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Model Specification

• A VAR(p) is a multivariate generalization of the AR(p) model:

yt = Φ1yt−1 + . . .+ Φpyt−p + ut

• yt is a n × 1 random vector that takes values in Rn.

• ut ∼ iid(0,Σ) is a vector of reduced-form innovations.
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Goals

• Derivation of likelihood function.

• Derivation of posterior for multivariate regression with unknown variance.

• Use prior distribution to cope with high-dimensional parameter space (regularization).
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Likelihood Function

• Define the (np + 1)× 1 vector xt as

xt = [y ′t−1, . . . , y
′
t−p, 1]′

• Moreover, define the matrixes

Y =

 y ′1
...
y ′T

 , X =

 x ′1
...
x ′T

 , Φ = [Φ1, . . . ,Φp,Φc ]′

• The conditional density of yt :

p(yt |Y1:t−1,Y1−p:0,Φ,Σ) ∝ |Σ|−1/2 exp

{
−1

2
(y ′t − x ′tΦ)Σ−1(y ′t − x ′tΦ)′

}
,

where Yt0:t1 = [yt0 , . . . yt1 ].
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Likelihood Function

• Take the product of the conditional densities of y1, . . . , yT to obtain the joint density.

• Let Y1−p:0 be a vector with initial observations

p(Y1:T |Y1−p:0,Φ,Σ) =
T∏
t=1

p(yt |Y1:t−1,Y1−p:0,Φ,Σ)

∝ |Σ|−T/2 exp

{
−1

2

T∑
t=1

(y ′t − x ′tΦ)Σ−1(y ′t − x ′tΦ)′

}
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Some Matrix Algebra

• Lemma: Let A and B be two n × n matrices, then

tr[A + B] = tr[A] + tr[B] 2

• Lemma: Let a be a n × 1 vector, B be a symmetric positive definite n × n matrix, and tr
the trace operator that sums the diagonal elements of a matrix. Then

a′Ba = tr[Baa′] 2

• Deduce:

T∑
t=1

(y ′t − x ′tΦ)Σ−1(y ′t − x ′tΦ)′ = tr

[
Σ−1

T∑
t=1

(y ′t − x ′tΦ)′(y ′t − x ′tΦ)

]
.
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Likelihood Function

p(Y1:T |Y1−p:0,Φ,Σ)

∝ |Σ|−T/2 exp

{
−1

2
tr

[
Σ−1

T∑
t=1

(y ′t − x ′tΦ)′(y ′t − x ′tΦ)

]}

∝ |Σ|−T/2 exp

{
−1

2
tr[Σ−1(Y − XΦ)′(Y − XΦ)]

}
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Likelihood Function

• Define the “OLS” estimator

Φ̂ = (X ′X )−1X ′Y .

• Define the sum of squared OLS residual matrix

Ŝ = (Y − X Φ̂)′(Y − X Φ̂) = Y ′Y − Y ′X (X ′X )−1X ′Y .

• It can be verified that

(Y − XΦ)′(Y − XΦ) = (Φ− Φ̂)′X ′X (Φ− Φ̂) + Ŝ
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Likelihood Function

• This leads to the following representation of the likelihood function

p(Y |Φ,Σ) ∝ |Σ|−T/2 exp

{
−1

2
tr [Σ−1Ŝ ]

}
× exp

{
−1

2
tr [Σ−1(Φ− Φ̂)′X ′X (Φ− Φ̂)]

}
.

• Let β = vec(Φ) and β̂ = vec(Φ̂). It can be verified that

tr [Σ−1(Φ− Φ̂)′X ′X (Φ− Φ̂)] = (β − β̂)′[Σ⊗ (X ′X )−1]−1(β − β̂).

• The likelihood function has the alternative representation

p(Y |Φ,Σ) ∝ |Σ|−T/2 exp

{
−1

2
tr [Σ−1Ŝ ]

}
× exp

{
−1

2
(β − β̂)′[Σ⊗ (X ′X )−1]−1(β − β̂)

}
.
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“Inverting” the Likelihood Function

• Suppose that

p(Φ,Σ) ∝ c .

• Then

p(Φ,Σ|Y ) ∝ p(Y |Φ,Σ).
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Background: Matricvariate Normal Distribution

• Suppose that the random matrix Φ has density

p(Φ|Σ,X ′X ) ∝ |Σ⊗ (X ′X )−1|−1/2

exp

{
−1

2
tr [Σ−1(Φ− Φ̂)′X ′X (Φ− Φ̂)]

}
then Φ|(Σ,X ′X ) is matricvariate normal

MN(Φ̂,Σ⊗ (X ′X )−1).

• Let β = vec(Φ) and β̂ = vec(Φ̂). Then

β|Σ,X ′X ∼ N
(
β̂,Σ⊗ (X ′X )−1

)
.

• To generate a draw Z from a multivariate N(µ,Σ), decompose Σ = CC ′. E.g., C could be
the lower triangular Cholesky factor. Then let Z = µ+ C · N(0, I ).
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Background: Inverted Wishart Distribution

• Let Σ be a n × n positive definite random matrix. Σ has the Inverted Wishart IW (S , ν)
distribution if its density is of the form

p(Σ|S , ν) ∝ |S |ν/2|Σ|−(ν+n+1)/2 exp

{
−1

2
tr [Σ−1S ]

}
• To sample a Σ from an Inverted Wishart IW (S , ν) distribution, draw n × 1 vectors

Z1, . . . ,Zν from a multivariate normal N(0,S−1) and let

Σ =

[
ν∑

i=1

ZiZ
′
i

]−1
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Likelihood Function Interpreted as PDF for (Φ,Σ) – Step 1: p(Φ|Σ,Y )

• Interpret the likelihood as density for (Φ,Σ):

p(Φ,Σ|Y )

∝ |Σ|−T/2 exp

{
−1

2
tr [Σ−1Ŝ ]

}
× exp

{
−1

2
tr [Σ−1(Φ− Φ̂)′X ′X (Φ− Φ̂)]

}
∝ |Σ|−T/2|Σ⊗ (X ′X )−1|1/2 exp

{
−1

2
tr [Σ−1Ŝ ]

}
×(2π)−nk/2|Σ⊗ (X ′X )−1|−1/2

× exp

{
−1

2
tr [Σ−1(Φ− Φ̂)′X ′X (Φ− Φ̂)]

}
.

• Thus,

Φ|(Σ,Y ) ∼ MN(φ̂,Σ⊗ (X ′X )−1).
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Likelihood Function Interpreted as PDF for (Φ,Σ) – Step 2: p(Σ|Y )

• Compute p(Σ|Y ) ∝
∫
p(Y |Φ,Σ)dΦ...

• Note that:

|Σ⊗ (X ′X )−1|1/2 = |Σ|k/2|X ′X |−n/2.

• Therefore,

p(Σ|Y ) ∝ |Σ|−(T−k)/2|X ′X |−n/2 exp

{
−1

2
tr [Σ−1Ŝ ]

}
.

• Deduce

Σ|Y ∼ IW (Ŝ ,T − k − n − 1), Φ|(Σ,Y ) ∼ MN(φ̂,Σ⊗ (X ′X )−1).

• Write as

(Φ,Σ)|Y ∼ MNIW

(
Φ̂, (X ′X )−1, Ŝ ,T − k − n − 1

)
.
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Bayesian Analysis with Improper Prior

• Replace (improper) prior p(Φ,Σ) ∝ c by (improper) prior:

p(Φ,Σ) ∝ |Σ|−(n+1)/2.

• Then, the posterior is obtained from

p(Φ,Σ|Y ) ∝ p(Y |Φ,Σ)p(Φ,Σ).

• Our previous analysis implies that

(Φ,Σ)|Y ∼ MNIW

(
Φ̂, (X ′X )−1, Ŝ ,T − k

)
.
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Algorithm: Direct Sampling of VAR Parameters

For s = 1, . . . , nsim:

1 Draw Σ(s) from an IW (Ŝ ,T − k) distribution.

2 Draw Φ(s) from the conditional distribution MN(Φ̂,Σ(s) ⊗ (X ′X )−1). 2
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The Use of Priors for VARs

• Priors are used to “regularize” the VAR likelihood and cope with the dimensionality
problem: the number of free parameters is often large relative to the number of
observations.

• Priors add information to the estimation problem.
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Prior with Kronecker Structure

• Consider the prior:

Σ ∼ IW (ν,S), Φ|Σ ∼ MN
(
µ

Φ
,Σ⊗ P−1

Φ ), .

• Prior density:

p(Φ,Σ) = (2π)−nk/2|Σ|−k/2|PΦ|n/2 exp

{
−1

2
tr
[
Σ−1(Φ− µ

Φ
)′PΦ(Φ− µ

Φ
)

}
×C IW |Σ|−(ν+n+1)/2 exp

{
−1

2
tr
[
Σ−1S

]}
.

• C IW is the normalization constant of the IW prior.
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Posterior

p(Y |Φ,Σ)p(φ,Σ)

∝ (2π)−nk/2|Σ|−k/2|PΦ|n/2C IW |Σ|−(ν+n+1)/2(2π)−nT/2|Σ|−T/2

× exp

{
−1

2
tr
[
Σ−1(Φ− µ

Φ
)′PΦ(Φ− µ

Φ
)
]}

exp

{
−1

2
tr
[
Σ−1(Φ− Φ̂)X ′X (Φ− Φ̂)

]}
× exp

{
−1

2
tr
[
Σ−1S

]}
exp

{
−1

2
tr
[
Σ−1Ŝ

]}
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Posterior

• Define

P̄Φ = PΦ + X ′X , µ̄Φ = P̄−1
Φ

[
PΦµΦ

+ X ′X Φ̂
]
.

• Write

p(Y |Φ,Σ)p(φ,Σ)

= (2π)−nk/2|Σ|−k/2|PΦ|n/2C IW |Σ|−(ν+n+1)/2(2π)−nT/2|Σ|−T/2|P̄φ|n/2|P̄φ|−n/2

× exp

{
−1

2
tr
[
Σ−1(Φ− µ̄Φ)P̄φ(Φ− µ̄Φ)

]}
× exp

{
−1

2
tr
[
Σ−1

(
S + µ′

Φ
PΦµΦ

+ Y ′Y − µ̄′ΦP̄Φµ̄Φ

)]}
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Posterior

• Define

S̄ = S + µ′
Φ
PΦµΦ

+ Y ′Y − µ̄′ΦP̄Φµ̄Φ, ν̄ = ν + T

• Deduce that

Σ|Y ∼ IW (S̄ , ν̄), Φ|(Σ,Y ) ∼ MN(µ̄Φ,Σ⊗ P̄−1).

• Draws from the posterior can be generated by direct sampling.
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Marginal Data Density

• Let C̄IW be the normalization constant of the posterior IW distribution. Then,

p(Y ) =

∫ ∫
p(Y |Φ,Σ)p(φ,Σ)dΦdΣ

= (2π)−nT/2

∫
|PΦ|k/2|P̄φ|−k/2C IW |Σ|−(ν̄+n+1)/2 exp

{
−1

2
tr
[
Σ−1S̄

]}
dΣ

= (2π)−nT/2 |PΦ|n/2

|P̄Φ|n/2

C IW

C̄IW

,

• where

C IW

C̄IW

=
|S |ν/2

|S̄ |ν̄/2

2ny ν̄/2
∏ny

i=1 Γ((ν̄ + 1− i)/2)

2nyν/2
∏ny

i=1 Γ((ν + 1− i)/2)
.
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Hierarchical Models and Hyperparameter Selection

• “Performance” of Bayesian VAR is sensitive to prior variance.

• Choose prior variance in a data-driven way.

• Hierarchical model

p(Y |Φ,Σ)p(Φ,Σ|λ)p(λ),

where λ controls features of the prior.
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Selection vs. Averaging

• Selection:
• Compute

p(Y |λ) =

∫
p(Y |Φ,Σ)p(Φ,Σ|λ)d(Φ,Σ).

• Define: λ̂ = argmax p(Y |λ).
• Work with p(Φ,Σ|Y , λ̂).

• Averaging:
• Use prior p(λ)
• Factorize posterior as

p(Φ,Σ, λ|Y ) = p(Φ,Σ|Y , λ)p(λ|Y ),

where p(λ|Y ) ∝ p(Y |λ)p(λ).
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Illustration: Marginal Likelihood of λ

Φ*Φ

Prior

λ = ∞Likelihood
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Illustration: Marginal Likelihood of λ

Φ*Φ

Prior

λ = ∞Likelihood

λ → 0

Frank Schorfheide (Reduced-Form) Vector Autoregressions



Example: Marginal Likelihood of λ

• Suppose the VAR takes the special form of an AR(1) model:

yt = φyt−1 + ut , ut ∼ iidN(0, 1)

• Suppose the prior takes the form

φ ∼ N

(
φ∗,

1

λTγ0

)
.

where γ0 = 1/(1− φ2
∗)

• Define γ1 = φ∗γ0 and denote the sample autocovariances by

γ̂0 =
1

T

∑
y2
t , γ̂1 =

1

T

∑
ytyt−1.

• For convenience, we standardized the prior variance by T .
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Example: Marginal Likelihood of λ

• After some algebra it can be shown that marginal likelihood of λ takes the following form

ln p(Y |λ, φ∗) = −T/2 ln(2π)− T

2
σ̃2(λ, φ∗)− 1

2
c(λ, φ∗).

• The term σ̃2(λ, φ∗) measures the in-sample one-step-ahead forecast error:

lim
λ−→0

σ̃2(λ, φ∗) =
1

T

∑
(yt − φ̂yt−1)2

lim
λ−→∞

σ̃2(λ, φ∗) =
1

T

∑
(yt − φ∗yt−1)2.

• The third term above can be interpreted as a penalty for model complexity and is of the
form

c(λ, φ∗) = ln

(
1 +

γ̂0

λγ0

)
.

• As λ approaches zero, the marginal log likelihood function tends to minus infinity.
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Example: Marginal Likelihood of λ

• Recall that marginal likelihood of λ takes the following form

ln p(Y |λ, φ∗) = −T/2 ln(2π)− T

2
σ̃2(λ, φ∗)− 1

2
c(λ, φ∗).

• If an interior maximum of marginal likelihood exists, it is given by

λ̂ =
γ0γ̂

2
0

T (γ̂0γ1 − γ0γ̂1)2 − (γ0)2γ̂0
.
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Example: Minnesota Prior

• Reference: Doan, Litterman, and Sims (1984), Sims and Zha (1998).

• Consider the following Gaussian bivariate VAR(2).[
y1,t

y2,t

]
=

[
α1

α2

]
+

[
β11 β12

β21 β22

] [
y1,t−1

y2,t−1

]
+

[
γ11 γ12

γ21 γ22

] [
y1,t−2

y2,t−2

]
+

[
u1,t

u2,t

]
• Minnesota Prior is centered at:[

y1,t

y2,t

]
=

[
?
?

]
+

[
1 0
0 1

] [
y1,t−1

y2,t−1

]
+

[
0 0
0 0

] [
y1,t−2

y2,t−2

]
+

[
u1,t

u2,t

]
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Considerations

• It’s relatively easy to think about variances of marginal prior distributions of parameters,
but hard to think of a full covariance matrix.

• In high-dimensional parameter spaces, independence of parameters may lead to a lot of
probability mass in regions of the parameter space in which the model behaves
unreasonable.

• VAR: want plausible long-run properties, e.g., co-trending, steady states, etc.

• Constructing priors from artifical (dummy) observations can help introducing reasonable
correlations.
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Constructing a Prior from “Dummy Observations”

• Suppose we have T ∗ dummy observations (Y ∗,X ∗), plug the dummy observations into
the likelihood function and multiply the likelihood function by the (initial) improper prior:

p(Φ,Σ) ∝ |Σ|−(n+1)/2p(Y ∗|Φ,Σ).

• Define

Φ∗ = (X ∗
′
X ∗)−1X ∗

′
Y ∗, S∗ = (Y ∗ − X ∗Φ∗)′(Y ∗ − X ∗Φ∗).

• This leads to a prior

Σ ∼ IW (ν,S), Φ|Σ ∼ MN
(
µ

Φ
,Σ⊗ P−1

Φ ), .

with

ν = T ∗ − k, S = S∗, µ
Φ

= Φ∗, PΦ = X ∗
′
X ∗.
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Posterior with Dummy Observation Prior

• Posterior is proportional to

p(Φ,Σ,Y ) ∝ p(Y |Φ,Σ)p(Y ∗|Φ,Σ)|Σ|−(n+1)/2

• Define T̄ = T ∗ + T and

Φ̄ = (X ∗
′
X ∗ + X ′X )−1(X ∗

′
Y ∗ + X ′Y )

S̄ =

[
Y ∗
′
Y ∗ + Y ′Y )− (X ∗

′
Y ∗ + X ′Y )′(X ∗

′
X ∗ + X ′X )−1(X ∗

′
Y ∗ + X ′Y )

]
.

• Then, let X̄ = [X ∗
′
,X ′]′ and deduce:

• Deduce that

Σ|Y ∼ IW (S̄ , T̄ − k), Φ|(Σ,Y ) ∼ MN(Φ̄,Σ⊗ (X̄ ′X̄ )−1).
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Example: Minnesota Prior

• Dummies for the β coefficients:

Y ∗ = X ∗Φ + U[
λ1s1 0

0 λ1s2

]
=

[
λ1s1 0 0 0 0

0 λ1s2 0 0 0

]
Φ +

[
u11 u12

u21 u22

]
The first observation implies, for instance, that

λ1s1 = λ1s1β11 + u11 =⇒ β11 = 1− u11

λ1s1

=⇒ β11 ∼ N
(

1,
Σ11

λ2
1s

2
1

)
0 = λ1s1β21 + u12 =⇒ β21 = − u12

λ1s1

=⇒ β21 ∼ N
(

0,
Σ22

λ2
1s

2
1

)
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Example: Minnesota Prior

• Dummies for the γ coefficients:[
0 0
0 0

]
=

[
0 0 λ1s12λ2 0 0
0 0 0 λ1s22λ2 0

]
Φ + U

• For lags of order p the entry above would be λ1s ip
λ
2 .

• The prior for the covariance matrix is implemented by λ3 replications of[
s1 0
0 s2

]
=

[
0 0 0 0 0
0 0 0 0 0

]
Φ + U
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Example: Minnesota Prior

• Sums-of-coefficients dummy observations, reflecting the belief that when yi has been
stable at its initial level, it will tend to persist at that level, regardless of the value of other
variables:[

λ4y1
0

0 λ4y2

]
=

[
λ4y1

0 λ4y1
0 0

0 λ4y2
0 λ4y2

0

]
Φ + U

• Co-persistence prior dummy observations, reflecting the belief that when data on all y ’s
are stable at their initial levels, thy will tend to persist at that level:[

λ5y1
λ5y2

]
=
[
λ5y1

λ5y2
λ5y1

λ5y2
λ5

]
Φ + U
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Example: Minnesota Prior - Hyperparameters

• λ1 is the overall tightness of the prior. Large values imply a small prior covariance matrix.

• λ2: the variance for the coefficients of lag h is scaled down by the factor (l−λ2 )2.

• λ3: determines the weight for the prior on Σ. Suppose that Zi = N (0, σ2). Then an

estimator for σ2 is σ̂2 = 1
λ3

∑λ3

i=1 Z
2
i . The larger λ3, the more informative the estimator,

and in the context of the VAR, the tighter the prior.

• λ4 and λ5: tuning parameters for sums-of-coefficients and co-persistence dummies.

• In addition: s = std(Y−τ,0) and y = mean(Y−τ,0), where Y−τ,0 is a short presample.
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US GDP growth and VAR forecast (1-step ahead)

Flat-prior VAR

Giorgio Primiceri (Northwestern) BVARs 43 / 52



US GDP growth and BVAR forecast (1-step ahead)

BVAR (MN+SOC+DIO priors + hyperparameter selection)

Giorgio Primiceri (Northwestern) BVARs 44 / 52



BVARs: Forecasting performance

Mean Squared Forecast Errors
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Example: Minnesota Prior w/ Dummy Observations

• The marginal likelihood can be calculated from the normalization constants of the MNIW
distribution (see Zellner (1971, Appendix)):

p(Y |λ) = (2π)−nT/2 |X̄ ′X̄ |− n
2 |S̄ |− T̄−k

2

|X ∗′X ∗|− n
2 |S∗|− T∗−k

2

2
n(T̄−k)

2
∏n

i=1 Γ[(T̄ − k + 1− i)/2]

2
n(T∗−k)

2

∏n
i=1 Γ[(T ∗ − k + 1− i)/2]

.

• The hyperparameters (ȳ , s̄, λ) enter through the dummy observations X ∗ and Y ∗.
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Extension 1: Alternative Priors

• Giannone, Lenza, Primiceri (2018): “Priors for the Long-Run,” Journal of American
Statistical Association, forthcoming.

• Estimation is typically based on conditional likelihood functions that ignore the likelihood
of the initial observations.

• Example:

yt = c + φyt−1 + ut = φt−1y1 + c
t−2∑
s=0

φs︸ ︷︷ ︸
DCt

+
t−2∑
s=0

φsut−j︸ ︷︷ ︸
SCt

• Write

DCt =

{
y1 + (t − 1)c if φ = 1
c

1−φ + φt−1(y1 − c
1−φ ) if|φ| < 1

• Deterministic component may absorb too much low frequency variation of the time series.
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PRIORS FOR THE LONG RUN 8
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Figure 2.1. Deterministic component for selected variables implied by various 7-
variable VARs. Flat: BVAR with a flat prior; MN: BVAR with the Minnesota prior;
PLR: BVAR with the prior for the long run.

Most economists would be skeptical of this likely spurious explanatory power of determin-

istic trends, and may want to downplay it when conducting inference. In principle, “one way

to accomplish this is to use priors favoring pure unit-root low frequency behavior” (Sims,

2000, pp. 451), according to which implausibly precise long-term forecasts are unlikely.

However, it is not obvious how to formulate such a prior. For example, the undesirable

properties of the deterministic component persist even when using the popular Minnesota

prior, which is centered on the assumption that all variables in the VAR are random walks

with drift (Litterman, 1979, see also appendix B for a detailed description). When the

tightness of this prior is set to conventional values in the literature (see appendix C), the

implied deterministic components are similar to those of the flat-prior case, as shown by

the dashed lines in figure 2.1. In the next section we detail our specific proposal regarding

how to address this problem.



Extension 1: Alternative Priors – The Basic Idea

• Write VAR in VECM form:

∆yt = Π0 + Π∗yt−1 +

p−1∑
j=1

Πi∆yt−j + ut

where Π∗ = αβ′.

• Reasonable prior for columns of α will depend on the rows of β′:

• if i ’th row of β′ corresponds to a linear combination that is stationary, then it makes sense
to choose a prior for i ’th column of α with mass away form zero.

• if i ’th row of β′ corresponds to a linear combination that is non-stationary, then it makes
sense to choose a prior for i ’th column of α with mass away form zero.

• See paper for details on how to implement this.

Frank Schorfheide (Reduced-Form) Vector Autoregressions
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Figure 5.1. Mean squared forecast errors in models with three variables. Flat: BVAR
with a flat prior; MN: BVAR with the Minnesota prior; SZ: BVAR with the Minnesota
and sum-of-coefficient priors; DIFF: VAR with variables in first differences; VECM: vector
error-correction model that imposes the existence of a common stochastic trend for Y, C
and I, without any additional prior information; PLR: BVAR with the Minnesota prior
and the prior for the long run.

VAR representation in first differences. Finally, figure 5.1 shows that the PLR-BVAR also

dominates the vector error-correction model of King et al. (1991). This specification cor-

responds to an extreme version of the PLR, which dogmatically imposes the existence of

a common stochastic trend for output, consumption and investment, without introducing

any additional prior information.

The key question for us is understanding why the PLR-BVAR outperforms the SZ-BVAR

and the DIFF-VAR. We address this question in figure 5.2, which plots the realized value

of the log consumption- and investment-to-GDP ratios, and the forecasts of these variables

produced 5 years in advance by the PLR-BVAR and the DIFF-VAR (the SZ-BVAR forecasts

are very close to those of the DIFF-VAR, so we do not report them to avoid clogging the



Extension 2: Sparse versus Dense Models

• Giannone, Lenza, Primiceri (2018): “Economic Prediction With Big Data: The Illusion of
Sparsity,” Manuscript, FRB New York, ECB, and Northwestern University.

• Sparse models: only a few predictors are relevant.

• Dense models: many predictors are relevant but only have small individual effects.

• Model:

yt = x ′tφ+ z ′tβ + ut .

Here xt ’s are included in all specifications (low dimensional), zt ’s are optional (high
dimensional).

• Prior – part 1:

p(σ2) ∝ 1

σ2
, φ ∝ c .

Frank Schorfheide (Reduced-Form) Vector Autoregressions



Extension 2: Sparse versus Dense Models

• Prior – part 2: “spike and slab”

βi |(σ2, γ2, q) ∼
{

N(0, σ2γ2) with prob. q
0 with prob. 1− q

• For q = 1 we obtain our “standard” prior (“Ridge Regression”)

• Rewrite prior as

βi |(σ2, γ2, νi ) ∼ N(0, σ2γ2, νi ), νi ∼ Bernoulli(q).

• By changing the mixing distribution, we can generate a wide variety of priors, including a
Bayesian version of LASSO.

Frank Schorfheide (Reduced-Form) Vector Autoregressions



Extension 2: Sparse versus Dense Models

• In problems of this form it is often good to standardize and orthogonalize the regressors xt
prior to the estimation.

• To specify a prior on the hyperparameters (q, γ2) they suggest to define

R2(γ2, q) =
qkγ2σ̄2

z

qkγ2σ̄2
z + 1

where k is the number of regressors z and σ̄2
z is the average sample variance of the zj ’s.

• The prior takes the form

q ∼ Beta(a, b), R2 ∼ Beta(A,B).

• The paper works out the posterior.

Frank Schorfheide (Reduced-Form) Vector Autoregressions
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Table 1. Description of the datasets.

Dependent variable Possible predictors Sample

Macro 1 Monthly growth rate of
US industrial
production

130 lagged macroeconomic
indicators

659 monthly time-series
observations, from
February 1960 to
December 2014

Macro 2 Average growth rate of
GDP over the sample
1960-1985

60 socio-economic, institutional
and geographical
characteristics, measured at
pre-60s value

90 cross-sectional country
observations

Finance 1 US equity premium
(S&P 500)

16 lagged financial and
macroeconomic indicators

58 annual time-series
observations, from 1948 to
2015

Finance 2 Stock returns of US
firms

144 dummies classifying stock
as very low, low, high or very
high in terms of 36 lagged
characteristics

1400k panel observations
for an average of 2250
stocks over a span of 624
months, from July 1963 to
June 2015

Micro 1 Per-capita crime
(murder) rates

Effective abortion rate and 284
controls including possible
covariate of crime and their
transformations

576 panel observations for
48 US states over a span
of 144 months, from
January 1986 to
December 1997

Micro 2 Number of pro-plaintiff
eminent domain
decisions in a specific
circuit and in a specific
year

Characteristics of judicial
panels capturing aspects
related to gender, race, religion,
political affiliation, education
and professional history of the
judges, together with some
interactions among the latter,
for a total of 138 regressors

312 panel circuit/year
observations, from 1975 to
2008

3.2. Macro 2: The determinants of economic growth in a cross-section of coun-

tries. The seminal paper by Barro (1991) initiated a debate on the cross-country determi-

nants of long-term economic growth. Since then, the literature has proposed a wide range

of possible predictors of long-term growth, most of which have been collected in the dataset

constructed by Barro and Lee (1994). As in Belloni et al. (2011), we use this dataset to

explain the average growth rate of GDP between 1960 and 1985 across countries. The

database includes data for 90 countries and 60 potential predictors, corresponding to the
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Figure 4.1. Joint prior and posterior densities of q and log (�) in the
macro-1, macro-2 and finance-1 applications (best viewed in color).

artificially recover sparse model representations simply as a device to reduce estimation

error. Our findings indicate that these extreme strategies might perhaps be appropriate

only for our micro-1 application, given that its posterior in figure 4.2 is tightly concentrated
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Figure 4.2. Joint prior and posterior densities of q and log (�) in the
finance-2, micro-1 and micro-2 applications (best viewed in color).

around extremely low values of q. More generally, however, our results suggest that the best

predictive models are those that optimally combine probability of inclusion and shrinkage.

4.2. Probability of inclusion and out-of-sample predictive accuracy. What is then

the appropriate probability of inclusion, considering that models with different sizes require

differential shrinkage? To answer this question, figure 4.3 plots the marginal posterior of

q, obtained by integrating out �2 from the joint posterior distribution of figures 4.1 and

4.2. Notice that the densities in figure 4.3 behave quite differently across applications. For



ECONOMIC PREDICTIONS WITH BIG DATA: THE ILLUSION OF SPARSITY 17

Macro 1

20 40 60 80 100 120

coefficients

0

0.2

0.4

0.6

0.8

1
Macro 2

10 20 30 40 50 60

coefficients

0

0.2

0.4

0.6

0.8

1

Finance 1

5 10 15

coefficients

0

0.2

0.4

0.6

0.8

1
Finance 2

20 40 60 80 100 120 140

coefficients

0

0.2

0.4

0.6

0.8

1

Micro 1

50 100 150 200 250

coefficients

0

0.2

0.4

0.6

0.8

1
Micro 2

20 40 60 80 100 120

coefficients

0

0.2

0.4

0.6

0.8

1

Figure 4.5. Heat map of the probabilities of inclusion of each predictor
(best viewed in color).

percent of the times, although this is more difficult to see from the plot. All other predictors

are included in the model much more rarely.

The important message of figure 4.5, however, is that the remaining five applications do

not exhibit a distinct pattern of sparsity, in the sense that none of the predictors appear

to be systematically excluded. This finding was probably expected for macro 2 and finance

1, since the posterior of q peaks around very high values in these two applications. The

absence of clear sparsity patterns, however, should be more surprising when the posterior

of q has most of its mass on lower values. For example, let us consider the case of macro 1,

in which the best fitting models are those with q around 0.25, according to figure 4.3. This


