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Model Specification

® A VAR(p) is a multivariate generalization of the AR(p) model:
Ye=®ye 1+ + q>pyt—p + Ut

® y, is a n X 1 random vector that takes values in R".

® u; ~ iid(0,X) is a vector of reduced-form innovations.
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Goals

® Derivation of likelihood function.
® Derivation of posterior for multivariate regression with unknown variance.

® Use prior distribution to cope with high-dimensional parameter space (regularization).
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Likelihood Function

® Define the (np 4+ 1) x 1 vector x; as

Xt = [}/tlflv ce 7}/1{7p7 1]/

® Moreover, define the matrixes
Y = : , X= : , O =[Py,..., P, 0]

® The conditional density of y;:
1
PUIYicos, Yipo, ©,5) o [7] 2 exp { - 501 - 50)E 20~ X0 }.

where Yi.t, = [Vigs - - - Yul-
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Likelihood Function

® Take the product of the conditional densities of y;, ..., y7 to obtain the joint density.

® Let Yi_p.0 be a vector with initial observations

;
p(Yi.7|Yi—po, P, X) = HP(Y:\YLt—l,H—p:md’,Z)
=1
1T
o [X|7Texp **Z(y{*xéq’)zfl(y{*%q’)’
25
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Some Matrix Algebra

® Lemma: Let A and B be two n X n matrices, then
tr[A+ B] = tr[A] +tr[B] O

® Lemma: Let a be a n x 1 vector, B be a symmetric positive definite n x n matrix, and tr
the trace operator that sums the diagonal elements of a matrix. Then

a'Ba=tr[Bad'] O

® Deduce:
T T
D= XO)T Ty, = XO) =tr [T (v — X{) (v} — x{P)
t=1 t=1
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Likelihood Function

p( Yl:T| Ylfp:()a q)v Z)
T

Zy =) (y; — x®)

1
x || exp {—2tr

}

x |Z|7 T 2exp {—;tr[z_l(Y — Xo)(Y — Xd))]}
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Likelihood Function

® Define the "OLS" estimator

d=(X'X)IX'Y.
® Define the sum of squared OLS residual matrix

S=(Y =X (Y =X®) = Y'Y - V' X(X'X)IX"Y.
® |t can be verified that

PN

(Y = XO)(Y = Xb) = (¢ — ®)X'X(d— D)+ §
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Likelihood Function

® This leads to the following representation of the likelihood function
p(Y|®,T) o [Z[7T2exp {—;tr[z—lﬁ]}
X exp {—;tr[z_l(d) _dYX'X(d — &)]} .
* Let 8 = vec(®) and 3 = vec(®). It can be verified that
tr[E7H (S — S) X' X(® - )] = (8- BY[L @ (X'X) (B - D).
® The likelihood function has the alternative representation

1 .
p(Y|d,X) o |Z|7T2exp {—2tr[z—15]}

X exp {—;(ﬁ —B)[E e (X' X) Y - B)} .
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“Inverting” the Likelihood Function

® Suppose that
p(P,X) x c.
® Then

p(®,Z[Y) o< p(Y|®, ).
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Background: Matricvariate Normal Distribution

® Suppose that the random matrix ® has density
(O[T X'X) o [Z@(X'X)7H Y2

exp {;tr[zl(d) — ) X'X(d - 6)]}
then ®|(X, X’ X) is matricvariate normal
MN(, T @ (X'X)71).
* Let B = vec(®) and 3 = vec(®). Then
BT, X'X ~ N (37 r® (X’X)—l) .

® To generate a draw Z from a multivariate N(u, X), decompose ¥ = CC’. E.g., C could be
the lower triangular Cholesky factor. Then let Z = p+ C - N(0, /).
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Background: Inverted Wishart Distribution

® Let X be a n x n positive definite random matrix. ¥ has the Inverted Wishart IW(S,v)
distribution if its density is of the form

1
P(EIS, 1) ox |S|/2[E] -+ /2 exp {‘szlz-lﬂ}

® To sample a X from an Inverted Wishart IW(S,v) distribution, draw n x 1 vectors
Z,...,Z, from a multivariate normal N(0,S5S~ 1) and let

ij ZZi
i=1

-1

Yy =
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Likelihood Function Interpreted as PDF for (¢, %) — Step 1. p(®|X, Y)

® Interpret the likelihood as density for (¥, X):
p(®,ZY)

x || exp {—;tr[zlg]}
X exp {;tr[zl(Cb — D) X'X(d — &)]}
o« [ZTT @ (X' X) M2 exp {—;tr[):_lﬁ]}
><(27r)*”k/2\2 ® (X/X)71|71/2
X exp {—;tr[z_l(d) —dYX'X(d — &)]} .
® Thus,

(X, Y) ~ MN(), Z @ (X'X)™H).
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Likelihood Function Interpreted as PDF for (¢, %) — Step 2: p(X|Y)

® Compute p(X|Y) x [ p(Y|®,X)do...
® Note that:

|Z ® (X/X)71|1/2 — |Z|k/2|X'X‘7n/2.

Therefore,
1 A
p(X|Y) oc ||~ (T=R/2) X" X |="/2 exp {—zrr[z-ls]} :
® Deduce
Y|Y ~ WS, T—k—n—1), &, Y)~MNS XL (X'X)?).
® Write as

(&, D)|Y ~ M/\//W(cﬁ, X'X)y L5, T—k—n— 1>.
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Bayesian Analysis with Improper Prior

® Replace (improper) prior p($,X) o ¢ by (improper) prior:
p(®,X) o |X| (/2.

® Then, the posterior is obtained from
p(®,X]Y) o p(Y|®, X)p(®, ¥).

® Qur previous analysis implies that

(&, 2)|Y ~ MNIW (cﬁ, (X'X)™4, 8, T - k).
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Algorithm: Direct Sampling of VAR Parameters

Fors=1,..., ngm:
@ Draw X from an IW(S, T — k) distribution.
® Draw ®() from the conditional distribution MN(®, () @ (X’X)~1). O
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The Use of Priors for VARs

Priors are used to “regularize” the VAR likelihood and cope with the dimensionality
problem: the number of free parameters is often large relative to the number of

observations.

® Priors add information to the estimation problem.
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Prior with Kronecker Structure

® Consider the prior:
Y~ IW(y,S), O~ MN(u,, T Pgt),
® Prior density:

1
p(®.5) = (27r>—"k/2|z—k/2|P¢|"/2exp{—2tr[z—1(¢—u¢)’P¢(¢—u¢>}

XQIW|):|—(Z+n+1)/2 exp {_;tr[z—ls] } )

® C,u is the normalization constant of the IW prior.
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Posterior

p(Y[®,X)p(¢, X)
o (27T)—nk/2|z|—k/2|B¢|n/2£IW|Z|—(g+n+l)/2(27r)—nT/2|Z|—T/2

cexp { L[S0 1y Pal® — )] bexo { - JulE 0 - dpxx(o - )]}

X exp {;tr[zlﬂ } exp {;tr[zlg] }
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Posterior

® Define
Po=Po+X'X, [io=Py"[Popy,+ X X].

® Write

p(Y[®,T)p(¢, X)
_ (271_)7nk/2|z|7k/2|3¢|n/ZQIW|Z|f(g+n+1)/2(27r)7nT/2|Z|7T/2|,5¢|n/2|’5¢|7n/2

X exp {—;tr[):_l(cb — fio)Py(® — ﬁ¢)] }

X exp {—;tr[Z_l(S-l—u:DP(Duq) + Y'Y — ,l_l/éplf)q;ﬁ@p)]}
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Posterior

® Define

S=S+pu,Popy+ Y'Y —fisPofie, 7=v+T
® Deduce that

EY ~ IW(5,5), (L, Y) ~ MN(jis. X P).

® Draws from the posterior can be generated by direct sampling.
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Marginal Data Density

e Let Cyy be the normalization constant of the posterior IW distribution. Then,

p() = [ [p(¥I0.D)p(6. D)d0dx

_ - 1 -
(277)_nT/2 / |B¢|k/2|P¢|_k/2glw|):|_(y+n+l)/2 exp {_2“[:_15] } dx

_ (27T)—nT/2 |£i¢|n/2 Q_IW

|Po|"/2 Cipy’

® where
Cow _ IS 2% [T F(7+1 - 1)/2)
Cw  |S|722me 2T T((w+1-1)/2)
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Hierarchical Models and Hyperparameter Selection

® “Performance” of Bayesian VAR is sensitive to prior variance.
® Choose prior variance in a data-driven way.

® Hierarchical model
p(Y|®,Z)p(®, Z[N)p(N),

where A controls features of the prior.

Frank Schorfheide (Reduced-Form) Vector Autoregressions



Selection vs. Averaging

e Selection:
® Compute

p(YIN) = [ B(Y10,)p(®, ZNd(®,5).

® Define: \ = argmax p(Y[N).
® Work with p(®,X|Y, A).
® Averaging:
® Use prior p(X)
® Factorize posterior as

p(®, X, AlY) = p(®, Z[Y, A)p(AY),

where p(AlY) o« p(Y|A\)p(N).
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[llustration: Marginal Likelihood of A

Prior

Likelihood A3

(0] o
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[llustration: Marginal Likelihood of A

Prior

Likelihood
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Example: Marginal Likelihood of A

® Suppose the VAR takes the special form of an AR(1) model:
Ye = ¢Ye—1+ U, up ~iidN(0,1)

® Suppose the prior takes the form

.1
¢“N(¢’mo)'

where 7 = 1/(1 — ¢?)
® Define 71 = ¢.70 and denote the sample autocovariances by

Yo = %Zﬁ, = %Zyt)/t—l-

® For convenience, we standardized the prior variance by T.
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Example: Marginal Likelihood of A

® After some algebra it can be shown that marginal likelihood of \ takes the following form
1
Inp(Y|\ ¢*)=—=T/2In(27) — —a 2(\, 0%) — EC()\,gb*).

® The term &%()\, ¢*) measures the in-sample one-step-ahead forecast error:

lim 52(\,0%) = TZ — dye1)?

A—0
)\Ii_r}noo 5’2()\, ¢*) = T Z(Yt - ¢*Yt—1)2-

® The third term above can be interpreted as a penalty for model complexity and is of the
form

c(\¢%) = In (1+j7°0).

® As )\ approaches zero, the marginal log likelihood function tends to minus infinity.
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Example: Marginal Likelihood of A

® Recall that marginal likelihood of A takes the following form
* T~2 * 1 *
Inp(Y|X\ ¢*)=—T/2In(27) — -7 (A, 9") — EC(/\’¢ )-
® If an interior maximum of marginal likelihood exists, it is given by

3\ _ 70%
T(Hov1 — 7091)? — (70)*50
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Example: Minnesota Prior

® Reference: Doan, Litterman, and Sims (1984), Sims and Zha (1998).
® Consider the following Gaussian bivariate VAR(2).

Yi,t _ aq B B2 Yi,t—-1
= +
Vot ap Bo1 B2 ¥2,t-1
+ [ Y11 V12 } [ Y1,t—2 } + [ Uyt ]
Y1 722 Y2,t—2 U ¢
® Minnesota Prior is centered at:
yre | P2 Y O] e
Yot ? 01 Y2,6-1

00 Yi,t-2 uie
Lo o]lma ]+l
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Considerations

® |t's relatively easy to think about variances of marginal prior distributions of parameters,
but hard to think of a full covariance matrix.

® In high-dimensional parameter spaces, independence of parameters may lead to a lot of
probability mass in regions of the parameter space in which the model behaves
unreasonable.

® VAR: want plausible long-run properties, e.g., co-trending, steady states, etc.

e Constructing priors from artifical (dummy) observations can help introducing reasonable
correlations.
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Constructing a Prior from “Dummy Observations”

® Suppose we have T* dummy observations (Y*, X*), plug the dummy observations into
the likelihood function and multiply the likelihood function by the (initial) improper prior:

p(®,X) o[£~/ 2p(Y* |6, 5).
® Define
O = (X¥ X)X Y, ST = (YF - XFO) (Y — X*o).
® This leads to a prior
T~ IW(v,S), O[T ~ MN(u,, T ® Pgt),
with

v=T =k S=S5" p,=9, Py=X'X"
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Posterior with Dummy Observation Prior

® Posterior is proportional to
p(®, %, Y) o p(Y[®, Z)p(Y*|d, T) x|~ (12

® Define T = T* 4 T and
d = (XX +X'X)HXT Y+ XY)
S = Y'Y YY) (XY XYY (XX XX)THXT Y+ XY
® Then, let X = [X*', X"]" and deduce:
® Deduce that

YIY ~ IW(S, T —k), o|L,Y)~MN® T (XX)™).
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Example: Minnesota Prior

® Dummies for the 8 coefficients:

Y* = X*o4+U
>\1§1 0 _ >\1§1 0 0 0 O ® + ui1 uio
0 )\152 - 0 >\1§2 0 0 O ur1 U
The first observation implies, for instance, that
u
As; =5 fu+un = Pfu=1- \ 1
151
>
— /811 NN( A2112)
u
0=MAi5801+u2 = fo1= - 12
151
>
— /821 NN( A2222)
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Example: Minnesota Prior

® Dummies for the ~ coefficients:

0 0] [0 0 XNsj2M 0 0
00

oo 0 as2e o}‘”u

® For lags of order p the entry above would be \;s;p3.

® The prior for the covariance matrix is implemented by A3 replications of

s 0] [0 0000
[0 52}_{00000¢+U
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Example: Minnesota Prior

® Sums-of-coefficients dummy observations, reflecting the belief that when y; has been
stable at its initial level, it will tend to persist at that level, regardless of the value of other
variables:
>\4X1 0 N )\4X1 0 >\4X1 0 0 ® + U
0 )\4Z2

0 )\4X2 0 )\412 0

® Co-persistence prior dummy observations, reflecting the belief that when data on all y's
are stable at their initial levels, thy will tend to persist at that level:

[ Asy,  Asy, 1= Asy, Asy, sy, Asy, As Jo+u
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Example: Minnesota Prior - Hyperparameters

® )\, is the overall tightness of the prior. Large values imply a small prior covariance matrix.
® )\,: the variance for the coefficients of lag h is scaled down by the factor (/=*2)2.

® )\3: determines the weight for the prior on ¥. Suppose that Z; = A/(0,02). Then an

estimator for 02 is 52 = L 3", Z2. The larger X3, the more informative the estimator,

and in the context of the VAR, the tighter the prior.
® )\, and As: tuning parameters for sums-of-coefficients and co-persistence dummies.
® In addition: s = std(Y_,0) and y = mean(Y_ o), where Y_, o is a short presample.
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US GDP growth and VAR forecast (1-step ahead)

Flat-prior VAR
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US GDP growth and BVAR forecast (1-step ahead)

BVAR (MN+SOC+DIO priors + hyperparameter selection)
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BVARs: Forecasting performance

Mean Squared Forecast Errors

BVAR with MN BVAR with

Flat-prior
prior (A=0.2)  MN+SOC+DIO
Real GDP 19.18 9.61 7.97
1 Quarter
GDP Deflator 2.27 1.53 1.35
Ahead
Federal Funds Rate 1.83 1.08 1.03
Real GDP 11.90 5.48 3.42
1 Year
GDP Deflator 2.22 1.85 1.58
Ahead

Federal Funds Rate 0.56 0.40 0.31



Example: Minnesota Prior w/ Dummy Observations

® The marginal likelihood can be calculated from the normalization constants of the MNIW
distribution (see Zellner (1971, Appendix)):

n(T—k)

X315 2 [ (T —k+1-1)/2)
X X8| S* | 2 [T T(T — k+1—10)/2]

p(YIN) = (2m)"T/2

® The hyperparameters (y, 5, A) enter through the dummy observations X* and Y*.

Frank Schorfheide (Reduced-Form) Vector Autoregressions



Extension 1: Alternative Priors

® Giannone, Lenza, Primiceri (2018): “Priors for the Long-Run,” Journal of American
Statistical Association, forthcoming.

® Estimation is typically based on conditional likelihood functions that ignore the likelihood
of the initial observations.

® Example:
t—2 t—2
e=ct oy tu=0"yi+cd ¢+ Pup
s=0 s=0
DG, S5G
® Write
DC, — yi+(t—1)c ifop=1
£ 1f¢ + (bt_l(yl - 1f¢) If‘(bl <1

® Deterministic component may absorb too much low frequency variation of the time series.
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log-real per-capita GDP log-real per-capita investment
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FIGURE 2.1. Deterministic component for selected variables implied by various 7-
variable VARs. Flat: BVAR with a flat prior; MN: BVAR with the Minnesota prior;
PLR: BVAR with the prior for the long run.



Extension 1: Alternative Priors — The Basic Idea

® Write VAR in VECM form:

p—1
Ay, = Mo+ Taye—1 + Z M;Ay:—j + u;

=1
where N, = af’.
® Reasonable prior for columns of « will depend on the rows of 3’:

® if i"th row of B’ corresponds to a linear combination that is stationary, then it makes sense
to choose a prior for i'th column of o with mass away form zero.

® if i"th row of 3’ corresponds to a linear combination that is non-stationary, then it makes
sense to choose a prior for i"th column of o with mass away form zero.

® See paper for details on how to implement this.

Frank Schorfheide (Reduced-Form) Vector Autoregressions



0.014 0.02
0012

001 0.015
0,008

& 0.01
= 0.006

0.004 0.005

0.002

Y |
02 +C+ 0.002

10,0015

0.001

MSFE

0.0005

[ 10 20 30 40 0 10 20 30 40 0 10 2 30 40
Quarters ahead Quarters ahead Quarters ahead
* Flat MN — — SZ — = DIFF VECM F‘LH‘

FIGURE 5.1. Mean squared forecast errors in models with three variables. Flat: BVAR,
with a flat prior; MN: BVAR with the Minnesota prior; SZ: BVAR with the Minnesota
and sum-of-coefficient priors; DIFF: VAR with variables in first differences; VECM: vector
error-correction model that imposes the existence of a common stochastic trend for Y, C
and I, without any additional prior information; PLR: BVAR with the Minnesota prior
and the prior for the long run.



Extension 2: Sparse versus Dense Models

® Giannone, Lenza, Primiceri (2018): "Economic Prediction With Big Data: The Illusion of
Sparsity,” Manuscript, FRB New York, ECB, and Northwestern University.

® Sparse models: only a few predictors are relevant.
® Dense models: many predictors are relevant but only have small individual effects.
® Model:

Ve = X(0+ 210 + ue.

Here x;'s are included in all specifications (low dimensional), z;'s are optional (high
dimensional).

® Prior — part 1:

1
p(c?) pex ¢ x c.
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Extension 2: Sparse versus Dense Models

® Prior — part 2: “spike and slab”

N(0,024?) with prob. g
N2 A2 ) )
Bil(e*, 7%, q) { 0 with prob. 1 — g

For g = 1 we obtain our “standard” prior ( “Ridge Regression”)

Rewrite prior as
Bil(o%,7%,v1) ~ N(0,0%4%,v;), v; ~ Bernoulli(q).

® By changing the mixing distribution, we can generate a wide variety of priors, including a
Bayesian version of LASSO.
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Extension 2: Sparse versus Dense Models

® In problems of this form it is often good to standardize and orthogonalize the regressors x;
prior to the estimation.

® To specify a prior on the hyperparameters (g,v?) they suggest to define

k252
R2(~2. ) = 9 z
(7", 9) k2o 4 1

2

where k is the number of regressors z and 77

is the average sample variance of the z;'s.

® The prior takes the form
q ~ Beta(a, b), R’ ~ Beta(A,B).

® The paper works out the posterior.
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TABLE 1.

Description of the datasets.

Dependent variable

Possible predictors

Sample

Macro 1| Monthly growth rate of | 130 lagged macroeconomic 659 monthly time-series
US industrial indicators observations, from
production February 1960 to

December 2014

Macro 2 | Average growth rate of | 60 socio-economic, institutional | 90 cross-sectional country
GDP over the sample | and geographical observations
1960-1985 characteristics, measured at

pre-60s value

Finance 1 | US equity premium 16 lagged financial and 58 annual time-series

(S&P 500) macroeconomic indicators observations, from 1948 to
2015

Finance 2 | Stock returns of US 144 dummies classifying stock | 1400k panel observations

firms as very low, low, high or very | for an average of 2250
high in terms of 36 lagged stocks over a span of 624
characteristics months, from July 1963 to

June 2015
Micro 1 | Per-capita crime Effective abortion rate and 284 | 576 panel observations for
(murder) rates controls including possible 48 US states over a span
covariate of crime and their of 144 months, from
transformations January 1986 to
December 1997
Micro 2 | Number of pro-plaintiff | Characteristics of judicial 312 panel circuit,/year

eminent domain
decisions in a specific
circuit and in a specific

year

panels capturing aspects

related to gender, race, religion,
political affiliation, education
and professional history of the

judges, together with some

interactions among the latter,
for a total of 138 regressors

observations, from 1975 to
2008
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