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1 Smets & Wouters – Christiano, Eichenbaum, & Evans

1.1 Define the problem, FOCs, and equilibrium conditions

1.1.1 Final goods producers

The final good Yt is a composite made of a continuum of goods:

Yt =

[∫ 1

0
Yt(i)

1
1+λf,t di

]1+λf,t

(1.1.1)

The final goods producers buy the intermediate goods on the market, package Yt,

and resell it to consumers. These firms maximize profits in a perfectly competitive

environment. Their problem is:

maxYt,Yt(i) PtYt −
∫ 1

0 Pt(i)Yt(i)di

s.t. Yt =

[∫ 1
0 Yt(i)

1
1+λf,t di

]1+λf,t

(µf,t)
(1.1.2)
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The FOCs are:

(∂Yt) Pt = µf,t (1.1.3)

(∂Yt(i)) −Pt(i) + µf,t(1 + λf,t)[. . .]
λf,tYt(i)

−
λf,t

1+λf,t = 0 (1.1.4)

Note that [. . .]λf,t = Y

λf,t
1+λf,t

t . From the FOCs one obtains:

Yt(i) =

(
Pt(i)
Pt

)− 1+λf,t
λf,t

Yt (1.1.5)

Combining this condition with the zero profit condition (these firms are competitive)

one obtains an expression for the price of the composite good:

Pt =

[∫ 1

0
Pt(i)

− 1
λf,t di

]−λf,t
(1.1.6)

Note that the elasticity is
1+λf,t
λf,t

. λf,t = 0 corresponds to the linear case. λf,t → ∞

corresponds to the Cobb-Douglas case. We will constrain λf,t ∈ (0,∞). λf,t follows the

exogenous process:

lnλf,t = lnλf + ελ,t, ελ,t ∼ ... (1.1.7)

1.1.2 Intermediate goods producers

Intermediate goods producers i uses the following technology:

Yt(i) = max{Z1−α
t Kt(i)

αLt(i)
1−α − Z∗t Φ, 0}, (1.1.8)

where

Z∗t = ZtΥ
( α

1−α t),Υ > 1. (1.1.9)

Call zt = log(Zt/Zt−1). zt follows the process:

(zt − γ) = ρz(zt−1 − γ) + εz,t, εz,t ∼ ... (1.1.10)

The firm’s profit is given by:

Pt(i)Yt(i)−WtLt(i)−RktKt(i).
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Cost minimization subject to 1.1.8 yields the conditions:

(∂Lt(i)) Vt(i)(1− α)Z1−α
t Kt(i)

αLt(i)
−α = Wt

(∂Kt(i)) Vt(i)αZ1−α
t Kt(i)

α−1Lt(i)
1−α = Rkt

where Vt(i) is the Lagrange multiplier associated with 1.1.8. In turn, these conditions

imply:
Kt(i)

Lt(i)
=

α

1− α
Wt

Rkt
.

Note that if we integrate both sides of the equation wrt di and define Kt =
∫
Kt(i)di

and Lt =
∫
Lt(i)di we obtain a relationship between aggregate labor and capital:

Kt =
α

1− α
Wt

Rkt
Lt. (1.1.11)

Total variable cost is given by

Variable Costs = (Wt +Rkt
Kt(i)
Lt(i)

)Lt(i)

= (Wt +Rkt
Kt(i)
Lt(i)

)Ỹt(i)Z
−(1−α)
t

(
Kt(i)
Lt(i)

)−α
,

where Ỹt(i) = Z1−α
t Kt(i)

αLt(i)
1−α is the “variable” part of output. The marginal cost

MCt is the same for all firms and equal to:

MCt = (Wt +Rkt
Kt(i)
Lt(i)

)Z
−(1−α)
t

(
Kt(i)
Lt(i)

)−α
= α−α(1− α)−(1−α)W 1−α

t Rk αt Z
−(1−α)
t .

(1.1.12)

Profits can then be expressed as (Pt(i)−MCt)Yt(i) −MCtZ
∗
t Φ. Note that since the

last part of this expression does not depend on the firm’s decision, it can be safely

ignored. Prices are sticky as in Calvo (1983). Specifically, each firm can readjust prices

with probability 1 − ζp in each period. We depart rfom Calvo (1983) in assuming that

for those firms that cannot adjust prices, Pt(i) will increase at the geometric weighted

average (with weigths 1− ιp and ιp, respectively) of the steady state rate of inflation π∗

and of last period’s inflation πt−1. For those firms that can adjust prices, the problem

is to choose a price level P̃t(i) that maximizes the expected present discounted value of
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profits in all states of nature where the firm is stuck with that price in the future:

maxP̃t(i) Ξpt

(
P̃t(i)−MCt

)
Yt(i)

+ Et
∑∞

s=1 ζ
s
pβ

sΞpt+s

(
P̃t(i)

(
Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
−MCt+s

)
Yt+s(i)

s.t. Yt+s(i) =

 P̃t(i)(Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

−
1+λf,t+s
λf,t+s

Yt+s,

(1.1.13)

where βsΞpt+s is today’s value of a future dollar for the consumers (Ξpt+s is the Lagrange

multiplier associated with the consumer’s nominal budget constraint - remember there

are complete markets so βsΞpt+s is the same for all consumers). The FOC for the firm is:

Ξpt

(
P̃t(i)
Pt

)− 1+λf,t
λf,t

−1
1

λf,tPt

(
P̃t(i)− (1 + λf,t)MCt

)
Yt(i)+

Et
∑∞

s=0 ζ
s
pβ

sΞpt+s

(
P̃t(i)

(
Πsl=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

)− 1+λf,t+s
λf,t+s

−1 (
Πsl=1π

ιp
t+l−1π

1−ιp
∗

)
λf,t+sPt+s(

P̃t(i)
(

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
− (1 + λf,t+s)MCt+s

)
Yt+s(i) = 0

(1.1.14)

Note that all firms readjusting prices face an indentical problem. We will consider only

the symmetric equilibrium in which all firms that can readjust prices will choose the

same P̃t(i), so we can drop the i index from now on. From 1.1.6 it follows that:

Pt = [(1− ζp)P̃
− 1
λf

t + ζp(π
ιp
t−1π

1−ιp
∗ Pt−1)

− 1
λf ]−λf . (1.1.15)

1.1.3 Households

The objective function for household j is given by:

IEt

∞∑
s=0

βsbt+s

[
log(Ct+s(j)− hCt+s−1(j))− ϕt+s

1 + νl
Lt+s(j)

1+νl +
χt+s

1− νm

(
Mt+s(j)

Z∗t+sPt+s

)1−νm
]

(1.1.16)

where Ct(j) is consumption, Lt(j) is labor supply (total available hours are normalized to

one), and Mt(j) are money holdings. Note that the household is a “habit” guy for h > 0.

ϕt affects the marginal utility of leisure: it is model as a stochastic preference shifter.

Real money balances enter the utility function deflated by the (stochastic) trend growth

of the economy, so to make real money demand stationary. χt is another stochastic
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preference shifter that affects the marginal utility from real money balances. bt is yet

another stochastic preference shifter that scales the overall period utility. The preference

shifters are exogenous processes (common to all households) that evolve as follows:

lnϕt = (1− ρϕ) lnϕ+ ρϕ lnϕt−1 + εϕ,t, εϕ,t ∼ ... (1.1.17)

lnχt = (1− ρχ) lnχ+ ρχ lnχt−1 + εχ,t, εχ,t ∼ ... (1.1.18)

ln bt = ρb ln bt−1 + εb,t, εb,t ∼ ... (1.1.19)

The household’s budget constraint, written in nominal terms, is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) +Bt+s(j) +Mt+s(j) ≤ Rt+s−1Bt+s−1(j) +Mt+s−1(j)

+ Πt+s +Wt+s(j)Lt+s(j) +
(
Rkt+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))Υ

−tK̄t+s−1(j)
)
,

(1.1.20)

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nominal

interest rate paid on government bonds, Πt is the per-capita profit the household gets

from owning firms (assume household pool their firm shares, so that they all receive

the same profit) Wt(j) is the wage earned by household j. The term within parenthesis

represents the return to owning K̄t(j) units of capital. Households choose the utilization

rate of their own capital, ut(j), and end up renting to firms in period t an amount of

“effective” capital equal to:

Kt(j) = ut(j)K̄t−1(j), (1.1.21)

and getting Rkt ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization

in terms of the consumption good which is equal to a(ut(j))Υ
−tK̄t−1(j). Households

accumulate capital according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + Υtµt

(
1− S(

It(j)

It−1(j)
)

)
It(j), (1.1.22)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S′(·) > 0, S′′(·) > 0. The term µt is a stochastic disturbance to the price of investment

relative to consumption, which follows the exogenous process:

lnµt = (1− ρµ) lnµ+ ρµ lnµt−1 + εµ,t, εµ,t ∼ ... (1.1.23)

5



Call Ξpt (j) the Lagrange multiplier associated with the budget constraint 1.1.20 (the

marginal value of a dollar at time t). We assume there is a complete set of state con-

tingent securities in nominal terms, although we do not explicitly write them in the

household’s budget constraint. This assumption implies that Ξpt (j) must be the same

for all households in all periods and across all states of nature: Ξpt (j) = Ξpt for all j

and t. Although we so far kept the j index for all the appropriate variables, we will see

that the assumption of complete markets implies that the index will drop out of most

of these variables: In equilibrium households will make the same choice of consumption,

money demand, investment and capital utilization. As we will see, wage rigidity á la

Calvo implies that leisure and the wage will differ across households.

We first write the first order conditions for consumption and money demand. The

FOCs for consumption, money holdings, and bonds are:

(∂Ct(i))
1

Pt

(
bt(Ct(j)− hCt−1(j))−1 (1.1.24)

−βhIEt[bt+1(Ct+1(j)− hCt(j))−1]
)

= Ξpt (1.1.25)

(∂Mt(i)) χtbt

(
Mt(j)

Z∗t Pt

)−νm 1

Z∗t Pt
= Ξpt − βIEt[Ξ

p
t+1] (1.1.26)

(∂Bt(i)) Ξpt = βRtIEt[Ξ
p
t+1] (1.1.27)

The first FOC equates the marginal utility of consumption at time t, times the relative

price of money in terms of the consumption good, to the marginal utility of one dollar

at time t. FOCs 1.1.25 through 1.1.27 show that the quantity of consumption, money

holdings, and bonds will also be the same apparent across households since the lagrange

multiplier is the same, so that we can drop the j index. Separability in the utility func-

tion is key for this result: if the marginal utility of consumption depended on leisure,

then equalling the marginal utility of consumption across households would not imply

equal consumption, since leisure differs across j (depending on whether they can change

their wage or not).

Now define Ξt = PtΞ
p
t . The FOCs for consumption, money and bonds can be rewrit-
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ten as:

Ξt = bt(Ct − hCt−1)−1 − βhIEt[bt+1(Ct+1 − hCt)−1] (1.1.28)(
Mt

Z∗t Pt

)νm
= χtbt

Rt
Rt − 1

1

Z∗t Ξt
(1.1.29)

Ξt = βRtIEt[Ξt+1π
−1
t+1]. (1.1.30)

where inflation is defined as πt = Pt/Pt−1.

Let us now address the capital accumulation/utilization problem. Call Ξkt the La-

grange multiplier associated with constraint 1.1.22. The FOC with respect to investment,

capital, and capital utilization are:

(∂It) ΞktΥ
tµt

(
1− S( It

It−1
)− S′( It

It−1
) It
It−1

)
+ βIEt[Ξ

k
t+1Υt+1µt+1S

′(
It+1
It

)(
It+1
It

)2] = Ξt (1.1.31)

(∂K̄t) Ξkt = βIEt[Ξt+1(
Rkt+1
Pt+1

ut+1 − a(ut+1)Υ−(t+1)) + Ξkt+1(1− δ)] (1.1.32)

(∂ut) ΥtR
k
t
Pt

= a′(ut) (1.1.33)

The first FOC is the law of motion for the shadow value of capital. Note that if adjust-

ment cost were absent, the FOC would simply say that ΞktΥ
tµt is equal to the marginal

utility of consumption. In other words, in absence of adjustment costs the shadow cost

of taking resources away from consumption equals the shadow benefit (abstracting from

Υtµt) of putting these resources into investment: Tobin’s Q is equal to one. The second

FOC says that if I buy a unit of capital today I have to pay its price in real terms, Ξkt ,

but tomorrow I will get the proceeds from renting capital, plus I can sell back the capital

that has not depreciated.

Now to the wage/leisure decision. Before going into the household’s problem, more

details on the labor market are needed. Labor used by the intermediate goods producers

Lt is a composite:

Lt =

[∫ 1

0
Lt(j)

1
1+λw,t di

]1+λw,t

.

There are labor packers who buy the labor from the households, package Lt, and resell

it to the intermediate goods producers. Labor packers maximize profits in a perfectly
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competitive environment. From the FOCs of the labor packers one obtains:

Lt(j) =

(
Wt(j)
Wt

)− 1+λw,t
λw,t

Lt (1.1.34)

Combining this condition with the zero profit condition one obtains an expression for

the wage:

Wt =

[∫ 1

0
Wt(j)

1
λw,t di

]λw,t
(1.1.35)

We will set λw,t = λw ∈ (0,∞). Given the structure of the labor market, the household

has market power: she can choose her wage subject to 1.1.34. However, she is also

subject to nominal rigidities á la Calvo. Specifically, households can readjust wages

with probability 1 − ζw in each period. For those that cannot adjust wages, Wt(j) will

increase at a geometrically weighted average of the steady state rate increase in wages

(equal to steady state inflation π∗ times the growth rate of the economy eγΥ
α

1−α ) and

of last period’s inflation times last period’s productivity (πt−1e
z∗t−1). For those that can

adjust, the problem is to choose a wage W̃t(j) that maximizes utility in all states of

nature where the household is stuck with that wage in the future:

maxW̃t(j)
IEt
∑∞

s=0(ζwβ)sbt+s

[
− ϕt+s
νl + 1Lt+s(j)

νl+1 + . . .
]

s.t. 1.1.20 and 1.1.34 for s = 0, . . . ,∞, and

Wt+s(j) =
(

Πs
l=1(π∗e

γΥ
α

1−α )1−ιw(πt+l−1e
z∗t+l−1)ιw

)
W̃t(j)

for s = 1, . . . ,∞

(1.1.36)

where the . . . indicate the terms in the utility function that are irrelevant for this prob-

lem. The FOC for this problem are:

(∂W̃t(j))

ΞtLt
λwWt

IEt
∑∞

s=0(ζwβ)sΞt+sL(j)t+s

[
− Xt,sW̃t(j)

Pt+s
+ (1 + λw)

bt+sϕt+sLt+s(j)
νl

Ξt+s

]
= 0.

(1.1.37)

where

Xt,s =

 1 if s = 0

Πs
l=1(π∗e

γΥ
α

1−α )1−ιw(πt+l−1e
z∗t+l−1)ιw otherwise.

In absence of nominal rigidities this condition would amount to setting the real wage

equal to ratio of the marginal utility of leisure over the marginal utility of consumption
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times the markup (1 + λw). All agents readjusting wages face an indentical problem.

We will again consider only the symmetric equilibrium in which all agents that can

readjust their wage will choose the same W̃t(j), so we can drop the i index from now on.

From 1.1.35 it follows that:

Wt = [(1− ζw)W̃
1
λw
t + ζw((π∗e

γΥ
α

1−α )1−ιw(πt−1e
z∗t−1)ιwWt−1)

1
λw ]λw . (1.1.38)

1.1.4 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in

response to deviations of inflation and output from their respective target levels:

Rt
R∗

=

(
Rt−1

R∗

)ρR [(πt
π∗

)ψ1
(
Yt
Y ∗t

)ψ2
]1−ρR

eεR,t (1.1.39)

where R∗ is the steady state nominal rate and Y ∗t is nominal output. The parameter ρR

determines the degree of interest rate smoothing. The monetary policy shock εR,t is iid:

εR,t ∼ ... (1.1.40)

The central bank supplies the money demanded by the household to support the desired

nominal interest rate.

The government budget constraint is of the form

PtGt +Rt−1Bt−1 +Mt−1 = Tt +Mt +Bt, (1.1.41)

where Tt are nominal lump-sum taxes (or subsidies) that also appear in household’s

budget constraint. Government spending is given by:

Gt = (1− 1/gt)Yt (1.1.42)

where gt follows the process:

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t, εg,t ∼ ... (1.1.43)
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1.1.5 Resource constraints

To obtain the market clearing condition for the final goods market first integrate the HH

budge constraint across households, and combine it with the gvmt budget constraint:

PtCt + PtIt + PtGt ≤ +Πt +
∫
Wt(j)Lt(j)dj

+Rkt
∫
Kt(j)dj − Pta(ut)Υ

−t ∫ K̄t−1(j)dj.

Next, realize that

Πt =

∫
Π(i)tdi =

∫
P (i)tY (i)tdi−WtLt −RktKt,

where Lt =
∫
L(i)tdi is total labor supplied by the labor packers (and demanded by the

firms), and Kt =
∫
K(i)tdi =

∫
Kt(j)dj. Now replace the defintion of Πt into the HH

budget constraint, realize that by the labor and goods’ packers’ zero profit condition

WtLt =
∫
Wt(j)Lt(j)dj, and PtYt =

∫
P (i)tY (i)tdi and obtain:

PtCt + PtIt + PtGt + Pta(ut)Υ
−tK̄t−1 = PtYt,

or

Ct + It + a(ut)Υ
−tK̄t−1 =

1

gt
Yt (1.1.44)

where Yt is defined by (1.1.1). The relationship between output and the aggregate

inputs, labor anc capital, is:

Ẏt =
∫
Z1−α
t Kt(i)

αLt(i)
1−αdi− Z∗t Φ

= Z1−α
t

∫
(K/L)αL(i)di− Z∗t Φ

= Z1−α
t Kα

t L
1−α
t − Z∗t Φ,

(1.1.45)

where I used the fact that the capital labor ratio is constant across firms (also, since

K(i) = (K/L)L(i) it must be the case that
∫
K(i)di∫
L(i)di

= Kt/Lt = (K/L)). The problem

with these resource constraints is that what we observe in the data is Ẏt =
∫
Yt(i)di and

L̇t =
∫
Lt(j)dj, as opposed to Yt and Lt. But note that from 1.1.5:

Ẏt = YtP

1+λf,t
λf,t

t

∫
P (i)

−
1+λf,t
λf,t

t di

= YtP

1+λf,t
λf,t

t Ṗ
−

1+λf,t
λf,t

t ,
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where Ṗt =

(∫
Pt(i)

−
1+λf,t
λf,t di

)− λf,t
1+λf,t

, and

L̇t =
∫
Lt(j)dj

= LtW

1+λw,t
λw,t

t

∫
W (j)

− 1+λw,t
λw,t

t di

= LtW

1+λw,t
λw,t

t Ẇ
− 1+λw,t

λw,t

t ,

where Ẇt =

(∫
W (j)

− 1+λw,t
λw,t

t dj

)− λw,t
1+λw,t

.
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1.1.6 Exogenous Processes

The model is supposed to be fitted to data on output, consumption, investment, em-

ployment, wages, prices, nominal interest rates, and money.

• Technology process: let zt = lnZt/Zt−1

(zt − γ) = ρz(zt − γ) + εz,t (1.1.46)

(We will probably restrict ρz to zero.)

• Preference for leisure:

lnϕt = (1− ρϕ) lnϕ+ ρϕ lnϕt−1 + εϕ,t (1.1.47)

• Money Demand:

lnχt = (1− ρχ) lnχ+ ρχ lnχt−1 + εχ,t (1.1.48)

• Price Mark-up shock:

lnλf,t = lnλf + ελ,t (1.1.49)

• Capital adjustment cost process:

lnµt = (1− ρµ) lnµ+ ρµ lnµt−1 + εµ,t (1.1.50)

• Intertemporal preference shifter:

ln bt = ρb ln bt−1 + εb,t (1.1.51)

• Government spending process:

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t (1.1.52)

• Monetary Policy Shock εR,t.

• Equation for z∗t = zt + α
1−α ln Υ

(z∗t − γ −
α

1− α
ln Υ) = ρz(z

∗
t − γ −

α

1− α
ln Υ) + εz,t (1.1.53)

(We will probably restrict ρz to zero.)
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1.2 Detrending and steady state

We detrend the variables as in Altig et al. Lower case variables are all detrended variables

– i.e., stationary stuff. Specifically:

ct = Ct
Z∗t
, yt = Yt

Z∗t
, it = It

Z∗t
, kt = Υ−tKt

Z∗t
, k̄t = Υ−t K̄t

Z∗t
,

rkt = ΥtR
k
t
Pt
, wt = Wt

PtZ
∗
t
, mt = Mt

PtZ
∗
t
, p̃t = P̃t

Pt
, w̃t = W̃t

Wt
,

ξt = ΞtZ
∗
t , ξ

k
t = ΞktZ

∗
t Υt, z∗t = log(Z∗t /Z

∗
t−1),

(1.2.1)

Denote with ∗ the steady state values of the variables. Realize that at st.st. z∗ = γ and

z∗∗ = γ + α
1−α log Υ.

1.2.1 Intermediate goods producers

We start by expressing 1.1.12 in terms of detrended variables:

mct =
MCt
Pt

= α−α(1− α)−(1−α)w1−α
t rk αt . (1.2.2)

Hence

mc∗ = α−α(1− α)−(1−α)w1−α
∗ rk α∗ . (1.2.3)

Expression 8.8 becomes:

ξt
λf,t

p̃
−

(1+λf,t)

λf,t
−1

t (p̃t − (1 + λf,t)mct) yt(i)

+IEt
∑∞

s=1 ζ
s
pβ

s ξt+s
λf,t+s

(
p̃t

Πsl=1πt+l

) (1+λf,t+s)

λf,t+s
−1 (

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

) (1+λf,t+s)

λf,t+s(
p̃t

Πsl=1π
ιp
t+l−1π

1−ιp
∗

Πsl=1πt+l
− (1 + λf,t+s)mct+s

)
yt+s(i) = 0

(1.2.4)

this implies that:

p̃∗ = (1 + λf )α−α(1− α)−(1−α)w1−α
∗ rk α∗ (1.2.5)

Expression 8.9 becomes:

1 = [(1− ζp)p̃
− 1
λf,t

t + ζp(π
ιp
t−1π

1−ιp
∗ π−1

t )
− 1
λf,t ]−λf,t . (1.2.6)

which means that:

p̃∗ = 1. (1.2.7)
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Equation 1.1.11 becomes:

kt =
α

1− α
wt

rkt
Lt. (1.2.8)

and at st.st.:

k∗ =
α

1− α
w∗
rk∗
L∗. (1.2.9)

Recall that aggregate profits are equal to:

Πt = PtYt −WtLt −RktKt.

In terms of detrended variables we then have :

Πt
PtZ

∗
t

= yt − wtLt − rkt kt

= kαt L
1−α
t − Φ− wtLt − α

1− αwtLt

=
(

( ktLt

α
− 1

1− αwt
)
Lt − Φ

=
(

( α
1− α)αwαt r

k −α
t − 1

1− αwt
)
Lt − Φ

At steady state we can use 1.2.5 to get that st. st. profits are:

Πt
PtZ

∗
t

=
λf

1− αw∗L∗ − Φ. (1.2.10)

1.2.2 Households

Expression 1.1.28, 1.1.29, and 1.1.30 become:

ξt = bt(ct − hct−1e
−z∗t )−1 − βhIEt[bt+1(ct+1e

z∗t+1 − hct)−1], (1.2.11)

mνm
t = χtbt

Rt
Rt − 1

ξ−1
t , (1.2.12)

ξt = βRtIEt[ξt+1e
−z∗t+1π−1

t+1], (1.2.13)

respectively. At steady state:

ξ∗ = c−1
∗

(
(1− he−γΥ−

α
1−α )−1 − βh(eγΥ

α
1−α − h)−1

)
, (1.2.14)

mνm
∗ = χ

R∗
R∗ − 1

ξ−1
∗ , (1.2.15)

R∗ = β−1π∗e
γΥ

α
1−α . (1.2.16)
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Equation 1.1.21 and 1.1.22 become:

kt = utΥ
−1e−z

∗
t k̄t−1, (1.2.17)

k̄t = (1− δ)Υ−1e−z
∗
t k̄t−1 + µt

(
1− S(

it
it−1

ez
∗
t )

)
it. (1.2.18)

which deliver the steady state relationships:

k∗ = u∗e
−γΥ−

1
1−α k̄∗, (1.2.19)

i∗ = µ
(

1− (1− δ)e−γΥ−
1

1−α
)
k̄∗. (1.2.20)

under the assumption that S(eγΥ
α

1−α ) = 0.

Equation 1.1.31, 1.1.32, and 1.1.33 become:

ξkt µ
Υ
t

(
1− S(

it
it−1

ez
∗
t )− S′( it

it−1
ez
∗
t )

it
it−1

ez
∗
t

)
+ βIEt[e

−z∗t+1ξkt+1µt+1S
′(
it+1

it
ez
∗
t+1)(

it+1

it
ez
∗
t+1)2] = ξt (1.2.21)

ξkt = βIEt

[
Υ−1e−z

∗
t+1

(
ξt+1(rkt+1ut+1 − a(ut+1)) + ξkt+1(1− δ)

)]
(1.2.22)

rkt = a′(ut) (1.2.23)

which deliver the steady state relationships:

ξk∗µ
(

1− S(eγΥ
α

1−α )− S′(eγΥ
α

1−α )eγΥ
α

1−α
)

+ βe−γΥ−
α

1−α ξk∗µS
′(eγΥ

α
1−α )(eγΥ

α
1−α )2 = ξ∗ (1.2.24)

ξk∗ = βe−γΥ−
1

1−α
(
ξ∗(r

k
∗u∗ − a(u∗)) + ξk∗ (1− δ)

)
(1.2.25)

rk∗ = a′(u∗) (1.2.26)

Under the assumptions that S′(eγΥ
α

1−α ) = 0, u∗ = 1 and a(u∗) = 0, the above equations

become:

ξk∗µ = ξ∗ (1.2.27)

rk∗ = µ−1
(
β−1eγΥ

1
1−α − (1− δ)

)
(1.2.28)

rk∗ = a′(u∗). (1.2.29)
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Expressed in terms of detrended variables, equation 1.1.37 becomes:

IEt
∑∞

s=0(ζwβ)sL(j)t+sξt+s

[
− X̃t,sw̃twt + (1 + λw)

bt+sϕt+sLt+s(j)
νl

ξt+s

]
= 0, (1.2.30)

where

X̃t,s =


1 if s = 0

Πs
l=1(π∗e

γΥ
α

1−α )1−ιw(πt+l−1e
z∗t+l−1)ιw

Πs
l=1πt+le

z∗t+l
otherwise

and

Lt+s(j) =
(
w̃twtw

−1
t+sX̃t,s

)− 1+λw
λw Lt+s.

Equation 1.1.38 becomes:

1 = [(1− ζw)w̃
1
λw
t + ζw((π∗e

γΥ
α

1−α )1−ιw(πt−1e
z∗t−1)ιw

wt−1

wt
π−1
t e−z

∗
t )

1
λw ]λw . (1.2.31)

which imply at steady state:

w∗ = (1 + λw)
ϕLνl∗
ξ∗

, (1.2.32)

w̃∗ = 1. (1.2.33)

1.2.3 Resource constraints

The resource constraint(s) become:

gt(ct + it + a(ut)ē
−z∗t kt−1) = yt. (1.2.34)

and

ẏt = kαt L
1−α
t − Φ. (1.2.35)

Yt =

(
Ṗt
Pt

) 1+λf,t
λf,t

Ẏt

becomes

yt = (ṗt)
1+λf,t
λf,t ẏt (1.2.36)

where

ṗt = Ṗt
Pt

= [(1− ζp)( P̃tPt )
−

1+λf,t
λf,t + ζp(π∗

Ṗt−1

Pt
)
−

1+λf,t
λf,t ]

−
λf,t

1+λf,t

= [(1− ζp)p̃
−

1+λf,t
λf,t

t + ζp(π∗ṗt−1π
−1
t )
−

1+λf,t
λf,t ]

−
λf,t

1+λf,t

(1.2.37)
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While

Lt =

(
Ẇt

Wt

) 1+λw,t
λw,t

L̇t

becomes

Lt = (ẇt)
1+λw,t
λw,t L̇t (1.2.38)

where

ẇt = Ẇt
Wt

= [(1− ζw)(W̃t
Wt

)
− 1+λw,t

λw,t + ζw(π∗e
γΥ

α
1−α Ẇt−1

Wt
)
− 1+λw,t

λw,t ]
− λw,t

1+λw,t

= [(1− ζw)w̃
− 1+λw,t

λw,t

t + ζw(π∗e
γΥ

α
1−απ−1

t e−z
∗
t
wt−1

wt
ẇt−1)

− 1+λw,t
λw,t ]

− λw,t
1+λw,t

(1.2.39)

At steady state we have:

g∗(c∗ + i∗) = y∗. (1.2.40)

and

y∗ = kα∗L
1−α
∗ − Φ. (1.2.41)

and

ẏ∗ = y∗, L̇∗ = L∗.

1.2.4 Government Policies

The Taylor rule 1.1.39 becomes:

Rt
R∗

=

(
Rt−1

R∗

)ρR [(πt
π∗

)ψ1
(
yt
y∗t

)ψ2
]1−ρR

eεR,t (1.2.42)
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1.3 Steady state

Define φ implicitly by defining L∗ (note that you can only to consider policy changes

that leave L∗ unchanged). From 1.2.28 (if µ = 1):

rk∗ = β−1eγΥ
1

1−α − (1− δ). (1.2.43)

From 1.2.5:

w∗ =

(
1

1 + λf
αα(1− α)(1−α)rk −α∗

) 1
1−α

(1.2.44)

From 1.2.9

k∗ =
α

1− α
w∗
rk∗
L∗. (1.2.45)

From 1.2.41:

y∗ = kα∗L
1−α
∗ − Φ. (1.2.46)

From 1.2.19 and 1.2.20:

k̄∗ = eγΥ
1

1−αk∗, (1.2.47)

i∗ =
(

1− (1− δ)e−γΥ−
1

1−α
)
k̄∗. (1.2.48)

Hence it follows that:

δ = 1− eγΥ
1

1−α (1− i∗
k̄∗

). (1.2.49)

From 1.2.40:

c∗ =
y∗
g∗
− i∗. (1.2.50)

Given π∗ (objective of central bank) and r∗ (rreal interest rate) we have that 1.2.14,

1.2.16, and 1.2.15 deliver:

ξ∗ = c−1
∗

(
(1− he−γΥ−

α
1−α )−1 − βh(eγΥ

α
1−α − h)−1

)
,

= c−1
∗ (ez

∗
∗ − h)−1(ez

∗
∗ − hβ) (1.2.51)

R∗ = r∗π∗ (1.2.52)

β =
1

r∗
eγΥ

α
1−α . (1.2.53)

mνm
∗ = χ

R∗
R∗ − 1

ξ−1
∗ . (1.2.54)
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From 1.2.27:

ξk∗ = ξ∗. (1.2.55)

From 1.2.32:

ϕ =
w∗ξ∗

(1 + λw)Lνl∗
. (1.2.56)

The definition of the labor share LSt is LSt = WtLt
PtYt

:

LSt =
WtLt
PtYt

=
wtLt
yt

(1.2.57)

In absence of fixed costs, i.e. F = 0, at steady state we have:

LS∗ = w∗L∗
y∗ = w∗L∗

kα∗L
1−α
∗

= w∗(
L∗
k∗

)α

= α−α(1− α)αrk −α∗ w1−α
∗ = (1− α)mc∗

= (1− α)/(1 + λf )

(1.2.58)

The following derivations are also obtained for F = 0. We want to get the st.st. capital

output ratio in this economy. Divide 1.2.9 by output (1.2.41), and obtain:

k∗
y∗ =

(
α

1− α
)1−α

(
w∗
rk∗

)1−α

= α
1 + λf

rk −1
∗

= α
1 + λf

(β−1eγΥ
1

1−α − (1− δ))−1

(1.2.59)

where we used the st.st. values of w∗ and rk∗ computed above. Hence from the definition

of k̄∗:
k̄∗
y∗ = eγΥ

1
1−α α

1 + λf
(β−1eγΥ

1
1−α − (1− δ))−1

= α
1 + λf

(β−1 − e−γΥ−
1

1−α (1− δ))−1
(1.2.60)
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1.4 Log-linearized model

Eq. 1.2.2 becomes:

m̂ct = (1− α) ŵt + α r̂kt . (1.2.61)

• Eq. 1.2.6 becomes: ̂̃pt =
ζp

1− ζp
( π̂t − ιpπ̂t−1). (1.2.62)

• Eq. 1.2.4 becomes (see appendix):

̂̃pt = (1− ζpβ)(1 + λf )mc∗m̂ct + (1− ζpβ)λfmc∗λ̂f,t − ιpζpβπ̂t

+ ζpβIEt[π̂t+1] + ζpβIEt[̂̃pt+1]
(1.2.63)

Combining 1.2.62 with 1.2.63 we obtain:

π̂t =
(1− ζpβ)(1− ζp)

(1 + ιpβ)ζp

[
m̂ct +

λf
1 + λf

λ̂f,t

]
+

ιp
1 + ιpβ

π̂t−1 +
β

1 + ιpβ
IEt[π̂t+1]

(1.2.64)

Eq. 1.2.8 becomes:

k̂t = ŵt − r̂kt + L̂t. (1.2.65)

Eq. 1.2.11 becomes:

(ez
∗
∗ − hβ)(ez

∗
∗ − h)ξ̂t = ez

∗
∗ (ez

∗
∗ − h)̂bt − (e2z∗∗ + βh2)ĉt

+hez
∗
∗ ĉt−1 − hez

∗
∗z∗t − βh(ez

∗
∗ − h)IEt [̂bt+1]

+βhez
∗
∗IEt[ĉt+1] + βhez

∗
∗IEt[z

∗
t+1].

(1.2.66)

Eq. 1.2.12 becomes:

νmm̂t = χ̂t + b̂t −
1

R∗ − 1
R̂t − ξ̂t. (1.2.67)

Eq. 1.2.13 becomes:

ξ̂t = R̂t + IEt[ξ̂t+1] − IEt[z
∗
t+1] − IEt[π̂t+1]. (1.2.68)

Eq. 1.2.17 becomes:

k̂t = ût − z∗t + ̂̄kt−1. (1.2.69)
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Eq. 1.2.18 becomes:

̂̄kt = −(1− i∗
k̄∗

) z∗t + (1− i∗
k̄∗

) ̂̄kt−1

+ i∗
k̄∗
µt + i∗

k̄∗
ît.

(1.2.70)

Eq. 1.2.21 becomes:

1
S′′e2z∗∗

ξ̂kt + 1
S′′e2z∗∗

µt − 1
S′′e2z∗∗

ξ̂t = z∗t − ît−1 + (1 + β)̂it

−βIE[z∗t+1] − βIE [̂it+1].
(1.2.71)

Eq. 1.2.22 becomes:

ξ̂kt = −IEt[z∗t+1] +
rk∗

rk∗ + (1− δ)
IEt[ξt+1] +

rk∗
rk∗ + (1− δ)

IEt[r
k
t+1]

+ 1− δ
rk∗ + (1− δ)

IEt[ξ
k
t+1].

(1.2.72)

Eq. 1.2.23 becomes:

rk∗ r̂
k
t = a′′ut. (1.2.73)

Eq. 1.2.30 becomes:

(1 + νl
1+λw
λw

) ̂̃wt + (1 + ζwβνl
1+λw
λw

)ŵt = (1− ζwβ)( b̂t + ϕ̂t + νlL̂t − ξ̂t)

−ζwβ(1 + νl
1+λw
λw

)IEt[ιwπ̂t + ιwz
∗
t − π̂t+1 − ẑ∗t+1] + ζwβ(1 + νl

1+λw
λw

)IEt

[̂̃wt+1 + ŵt+1

]
(1.2.74)

Eq. 1.2.31 becomes:

ŵt = ŵt−1 − π̂t − z∗t + ιwπ̂t−1 + ιwz
∗
t−1 +

1− ζw
ζw

̂̃wt. (1.2.75)

Substituting ̂̃wt from 1.2.75 into 1.2.74 we obtain:

ŵt − ŵt−1 + π̂t + ẑ∗t − ιwπ̂t−1 − ιwz∗t−1 = (1−ζw)
ζw

1−ζwβ
(1+νl

1+λw
λw

)

(
b̂t + ϕ̂t + νlL̂t − ξ̂t − ŵt

)
+ βIEt

[
ŵt+1 − ŵt + π̂t+1 + ẑ∗t+1 − ιwπ̂t − ιwz∗t

]
(1.2.76)

where ŵt − ŵt−1 + π̂t + ẑ∗t is nominal wage inflation. Eq. 1.2.34 becomes:

ŷt = ĝt +
c∗

c∗ + i∗
ĉt +

i∗
c∗ + i∗

ît +
rk∗k∗
c∗ + i∗

ût. (1.2.77)

Eq. 1.2.35 becomes (remember ŷt = ̂̇yt):
ŷt = α

y∗ + Φ

y∗
k̂t + (1− α)

y∗ + Φ

y∗
L̂t (1.2.78)
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Eq. 1.2.42 becomes:

R̂t = ρRR̂t−1 + (1− ρR)(ψ1π̂t + ψ2ŷt) + εR,t (1.2.79)

In absence of fixed costs, i.e. F = 0, log-deviations the labor share equals marginal

costs in terms of log deviations from steady state:

L̂St = ŵt + L̂t − ŷt

= ŵt + L̂t − αk̂t − (1− α)L̂t

= ŵt − α(k̂t − L̂t)

= ŵt + α(r̂k,t − ŵt)

= m̂ct

(1.2.80)
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1.5 Measurement

Output growth (log differences, quarter-to-quarter, in %):

100× ( lnYt − lnYt−1 ) = 100× ( ln yt + lnZ∗t − ln yt−1 − lnZ∗t−1 )

= 100× ( ŷt + ln y∗ − ŷt−1 − ln y∗ + z∗t )

= 100× ( ŷt − ŷt−1 + ẑ∗t ) + 100γ + 100 α
1−α ln Υ

(1.2.81)

where ẑ∗t = z∗t − γ − α
1−α ln Υ and is modeled in the transition equation.

Consumption growth (log differences, quarter-to-quarter, in %):

100× ( lnCt − lnCt−1 ) = 100× ( ĉt − ĉt−1 + ẑ∗t ) + 100γ + 100 α
1−α ln Υ (1.2.82)

Investment growth (log differences, quarter-to-quarter, in %):

100× ( ln It − ln It−1 ) = 100× ( ît − ît−1 + ẑ∗t ) + 100γ + 100 α
1−α ln Υ (1.2.83)

Hours worked (log):

lnLt = L̂t + lnL∗ + lnLadj (1.2.84)

Nominal wage growth (log differences, quarter-to-quarter, in %):

100× ( lnWt − lnWt−1 ) = 100× ( lnwt + lnwt−1 + z∗t + lnPt − lnPt−1 )

= 100× ( ŵt − ŵt−1 + ẑ∗t + π̂t ) + 100 ∗ lnπ∗ + 100γ + 100 α
1−α ln Υ

(1.2.85)

Inflation (quarter-to-quarter, in %):

100× ( lnPt − lnPt−1 ) = 100 lnπt

= 100π̂t + 100 lnπ∗.
(1.2.86)

Nominal M2 growth (log differences, quarter-to-quarter, in %):

100× ( lnMt − lnMt−1 ) = 100× ( lnmt + lnmt−1 + z∗t + lnPt − lnPt−1 )

= 100× ( m̂t − m̂t−1 + ẑ∗t + π̂t ) + 100 ∗ lnπ∗ + 100γ + 100 α
1−α ln Υ

(1.2.87)

23



Nominal interest rate (annualized, in %):

400× ( lnRt ) = 4× 100R̂t + 400 ∗ lnR∗. (1.2.88)

Cointegrating relationships.

Log consumption - Log output (in %):

100× ( lnCt − lnYt ) = 100× ( ĉt − ŷt ) + 100(ln c∗ − ln y∗) (1.2.89)

Log investment - Log output (in %):

100× ( ln It − lnYt ) = 100× ( ît − ŷt ) + 100(ln i∗ − ln y∗) (1.2.90)

Log nominal wage - Log output - Log Price (in %):

100× ( lnWt − lnYt − lnPt ) = 100× ( ŵt − ŷt ) + 100(lnw∗ − ln y∗) (1.2.91)

Log M2 - Log output - Log Price (in %):

100× ( lnMt − lnYt − lnPt ) = 100× ( m̂t − ŷt ) + 100(lnm∗ − ln y∗) (1.2.92)

Note that the transition equation has no constant. So we can rescale all theˆvariables

by 100, and correspondingly make sure that the standard deviations of the exogenous

shocks are measured in %.
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2 Log-linearization of Eq. 1.2.4

Log-linearization of Eq. 1.2.4, which is reproduced here:

ξt (p̃t − (1 + λf,t)mct) yt(i)

+IEt
∑∞

s=1 ζ
s
pβ

sξt+s

(
p̃t

Πsl=1π
ιp
t+l−1π

1−ιp
∗

Πsl=1πt+l
− (1 + λf,t+s)mct+s

)
yt+s(i) = 0

(2.1)

Note that at st.st. the term within (. . . ) (namely p̃t
πs∗

Πsl=1πt+l
− (1 +λf,t+s)mct+s) is equal

to 0, so we need not bother with all the terms outside the parenthesis and we can set

them to their st.st values. Call d lnxt = x̂t. Now note that:

∂lhs
∂ ln p̃t

= ̂̃pt +
(∑∞

s=1 ζ
s
pβ

s
) ̂̃pt = 1

1− ζpβ
̂̃pt

∂lhs
∂ lnmct

= −(1 + λf )mc∗m̂ct

∂lhs
Πj=1,2,..∂ lnmct+j

= −(1 + λf )mc∗
(∑∞

s=1 ζ
s
pβ

sIEt[m̂ct+s]
)

∂lhs
∂ lnλf,t

= −λfmc∗λ̂f,t
∂lhs

Πj=1,2,..∂ lnλf,t+j
= −λfmc∗

(∑∞
s=1 ζ

s
pβ

sIEt[λ̂f,t+s]
)

∂lhs
Πj=1,2,..∂ lnπt+j

= −
(∑∞

s=1 ζ
s
pβ

sIEt[
∑s

l=1(π̂t+l − ιpπ̂t+l−1)]
)

Putting all together we get:

̂̃pt = (1− ζpβ)(1 + λf )mc∗m̂ct + (1− ζpβ)λfmc∗λ̂f,t

+ (1− ζpβ)
∑∞

s=1 ζ
s
pβ

s
[
(1 + λf )mc∗IEt[m̂ct+s] + λfmc∗IEt[λ̂f,t+s] + IEt[

∑s
l=1(π̂t+l − ιpπ̂t+l−1)]

]
= (1− ζpβ)(1 + λf )mc∗m̂ct + (1− ζpβ)λfmc∗λ̂f,t + ζpβ(IEt[π̂t+1]− ιpπ̂t)

+ ζpβIEt

[
(1− ζpβ)(1 + λf )mc∗m̂ct+1 + (1− ζpβ)λfmc∗λ̂f,t+1

+ (1− ζpβ)
∑∞

s=1 ζ
s
pβ

s
[
(1 + λf )βmc∗IEt+1[m̂ct+1+s] + λfmc∗IEt+1[λ̂f,t+1+s]

+ IEt+1[
∑s

l=1(π̂t+1+l − ιpπ̂t+l)]
]]

or ̂̃pt = (1− ζpβ)(1 + λf )mc∗m̂ct + (1− ζpβ)λfmc∗λ̂f,t

+ ζpβIEt[π̂t+1] + ζpβIEt[̂̃pt+1]
(2.2)

3 Log-linearization of Eq. 1.2.30

Log-linearization of Eq. 1.2.30, which is reproduced here:

IEt
∑∞

s=0(ζwβ)sLt+s(j)ξt+s

[
− X̃t,sw̃twt + (1 + λw)

bt+sϕt+sLt+s(j)
νl

ξt+s

]
= 0, (3.1)
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where

X̃t,s =


1 if s = 0

Πs
l=1(π∗e

γΥ
α

1−α )1−ιw(πt+l−1e
z∗t+l−1)ιw

Πs
l=1πt+le

z∗t+l
otherwise.

At st.st. the term within [. . . ] (namely −X̃t,sw̃twt + (1 + λw)
bt+sϕt+sLt+s(j)

νl

ξt+s
) is

equal to 0, so we need not bother with all the terms outside the parenthesis and we can

set them to their st.st values. Loglinearizing:

IEt
∑∞

s=0(ζwβ)s
[
− w∗ ̂̃wt − w∗ŵt − w∗∑s

l=1

(
ιwπ̂t+l−1 + ιwπ̂t+l−1 − π̂t+l − ẑ∗t+l

)
+w∗( b̂t+s + ϕ̂t+s + νlL̂t+s(j)− ξ̂t+s)

]
= 0,

(3.2)

Realize that in terms of detrended variables:

Lt+s(j) =
(
w̃twtw

−1
t+sX̃t,s

)− 1+λw
λw Lt+s,

hence

L̂t+s(j) = −1 + λw
λw

(̂̃wt + ŵt − ŵt+s +
s∑
l=1

(ιwπ̂t+l−1 + ιwẑ
∗
t+l−1 − π̂t+l − ẑ∗t+l)

)
+ L̂t+s.

Substituting in 3.2 we obtain:

1
1− ζwβ (1 + νl

1+λw
λw

)( ̂̃wt + ŵt) = b̂t + ϕ̂t + νlL̂t − ξ̂t + νl
1+λw
λw

ŵt

+IEt
∑∞

s=1(ζwβ)s
[
− (1 + νl

1+λw
λw

)
∑s

l=1

(
ιwπ̂t+l−1 + ιwẑ

∗
t+l−1 − π̂t+l − ẑ∗t+l

)
+b̂t+s + ϕ̂t+s + νlL̂t+s − ξ̂t+s + νl

1+λw
λw

ŵt+s

]
1

1− ζwβ (1 + νl
1+λw
λw

)( ̂̃wt + ŵt) = b̂t + ϕ̂t + νlL̂t − ξ̂t + νl
1+λw
λw

ŵt

− ζwβ
1− ζwβ (1 + νl

1+λw
λw

)IEt[ιwπ̂t + ιwz
∗
t − π̂t+1 − ẑ∗t+1]

+ζwβIEt

[
b̂t+1 + ϕ̂t+1 + νlL̂t+1 − ξ̂t+1) + νl

1+λw
λw

ŵt+1 +
∑∞

s=1(ζwβ)s[−
∑s

l=1

(
ιwπ̂t+1+l−1 + . . .

)
+b̂t+1+s + . . . ]

]
or

(1 + νl
1+λw
λw

) ̂̃wt + (1 + ζwβνl
1+λw
λw

)ŵt = (1− ζwβ)( b̂t + ϕ̂t + νlL̂t − ξ̂t)

−ζwβ(1 + νl
1+λw
λw

)IEt[ιwπ̂t + ιwz
∗
t − π̂t+1 − ẑ∗t+1] + ζwβ(1 + νl

1+λw
λw

)IEt

[̂̃wt+1 + ŵt+1

]
.

(3.3)

This expression can be further simplified as:

̂̃wt = (1−ζwβ)

(1+νl
1+λw
λw

)
( b̂t + ϕ̂t + νlL̂t − ξ̂t − ŵt)

+ζwβIEt

[̂̃wt+1 + ŵt+1 − ŵt + π̂t+1 + ẑ∗t+1 − ιwπ̂t − ιwz∗t
]
.

(3.4)
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4 The flexible price/wage version of the model

In the flexible price/wage version of the model ζp = ζw = 0.

• The price-setting problem of the intermediate good producer under flexible prices

is:

maxP̃t(i)

(
P̃t(i)−MCt

)
Yt(i)

s.t. Yt(i) =

(
P̃t(i)
Pt

)− 1+λf,t
λf,t

Yt,

(4.1)

The FOC becomes:

Ξ̃pt

(
P̃t(i)

Pt

)− 1+λf,t
λf,t

−1
1

λf,tPt

(
P̃t(i)− (1 + λf,t)MCt

)
Yt(i) = 0. (4.2)

This affects the equilibrium conditions as follows. Equation 8.41 becomes:

p̃t = (1 + λf,t)mct, (4.3)

and expression 1.2.6 becomes:

1 = p̃t, (4.4)

which implies:

1 = (1 + λf,t)mct, (4.5)

• The nominal interest rate and money need not be introduced, hence we can skip

condition 1.2.13 .Same applies to 1.2.12.

• The wage-setting problem of the workers under flexible wages is:

maxW̃t(j)

[
− ϕt
νl + 1Lt(j)

νl+1 + . . .
]

s.t. 1.1.20 and 1.1.34 for s = 0. (4.6)

The FOC becomes:

w̃twt = (1 + λw)
btϕtL

νl
t

ξt
, (4.7)

and equation 1.2.31 becomes:

1 = w̃t, (4.8)

which together imply:

wt = (1 + λw)
btϕtL

νl
t

ξt
. (4.9)
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The steady state is unchanged. The log-linearized conditions are modified as follows:

• Eq. 1.2.64 drops out and is replaced by:

0 = (1 + λf )m̂ct + λf λ̂f,t (4.10)

• Eq. 1.2.67, 1.2.68, and 1.2.79 drop out.

• Expressions 1.2.74 and 1.2.75 both drop out and are replaced by:

ŵt = b̂t + ϕ̂t + νlL̂t − ξ̂t. (4.11)

5 Normalizations

We redefine the shocks as follows:

λ̃f,t =
(1− ζp)(1− βζp)λf

1 + λf
λ̂f,t (5.1)

µ̃t =
1

(1 + β)e2z∗∗S′′
µ̂t (5.2)

b̃t =
(ez
∗
∗ − h)ez

∗
∗

(e2z∗∗ + h2β)
b̂t (5.3)

ϕ̃t = (1− ζwβ)ϕ̂t (5.4)

χ̃t =
1

νm
χ̂t (5.5)

6 Introducing Capital Producers (decentralizing the in-

vestment decision)

In this section we decentralize the investment decision by introducing capital producers

who buy goods, transform them into installed capital, and sell it back to the households

at a price Qkt . We will see that Qkt is Tobin’s Q – that is, the value of installed capital in

terms of consumption, which previously was equal to Ξkt /Ξt. The household’s problem

is the same as before except that now they do not decide about investment, but only on

how much capital to buy from the capital goods producers.
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The household’s budget constraint, written in nominal terms, is given by:

Pt+sCt+s(j) +Bt+s(j) +Mt+s(j) ≤ Rt+sBt+s−1(j) +Mt+s−1(j)

+ Πt+s +Wt+s(j)Lt+s(j) +
(
Rkt+sut+s(j)− Pt+sa(ut+s(j))Υ

−t) K̄t+s−1(j)

+Pt+sQ
k
t+s

(
(1− δ)K̄t+s−1(j)− K̄t+s(j)

)
,

(6.1)

where Qkt is the price of capital in terms of consumption goods. Note that households

at the beginning of period t (but after the realization of the shocks) sell undepreciated

capital from the previous period ((1− δ)K̄t−1(j)) to capital producers and at the end of

the period purchase the new stock of capital K̄t(j). Their FOC wrt K̄t+s(j) are:

(∂K̄t) ΞtQ
k
t = βIEt[Ξt+1(

Rkt+1
Pt+1

ut+1 − a(ut+1)Υ−(t+1)) + Ξt+1Q
k
t+1(1− δ)]. (6.2)

Note that this FOC is identical to 1.1.32 if we replace Qkt with Ξkt /Ξt.

Capital Producers produce new capital by transforming general output, which

they buy from final goods producers, into new capital via the technology:

x′ = x+ Υtµt

(
1− S(

It
It−1

)

)
It. (6.3)

where x is the initial capital purchased from households at the beginning of the period,

and x′ is the new stock of capital, which they sell back to households at the end of the

period. Their period profits are therefore given by:

llΠk
t = Qkt x

′ −Qkt x− It

= QktΥ
tµt

(
1− S( It

It−1
)
)
It − It.

(6.4)

Note that these profits do not depend on the initial level of capital x purchased, so

effectively the only decision variable for capital producers is It. Since they discount

profits using the households’ discount rate βtΞt, their FOC wrt It are:

(∂It) ΞtQ
k
tΥ

tµt

(
1− S( It

It−1
)− S′( It

It−1
) It
It−1

)
+ βIEt[Ξt+1Q

k
t+1Υt+1µt+1S

′(
It+1
It

)(
It+1
It

)2] = Ξt (6.5)

Note that this FOC is identical to 1.1.31 if we replace Qkt with Ξkt /Ξt.
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7 Adding BGG-type financial frictions as in Christiano,

Motto, Rostagno

7.1 Households

The objective function for household j is unchanged (expression 1.1.16). The household’s

problem is different as households no longer hold the capital stock, and make investment

and capital utilization decisions. Rather, they invest in deposits to the banking sector

Dt (in addition to government bonds and money), which pay a gross nominal interest

rate Rdt . Household j’s budget constraint is:

Pt+sCt+s(j) +Bt+s(j) +Dt+s(j) +Mt+s(j) ≤ Rt+sBt+s−1(j) +Rdt+sDt+s−1(j) +Mt+s−1(j)

+ Πt+s +Wt+s(j)Lt+s(j) + Trt+s,

(7.1)

where the term Trt+s represents transfers from the entrepreneurs, which we will discuss

later. Households’ first order conditions for consumption, money holdings, bonds, and

wages, are unchanged. [deposits FOC?]

7.2 Capital Producers

There is a representative, competitive, capital producer who produces new capital by

transforming general output – which is bought from final goods producers at the nominal

price Qkt – into new capital via the technology:

x′ = x+ Υtµt

(
1− S(

It
It−1

)

)
It. (7.2)

where x is the initial capital purchased from entrepreneurs in period t, and x′ is the new

stock of capital, which they sell back to entrepreneurs at the end of the same period.

Their period profits, expressed in terms of consumption goods, are therefore given by:

Πk
t =

Qkt
Pt
x′ − Qkt

Pt
x− It

=
Qkt
Pt

Υtµt

(
1− S( It

It−1
)
)
It − It.

(7.3)
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Note that these profits do not depend on the initial level of capital x purchased, so

effectively the only decision variable for capital producers is It. Since they discount

profits using the households’ discount rate βtΞt, their FOC wrt It are:

(∂It) Ξt
Qkt
Pt

Υtµt

(
1− S( It

It−1
)− S′( It

It−1
) It
It−1

)
+ βIEt[Ξt+1

Qkt+1
Pt+1

Υt+1µt+1S
′(
It+1
It

)(
It+1
It

)2] = Ξt (7.4)

Note that this FOC is identical to 1.1.31 if we replace
Qkt
Pt

with Ξkt /Ξt.

7.3 Entrepreneurs

There is a continuum of entrepreneurs indexed by e. Each entrepreneur buys installed

capital K̄t−1(e) from the capital producers at the end of period t− 1 using her own net

worth Nt−1(e) and a loan Bd
t−1(e) from the banking sector:

Qkt−1K̄t−1(e) = Bd
t−1(e) +Nt−1(e)

where net worth is expressed in nominal terms. In the next period she rents capital

out to firms, earning a rental rate Rkt per unit of effective capital. In period t she

is subject to an i.i.d. (across entrepreneurs and over time) shock ω(e)t that increases

or shrinks her capital, where logω(e)t ∼ N(mω,t−1, σ
2
ω,t−1) where mω,t−1 is such that

IEω(e)t = 1.Denote by Ft−1(ω) the cumulative distribution function of ω at time t,

where the distribution needs to be known at time t − 1. In addition, after observing

the shock she can choose a level of utilization u(e)t by paying a cost in terms of general

output equal to a(u(e)t)Υ
−t per-unit-of-capital. At the end of period t the entrepreneurs

sells undepreciated capital to the capital producers. Entrepreneurs’ revenues in period t

are therefore: {
Rkt u(e)t + (1− δ)Qkt − Pta(u(e)t)Υ

−t
}
ω(e)tK̄(e)t−1

or equivalently

ω(e)tR̃
k(e)tQ

k
t−1K̄(e)t−1

where

R̃k(e)t =
Rkt u(e)t + (1− δ)Qkt − Pta(u(e)t)Υ

−t

Qkt−1

(7.5)
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is the gross nominal return to capital for entrepreneurs. From the profit function it is

clear that the choice of the utilization rate is independent from the amount of capital

purchased or the ω shock, and is given by the FOC:

Rkt
Pt

= a′(u(e)t)Υ
−t, (7.6)

which is the same condition as 1.1.33. Consequently we can drop the index from the

return R̃kt .

The debt contract undertaken by the entrepreneur in period t − 1 consists of the

triplet (Bd(e)t−1, R
d(e)t, ω̄(e)t) where Rdt (e) represents the contractual interest rate, and

ω̄(e)t the theshold level of ω(e)t below which the entrepreneur cannot pay back, which

is therefore defined by the equation:

ω̄(e)tR̃
k
tQ

k
t−1K̄(e)t−1 = Rd(e)tB

d(e)t−1. (7.7)

For ω(e)t < ω̄(e)t the bank monitors the entrepreneurs and extracts a fraction (1− µet )

of its revenues R̃ktQ
k
t−1K̄(e)t−1, where µet represents exogenous bankrupcty costs. The

bank’s zero profit condition implies that [state by state?]:

[1− Ft−1(ω̄(e)t)]R
d(e)tB

d(e)t−1+(1−µet−1)

∫ ω̄(e)t

0
ωdFt−1(ω)R̃ktQ

k
t−1K̄(e)t−1 = Rt−1B

d(e)t−1

where Rt−1 is the rate paid by the bank to the depositors. If we define leverage as:

%(e)t ≡
Bd(e)t
N(e)t

,

use the definitions

Γt−1(ω̄t) ≡ ω̄t [1− Ft−1(ω̄t)] +Gt−1(ω̄t)

Gt−1(ω̄t) ≡
∫ ω̄t

0 ωdFt−1(ω),

as well as the definiton of ω̄(e)t, the zero-profit condition can be rewritten as:[
Γt−1(ω̄(e)t)− µet−1Gt−1(ω̄(e)t)

] R̃kt
Rt−1

(1 + %(e)t−1) = %(e)t−1. (7.8)

Entrepreneurs’ expected profits (before the realization of the shock ωt) can be written

as: ∫∞
ω̄(e)t

[
ω(e)tR̃

k(e)tQ
k
t−1K̄(e)t−1 −Rd(e)tBd(e)t−1

]
dFt−1(ω(e)t) =[∫∞

ω̄(e)t
ω(e)tdFt−1(ω(e)t)− ω̄(e)t[1− Ft−1(ω̄(e)t)]

]
R̃k(e)tQ

k
t−1K̄(e)t−1 =

[1− Γt−1(ω̄(e)t)]
R̃kt
Rt−1

[1 + %(e)t−1]Rt−1N(e)t−1
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The contract that maximizes expected net worth for the entrepreneurs is given by:

max
{%(e)t−1,ω̄(e)t}

Et−1

 [1− Γt−1(ω̄(e)t)]
R̃kt
Rt−1

[1 + %(e)t−1]Rt−1N(e)t−1

+ηt

{[
Γt−1(ω̄(e)t)− µet−1Gt−1(ω̄(e)t)

] R̃kt
Rt−1

[1 + %(e)t−1]− %(e)t−1

}


so that the FOCs are:

%(e)t−1 : 0 = Et−1

[
[1− Γt−1(ω̄(e)t)]

R̃kt
Rt−1

]
Rt−1N(e)t−1

+Et−1

[
ηt

{[
Γt−1(ω̄(e)t)− µet−1Gt−1(ω̄(e)t)

] R̃kt
Rt−1

− 1
}]

ω̄(e)t : ηt =
Γ′t−1(ω̄(e)t)

Γ′t−1(ω̄(e)t)−µet−1G
′
t−1(ω̄(e)t)

Rt−1N(e)t−1

Substituting the second FOC into the first we obtain:

Et−1

[
[1− Γt−1(ω̄t)]

R̃kt
Rt−1

+
Γ′t−1(ω̄t)

Γ′t−1(ω̄t)− µet−1G
′
t−1(ω̄t)

{[
Γt−1(ω̄t)− µet−1Gt−1(ω̄t)

] R̃kt
Rt−1

− 1

}]
= 0.

(7.9)

where we omit the the indicator (e) since the condition implies that ω̄(e)t only depends

on aggregate variables and is the same across entrepreneurs. From the zero profits

condition 7.8 this implies that leverage %(e)t−1 is also the same, hence we can rewrite 7.8

as a function of aggregate variables only:

[
Γt−1(ω̄t)− µet−1Gt−1(ω̄t)

] R̃kt
Rt−1

=
Qkt−1K̄t−1 −Nt−1

Qkt−1K̄t−1
. (7.10)

Aggregate entrepreneurs’ equity evolves according to:

Vt =
∫∞
ω̄t
ωtR̃

k
tQ

k
t−1K̄(e)t−1dFt−1(ωt)− [1− Ft−1(ω̄t)]R

d(e)tB
d(e)t−1

= R̃ktQ
k
t−1K̄t−1 −

[
Rt−1 + µet−1Gt−1 (ω̄t) R̃

k
t

Qkt−1K̄t−1

Qkt−1K̄t−1−Nt−1

] (
Qkt−1K̄t−1 −Nt−1

)
.

(7.11)

A fraction 1− γt of entrepreneurs exits the economy and fraction γt survives to continue

operating for another period. A fraction Θ of the total net worth owned by exiting

entrepreneurs is consumed upon exit and the remaining fraction of their networth is

transfered as a lump sum to the households. Each period new entrepreneurs enter and

receive a net worth transfer W e
t . Because W e

t is small, this exit and entry process ensures

that entrepreneurs do not accumulate enough net worth to escape the financial frictions.

Aggregate entrepreneurs’ net worth evolves accordingly as:

Nt = γtVt +W e
t . (7.12)
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7.4 Detrending and steady state

We detrend the additional variables introduced by this extension as follows:

qkt =
Qkt
Pt

Υt, nt = Nt
PtZ

∗
t
, vt = Vt

PtZ
∗
t
, wet =

W e
t

PtZ
∗
t
. (7.13)

All other variables are detrended as in 8.38. Expressions 7.4, 7.5, 7.8, 7.11, and 7.12

become

ξtq
k
t µt

(
1− S(

it
it−1

ez
∗
t )− S′( it

it−1
ez
∗
t )

it
it−1

ez
∗
t

)
+ βIEt[e

−z∗t+1ξt+1q
k
t+1µt+1S

′(
it+1

it
ez
∗
t+1)(

it+1

it
ez
∗
t+1)2] = ξt (7.14)

R̃kt =
rkt ut + (1− δ)qkt − a(ut)

qkt−1Υ
πt (7.15)

rkt = a′(ut) (7.16)

ω̄tR̃
k
t = Rdt

qkt−1k̄t−1 − nt−1

qkt−1k̄t−1
(7.17)

[
Γt−1(ω̄t)− µet−1Gt−1(ω̄t)

] R̃kt
Rt−1

=
qkt−1k̄t−1 − nt−1

qkt−1k̄t−1
(7.18)

vte
z∗t πt = R̃kt q

k
t−1k̄t−1 −

[
Rt−1 + µet−1Gt−1 (ω̄t) R̃

k
t

qkt−1k̄t−1

qkt−1k̄t−1−nt−1

] (
qkt−1k̄t−1 − nt−1

)
(7.19)

nt = γtvt + wet . (7.20)

Expression 7.9 is already expressed in terms of detrended variables.

The steady state relationships are:

ξ∗q
k
∗µ
(

1− S(eγΥ
α

1−α )− S′(eγΥ
α

1−α )eγΥ
α

1−α
)

+ βe−γΥ−
α

1−α ξ∗q
k
∗µS

′(eγΥ
α

1−α )(eγΥ
α

1−α )2 = ξ∗ (7.21)

which implies since S(.) = S′(.) = 0 at steady state that qk∗ = 1. We also parameterize

a(.) so that u∗ = 1 and a(u∗) = 0. With this information, and after some simplification,

we can rewrite the remaining steady state equations as

R̃k∗
π∗

=
rk∗ + (1− δ)

Υ
(7.22)
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R̃k∗
R∗

= Ψ(ω̄∗, σω∗, µ
e
∗) (7.23)

n∗
k̄∗

= 1− [Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)]
R̃k∗
R∗

(7.24)

(
1− γ∗β−1

) n∗
k̄∗

= γ∗β
−1

{
R̃k∗
R∗

[1− µe∗G∗ (ω̄∗)]− 1

}
+
we∗
k̄∗

(7.25)

v∗ = γ−1
∗ (n∗ − we∗) . (7.26)

with

Ψ (ω̄∗, σω∗, µ
e
∗) ≡

Γ′∗ (ω̄∗)

[1− Γ∗ (ω̄∗)] [Γ′∗ (ω̄∗)− µe∗G′∗ (ω̄∗)] + Γ′∗ (ω̄∗) [Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)]

=
1

1− µe∗
G′∗(ω̄∗)
Γ′∗(ω̄∗)

[1− Γ∗ (ω̄∗)]− µe∗G∗ (ω̄∗)
(7.27)

Our strategy for computing the steady state is going to be the following: find a

solution for the real return to capital
R̃k∗
π∗ and use 7.22 to find rk∗ :

rk∗ = Υ
R̃k∗
π∗
− (1− δ). (7.28)

Once we have rk∗ we can proceed exactly as in section 1.3 to find the steady state for the

other variables. Recall that from the Euler equation the steady state real rate is given

by:
R∗
π∗

= β−1ez
∗
∗ .

In absence of financial friction R∗
π∗ and

R̃k∗
π∗ would be identical, but frictions induce

a spread between the two, which we will compute subsequently as a function of the

primitives in the economy (σ2
ω,∗, µ

e
∗, γ∗, w

e
∗).

We solve for the steady state according to the following steps:

1. Set

F∗ (ω̄∗) = F̄∗ (7.29)

and define

zω∗ ≡
ln ω̄∗ + 1

2σ
2
ω∗

σω∗
= Φ−1

(
F̄∗
)

(7.30)

which we can use to write

ω̄ (σω∗) = exp

{
σω∗z

ω
∗ −

1

2
σ2
ω∗

}
(7.31)
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2. Given the value for the spread for debt contracts, Rd∗/R∗, we can use equation

(7.17) to write

R̃k∗
R∗

=
Rd∗
R∗

1− n∗
qk∗ k̄∗

ω̄∗
(7.32)

(Note: this second step can be skipped if instead we calibrate/estimate R̃k∗/R∗

directly.)

3. Given R̃k∗/R∗, we can use (7.23) to write(
R̃k∗
R∗

)−1

= 1− µe∗
G′∗ (ω̄∗)

Γ′∗ (ω̄∗)
[1− Γ∗ (ω̄∗)]− µe∗G∗ (ω̄∗)

= 1− µe∗
{
G′∗ (ω̄∗)

Γ′∗ (ω̄∗)
[1− Γ∗ (ω̄∗)] +G∗ (ω̄∗)

}
which we can use to set

µe∗ (σω∗) =
1−

(
R̃k∗
R∗

)−1

G′∗(ω̄∗)
Γ′∗(ω̄∗)

[1− Γ∗ (ω̄∗)] +G∗ (ω̄∗)

and plugging in the exact expressions we get

µe∗ (σω) =
1−

(
R̃k∗
R∗

)−1

1
σω∗

φ(zω∗ )
1−F̄∗

{
1− Φ (zω∗ − σω∗)− ω̄∗

(
1− F̄∗

)}
+ Φ (zω∗ − σω∗)

(7.33)

4. Given the above and equation (7.24) we get

n∗
k̄∗

(σω) = 1−
{
ω̄∗
[
1− F̄∗

]
+ (1− µe∗) Φ (zω∗ − σω∗)

} R̃k∗
R∗

(7.34)

5. Given the elasticity of the spread w.r.t. leverage, ζsp,b, derived below in equation

(7.42), we get the following expression

1−Φ(zω∗ −σω∗)
1−F̄∗

−ω̄∗

ω̄∗+(1−µe∗)
Φ(zω∗ −σω∗)

1−F̄∗

[
1− µe∗

σω∗
φ(zω∗ )
1−F̄∗

]
+ 1

µe∗
ω̄∗σ2

ω∗

φ(zω∗ )
1−F̄∗

−zω∗[
1− µe∗

σω∗
φ(zω∗ )
1−F̄∗

]2
φ(zω∗ )

(1−F̄∗)
2

R̃k∗
R∗
n∗
k̄∗

= 1−
ζsp,b(

n∗
k̄∗

)−1
− 1

(7.35)

which we can solve for σω∗. Once we find this value we can plug back into the

previous expressions, that depend on σω∗.
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6. Given γ∗, and using equation (7.25) we get

we∗
k̄∗

=
(
1− γ∗β−1

) n∗
k̄∗
− γ∗β−1

{
R̃k∗
R∗

[1− µe∗Φ (zω∗ − σω∗)]− 1

}
(7.36)

and from equation (7.26)
v∗
k̄∗

= γ−1
∗

(
n∗
k̄∗
− we∗
k̄∗

)
(7.37)

7. We get rk∗ using equation (7.22) to write

rk∗ = Υ
R̃k∗
π∗
− (1− δ) (7.38)

7.5 Log-linearization

Log-linearization of the FOC w.r.t. leverage (expression 7.9) yields:

0 = Et

(̂̃Rkt+1 − R̂t
)

+ ζb,ω̄Et ̂̄ωt+1 + ζb,σω σ̂ω,t + ζb,µe µ̂
e
t (7.39)

with

ζb,x ≡
∂
∂x

[{
[1− Γ(ω̄)] + Γ′(ω̄)

Γ′(ω̄)−µeG′(ω̄) [Γ(ω̄)− µeG(ω̄)]
}
R̃k∗
R∗
− Γ′(ω̄)

Γ′(ω̄)−µeG′(ω̄)

]
{

[1− Γ∗(ω̄∗)] + Γ′∗(ω̄∗)
Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)

[Γ∗(ω̄∗)− µ̄eG∗(ω̄∗)]
}
R̃k∗
R∗

x

defined for x ∈
{
ω̄, σ2

ω, µ
e
}

. Log-linearization of the zero profit condition (expres-

sion 7.18) yields:

̂̃Rkt − R̂t−1 + ζz,ω̄ ̂̄ωt + ζz,σω σ̂ω,t−1 + ζz,µe µ̂
e
t−1 = − (%∗)

−1
(
n̂t−1 − q̂kt−1 − ̂̄kt−1

)
(7.40)

with

ζz,x ≡
∂
∂x [Γ(ω̄)− µeG(ω̄)]

Γ∗(ω̄∗)− µe∗G∗(ω̄∗)
x (7.41)

defined for x ∈
{
ω̄, σ2

ω, µ
e
}
. We can further write

̂̄ωt = − 1

ζz,ω̄%∗

(
n̂t−1 − q̂kt−1 − ̂̄kt−1

)
− 1

ζz,ω̄

(̂̃Rkt − R̂t−1 + ζz,σω σ̂ω,t−1 + ζz,µe µ̂
e
t−1

)
and plug this expression into 7.39 to obtain:

0 = Et

[̂̃Rkt+1 − R̂t
]

+ ζb,σω σ̂ω,t + ζb,µe µ̂
e
t

− ζb,ω̄
ζz,ω̄

[
1
%∗

(
n̂t − q̂kt − ̂̄kt)+ Et

[̂̃Rkt+1 − R̂t
]

+ ζz,σω σ̂ω,t + ζz,µe µ̂
e
t

]
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hence

Et

[̂̃Rkt+1 − R̂t
]

= ζsp,b

(
q̂kt + ̂̄kt − n̂t)+ ζsp,σω σ̂ω,t + ζsp,µe µ̂

e
t (7.42)

where

ζsp,b ≡ −
ζb,ω̄
ζz,ω̄

1−
ζb,ω̄
ζz,ω̄

1
%∗

ζsp,σω ≡
ζb,ω̄
ζz,ω̄

ζz,σω−ζb,σω

1−
ζb,ω̄
ζz,ω̄

ζsp,µe ≡
ζb,ω̄
ζz,ω̄

ζz,µe−ζb,µe

1−
ζb,ω̄
ζz,ω̄

Log-linearization of the expression 7.20, characterizing net worth, yields:

n̂t = γ∗
v∗
n∗

(γ̂t + v̂t) +
we∗
n∗
ŵet . (7.43)

Log-linearization of the expression 7.19, characterizing the evolution of entrepreneurial

equity, is

v̂t = −ẑt − β−1 k̄∗−n∗
v∗

(
R̂t−1 − πt

)
+ R̃k∗

π∗ez
∗∗
k̄∗
v∗

(1− µe∗G∗ (ω̄∗))

(̂̃Rkt − πt)+ β−1 n∗
v∗
n̂t−1(

R̃k∗
π∗ez

∗∗
(1− µe∗G∗ (ω̄∗))− β−1

)
k̄∗
v∗

(
q̂kt−1 + ̂̄kt−1

)
−µe∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗∗
k̄∗
v∗

[
µ̂et−1 + ζG,ω̄ ̂̄ωt + ζG,σω σ̂ω,t−1

]
.

(7.44)

Plugging in the expression for ̂̄ωt we obtain

v̂t = −ẑt − β−1 k̄∗−n∗
v∗

(
R̂t−1 − πt

)
+ R̃k∗

π∗ez
∗∗
k̄∗
v∗

(1− µe∗G∗ (ω̄∗))

(̂̃Rkt − πt)+ β−1 n∗
v∗
n̂t−1(

R̃k∗
π∗ez

∗∗
(1− µe∗G∗ (ω̄∗))− β−1

)
k̄∗
v∗

(
q̂kt−1 + ̂̄kt−1

)
− µe∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗∗
k̄∗
v∗

[
µ̂et−1 + ζG,σω σ̂ω,t−1

]
−µe∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗∗
k̄∗
v∗
ζG,ω̄

[
− 1

ζz,ω̄%∗

(
n̂t−1 − q̂kt−1 − ̂̄kt−1

)
− 1
ζz,ω̄

(̂̃Rkt − R̂t−1 + ζz,σω σ̂ω,t−1 + ζz,µe µ̂
e
t−1

)]
Collecting terms yields

v̂t = −ẑt + ζv,R̃k

(̂̃Rkt − πt)− ζv,R (R̂t−1 − πt
)

+ ζv,qK

(
q̂kt−1 + ̂̄kt−1

)
+ ζv,nn̂t−1

−ζv,µe µ̂et−1 − ζv,σω σ̂ω,t−1

(7.45)
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with

ζv,R̃k ≡ R̃k∗
π∗ez

∗∗
k̄∗
v∗

[
1− µe∗G∗ (ω̄∗)

(
1− ζG,ω̄

ζz,ω̄

)]
ζv,R ≡ β−1 k̄∗

v∗

[
1− n∗

k̄∗
+ µe∗G∗ (ω̄∗)

R̃k∗
R∗

ζG,ω̄
ζz,ω̄

]
ζv,qK ≡ R̃k∗

π∗ez
∗∗
k̄∗
v∗

[
1− µe∗G∗ (ω̄∗)

(
1− ζG,ω̄

ζz,ω̄%∗

)]
− β−1 k̄∗

v∗

ζv,n ≡ β−1 n∗
v∗

+ R̃k∗
π∗ez

∗∗
k̄∗
v∗
µe∗G∗ (ω̄∗)

ζG,ω̄
ζz,ω̄%∗

ζv,µe ≡ µe∗G∗ (ω̄∗)
R̃k∗
π∗ez

∗∗
k̄∗
v∗

(
1− ζG,ω̄

ζz,µe

ζz,ω̄

)
ζv,σω ≡ µe∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗∗
k̄∗
v∗
ζG,ω̄

(
1− ζz,σω

ζz,ω̄

)
Finally, substituting this expression into 7.43 we get:

n̂t = γ∗
v∗
n∗
γ̂t + we∗

n∗
ŵet − γ∗ v∗n∗ ẑt

+ζn,R̃k

(̂̃Rkt − πt)− ζn,R (R̂t−1 − πt
)

+ ζn,qK

(
q̂kt−1 + ̂̄kt−1

)
+ ζn,nn̂t−1

−ζn,µe µ̂et−1 − ζn,σω σ̂ω,t−1

(7.46)

with

ζn,R̃k ≡ γ∗
R̃k∗
π∗ez

∗∗
(1 + %∗)

[
1− µe∗G∗ (ω̄∗)

(
1− ζG,ω̄

ζz,ω̄

)]
ζn,R ≡ γ∗β

−1(1 + %∗)
[
1− n∗

k̄∗
+ µe∗G∗ (ω̄∗)

R̃k∗
R∗

ζG,ω̄
ζz,ω̄

]
ζn,qK ≡ γ∗

R̃k∗
π∗ez

∗∗
(1 + %∗)

[
1− µe∗G∗ (ω̄∗)

(
1− ζG,ω̄

ζz,ω̄%∗

)]
− γ∗β−1(1 + %∗)

ζn,n ≡ γ∗β
−1 + γ∗

R̃k∗
π∗ez

∗∗
(1 + %∗)µ

e
∗G∗ (ω̄∗)

ζG,ω̄
ζz,ω̄%∗

ζn,µe ≡ γ∗µ
e
∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗∗
(1 + %∗)

(
1− ζG,ω̄

ζz,µe

ζz,ω̄

)
ζn,σω ≡ γ∗µ

e
∗G∗ (ω̄∗)

R̃k∗
π∗ez

∗∗
(1 + %∗)ζG,ω̄

(
1− ζz,σω

ζz,ω̄

)
Now normalize the shocks,

σ̃ω,t ≡ ζsp,σω σ̂ω,t (7.47)

µ̃et ≡ ζsp,µe µ̂et (7.48)

γ̃t ≡ γ∗
v∗
n∗
γ̂t (7.49)

so that the relevant log-linear equations, (7.42) and (7.46), become:

Et

[̂̃Rkt+1 − R̂t
]

= ζsp,b

(
q̂kt + ̂̄kt − n̂t)+ σ̃ω,t + µ̃et (7.50)

and

n̂t = ζn,R̃k

(̂̃Rkt − πt)− ζn,R (R̂t−1 − πt
)

+ ζn,qK

(
q̂kt−1 + ̂̄kt−1

)
+ ζn,nn̂t−1

+γ̃t + we∗
n∗
ŵet − γ∗ v∗n∗ ẑt −

ζn,µe

ζsp,µe
µ̃et−1 −

ζn,σω
ζsp,σω

σ̃ω,t−1

(7.51)
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Log-linearization of 7.15 and 7.14 yield:

̂̃Rkt − πt =
rk∗

rk∗ + (1− δ)
r̂kt +

(1− δ)
rk∗ + (1− δ)

q̂kt − q̂kt−1, (7.52)

and

1

S′′e2z∗∗
q̂kt +

1

S′′e2z∗∗
µt = z∗t − ît−1 + (1 + β)̂it − βIE[z∗t+1]− βIE [̂it+1]. (7.53)

7.6 Log-linear distribution

Consider

lnω ∼ N
(
mω, σ

2
ω

)
(7.54)

which has the properties

E [ω] = emω+ 1
2
σ2
ω (7.55)

In order to get E [ω] = 1 we need to set

mω = −1

2
σ2
ω (7.56)

This implies that the pdf is

f (ω) =
1

ωσω
√

2π
e
− 1

2

(
lnω+ 1

2σ
2
ω

σω

)2

(7.57)

The CDF is

F (ω̄) = Φ

(
ln ω̄ + 1

2σ
2
ω

σω

)
(7.58)

Further notice that

φ (z) ≡ 1√
2π
e−

1
2
z2

(7.59)

Φ (z) ≡
∫ z

−∞

1√
2π
e−

1
2
x2
dx (7.60)

for which we can use matlab functions normpdf and normcdf. We also need the following

expression

z = Φ−1
(
F̄
)

(7.61)

for which we can use an inverse cdf function also available in matlab as norminv.
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The partial expectation obeys

E [ω|ω > ω̄] = Φ

(
1
2σ

2
ω − ln ω̄

σω

)
= 1− Φ

(
ln ω̄ − 1

2σ
2
ω

σω

)

which implies that

G (ω̄) ≡
∫ ω̄

0
ωf (ω) dω =

∫ ∞
0

ωf (ω) dω −
∫ ∞
ω̄

ωf (ω) dω

= Φ

(
ln ω̄ − 1

2σ
2
ω

σω

)
(7.62)

Finally we define

Γ (ω̄) ≡
∫ ω̄

0
ωf (ω) dω + ω̄

∫ ∞
ω̄

f (ω) dω

= ω̄

[
1− Φ

(
ln ω̄ + 1

2σ
2
ω

σω

)]
+G (ω̄) (7.63)

If we define

zω ≡
ln ω̄ + 1

2σ
2
ω

σω
(7.64)

then we get

G (ω̄) = Φ (zω − σω) (7.65)

and

Γ (ω̄) = ω̄ [1− Φ (zω)] + Φ (zω − σω) (7.66)

In order to compute the derivatives, first notice that we can write

φ (zω − σω) = ω̄φ (zω) (7.67)

and

φ′ (z) = −zφ (z) , ∀z (7.68)

Using this result we can write the derivatives as follows:

G′ (ω̄) =
1

σω
φ (zω) (7.69)

G′′ (ω̄) = − zω

ω̄σω
G′ (ω̄) = − zω

ω̄σ2
ω

φ (zω) (7.70)
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Γ′ (ω̄) =
Γ (ω̄)−G (ω̄)

ω̄
= 1− Φ (zω) (7.71)

Γ′′ (ω̄) = − 1

ω̄
G′ (ω̄;σω) = − 1

ω̄σω
φ (zω) (7.72)

and
∂zω

∂σω
= −

(
zω

σω
− 1

)
(7.73)

Gσω (ω̄) = − z
ω

σω
φ (zω − σω) (7.74)

G′σω (ω̄) = −φ (zω)

σ2
ω

[1− zω (zω − σω)] (7.75)

Γσω (ω̄) = −φ (zω − σω) (7.76)

Γ′σω (ω̄) =

(
zω

σω
− 1

)
φ (zω) (7.77)

where we use notation f ′ (ω̄) ≡ ∂f (ω̄) /∂ω̄ and fσω (ω̄) ≡ ∂f (ω̄) /∂σω, for f ∈ {G,Γ}.

7.7 Elasticities

First notice that we have several elasticities defined as

ζb,x ≡
∂
∂x

[{
1− Γ (ω̄) + Γ′(ω̄)

Γ′(ω̄)−µe∗G′(ω̄) [Γ (ω̄)− µe∗G (ω̄)]
}
R̃k∗
R∗
− Γ′(ω̄)

Γ′(ω̄)−µe∗G′(ω̄)

]
{

1− Γ (ω̄) + Γ′(ω̄)
Γ′(ω̄)−µe∗G′(ω̄) [Γ (ω̄)− µe∗G (ω̄)]

}
R̃k∗
R∗

x

which we can rewrite as

ζb,x ≡
∂Ψ̃
∂x x{

1− Γ (ω̄) + Γ′(ω̄)
Γ′(ω̄)−µe∗G′(ω̄) [Γ (ω̄)− µe∗G (ω̄)]

}
R̃k∗
R∗

with

Ψ̃ ≡
{

1− Γ (ω̄) +
Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)
[Γ (ω̄)− µe∗G (ω̄)]

}
R̃k∗
R∗
− Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)

= [1− Γ (ω̄)]
R̃k∗
R∗

+
Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)

[
[Γ (ω̄)− µe∗G (ω̄)]

R̃k∗
R∗
− 1

]
(7.78)

Elasticities w.r.t. ω̄
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First write

∂Ψ̃

∂ω̄
= −Γ′∗ (ω̄∗)

R̃k∗
R∗

+

[
[Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)]

R̃k∗
R∗
− 1

]
Γ′′ (ω̄) [Γ′ (ω̄)− µe∗G′ (ω̄)]− Γ′ (ω̄) [Γ′′ (ω̄)− µe∗G′′ (ω̄)]

[Γ′ (ω̄)− µe∗G′ (ω̄)]2

+
Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)

[
Γ′ (ω̄)− µe∗G′ (ω̄)

] R̃k∗
R∗

and simplify to

∂Ψ̃

∂ω̄
= µe∗

{
[Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)]

R̃k∗
R∗
− 1

}
G′′ (ω̄) Γ′ (ω̄)−G′ (ω̄) Γ′′ (ω̄)

[Γ′ (ω̄)− µe∗G′ (ω̄)]2

= µe∗
n∗
k̄∗

Γ′′ (ω̄)G′ (ω̄)−G′′ (ω̄) Γ′ (ω̄)

[Γ′ (ω̄)− µe∗G′ (ω̄)]2

which we can plug into the elasticity to get

ζb,ω̄ =
µe∗

n∗
k̄∗

Γ′′∗ (ω̄∗)G′∗(ω̄∗)−G′′∗ (ω̄∗)Γ′∗(ω̄∗)

[Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)]
2{

1− Γ∗ (ω̄∗) + Γ′∗ (ω̄∗)
Γ∗(ω̄∗)−µe∗G∗(ω̄∗)
Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)

}
R̃k∗
R∗

ω̄∗ (7.79)

We also have

ζz,ω̄ ≡
Γ′∗ (ω̄∗)− µe∗G′∗ (ω̄∗)

Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)
ω̄∗ (7.80)

Notice that if we plug everything into

ζsp,b = −
ζb,ω̄
ζz,ω̄

1− ζb,ω̄
ζz,ω̄

n∗
k̄∗

1− n∗
k̄∗

(7.81)

which becomes

ζsp,b =

n∗
k̄∗

1−n∗
k̄∗

1−

{
[1−ω̄∗[1−Φ(zω∗ )]−Φ(zω∗ −σω∗)]

ω̄∗[1−Φ(zω∗ )]+(1−µe∗)Φ(zω∗ −σω∗)

[
1−Φ(zω∗ )− µe∗

σω∗
φ(zω∗ )

]
+1−Φ(zω∗ )

}
R̃k∗
R∗

µe∗φ(zω∗ )
ω̄∗σ2

ω∗

φ(zω∗ )−zω∗ [1−Φ(zω∗ )][
1−Φ(zω∗ )−

µe∗
σω∗ φ(zω∗ )

]2
n∗
k̄∗

(7.82)

Elasticity of w.r.t. σω

First we compute the derivative

∂Ψ̃

∂σω
= −Γσω (ω̄)

R̃k∗
R∗

+
Γ′ (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)
[Γσω (ω̄)− µe∗Gσω (ω̄)]

R̃k∗
R∗

+
Γ′σω (ω̄) [Γ′ (ω̄)− µe∗G′ (ω̄)]− Γ′ (ω̄)

[
Γ′σω (ω̄)− µe∗G′σω (ω̄)

]
[Γ′ (ω̄)− µe∗G′ (ω̄)]2

[
[Γ (ω̄)− µe∗G (ω̄)]

R̃k∗
R∗
− 1

]
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hence

∂Ψ̃

∂σω
=

1− µe∗
Gσω (ω̄)
Γσω (ω̄)

1− µe∗
G′(ω̄)
Γ′(ω̄)

− 1

Γσω (ω̄)
R̃k∗
R∗

+ µe∗
n∗
k̄∗

G′ (ω̄) Γ′σω (ω̄)− Γ′ (ω̄)G′σω (ω̄)

[Γ′ (ω̄)− µe∗G′ (ω̄)]2

so that

ζb,σω =

(
1−µe∗

Gσω∗(ω̄∗)
Γσω∗(ω̄∗)

1−µe∗
G′∗(ω̄∗)
Γ′∗(ω̄∗)

− 1

)
Γσω∗ (ω̄∗)

R̃k∗
R∗

+ µe∗
n∗
k̄∗

G′∗(ω̄∗)Γ
′
σω∗(ω̄∗)−Γ′∗(ω̄∗)G

′
σω∗(ω̄∗)

[Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)]
2

[1− Γ∗ (ω̄∗)]
R̃k∗
R∗

+ Γ′∗(ω̄∗)
Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)

(
1− n∗

k̄∗

) σω∗

(7.83)

We also have

ζz,σω =
Γσω∗ (ω̄∗)− µe∗Gσω∗ (ω̄∗)

Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)
σω∗ (7.84)

and finally we can write

ζsp,σω =

ζb,ω̄
ζz,ω̄

ζz,σω − ζb,σω
1− ζb,ω̄

ζz,ω̄

(7.85)

Elasticity of w.r.t. µe

First solve

∂Ψ̃

∂µe
= − Γ′ (ω̄)G′ (ω̄)

[Γ′ (ω̄)− µe∗G′ (ω̄)]2
n∗
k̄∗
− Γ′ (ω̄)G (ω̄)

Γ′ (ω̄)− µe∗G′ (ω̄)

R̃k∗
R∗

so that

ζb,x ≡ −
Γ′∗(ω̄∗)G

′
∗(ω̄∗)

Γ′∗(ω̄∗)−µe∗G′∗(ω̄∗)
n∗
k̄∗

+ Γ′∗ (ω̄∗)G∗ (ω̄∗)
R̃k∗
R∗

[1− Γ∗ (ω̄∗)] [Γ′∗ (ω̄∗)− µe∗G′∗ (ω̄∗)]
R̃k∗
R∗

+ Γ′∗ (ω̄∗)
(

1− n∗
k̄∗

)µe∗ (7.86)

We also have

ζz,µe = − G∗ (ω̄∗)

Γ∗ (ω̄∗)− µe∗G∗ (ω̄∗)
µe∗ (7.87)

Finally we write

ζsp,µe =

ζb,ω̄
ζz,ω̄

ζz,µe − ζb,µe

1− ζb,ω̄
ζz,ω̄

(7.88)
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8 SW original model

In this section we describe in detail the Smets and Wouters (2007) model, henceforth

SW), and emphasize the differences with the model presented in Section 1 of these notes.

8.1 Model

8.1.1 Intermediate firms

We follow SW and assume the production function to be:

Yt(i) = max{ez̃tKt(i)
α
(
Lt(i)e

γt
)1−α − Φe(γ+ α

1−α log Υ)t, 0}, (8.1)

where

z̃t = ρz z̃t−1 + σzεz,t, εz,t ∼ N(0, 1) (8.2)

(Note that what SW call “γ” in our notation is eγ , and that they assume Υ = 1.) SW

assume that productivity z̃t is stationary. Define Zt as follows:

lnZt =
1

1− α
z̃t. (8.3)

For ρz ∈ (0, 1) the process lnZt is stationary, as in SW. For ρz = 1 it follows a random

walk. This specification accomodates both. Note that we can rewrite the production

function as:

Yt(i) = max{Kt(i)
α (Lt(i)Zt)

1−α − Φe−
1

1−α z̃tZte
(γ+ α

1−α log Υ)t, 0}. (8.4)

Cost minimization subject to 8.4 yields the conditions:

(∂Lt(i)) Vt(i)(1− α)Z1−α
t Kt(i)

αLt(i)
−α = Wt

(∂Kt(i)) Vt(i)αZ1−α
t Kt(i)

α−1Lt(i)
1−α = Rkt

where Vt(i) is the Lagrange multiplier associated with 1.1.8. In turn, these conditions

imply:
Kt(i)

Lt(i)
=

α

1− α
Wt

Rkt
.
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Note that if we integrate both sides of the equation wrt di and define Kt =
∫
Kt(i)di

and Lt =
∫
Lt(i)di we obtain a relationship between aggregate labor and capital:

Kt =
α

1− α
Wt

Rkt
Lt. (8.5)

Total variable cost is given by

Variable Costs = (Wt +Rkt
Kt(i)
Lt(i)

)Lt(i)

= (Wt +Rkt
Kt(i)
Lt(i)

)Ỹt(i)Z
−(1−α)
t

(
Kt(i)
Lt(i)

)−α
,

where Ỹt(i) = Z1−α
t Kt(i)

αLt(i)
1−α is the “variable” part of output. The marginal cost

MCt is the same for all firms and equal to:

MCt = (Wt +Rkt
Kt(i)
Lt(i)

)Z
−(1−α)
t

(
Kt(i)
Lt(i)

)−α
= α−α(1− α)−(1−α)W 1−α

t Rk αt Z
−(1−α)
t .

(8.6)

[TO DO WITH KIMBALL] Prices are sticky as in Calvo (1983). Specifically, each

firm can readjust prices with probability 1 − ζp in each period. We depart rfom Calvo

(1983) in assuming that for those firms that cannot adjust prices, Pt(i) will increase at

the geometric weighted average (with weigths 1 − ιp and ιp, respectively) of the steady

state rate of inflation π∗ and of last period’s inflation πt−1. For those firms that can

adjust prices, the problem is to choose a price level P̃t(i) that maximizes the expected

present discounted value of profits in all states of nature where the firm is stuck with

that price in the future:

maxP̃t(i) Ξpt

(
P̃t(i)−MCt

)
Yt(i)

+ Et
∑∞

s=1 ζ
s
pβ

sΞpt+s

(
P̃t(i)

(
Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
−MCt+s

)
Yt+s(i)

s.t. Yt+s(i) =

 P̃t(i)(Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

−
1+λf,t+s
λf,t+s

Yt+s,

(8.7)

where βsΞpt+s is today’s value of a future dollar for the consumers (Ξpt+s is the Lagrange

multiplier associated with the consumer’s nominal budget constraint - remember there
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are complete markets so βsΞpt+s is the same for all consumers). The FOC for the firm is:

Ξpt

(
P̃t(i)
Pt

)− 1+λf,t
λf,t

−1
1

λf,tPt

(
P̃t(i)− (1 + λf,t)MCt

)
Yt(i)+

Et
∑∞

s=0 ζ
s
pβ

sΞpt+s

(
P̃t(i)

(
Πsl=1π

ιp
t+l−1π

1−ιp
∗

)
Pt+s

)− 1+λf,t+s
λf,t+s

−1 (
Πsl=1π

ιp
t+l−1π

1−ιp
∗

)
λf,t+sPt+s(

P̃t(i)
(

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

)
− (1 + λf,t+s)MCt+s

)
Yt+s(i) = 0

(8.8)

Note that all firms readjusting prices face an indentical problem. We will consider only

the symmetric equilibrium in which all firms that can readjust prices will choose the

same P̃t(i), so we can drop the i index from now on. From 1.1.6 it follows that:

Pt = [(1− ζp)P̃
− 1
λf

t + ζp(π
ιp
t−1π

1−ιp
∗ Pt−1)

− 1
λf ]−λf . (8.9)

8.1.2 Households

Household j’s utility is (as opposed to 1.1.16):

IEt

∞∑
s=0

βs
[

1

1− σc
(Ct+s(j)− hCt+s−1)1−σc

]
exp

(
σc − 1

1 + νl
Lt+s(j)

1+νl

)
(8.10)

where Ct(j) is consumption, Lt(j) is labor supply. Three observations are in order

regarding this utility function. First, utility is increasing in consumption and leisure

regardless of the value of σc. Second, there are no “discount rate” or “leisure” shocks in

the utility function. Third, SW have external (as opposed to internal) habit.

The household’s budget constraint, written in real terms, is given by:

Ct+s(j) + It+s(j) + Bt+s(j)
bt+sRt+sPt+s

≤ Bt+s−1(j)
Pt+s

+
Wh
t+s

Pt+s
Lt+s(j) +

(
Rkt+s
Pt+s

ut+s(j)K̄t+s−1(j)− a(ut+s(j))Υ
−tK̄t+s−1(j)

)
+ Πt+s − Tt+s,

(8.11)

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nominal

interest rate paid on government bonds, Πt is the per-capita profit the household gets

from owning firms (assume household pool their firm shares, Tt+s is lump-sum taxes, so

that they all receive the same profit) W h
t (j) is the wage earned by household j. bt is

a “risk premium shock”. The term within parenthesis represents the return to owning
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K̄t(j) units of capital. Households choose the utilization rate of their own capital, ut(j),

and end up renting to firms in period t an amount of “effective” capital equal to:

Kt(j) = ut(j)K̄t−1(j), (8.12)

and getting Rkt ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization

in terms of the consumption good which is equal to a(ut(j))Υ
−tK̄t−1(j). Households

accumulate capital according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + Υtµt

(
1− S(

It(j)

It−1(j)
)

)
It(j), (8.13)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S′(·) > 0, S′′(·) > 0. The term µt is a stochastic disturbance to the price of investment

relative to consumption

Households are all identical, so the j subscript is pretty redundant except for the

fact that we have external habits. We will drop the j subsequently.

The FOCs for consumption, bonds, and labor are:

(∂Ct(j)) (Ct − hCt−1)−σc exp

(
σc − 1

1 + νl
L1+νl
t

)
= Ξt (8.14)

(∂Bt(j)) Ξt = βRtbtIEt[
Ξt+1

πt+1
] (8.15)

(∂Lt(j)) (Ct − hCt−1)1−σc exp

(
σc − 1

1 + νl
L1+νl
t

)
Lνlt = Ξt

W h
t

Pt
. (8.16)

Note that households take W h
t as given and maximize with respect to Lt. The wage

stickiness part will be discussed below. Using 8.14 we can rewrite 8.16 as:

(Ct − hCt−1)Lνlt =
W h
t

Pt
. (8.17)

Let us now address the capital accumulation/utilization problem. Call Ξkt the La-

grange multiplier associated with constraint 8.13. The FOC with respect to investment,

capital, and capital utilization are:

(∂It) ΞktΥ
tµt

(
1− S( It

It−1
)− S′( It

It−1
) It
It−1

)
+ βIEt[Ξ

k
t+1Υt+1µt+1S

′(
It+1
It

)(
It+1
It

)2] = Ξt (8.18)

(∂K̄t) Ξkt = βIEt[Ξt+1(
Rkt+1
Pt+1

ut+1 − a(ut+1)Υ−(t+1)) + Ξkt+1(1− δ)] (8.19)

(∂ut) ΥtR
k
t
Pt

= a′(ut) (8.20)
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The first FOC is the law of motion for the shadow value of capital. Note that if adjust-

ment cost were absent, the FOC would simply say that ΞktΥ
tµt is equal to the marginal

utility of consumption. In other words, in absence of adjustment costs the shadow cost

of taking resources away from consumption equals the shadow benefit (abstracting from

Υtµt) of putting these resources into investment: Tobin’s Q is equal to one. The second

FOC says that if I buy a unit of capital today I have to pay its price in real terms, Ξkt ,

but tomorrow I will get the proceeds from renting capital, plus I can sell back the capital

that has not depreciated. Define Qkt =
Ξkt
Ξt

. Qkt has the interpretation of the value of

installed capital relative to consumption goods (i.e., Tobin’s Q). Then condition 8.19 can

be rewritten as:

Qkt = βIEt

[
Ξt+1

Ξt

(
Rkt+1

Pt+1
ut+1 − a(ut+1)Υ−(t+1) +Qkt+1(1− δ)

)]
. (8.21)

8.1.3 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in

response to deviations of inflation and output from their respective target levels:

Rt
R∗

=

(
Rt−1

R∗

)ρR (πt
π∗

)ψ1
(
Yt

Y f
t

)ψ2
1−ρR (

Yt
Yt−1

Y f
t−1

Y f
t

)ψ3

er
m
t (8.22)

where the parameter ρR determines the degree of interest rate smoothing, R∗ is the

steady state nominal rate and Y f
t is output under flexible/prices and wages. Note that

policy reacts to both level differences between Yt and Y f
t (ψ2(1− ρR) coefficient) as well

as growth differences (ψ2 coefficient). Note also that the exogenours part of monetary

policy is captured by the process rmt , which follows an autoregressive process. The cen-

tral bank supplies the money demanded by the household to support the desired nominal

interest rate.

The government budget constraint is of the form

PtGt +Bt−1 = PtTt +
Bt
btRt

, (8.23)
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where Tt are nominal lump-sum taxes (or subsidies) that also appear in household’s bud-

get constraint. SW, who assume technology is stationary, express government spending

relative to the deterministic trend in output:

Gt = g̃ty∗e
z∗∗t (8.24)

where y∗ is the steady state of detrended output. Since we detrend everything (see

below) by Z∗t , we need to be careful. Define

gt =
Gt
y∗Z∗t

= g̃te
− 1

1−α z̃t . (8.25)

At steady state g̃∗ = g∗. Note the difference with DSSW, where gt = Yt
Yt−Gt and g∗ =

y∗
c∗+i∗

> 1. In SW g∗ ∈ (0, 1).

8.1.4 Resource constraints

To obtain the market clearing condition for the final goods market first integrate the HH

budge constraint across households, and combine it with the gvmt budget constraint:

PtCt + PtIt + PtGt ≤ +Πt +
∫
Wt(j)Lt(j)dj

+Rkt
∫
Kt(j)dj − Pta(ut)Υ

−t ∫ K̄t−1(j)dj.

Next, realize that

Πt =

∫
Π(i)tdi =

∫
P (i)tY (i)tdi−WtLt −RktKt,

where Lt =
∫
L(i)tdi is total labor supplied by the labor packers (and demanded by the

firms), and Kt =
∫
K(i)tdi =

∫
Kt(j)dj. Now replace the defintion of Πt into the HH

budget constraint, realize that by the labor and goods’ packers’ zero profit condition

WtLt =
∫
Wt(j)Lt(j)dj, and PtYt =

∫
P (i)tY (i)tdi and obtain:

Ct + It + a(ut)Υ
−tK̄t−1 +Gt = Yt (8.26)

where Yt is defined by (1.1.1). The relationship between output and the aggregate

inputs, labor anc capital, is:

Ẏt =
∫
Z1−α
t Kt(i)

αLt(i)
1−αdi− Z∗t Φ

= Z1−α
t

∫
(K/L)αL(i)di− Z∗t Φ

= Z1−α
t Kα

t L
1−α
t − Z∗t Φ,

(8.27)
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where I used the fact that the capital labor ratio is constant across firms (also, since

K(i) = (K/L)L(i) it must be the case that
∫
K(i)di∫
L(i)di

= Kt/Lt = (K/L)). The problem

with these resource constraints is that what we observe in the data is Ẏt =
∫
Yt(i)di and

L̇t =
∫
Lt(j)dj, as opposed to Yt and Lt. But note that from 1.1.5:

Ẏt = YtP

1+λf,t
λf,t

t

∫
P (i)

−
1+λf,t
λf,t

t di

= YtP

1+λf,t
λf,t

t Ṗ
−

1+λf,t
λf,t

t ,

where Ṗt =

(∫
Pt(i)

−
1+λf,t
λf,t di

)− λf,t
1+λf,t

, and

L̇t =
∫
Lt(j)dj

= LtW

1+λw,t
λw,t

t

∫
W (j)

− 1+λw,t
λw,t

t di

= LtW

1+λw,t
λw,t

t Ẇ
− 1+λw,t

λw,t

t ,

where Ẇt =

(∫
W (j)

− 1+λw,t
λw,t

t dj

)− λw,t
1+λw,t

.

8.1.5 Exogenous Processes

When technology is stationary or has a unit root, its process is given by 8.3, which we

report here:

z̃t = ρz z̃t−1 + σzεz,t.

We now discuss the process for gt. SW assume a stationary process for ˆ̃gt = log( g̃tg∗ ),

which is correlated with shocks in technology:

ˆ̃gt = ρg ˆ̃gt−1 + σgεg,t + ηgzσzεz,t. (8.28)

If technology is not stationary, this process does not make sense since ˆ̃gt is non stationary.

Hence we replace it by the assumption that ĝt = log( gtg∗ ) is stationary

ĝt = ρg ĝt−1 + σgεg,t + ηgzσzεz,t. (8.29)
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We express all remaining processes in log deviations from their steady state value,

which is assumed to be 1:

b̂t = ρbb̂t−1 + σbεb,t, (8.30)

µ̂t = ρµµ̂t−1 + σµεµ,t, (8.31)

r̂mt = ρrm r̂
m
t−1 + σrεrm,t, (8.32)

The mark-up shocks follow ARMA(1,1) processes:

λ̂f,t = ρλf λ̂f,t−1 + σλf ελf ,t + ηλfσλf ελf ,t−1, (8.33)

λ̂w,t = ρλw λ̂w,t−1 + σλwελw,t + ηλwσλwελw,t−1, (8.34)
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8.2 Detrending

SW detrend the variables by the deterministic trend eγt (or by e(γ+ α
1−α log Υ)t if there is

a trend in the relative price of capital). We detrend by

Z∗t = Zte
(γ+ α

1−α log Υ)t,Υ > 1. (8.35)

Define z∗t = log(Z∗t /Z
∗
t−1). Denote with ∗ the steady state values of the variables, and

realize that at st.st. z∗∗ = γ + α
1−α log Υ. From 8.2 and 8.3 we see that

ẑ∗t = z∗t − z∗∗ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t, (8.36)

and

Et[ẑ
∗
t+1] =

1

1− α
(ρz − 1)z̃t. (8.37)

Note that for ρz = 1 z̃t has no impact on ẑt.

Specifically:

ct = Ct
Z∗t
, yt = Yt

Z∗t
, it = It

Z∗t
, kt = Υ−tKt

Z∗t
, k̄t = Υ−t K̄t

Z∗t
,

rkt = ΥtR
k
t
Pt
, wt = Wt

PtZ
∗
t
, wht =

Wh
t

PtZ∗t
, p̃t = P̃t

Pt
, w̃t = W̃t

Wt
,

ξt = ΞtZ
∗σc
t , ξkt = ΞktZ

∗σc
t Υt, qkt = QktΥ

t.

(8.38)

Note that this implies that some of the equilibrium conditions will look different from

SW.

Intermediate goods producers

We start by expressing 8.6 in terms of detrended variables:

mct =
MCt
Pt

= α−α(1− α)−(1−α)w1−α
t rk αt . (8.39)

Hence

mc∗ = α−α(1− α)−(1−α)w1−α
∗ rk α∗ . (8.40)

****************** (TO BE DONE) *******************

Expression 8.8 becomes:

ξt
λf,t

p̃
−

(1+λf,t)

λf,t
−1

t (p̃t − (1 + λf,t)mct) yt(i)

+IEt
∑∞

s=1 ζ
s
pβ

s ξt+s
λf,t+s

(
p̃t

Πsl=1πt+l

) (1+λf,t+s)

λf,t+s
−1 (

Πs
l=1π

ιp
t+l−1π

1−ιp
∗

) (1+λf,t+s)

λf,t+s(
p̃t

Πsl=1π
ιp
t+l−1π

1−ιp
∗

Πsl=1πt+l
− (1 + λf,t+s)mct+s

)
yt+s(i) = 0

(8.41)
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this implies that:

p̃∗ = (1 + λf )α−α(1− α)−(1−α)w1−α
∗ rk α∗ (8.42)

Expression ?? becomes:

1 = [(1− ζp)p̃
− 1
λf,t

t + ζp(π
ιp
t−1π

1−ιp
∗ π−1

t )
− 1
λf,t ]−λf,t . (8.43)

which means that:

p̃∗ = 1. (8.44)

Recall that aggregate profits are equal to:

Πt = PtYt −WtLt −RktKt.

In terms of detrended variables we then have :

Πt
PtZ

∗
t

= yt − wtLt − rkt kt

= kαt L
1−α
t − Φ− wtLt − α

1− αwtLt

=
(

( ktLt

α
− 1

1− αwt
)
Lt − Φ

=
(

( α
1− α)αwαt r

k −α
t − 1

1− αwt
)
Lt − Φ

At steady state we can use 8.42 to get that st. st. profits are:

Πt
PtZ

∗
t

=
λf

1− αw∗L∗ − Φ. (8.45)

**************************

Equation 8.5 becomes:

kt =
α

1− α
wt

rkt
Lt. (8.46)

and at st.st.:

k∗ =
α

1− α
w∗
rk∗
L∗. (8.47)

Households

Expressions 8.14, 8.15, and 8.17 become:

ξt =
(
ct − hct−1e

−z∗t
)−σc

exp

(
σc − 1

1 + νl
L1+νl
t

)
, (8.48)

ξt = βRtbtIEt[ξt+1e
−σcz∗t+1π−1

t+1], (8.49)(
ct − hct−1e

−z∗t
)
Lνlt = wht , (8.50)
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respectively. At steady state:

ξ∗ = c−σc∗ (1− he−z∗∗ )−σc exp

(
σc − 1

1 + νl
L1+νl
∗

)
, (8.51)

R∗ = β−1π∗e
σcz∗∗ , (8.52)

c∗

(
1− he−z∗∗

)
Lνl∗ = wh∗ . (8.53)

Equation 8.12 and 8.13 become:

kt = utΥ
−1e−z

∗
t k̄t−1, (8.54)

k̄t = (1− δ)Υ−1e−z
∗
t k̄t−1 + µt

(
1− S(

it
it−1

ez
∗
t )

)
it. (8.55)

which deliver the steady state relationships:

k∗ = e−γΥ−
1

1−α k̄∗, (8.56)

i∗ = µ
(

1− (1− δ)e−γΥ−
1

1−α
)
k̄∗. (8.57)

under the assumption that S(eγΥ
α

1−α ) = 0.

Equation 8.18, 8.21, and 8.20 become:

ξkt µt

(
1− S(

it
it−1

ez
∗
t )− S′( it

it−1
ez
∗
t )

it
it−1

ez
∗
t

)
+ βIEt[e

−σcz∗t+1ξkt+1µt+1S
′(
it+1

it
ez
∗
t+1)(

it+1

it
ez
∗
t+1)2] = ξt (8.58)

qkt = βIEt

[
Υ−1e−σcz

∗
t+1

ξt+1

ξt

(
rkt+1ut+1 − a(ut+1) + qkt+1(1− δ)

)]
(8.59)

rkt = a′(ut). (8.60)

Under the assumptions that S′(eγΥ
α

1−α ) = 0, u∗ = 1 and a(u∗) = 0, the above equations

at steady state imply

ξk∗ = ξ∗ (8.61)

rk∗ = β−1eσcz
∗
∗Υ− (1− δ) (8.62)

rk∗ = a′(u∗). (8.63)

where 8.61 implies qk∗ = 1 (note the a(.) function can be normalized so to make a′(1) be

whatever the steady state rk∗ is).
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Expressed in terms of detrended variables, equation 1.1.37 becomes:

IEt
∑∞

s=0(ζwβ)sL(j)t+sξt+s

[
− X̃t,sw̃twt + (1 + λw)

bt+sϕt+sLt+s(j)
νl

ξt+s

]
= 0, (8.64)

where

X̃t,s =


1 if s = 0

Πs
l=1(π∗e

γΥ
α

1−α )1−ιw(πt+l−1e
z∗t+l−1)ιw

Πs
l=1πt+le

z∗t+l
otherwise

and

Lt+s(j) =
(
w̃twtw

−1
t+sX̃t,s

)− 1+λw
λw Lt+s.

Equation 1.1.38 becomes:

1 = [(1− ζw)w̃
1
λw
t + ζw((π∗e

γΥ
α

1−α )1−ιw(πt−1e
z∗t−1)ιw

wt−1

wt
π−1
t e−z

∗
t )

1
λw ]λw . (8.65)

which imply at steady state:

w∗ = (1 + λw)
ϕLνl∗
ξ∗

, (8.66)

w̃∗ = 1. (8.67)

Resource constraints

If the technology process is stationary, the resource constraint become:

y∗g̃te
− 1

1−α z̃t + ct + it + a(ut)ē
−z∗t kt−1 = yt, (8.68)

otherwise it becomes:

y∗gt + ct + it + a(ut)ē
−z∗t kt−1 = yt. (8.69)

Detrended output is also given as a function of inputs by:

ẏt = kαt L
1−α
t − Φe−

1
1−α z̃t . (8.70)

Yt =

(
Ṗt
Pt

) 1+λf,t
λf,t

Ẏt

becomes

yt = (ṗt)
1+λf,t
λf,t ẏt (8.71)
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where

ṗt = Ṗt
Pt

= [(1− ζp)( P̃tPt )
−

1+λf,t
λf,t + ζp(π∗

Ṗt−1

Pt
)
−

1+λf,t
λf,t ]

−
λf,t

1+λf,t

= [(1− ζp)p̃
−

1+λf,t
λf,t

t + ζp(π∗ṗt−1π
−1
t )
−

1+λf,t
λf,t ]

−
λf,t

1+λf,t

(8.72)

While

Lt =

(
Ẇt

Wt

) 1+λw,t
λw,t

L̇t

becomes

Lt = (ẇt)
1+λw,t
λw,t L̇t (8.73)

where

ẇt = Ẇt
Wt

= [(1− ζw)(W̃t
Wt

)
− 1+λw,t

λw,t + ζw(π∗e
γΥ

α
1−α Ẇt−1

Wt
)
− 1+λw,t

λw,t ]
− λw,t

1+λw,t

= [(1− ζw)w̃
− 1+λw,t

λw,t

t + ζw(π∗e
γΥ

α
1−απ−1

t e−z
∗
t
wt−1

wt
ẇt−1)

− 1+λw,t
λw,t ]

− λw,t
1+λw,t

(8.74)

At steady state we have:
1

1− g∗
(c∗ + i∗) = y∗. (8.75)

and

y∗ = kα∗L
1−α
∗ − Φ. (8.76)

and

ẏ∗ = y∗, L̇∗ = L∗.

8.3 Steady State

For now treat L∗ as a parameter (we will see that the real variables are all defined as a

ratio to L∗, so L∗ is just a normalization constant). Define the real rate

r∗ =
R∗
π∗
, (8.77)

then from 8.52 we have:

r∗ = β−1eσcz
∗
∗ . (8.78)
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From 8.62:

rk∗ = r∗Υ− (1− δ). (8.79)

From 8.42:

w∗ =

(
1

1 + λf
αα(1− α)(1−α)rk −α∗

) 1
1−α

(8.80)

From 8.47

k∗ =
α

1− α
w∗
rk∗
L∗. (8.81)

From 8.56 and 8.57:

k̄∗ = eγΥ
1

1−αk∗, (8.82)

i∗ =
(

1− (1− δ)e−γΥ−
1

1−α
)
k̄∗. (8.83)

From 8.76:

y∗ = kα∗L
1−α
∗ − Φ. (8.84)

SW use the reparameterization Φp =
y∗ + Φ
y∗ , implying that steady state output is given

by:

y∗ =
kα∗L

1−α
∗

Φp
. (8.85)

From 8.75:

c∗ = (1− g∗)y∗ − i∗, (8.86)

(as opposed to c∗ =
y∗
g∗ − i∗ in DSSW). (Aside: note that 8.53 implies

c∗(1− he−z
∗
∗ )Lνl∗ = w∗.

Since we already have c∗ and w∗ it would seem L∗ is given. In fact, this is because SW

do not use the parameter ϕ, which would make 8.53 hold for any L∗.)

8.4 Log-linear

1. If technology is stationary, eq. 8.68 becomes:

ŷt = ˆ̃gt −
1

1− α
z̃t +

c∗
y∗
ĉt +

i∗
y∗
ît +

rk∗k∗
y∗

ût, (8.87)
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If technology has a unit root, eq. 8.69 becomes:

ŷt = ĝt +
c∗
y∗
ĉt +

i∗
y∗
ît +

rk∗k∗
y∗

ût, (8.88)

This is one of the two equilibrium conditions for which we need to write two

different versions for the stationary and non-stationary case (the other being the

production function). The difference with DSSW (eq. 1.2.77) are due to a different

definition of the government spending process which in SW is given by gt = Gt
y∗Z∗t

,

with g∗ = 1 − c∗+i∗
y∗

(in our case, gt = Yt
Yt−Gt and g∗ = y∗

c∗+i∗
). Note that in SW

g∗ ∈ (0, 1). This is eq. (1) in SW using the reparameterizations

cy =
c∗
y∗
, iy =

i∗
y∗
, zy = rk∗

k∗
y∗
.

2. Eq. 8.49 becomes:

ξ̂t = R̂t + b̂t + IEt[ξ̂t+1]− IEt[π̂t+1]− σcIEt[ẑt+1], (8.89)

and eq. 8.48 becomes:

ξ̂t = −σc(1− he−z
∗
∗ )−1

(
ĉt − he−z

∗
∗ ĉt−1 + he−z

∗
∗zt

)
+ (σc − 1)L1+νl

∗ L̂t,

which becomes using 8.53:

(1− he−z∗∗ )
σc

ξ̂t = −
(
ĉt − he−z

∗
∗ ĉt−1 + he−z

∗
∗zt

)
+

(σc − 1)

σc

w∗L∗
c∗

L̂t. (8.90)

Putting 8.89 and 8.90 two together we obtain:

ĉt = − (1− he−z∗∗ )
σc(1 + he−z∗∗ )

(
R̂t − IEt[π̂t+1] + b̂t

)
+

he−z
∗
∗

(1 + he−z∗∗ )
(ĉt−1 − ẑt)

+
1

(1 + he−z∗∗ )
IEt [ĉt+1 + ẑt+1] +

(σc − 1)

σc(1 + he−z∗∗ )

w∗L∗
c∗

(
L̂t − IEt[L̂t+1]

)
. (8.91)

This corresponds to eq. (2) in SW, and to the combination of eqs 1.2.68 and 1.2.66

in DSSW. In the code we follow SW’s code and use the normalization:

ˆ̃
bt = − (1− he−z∗∗ )

σc(1 + he−z∗∗ )
b̂t. (8.92)
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3. Eq. 8.58 becomes:

ît =
1

S′′e2z∗∗ (1 + βe(1−σc)z∗∗ )
q̂kt +

1

1 + βe(1−σc)z∗∗

(
ît−1 − ẑt

)
+

βe(1−σc)z∗∗

1 + βe(1−σc)z∗∗
IEt

[̂
it+1 + ẑt+1

]
+ µ̂t, (8.93)

where we follows SW and renormalize the process µ̂t by dividing it for S′′e2z∗∗ (1 +

βe(1−σc)z∗∗ ). This is eq. (3) in SW, and corresponds to eq. 1.2.71 in DSSW (which

was expressed in terms of ξkt ). The equation can be expressed, perhaps more

intuitively, in terms of q̂kt :

q̂kt = S′′e2z∗∗ (1 + βe(1−σc)z∗∗ )
(
ît −

1

1 + βe(1−σc)z∗∗

(
ît−1 − ẑt

)
− βe(1−σc)z∗∗

1 + βe(1−σc)z∗∗
IEt

[̂
it+1 + ẑt+1

]
− µ̂t

)
, (8.94)

4. Eq. 8.59 becomes

rk∗
rk∗ + (1− δ)

IEt[r
k
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
k
t+1]− q̂kt = R̂t + b̂t − IEt[π̂t+1] (8.95)

where we used 8.89. This is eq. (4) in SW (using the value of rk∗ one can see they

correspond) and is the same as eq. 1.2.72 in DSSW, except that this was expressed

in terms of ξkt . In the code we use the normalization 8.92, consistently with 8.91.

5. Eq. 1.2.78 becomes:

ŷt = Φp

(
αk̂t + (1− α)L̂t

)
+ (Φp − 1)

1

1− α
z̃t. (8.96)

This is eq. (5) in SW. Note that the last term in 8.96 is non-stationary if ρz = 1.

So in this case it needs to be dropped (which amounts to assuming the fixed costs

are proportional to Zt as opposed to just eγt) and the eq. becomes

ŷt = Φp

(
αk̂t + (1− α)L̂t

)
. (8.97)

6. Eq. 1.2.69 remains the same:

k̂t = ût − ẑt + ˆ̄kt−1. (8.98)

This is eq. (6) in SW.
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7. Equations 8.99 becomes:
1− ψ
ψ

r̂kt = ut. (8.99)

where 1−ψ
ψ is simply a reparameterization of the ratio rk∗

a′′ that appears in 1.2.73.

This is eq. (7) in SW with z1 = 1−ψ
ψ , and eq. 1.2.73 in DSSW.

8. Eq. 8.55 becomes:

ˆ̄kt = (1 − i∗
k̄∗

)
(

ˆ̄kt−1 − ẑt
)

+
i∗
k̄∗
ît +

i∗
k̄∗
S
′′
e2z∗∗ (1 + βe(1−σc)z∗∗ )µ̂t. (8.100)

This is eq. (8) in SW, and corresponds to eq. 1.2.70 in DSSW, except for the

renormalization of the exogenous process µt. Note that in SW’s code the term

(1 + βe(1−σc)z∗∗ ) is erroneously omitted from the coefficient multiplying m̂ut.

9. Eq. 1.2.61 remains the same as in DSSW:

m̂ct = (1− α) ŵt + α r̂kt . (8.101)

This is eq. (9) in SW, where µ̂pt = −m̂ct and where they used (8.104) to substitute

for r̂kt . That is actually what we also do in the code, obtaining:

m̂ct = ŵt + αL̂t − αk̂t. (8.102)

10. Eq. (TO DO) becomes:

π̂t =
(1− ζpβe(1−σc)z∗∗ )(1− ζp)

(1 + ιpβe(1−σc)z∗∗ )ζp((Φp − 1)εp + 1)
m̂ct

+
ιp

1 + ιpβe
(1−σc)z∗∗

π̂t−1 +
βe(1−σc)z∗∗

1 + ιpβe
(1−σc)z∗∗

IEt[π̂t+1] + λ̂f,t (8.103)

This is eq. (10) in SW.

11. Eq. 1.2.65 remains the same:

k̂t = ŵt − r̂kt + L̂t. (8.104)

This is eq. (11) in SW.
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12. Eq. 8.50, which essentially defines the household’s marginal rate of subsitution

between consumption and labor,

1

1− he−z∗∗
(
ĉt − he−z

∗
∗ ĉt−1 + he−z

∗
∗ ẑt

)
+ νlL̂t = ŵht . (8.105)

This corresponds to eq. (12) in SW, except that they express it in terms of the

markup µ̂wt = ŵt − ŵht , which is what we also do in our code. DSSW did not have

this equation as we plugged it the wage Phillips curve directly.

13. Eq. (TO DO) becomes:

ŵt =
(1− ζwβe(1−σc)z∗∗ )(1− ζw)

(1 + βe(1−σc)z∗∗ )ζw((λw − 1)εw + 1)

(
ŵht − ŵt

)
− 1 + ιwβe

(1−σc)z∗∗

1 + βe(1−σc)z∗∗
π̂t +

1

1 + βe(1−σc)z∗∗
(ŵt−1 − ẑt − ιwπ̂t−1)

+
βe(1−σc)z∗∗

1 + βe(1−σc)z∗∗
IEt [ŵt+1 + ẑt+1 + π̂t+1] + λ̂w,t (8.106)

This is eq. (13) in SW. In the code we follow SW and replace ŵht − ŵt with −µ̂wt .

14. Eq. 1.2.79 becomes:

R̂t = ρRR̂t−1 + (1− ρR)
(
ψ1π̂t + ψ2(ŷt − ŷft )

)
+ ψ3

(
(ŷt − ŷft )− (ŷt−1 − ŷft−1)

)
+ r̂mt (8.107)

where the differences are (1) the use of flexible price/wage output to measure the

output gap, (2) the addition of the term ψ3

(
(ŷt − ŷft )− (ŷt−1 − ŷft−1)

)
; (3) the

fact that the residual r̂mt is autocorrelated.
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15. Additional flexible price/wages equations, where we replace the real rate rft for

R̂t − IEt[π̂t+1] :

ŷft = ĝt +
c∗
y∗
ĉft +

i∗
y∗
îft +

rk∗k∗
y∗

ûft , (8.108)

ĉft = − (1− he−z∗∗ )
σc(1 + he−z∗∗ )

(
r̂ft + b̂t

)
+

he−z
∗
∗

(1 + he−z∗∗ )

(
ĉft−1 − ẑt

)
+

1

(1 + he−z∗∗ )
IEt[ĉ

f
t+1 + ẑt+1]

+
(σc − 1)

σc(1 + he−z∗∗ )

w∗L∗
c∗

(
L̂ft − IEt[L̂

f
t+1]

)
, (8.109)

q̂kft = S′′e2z∗∗ (1 + βe(1−σc)z∗∗ )
(
îft −

1

1 + βe(1−σc)z∗∗

(
îft−1 − ẑt

)
− βe(1−σc)z∗∗

1 + βe(1−σc)z∗∗
IEt

[̂
ift+1 + ẑt+1

]
− µ̂t

)
, (8.110)

r̂ft =
rk∗

rk∗ + (1− δ)
IEt[r

kf
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
kf
t+1]− q̂kft − b̂t (8.111)

ŷft = Φp

(
αk̂ft + (1− α)L̂ft

)
+ (Φp − 1)

1

1− α
z̃t, (8.112)

k̂ft = ûft − ẑt + ˆ̄kft−1, (8.113)

uft =
1− ψ
ψ

r̂kft , (8.114)

ˆ̄kft = (1− i∗
k̄∗

)
(

ˆ̄kft−1 − ẑt
)

+
i∗
k̄∗
îft +

i∗
k̄∗
S
′′
e2z∗∗ (1 + βe(1−σc)z∗∗ )µ̂t. (8.115)

0 = (1− α) ŵft + α r̂kft . (8.116)

k̂ft = ŵft − r̂
kf
t + L̂ft , (8.117)

ŵft =
1

1− he−z∗∗
(
ĉft − he−z

∗
∗ ĉft−1 + he−z

∗
∗ ẑt

)
+ νlL̂

f
t . (8.118)

16. The exogenous processes are described in section 8.1.5.

8.5 Adding BGG financial frictions to SW

Amounts to replacing 8.95 with conditions 7.50 and 7.52 (see section 7), which we repeat

here for convenience:

Et

[̂̃Rkt+1 − R̂t
]

= −b̂tζsp,b
(
q̂kt + ̂̄kt − n̂t)+ σ̃ω,t + µ̃et (8.119)

̂̃Rkt − πt =
rk∗

rk∗ + (1− δ)
r̂kt +

(1− δ)
rk∗ + (1− δ)

q̂kt − q̂kt−1, (8.120)

63



and adding the eq. condition 7.51 describing the evolution of entrepreneurial net worth

n̂t = ζn,R̃k

(̂̃Rkt − πt)− ζn,R (R̂t−1 − πt
)

+ ζn,qK

(
q̂kt−1 + ̂̄kt−1

)
+ ζn,nn̂t−1

+γ̃t + we∗
n∗
ŵet − γ∗ v∗n∗ ẑt −

ζn,µe

ζsp,µe
µ̃et−1 −

ζn,σω
ζsp,σω

σ̃ω,t−1

(8.121)

Note that if ζsp,b = 0 and the financial friction shocks are zero, 8.95 coincides with

7.50 plus 7.52. In particular, we stick to SW’s assumption that returns to deposit are

not subject to the same “intermediation cost” shock bt as government bonds. This

assumption mirrors SW’s assumption that capital investment was not subject to that

transaction cost.

8.6 Anticipated policy shocks

We modify the policy rule (8.107) so to incorporate anticipated policy shocks. In order

to do so we add the anticipated shocks to the exogenous component of monetary policy

as follows:

r̂mt = ρrm r̂
m
t−1 + σrεrm,t +

K∑
k=1

σk,rε
R
k,t−k, (8.122)

where εR,t is the usual contemporaneous policy shock and εRk,t−k is a policy shock that

is known to agents at time t − k, but affects the policy rule k periods later, that is, at

time t. We assume as usual that εRk,t−k ∼ N(0, 1), i.i.d..

In order to solve the model we need to express the anticipated shocks in recur-

sive form. For this purpose, we augment the state vector st with K additional states

νRt ,. . . ,νRt−K whose law of motion is as follows:

νR1,t = νR2,t−1 + σ1,rε
R
1,t

νR2,t = νR3,t−1 + σ2,rε
R
2,t

...

νRK,t = σK,rε
R
K,t

and rewrite expression (8.123) as

r̂mt = ρrm r̂
m
t−1 + σrεrm,t + νR1,t−1, (8.123)
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It is easy to verify that νR1,t−1 =
∑K

k=1 σk,rε
R
k,t−k, that is, νR1,t−1 is a “bin” that collects

all anticipated shocks that affect the policy rule in period t. In the implementation,

we assume that these shocks have the same standard deviation as the contemporaneous

shock: σk,r = σr.

8.7 Adding long run changes in productivity

We add long run changes in productivity. Specifically we assume that the production

function is:

Yt(i) = max{ez̃tKt(i)
α
(
Lt(i)e

γtZpt
)1−α − ΦZ∗t , 0}, (8.124)

where z̃t and zpt = log(Zpt /Z
p
t−1) follow AR(1) processes:

z̃t = ρz z̃t−1 + σzεz,t, εz,t ∼ N(0, 1), (8.125)

zpt = ρzpz
p
t−1 + σzpεzp,t, εzp,t ∼ N(0, 1), (8.126)

and

Z∗t = ZtZ
p
t e

(γ+ α
1−α log Υ)t, Zt = e

1
1−α z̃t . (8.127)

We detrend by Z∗t as in section 8.2. Define z∗t = log(Z∗t /Z
∗
t−1), with z∗∗ = γ+ α

1−α log Υ

at st.state. From 8.126, 8.125, and 8.127 we see that

ẑ∗t = z∗t − z∗∗ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t + zpt , (8.128)

and

Et[ẑ
∗
t+1] =

1

1− α
(ρz − 1)z̃t + ρzz

p
t . (8.129)

Note that we can accommodate both cases where z̃t is stationary and random walk

(ρz = 1). Regardless, there is a stochastic trend in growth so the resource constraint

and the production function need to be written as in eqs 8.88 and 8.97 in section 8.4.
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