)

This is eq. (9) in SW, where i = —mc; and where they used (8.104) to substitute

for 7F. That is actually what we also do in the code, obtaining:

mey = Wy 4 aly — aky. (8.102)
10. Eq. (TO DO) becomes:
) 1— (pBel=oe%) (1 — )
S (T S,
(14 tpBell=7e)2)Cp((Rp — 1)ep + 1)
L R Be(l—ac)z:

+ 1+ Lp,@(i(l_”c)zif m—1+ 1t Lpﬂe(l_ac)zr FEy[friq] + Afit (8.103)

This is eq. (10) in SW.
11. Eq. 1.2.65 remains the same:
ke = i, — 7 + L. (8.104)

This is eq. (11) in SW.

61



12.

13.

14.

Eq. 8.50, which essentially defines the household’s marginal rate of subsitution

between consumption and labor,

1

W (ét — he_Z: ét_l + he_zi ét) + I/lfzt = UAJ? (8105)
— he *

This corresponds to eq. (12) in SW, except that they express it in terms of the
markup [ = w; — @}, which is what we also do in our code. DSSW did not have

this equation as we plugged it the wage Phillips curve directly.

Eq. (TO DO) becomes:

A (1— Cwﬁe(l_ac)z:)(l — Cw) N I
wy = (1 + ﬁe(l—ac)z:)cw(()\w _ 1)€w T 1) (’wt wt)
_ 1+ Lwﬁe(liac)zz

1+ pelionz "t

1+ Be(l-oc)z: (-1 = 2 = tw i)

Be(l_UC)Z:

T getieoe Be e 2ot + Fen] + Aue (8:106)

This is eq. (13) in SW. In the code we follow SW and replace @} — 1 with —j¥.
Eq. 1.2.79 becomes:
Ry = prRi1+ (1-pp) <¢lﬁ't + 2 (9 — ??tf))
+ s (5= 30) = Ger = 5L0) + 7 (8.107)

where the differences are (1) the use of flexible price/wage output to measure the
output gap, (2) the addition of the term 3 ((?Qt — g)f) — (Gg—1 — Qf_1)>; (3) the

fact that the residual 7" is autocorrelated.
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15. Additional flexible price/wages equations, where we replace the real rate 'r{ for

Rt - Et[ﬁ-tJrl] .

: k
Cx Tx » roky .
?]{ = g+ fc{ + ;2{ + = u{, (8.108)
" _U—flffz:)(uf i) ’w_(f CA) e Bfel 4
G = Uc(l—f-he_zi) i + 0 ) + (1+he_zi) Ci—1 2t ) + (1+h6_z:) t[ct—i-l +Zt+1]
(0c—1)  wils <Af -
: Ly — E[L ) 8.109
Uc<1 + he—z*) Ca t t[ t—i—l] ( )
* * A ]_ ~
skf o _ " _2z* (1—0¢)z} (.f I (,f B A)
qy S"e“* (1 4 pe ) G Bl i1 — 2t
,36(1706)'2: af N R
Ty oo B [+ 2| = ). (8.110)
k
o Te gpekfg 10 ek S 111
"t rk 4+ (1-90) t[rt+1] rf—s—(l—é) t[Qt+1] q; t (8.111)
A~ ~ 1 B
o= o, (akf +(1- a)Lf> +(Pp — 1) 2 (8.112)
o= ol s+ k] (8.113)
1—
uf = wfffa (8.114)
(0
7 '* & N 'l‘*s l* 1" * _ *\ A
Wo= (- %) (k{_l — Zt) + E—z{ + 5 2 (1 + Bell =792 . (8.115)
* * *
0 = (1—a) o +a (8.116)
W= ol —itf+ L, (8.117)
1 . ) .
of = o (o —hemel v e a) duld. (8.118)

16. The exogenous processes are described in section 8.1.5.

8.5 Adding BGG financial frictions to SW

Amounts to replacing 8.95 with conditions 7.50 and 7.52 (see section 7), which we repeat

here for convenience:

=~k . . ~
Ey [Rm - Rt] = —biCsppp (qf + ke — ﬁt) + Ot + fif (8.119)
ﬁk rk k (1-0) . & (8.120)
T = . ‘
t t Tf—i—(l—(S) t T‘f—l—(l—&)qt qr—1
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and adding the eq. condition 7.51 describing the evolution of entrepreneurial net worth

~k . ~
ne = G, pk <Rt - Wt) — Cn,R (Rtfl - 7Tt> + CngK (@f_l + k?tfl) + Cnfie—1

Cn,ue ~e Cn,ow =
Csp,ue i—1 Csp,crw Uw’t_l

g+ B — 2y —

(8.121)

Note that if (5, = 0 and the financial friction shocks are zero, 8.95 coincides with
7.50 plus 7.52. In particular, we stick to SW’s assumption that returns to deposit are
not subject to the same “intermediation cost” shock b; as government bonds. This
assumption mirrors SW’s assumption that capital investment was not subject to that

transaction cost.

8.6 Anticipated policy shocks

We modify the policy rule (8.107) so to incorporate anticipated policy shocks. In order
to do so we add the anticipated shocks to the exogenous component of monetary policy

as follows:
K

P = pem )+ OrErmy + Y OhaEhy (8.122)
k=1

where g ; is the usual contemporaneous policy shock and ath_ i is a policy shock that
is known to agents at time ¢ — k, but affects the policy rule k periods later, that is, at

time ¢. We assume as usual that £, , ~ N(0,1), i.i.d..

In order to solve the model we need to express the anticipated shocks in recur-

sive form. For this purpose, we augment the state vector s; with K additional states

vl .. ,yﬁ x Whose law of motion is as follows:
R _ R R
Vig = Vo1 T 01rE1,
R _ R R
Vo = V341 1T 02,89,
R _ R
Vkt = OKr€gy

and rewrite expression (8.123) as

Tt = ppmTitq + opepm ¢ + I/ftfl, (8.123)
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It is easy to verify that Vft_l = Zszl oprel, ., that is, Vft_l is a “bin” that collects
all anticipated shocks that affect the policy rule in period ¢. In the implementation,
we assume that these shocks have the same standard deviation as the contemporaneous

shock: oy, = 0.

8.7 Adding long run changes in productivity

We add long run changes in productivity. Specifically we assume that the production

function is:

Yi(i) = max{e® K, (i) (Li(i)e" 2P) ' ™" — &7}, 0}, (8.124)

where %, and 2 = log(Z}/ZF ) follow AR(1) processes:

Zt = pzét—l + 0'262775, Ez,t ~ N(O, ].), (8125)
th = pzpzf_l + O p€rp ¢, €Expt ~ N(O, 1), (8126)

and
z; = Z,7P 0t S8 Y)t g oria (8.127)

We detrend by Z; as in section 8.2. Define 2/ = log(Z;' /Z; ), with 2} = y+7%; log T
at st.state. From 8.126, 8.125, and 8.127 we see that

. 1 - 1
2=z — 2= ﬁ(pz —1)z1+ a0t + 22, (8.128)

and

o 1 -
E2ia] = TP —Da+ Pz - (8.129)

Note that we can accommodate both cases where z; is stationary and random walk
(pz = 1). Regardless, there is a stochastic trend in growth so the resource constraint

and the production function need to be written as in eqs 8.88 and 8.97 in section 8.4.
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