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A Detailed Description of DSGE Models

A.1 Model 1: The Smets-Wouters Model with Time-Varying In-

flation Target (SWπ)

Model Specification. We use a slightly modified version of the Smets and Wouters (2007)

model. Following Del Negro and Schorfheide (2013), we detrend the non-stationary model

variables by a stochastic rather than a deterministic trend. This approach makes it possible

to express almost all equilibrium conditions in a way that encompasses both the trend-

stationary total factor productivity process in Smets and Wouters (2007), as well as the

case where technology follows a unit root process. Let z̃t be the linearly detrended log

productivity process which follows the autoregressive law of motion

z̃t = ρz z̃t−1 + σzεz,t. (A-1)

We detrend all non stationary variables by Zt = eγt+
1

1−α z̃t , where γ is the steady state growth

rate of the economy. The growth rate of Zt in deviations from γ, denoted by zt, follows the

process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t. (A-2)

All variables in the following equations are expressed in log deviations from their non-

stochastic steady state. Steady state values are denoted by ∗-subscripts and steady state

formulas are provided in the technical appendix of Del Negro and Schorfheide (2013). The

consumption Euler equation is given by:

ct = − (1− he−γ)
σc(1 + he−γ)

(Rt − IEt[πt+1] + bt) +
he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
IEt [ct+1 + zt+1] +

(σc − 1)

σc(1 + he−γ)

w∗L∗
c∗

(Lt − IEt[Lt+1]) , (A-3)

where ct is consumption, Lt is labor supply, Rt is the nominal interest rate, and πt is inflation.

The exogenous process bt drives a wedge between the intertemporal ratio of the marginal

utility of consumption and the riskless real return Rt−IEt[πt+1], and follows an AR(1) process

with parameters ρb and σb. The parameters σc and h capture the degree of relative risk

aversion and the degree of habit persistence in the utility function, respectively. The following
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condition expresses the relationship between the value of capital in terms of consumption qkt

and the level of investment it measured in terms of consumption goods:

qkt = S ′′e2γ(1 + β̄)
(
it −

1

1 + β̄
(it−1 − zt)−

β̄

1 + β̄
IEt [it+1 + zt+1]− µt

)
, (A-4)

which is affected by both investment adjustment cost (S ′′ is the second derivative of the

adjustment cost function) and by µt, an exogenous process called the “marginal efficiency

of investment” that affects the rate of transformation between consumption and installed

capital. The exogenous process µt follows an AR(1) process with parameters ρµ and σµ. The

parameter β̄ = βe(1−σc)γ depends on the intertemporal discount rate in the utility function

of the households β, the degree of relative risk aversion σc, and the steady-state growth rate

γ.

The capital stock, k̄t, evolves as

k̄t =

(
1− i∗

k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S
′′
e2γ(1 + β̄)µt, (A-5)

where i∗/k̄∗ is the steady state ratio of investment to capital. The arbitrage condition

between the return to capital and the riskless rate is:

rk∗
rk∗ + (1− δ)

IEt[r
k
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
k
t+1]− qkt = Rt + bt − IEt[πt+1], (A-6)

where rkt is the rental rate of capital, rk∗ its steady state value, and δ the depreciation rate.

Given that capital is subject to variable capacity utilization ut, the relationship between k̄t

and the amount of capital effectively rented out to firms kt is

kt = ut − zt + k̄t−1. (A-7)

The optimality condition determining the rate of utilization is given by

1− ψ
ψ

rkt = ut, (A-8)

where ψ captures the utilization costs in terms of foregone consumption. Real marginal costs

for firms are given by

mct = wt + αLt − αkt, (A-9)

where wt is the real wage and α is the income share of capital (after paying markups and

fixed costs) in the production function. From the optimality conditions of goods producers

it follows that all firms have the same capital-labor ratio:

kt = wt − rkt + Lt. (A-10)
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The production function is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t, (A-11)

if the log productivity is trend stationary. The last term (Φp − 1)
1

1− α
z̃t drops out if

technology has a stochastic trend, because in this case one has to assume that the fixed costs

are proportional to the trend. Similarly, the resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1

1− α
z̃t, (A-12)

where again the term − 1

1− α
z̃t disappears if technology follows a unit root process. Gov-

ernment spending gt is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t.

Finally, the price and wage Phillips curves are, respectively:

πt =
(1− ζpβ̄)(1− ζp)

(1 + ιpβ̄)ζp((Φp − 1)εp + 1)
mct +

ιp
1 + ιpβ̄

πt−1 +
β̄

1 + ιpβ̄
IEt[πt+1] + λf,t, (A-13)

and

wt =
(1− ζwβ̄)(1− ζw)

(1 + β̄)ζw((λw − 1)εw + 1)

(
wht − wt

)
− 1 + ιwβ̄

1 + β̄
πt +

1

1 + β̄
(wt−1 − zt − ιwπt−1)

+
β̄

1 + β̄
IEt [wt+1 + zt+1 + πt+1] + λw,t, (A-14)

where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the curvature

parameter in the Kimball aggregator for prices, and ζw, ιw, and εw are the corresponding

parameters for wages. wht measures the household’s marginal rate of substitution between

consumption and labor, and is given by:

wht =
1

1− he−γ
(
ct − he−γct−1 + he−γzt

)
+ νlLt, (A-15)

where νl characterizes the curvature of the disutility of labor (and would equal the inverse

of the Frisch elasticity in absence of wage rigidities). The mark-ups λf,t and λw,t follow

exogenous ARMA(1,1) processes

λf,t = ρλfλf,t−1 + σλf ελf ,t + ηλfσλf ελf ,t−1, and



Appendix for Dynamic Prediction Pools A-5

λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1,

respectively. Finally, the monetary authority follows a generalized feedback rule:

Rt = ρRRt−1 + (1− ρR)
(
ψ1πt + ψ2(yt − yft )

)
+ ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+ rmt , (A-16)

where the flexible price/wage output yft is obtained from solving the version of the model

without nominal rigidities (that is, Equations (A-3) through (A-12) and (A-15)), and the

residual rmt follows an AR(1) process with parameters ρrm and σrm .

In order to capture the rise and fall of inflation and interest rates in the estimation

sample, we replace the constant target inflation rate by a time-varying target inflation. The

interest-rate feedback rule of the central bank (A-16) is modified as follows

Rt = ρRRt−1 + (1− ρR)
(
ψ1(πt − π∗t ) + ψ2(yt − yft )

)
(A-17)

+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+ rmt .

The time-varying inflation target evolves according to:

π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t, (A-18)

where 0 < ρπ∗ < 1 and επ∗,t is an iid shock. We model π∗t as following a stationary pro-

cess, although our prior for ρπ∗ will force this process to be highly persistent. A detailed

justification of this modification of the policy rule is provided in Del Negro and Schorfheide

(2013).

Model Solution and State-Space Representation. We use the method in Sims (2002)

to solve the log-linear approximation of the DSGE model. We collect all the DSGE model

parameters in the vector θ, stack the structural shocks in the vector εt, and derive a state-

space representation for our vector of observables yt. The state-space representation is

comprised of the transition equation:

st = T (θ)st−1 +R(θ)εt, (A-19)

which summarizes the evolution of the states st, and the measurement equation:

yt = Z(θ)st +D(θ), (A-20)
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which maps the states onto the vector of observables yt, where D(θ) represents the vector of

steady state values for these observables.

The measurement equations for real output, consumption, investment, and real wage

growth, hours, inflation, and interest rates are given by:

Output growth = γ + 100 (yt − yt−1 + zt)

Consumption growth = γ + 100 (ct − ct−1 + zt)

Investment growth = γ + 100 (it − it−1 + zt)

Real Wage growth = γ + 100 (wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

, (A-21)

where all variables are measured in percent, where π∗ and R∗ measure the steady state level

of net inflation and short term nominal interest rates, respectively and where l̄ captures the

mean of hours (this variable is measured as an index). To incorporate information about

low-frequency movements of inflation the set of measurement equations (A-21) is augmented

by

πO,40t = π∗ + 100IEt

[
1

40

40∑
k=1

πt+k

]
(A-22)

= π∗ +
100

40
Z(θ)(π,.)(I − T (θ))−1

(
I − [T (θ)]40

)
T (θ)st,

where πO,40t represents observed long run inflation expectations obtained from surveys (in

percent per quarter), and the right-hand-side of (A-22) corresponds to expectations obtained

from the DSGE model (in deviation from the mean π∗). The second line shows how to com-

pute these expectations using the transition equation (A-19) and the measurement equation

for inflation. Z(θ)(π,.) is the row of Z(θ) in (A-20) that corresponds to inflation. The SWπ

model is estimated using the observables in expressions (A-21) and (A-22).

A.2 Model 2: Smets-Wouters Model with Financial Frictions (SWFF)

Model Specification. We now add financial frictions to the SW model building on the work

of Bernanke et al. (1999), Christiano et al. (2003), De Graeve (2008), and Christiano et al.
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(2014). In this extension, banks collect deposits from households and lend to entrepreneurs

who use these funds as well as their own wealth to acquire physical capital, which is rented to

intermediate goods producers. Entrepreneurs are subject to idiosyncratic disturbances that

affect their ability to manage capital. Their revenue may thus be too low to pay back the

bank loans. Banks protect themselves against default risk by pooling all loans and charging

a spread over the deposit rate. This spread may vary as a function of the entrepreneurs’

leverage and their riskiness. Adding these frictions to the SW model amounts to replacing

equation (A-6) with the following conditions:

Et

[
R̃k
t+1 −Rt

]
= bt + ζsp,b

(
qkt + k̄t − nt

)
+ σ̃ω,t (A-23)

and

R̃k
t − πt =

rk∗
rk∗ + (1− δ)

rkt +
(1− δ)

rk∗ + (1− δ)
qkt − qkt−1, (A-24)

where R̃k
t is the gross nominal return on capital for entrepreneurs, nt is entrepreneurial equity,

and σ̃ω,t captures mean-preserving changes in the cross-sectional dispersion of ability across

entrepreneurs (see Christiano et al. (2014)) and follows an AR(1) process with parameters ρσω

and σσω . The second condition defines the return on capital, while the first one determines

the spread between the expected return on capital and the riskless rate.20 The following

condition describes the evolution of entrepreneurial net worth:

nt = ζn,R̃k
(
R̃k
t − πt

)
− ζn,R (Rt−1 − πt) + ζn,qK

(
qkt−1 + k̄t−1

)
+ ζn,nnt−1

− ζn,σω
ζsp,σω

σ̃ω,t−1.
(A-25)

State-Space Representation. The SWFF model uses in addition spreads as observables.

The corresponding measurement equation is

Spread = SP∗ + 100IEt

[
R̃k
t+1 −Rt

]
, (A-26)

where the parameter SP∗ measures the steady state spread.

A.3 Prior Distribution

The prior distributions for the SWπ and the SWFF model are summarized in Table A-1.

The joint prior distribution is obtained as the product of the marginals listed in the table.

20Note that if ζsp,b = 0 and the financial friction shocks σ̃ω,t are zero, (A-23) and (A-24) coincide with

(A-6).
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This prior is then truncated to ensure that for each parameter in the support of the prior

the linearized DSGE model has a unique stable rational expectations equilibrium.
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Table A-1: Priors

Density Mean St. Dev. Density Mean St. Dev.

Panel I: SWπ

Policy Parameters

ψ1 Normal 1.50 0.25 ρR Beta 0.75 0.10
ψ2 Normal 0.12 0.05 ρrm Beta 0.50 0.20
ψ3 Normal 0.12 0.05 σrm InvG 0.10 2.00

Nominal Rigidities Parameters

ζp Beta 0.50 0.10 ζw Beta 0.50 0.10

Other “Endogenous Propagation and Steady State” Parameters

α Normal 0.30 0.05 π∗ Gamma 0.75 0.40
Φ Normal 1.25 0.12 γ Normal 0.40 0.10
h Beta 0.70 0.10 S ′′ Normal 4.00 1.50
νl Normal 2.00 0.75 σc Normal 1.50 0.37
ιp Beta 0.50 0.15 ιw Beta 0.50 0.15
r∗ Gamma 0.25 0.10 ψ Beta 0.50 0.15

(Note β = (1/(1 + r∗/100))

ρs, σs, and ηs

ρz Beta 0.50 0.20 σz InvG 0.10 2.00
ρb Beta 0.50 0.20 σb InvG 0.10 2.00
ρλf Beta 0.50 0.20 σλf InvG 0.10 2.00
ρλw Beta 0.50 0.20 σλw InvG 0.10 2.00
ρµ Beta 0.50 0.20 σµ InvG 0.10 2.00
ρg Beta 0.50 0.20 σg InvG 0.10 2.00
ηλf Beta 0.50 0.20 ηλw Beta 0.50 0.20
ηgz Beta 0.50 0.20

ρπ∗ Beta 0.50 0.20 σπ∗ InvG 0.03 6.00

Panel II: SWFF

SP∗ Gamma 2.00 0.10 ζsp,b Beta 0.05 0.005
ρσw Beta 0.75 0.15 σσw InvG 0.05 4.00

Notes: Smets and Wouters (2007) original prior is a Gamma(.62, .10). The following parameters are fixed
in Smets and Wouters (2007): δ = 0.025, g∗ = 0.18, λw = 1.50, εw = 10, and εp = 10. In addition, for the
model with financial frictions we fix the entrepreneurs’ steady state default probability F̄∗ = 0.03 and their
survival rate γ∗ = 0.99. The columns “Mean” and “St. Dev.” list the means and the standard deviations for
Beta, Gamma, and Normal distributions, and the values s and ν for the Inverse Gamma (InvG) distribution,

where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The effective prior is truncated at the boundary of the determinacy
region. The prior for l̄ is N (−45, 52).
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B Data

Real GDP (GDPC), the GDP price deflator (GDPDEF), nominal personal consumption

expenditures (PCEC), and nominal fixed private investment (FPI) are constructed at a

quarterly frequency by the Bureau of Economic Analysis (BEA), and are included in the

National Income and Product Accounts (NIPA). Average weekly hours of production and

nonsupervisory employees for total private industries (AWHNONAG), civilian employment

(CE16OV), and civilian noninstitutional population (LNSINDEX) are produced by the Bu-

reau of Labor Statistics (BLS) at the monthly frequency. The first of these series is obtained

from the Establishment Survey, and the remaining from the Household Survey. Both sur-

veys are released in the BLS Employment Situation Summary (ESS). Since our models are

estimated on quarterly data, we take averages of the monthly data. Compensation per hour

for the nonfarm business sector (COMPNFB) is obtained from the Labor Productvity and

Costs (LPC) release, and produced by the BLS at the quarterly frequency. All data are

transformed following Smets and Wouters (2007). Let ∆ denote the temporal difference

operator. Then:

Output growth = 100 ∗∆LN((GDPC)/LNSINDEX)

Consumption growth = 100 ∗∆LN((PCEC/GDPDEF )/LNSINDEX)

Investment growth = 100 ∗∆LN((FPI/GDPDEF )/LNSINDEX)

Real Wage growth = 100 ∗∆LN(COMPNFB/GDPDEF )

Hours = 100 ∗ LN((AWHNONAG ∗ CE16OV/100)/LNSINDEX)

Inflation = 100 ∗∆LN(GDPDEF ).

The federal funds rate is obtained from the Federal Reserve Board’s H.15 release at

the business day frequency. We take quarterly averages of the annualized daily data and

divide by four. In the estimation of the DSGE model with financial frictions we measure

Spread as the annualized Moody’s Seasoned Baa Corporate Bond Yield spread over the 10-

Year Treasury Note Yield at Constant Maturity. Both series are available from the Federal

Reserve Board’s H.15 release. Like the federal funds rate, the spread data is also averaged

over each quarter and measured at the quarterly frequency. This leads to:

FFR = (1/4) ∗ FEDERAL FUNDS RATE

Spread = (1/4) ∗ (BaaCorporate − 10yearTreasury)
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The long-run inflation expectations are obtained from the Blue Chip Economic Indicators

survey and the Survey of Professional Forecasters (SPF) available from the FRB Philadel-

phia’s Real-Time Data Research Center. Long-run inflation expectations (average CPI in-

flation over the next 10 years) are available from 1991:Q4 onwards. Prior to 1991:Q4, we use

the 10-year expectations data from the Blue Chip survey to construct a long time series that

begins in 1979:Q4. Since the Blue Chip survey reports long-run inflation expectations only

twice a year, we treat these expectations in the remaining quarters as missing observations

and adjust the measurement equation of the Kalman filter accordingly. Long-run inflation

expectations πO,40t are therefore measured as

πO,40t = (10-YEAR AVERAGE CPI INFLATION FORECAST− 0.50)/4.

where 0.50 is the average difference between CPI and GDP annualized inflation from the

beginning of the sample to 1992. We divide by 4 because the data are expressed in quarterly

terms.

Many macroeconomic time series get revised multiple times by the statistical agencies

that publish the series. In many cases the revisions reflect additional information that

has been collected by the agencies, in other instances revisions are caused by changes in

definitions. For instance, the BEA publishes three releases of quarterly GDP in the first

three month following the quarter. Thus, in order to be able to compare DSGE model

forecasts to real-time forecasts made by private-sector professional forecasters or the Federal

Reserve Board, it is important to construct vintages of real time historical data. We follow

the work by Edge and Gürkaynak (2010) and construct data vintages that are aligned with

the publication dates of the Blue Chip survey. A detailed description of how this data set is

constructed is provided in Del Negro and Schorfheide (2013).
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C Computational Details

C.1 DSGE Models

The parameter estimation for the two DSGE models is described in detail in Del Negro and

Schorfheide (2013). Thus, this Appendix focuses on the computation of h-step predictive

densities p(yt:t+h|Imt−1,Mm). Starting point is the state-space representation of the DSGE

model. The transition equation

st = T (θ)st−1 +R(θ)εt, εt ∼ N(0,Q) (A-27)

summarizes the evolution of the states st. The measurement equation:

yt = Z(θ)st +D(θ), (A-28)

maps the states onto the vector of observables yt, where D(θ) represents the vector of steady

states for these observables. To simplify the notation we omit model superscripts/subscripts

and we dropMm from the conditioning set. We assume that the forecasts are based on the

It−1 information set. Let θ denote the vector of DSGE model parameters. For each draw θi,

i = 1, . . . , N , from the posterior distribution p(θ|It−1), execute the following steps:

1. Evaluate

T (θ),R(θ),Z(θ),D(θ).

2. Run the Kalman filter to obtain st−1|t−1 and Pt−1|t−1.

3. Compute ŝt|t−1 = st|It−1 and P̂t|t−1 = Pt|It−1 as

(a) Unconditional forecasts: ŝt|t−1 = T st−1|t−1, P̂t|t−1 = T Pt−1|t−1T ′ +RQR′.

(b) Semiconditional forecasts (using time t spreads, and FFR): after computing ŝt|t−1

and P̂t|t−1 using the “unconditional” formulas, run time t updating step of Kalman

filter using a measurement equation that only uses time t values of these two

observables.
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4. Compute recursively for j = 1, .., h the objects ŝt+j|t−1 = T st+j−1|t−1, P̂t+j|t−1 =

T Pt+j−1|t−1T ′ +RQR′ and construct the matrices

ŝt:t+k|t−1 =


ŝt|t−1

...

ŝt+k|t−1


and

P̂t:t+k|t−1 =


P̂t|t−1 P̂t|t−1T ′ . . . P̂t|t−1T k

′

T P̂t|t−1 P̂t+1|t−1 . . . P̂t+1|t−1T k−1
′

...
...

. . .
...

T kP̂t|t−1 T k−1P̂t+1|t−1 . . . P̂t+k|t−1

 .
This leads to: st:t+h|(θ, It−1) ∼ N(ŝt:t+h|t−1, P̂t:t+h|t−1).

5. The distribution of yt:t+h = D̃ + Z̃st:t+h is

yt:t+h|(θ, It−1) ∼ N(D̃ + Z̃ ŝt:t+h|t−1, Z̃P̂t:t+h|t−1Z̃ ′),

where Z̃ = Ih+1 ⊗Z and D̃ = 1h+1 ⊗D (note I1 = 11 = 1)

6. Compute

p(yot:t+h|θ, It−1) = pN(yot:t+h; D̃ + Z̃ ŝt:t+h|t−1, Z̃P̂t:t+h|t−1Z̃ ′), (A-29)

where yot:t+h are the actual observations and pN(x;µ,Σ) is the probability density func-

tion of a N(µ,Σ).

7. For linear functions Fyt:t+h (e.g., four quarter averages, etc.) where F is a matrix of

fixed coefficients the predictive density becomes

p(Fyot:t+h|θ, It−1) = pN(Fyot:t+h;F D̃ + F Z̃ ŝt:t+h|t−1, F Z̃P̂t:t+h|t−1Z̃ ′F ′). (A-30)

In the application we choose the matrix F such that Fyt:t+h = ȳt+h,h =
1

h

h∑
j=1

yt+j and

let

p(ȳot+h,h|It−1) =
1

N

N∑
i=1

p(ȳot+h,h|θi, It−1). (A-31)
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C.2 Dynamic Prediction Pool

In each period t, the principal has to conduct inference about λt to generate λ̂DPt+h|t(θ), where

θ = (ρ, µ, σ)′ is the vector of hyperparameters. Some of the results that we are reporting

in the main part of the paper are conditional on a particular value of θ, while others are

obtained by integrating out θ under the relevant pseudo posterior distribution.

We use a bootstrap particle filter to update the sequence of pseudo posteriors p(h)(λt|θ, IPt ,P).

Recent surveys of particle-filtering methods for nonlinear state-space models in econometrics

are provided by Giordani et al. (2011), Creal (2012), and Herbst and Schorfheide (2016).

Let st = [xt, λt]
′ and assume that the period t− 1 particles {sjt−1,W

j
t−1}Nj=1 approximate the

moments of p(h)(λt−1|θ, IPt−1,P):

1

N

N∑
j=1

f(sjt−1)W
j
t−1 ≈

∫
f(st−1)p

(h)(st−1|θ, IPt−1,P)dst−1. (A-32)

By ≈ we mean that under suitable regularity conditions (see, for instance, Chopin (2004))

the Monte Carlo average satisfies a strong law of large numbers and a central limit theorem.

An initial set of particles can be generated by iid sampling from x0 ∼ N(µ, σ2), letting

sj0 = [xj0,Φ(xj0)], and setting W j
0 = 1. The bootstrap particle filter involves the following

recursion:

1. Propagate particles forward:

x̃jt = (1− ρ)µ+ ρxjt−1 +
√

1− ρ2σεjt , ε
j
t ∼ N(0, 1). (A-33)

2. Compute λ̃jt = Φ(x̃jt) and let s̃jt = [x̃jt , λ̃
j
t ]
′.

3. Compute the incremental weights

w̃jt = p(h)(ȳt,h|λjt , IPt−1,P) = λ̃jtp(ȳt,h|I1t−h,M1) + (1− λ̃jt)p(ȳt,h|I2t−h,M2). (A-34)

The predictive density p(h)(ȳt,h|θ, IPt−1,P) can be approximated by

p̂(h)(ȳt,h|θ, IPt−1,P) =
1

N

N∑
j=1

w̃jtW
j
t−1. (A-35)
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4. Update the weights according to

W̃ j
t =

w̃jtW
j
t−1

1
N

∑N
j=1W

j
t−1

. (A-36)

5. Resample (using multinomial resampling) the particles if the distribution of particle

weights becomes very uneven. Let ESS = N2/
N∑
j=1

w̃jtW
j
t−1. (a) If ESS < (2/3)N

resample the particles and let sjt denote the value of the resampled particle j and set

its weight W j
t = 1. (b) If ESS ≥ (2/3)N let sjt = s̃jt and W j

t = W̃ j
t .

6. The particle system {sjt ,W
j
t }Nj=1 approximates

plimN−→∞
1

N

N∑
j=1

f(sjt−1)W
j
t−1 =

∫
f(st−1)p

(h)(st−1|θ, IPt−1,P)dst−1 (A-37)

In Figure A-1 we graphically examine the Monte Carlo variance of our estimate of

p(h)(λt|θ, IPt ,P). The figure is based on N = 1, 000 particles and Nrep = 100 indepen-

dent runs of the particle filter. We set ρ = 0.9, µ = 0, and σ = 1. The accuracy deteriorates

somewhat as ρ approaches one, because the innovation in state-transition equation decreases

and do does the degree of particle mutation. For the limit case ρ = 1 filtering becomes un-

necessary because λt = λ.

The predictive densities can be combined to form the pseudo-likelihood function

p(h)(ȳ1:t,h|θ,P) =
T∏
t=1

p(h)(ȳt,h|θ, IPt−1,P). (A-38)

The pseudo-likelihood has the particle filter approximation

p̂(h)(ȳ1:t,h|θ,P) =
T∏
t=1

p̂(h)(ȳt,h|θ, IPt−1,P), (A-39)

where p̂(h)(ȳt,h|θ, IPt−1,P) was defined in (A-35). We use the pseudo-likelihood function to

conduct inference with respect to θ:

p(h)(θ|IPt ,P) ∝ p̂(h)(ȳ1:t,h|θ,P)p(θ). (A-40)

In order to generate draws from pseudo-posterior p(h)(θ|IPt ,P), we embedd the particle-

filter approximation of the pseudo-likelihood function in an otherwise standard random-walk
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Figure A-1: Accuracy of Particle Filter Approximation: N = 1000, Nrep = 100

E[λt|θ, IPt ,P ]

5th Percentile of p(h)(λt|θ, IPt ,P) 95th Percentile of p(h)(λt|θ, IPt ,P)

Notes: Figure depicts results from Nrep runs of the particle filter. θ is given by ρ = 0.9, µ = 0, and σ = 1.

Metropolis-Hastings algorithm. A theoretical justification for this procedure is provided in

Andrieu et al. (2010). The random-walk Metropolis-Hastings (RWMH) algorithm is identical

to Algorithm 1 in Del Negro and Schorfheide (2013). Due to the low dimensionality of the

hyperparameter vector θ and the high degree of accuracy of the particle filter approximation,

the posterior sampler is very efficient. All results reported in the main text are based on

5,000 particles and 10,000 draws from the RWMH algorithm.
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D Additional Tables and Figures

D.1 Posterior Distribution of Hyperparameters

Figure A-2: Posterior p(h)(ρ|IPt ,P) Over Time

Notes: The figure shows the posterior p(h)(ρ|IPt ,P) for t =1992:Q1-2011:Q2 based on the hyperparameter
Prior 1: ρ ∼ U [0, 1], µ = 0, σ = 1.

Figure A-3: End-of-Sample Posterior of the Hyperparameter ρ Under Different Priors

U [0, 1] B(0.8, 0.1) B(0.9, 0.2)

Notes: The three panels show the posterior p(ρ|IPT ,P) (histogram) under three priors (red line): U [0, 1],
µ = 0, σ = 1 (left); ρ ∼ B(0.8, 0.1), µ ∼ N (0,Φ−1(0.75)), σ2 ∼ IG(2, 1) (center); and B(0.9, 0.2), µ ∼
N (0,Φ−1(0.75)), σ2 ∼ IG(2, 1) (right).
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D.2 Cumulative Log Scores Over Time

Figure A-4: Cumulative Log Scores Over Time: SWFF and SWπ vs Dynamic Pools

Notes: The figure shows shows the difference between the cumulative log scores

τ∑
t=1

ln p(ȳt+h,h|Imt+ ,Mm)

of the SWFF (red) and SWπ (blue) models, respectively, and the cumulative log score for the dynamic

pools (black)

τ∑
t=1

ln p
(h)
DP (ȳt+h,h|IPt+ ,P) over the period 1993:Q1-2011:Q2. We use Prior 1 for the DP: ρ ∼

B(0.8, 0.1), µ = 0, σ2 = 1.
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D.3 Results from Dynamic Model Averaging (DMA)

Figure A-5: Weights in Realtime: DMA (α = 0.90, 0.95, 0.99) vs. DP

Notes: The figure shows the weight on the SWFF model in forecast pools over the period 1992:Q1-2011:Q2
for Dynamic Model Averaging (DMA) for three values of α: .99, .95, and .90, as well as the dynamic pool

weight (λ̂DPt|t ). Prior 1 is used for the DP: ρ ∼ U [0, 1], µ = 0, σ = 1.

Table A-2: Cumulative Log Scores / Differentials

Log Score Differentials

DP Prior DP α = 0.90 α = 0.95 α = 0.99

(1) (2) (3) (4)

Prior 1: ρ ∼ U(0, 1), µ = 0, σ2 = 1 -256.91 -0.12 0.33 2.74

Prior 2: ρ ∼ B(0.8, 0.1), µ ∼ N (0,Φ−1(.75)), -256.43 0.36 0.81 3.22

σ2 ∼ IG(2, 1)

Prior 3: ρ ∼ B(0.8, 0.1), µ = 0, σ2 ∼ IG(2, 1) -255.97 0.82 1.27 3.68

Notes: The table shows in column (1) the cumulative log score

T∑
t=1

ln p
(h)
DP (ȳt+h,h|IPt+ ,P) for various speci-

fications of the dynamic pool. Columns (2) through (4) show for each specification the difference between
the DP cumulative log scores and that of DMA for α = 0.90, 0.95, and 0.99, respectively. The cumulative
log scores are computed over the period 1992:Q1-2011:Q2.
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D.4 Robustness Check: Omit Information from t + 1 Financial

Variables

Figure A-6: Log Scores Comparison: SWFF vs. SWπ Without Time t+ 1 Information from

Financial Variables

Notes: The figure shows the log scores p(ȳt+h,h|Imt ,Mm) for SWFF (red), and SWπ (blue) over the period
1992:Q1-2011:Q2.

Figure A-7: Weights in Real Time: BMA, Static, and Dynamic Pools – Imt Excludes Time

t+ 1 Information from Financial Variables

Notes: The figure shows the weight on the SWFF model in forecast pools, computed using real time infor-

mation only, over the period 1992:Q1-2011:Q2 for three different pooling techniques: BMA (λ̂BMA
t – green),

(maximum likelihood) static pool (λ̂MSP
t – purple), and dynamic pools (λ̂DPt|t – black).
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D.5 Robustness Check: Individual Forecasts

The main part of the paper focuses on the joint prediction of output growth and inflation,

because it is their joint behavior that is arguably most of interest to policymakers. Nonethe-

less we want to briefly describe the results obtained when applying our methodology to

semi-conditional forecasts of four-quarter-ahead averages of each variable separately. De-

tailed results are presented in Figure A-8. First, the discrepancy in log predictive scores for

the two models is larger for output growth than for inflation, and as a consequence the time

series behavior of the joint predictive likelihood is largely driven by the former. Second, the

evolution of the weight given to the SWFF model by the DP approach is qualitatively similar

for output growth and inflation: The weight rises in the aftermath of the dot-com bust in

the 2000s and over the subsequent period of financial turmoil, decreases in the mid-2000s,

and then rises again with the financial crisis leading to the Great Recession. The pattern for

output and inflation differ a bit in the 1990s, when the SWFF model performs slightly bet-

ter than the SWπ model for inflation but not for output, and after 2009, when the opposite

occurs.

Third, the BMA weights, and to a lesser extent the MSP weights, also tend to approach

the extremes of zero or one as enough information accumulates favoring one model versus

the other. For instance, by the end of the 1990s both the BMA and the MSP weight are zero

for output growth. For inflation, by the end of the early 2000s financial turmoil period both

weights are one. Before 2008, there appears to be a negative correlation among the BMA

and MSP weights for output growth and inflation. In periods in which the output growth

weights favor the SWπ model, the inflation weights favor the SWFF model and vice versa.

Fourth, this “lack of diversification” penalizes both BMA and MSP relative to DP when

the environment changes, resulting in large losses in terms of predictive densities. For both

output and inflation the performance of the dynamic pools is close to that of equal weights.



Appendix for Dynamic Prediction Pools A-22

Figure A-8: Results for Individual Variables

GDP Growth (4Q average) Inflation (4Q average)

Log Scores: SWFF (red), SWπ (blue), and Dynamic Pool (black)

Real Time Weights: Dynamic Pool (black), BMA (green), and Static Pool (purple)

Log Score Differentials: DP versus: BMA (green area), SP (pink area), and Equal Weights (black line)

Notes: The left and right column shows the results for the 4-quarter average output growth and inflation,
respectively. We use Prior 2 for the DP: ρ ∼ B(0.8, 0.1), µ ∼ N (0,Φ−1(0.75)), σ2 ∼ IG(2, 1). Top panels:

log scores ln p(ȳt+h,h|Imt+ ,Mm) for SWFF, and SWπ, and log score ln p
(h)
DP (ȳt+h,h|IPt+ ,P) for the dynamic

pool (DP). Middle panels: real time weights on the SWFF model: DP (λ̂DPt|t ), static pool (λ̂MSP
t ), and

BMA (λ̂BMA
t ). Bottom panels: log score differences of DP versus BMA (ln p

(h)
BMA(ȳt+h,h|IPt+ ,P)), static

pool (ln p
(h)
MSP (ȳt+h,h|IPt+ ,P)), and equal weights. Positive values favor DP.
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D.6 Robustness Check: One-Step-Ahead Forecasting

Figure A-9: Log Scores Comparison over Time for One-Quarter Ahead Forecasts

SWFF (red), SWπ (blue), and Dynamic Pool (black)

Notes: The figure shows the log scores ln p(ȳt+h,h|Imt+ ,Mm) for SWFF (red), and SWπ (blue), and the log

score for the dynamic pools (black) ln p
(h)
DP (ȳt+h,h|IPt+ ,P) over the period 1992:Q1-2011:Q2. For the DP we

set ρ = .9.


