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Abstract

This paper considers the problem of forecasting a collection of short time series

using cross sectional information in panel data. We construct point predictors using

Tweedie’s formula for the posterior mean of heterogeneous coefficients under a cor-

related random effects distribution. This formula utilizes cross-sectional information

to transform the unit-specific (quasi) maximum likelihood estimator into an approx-

imation of the posterior mean under a prior distribution that equals the population

distribution of the random coefficients. We show that the risk of a predictor based on

a non-parametric kernel estimate of the Tweedie correction is asymptotically equiva-

lent to the risk of a predictor that treats the correlated-random-effects distribution as

known (ratio-optimality). Our empirical Bayes predictor performs well compared to

various competitors in a Monte Carlo study. In an empirical application we use the

predictor to forecast revenues for a large panel of bank holding companies and compare

forecasts that condition on actual and severely adverse macroeconomic conditions.

JEL CLASSIFICATION: C11, C14, C23, C53, G21

KEY WORDS: Bank Stress Tests, Empirical Bayes, Forecasting, Panel Data, Ratio Opti-

mality, Tweedie’s Formula
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1 Introduction

The main goal of this paper is to forecast a collection of short time series. Examples are

the performance of start-up companies, developmental skills of small children, and revenues

and leverage of banks after significant regulatory changes. In these applications the key

difficulty lies in the efficient implementation of the forecast. Due to the short time span,

each time series, taken by itself, provides insufficient sample information to precisely estimate

unit-specific parameters. We will use the cross-sectional information in the sample to make

inference about the distribution of heterogeneous parameters. This distribution can then

serve as a prior for the unit-specific coefficients to sharpen posterior inference based on the

short time series.

More specifically, we consider a linear dynamic panel model in which the unobserved

individual heterogeneity, which we denote by the vector λi, interacts with some observed

predictors Wit−1:

Yit = λ′iWit−1 + ρ′Xit−1 + α′Zit−1 + Uit, i = 1, . . . , N, t = 1, . . . , T. (1)

Xit−1 is a vector of predetermined variables that may include lags of Yit, Zit−1 is a vector of

strictly exogenous covariates, and Uit is an unpredictable shock. Throughout this paper we

adopt a correlated random effects approach in which the λis are treated as random variables

that are possibly correlated with some of the predictors. An important special case is the

linear dynamic panel data model in which Wit−1 = 1, λi is a heterogeneous intercept, and

the sole predictor is the lagged dependent variable: Xit−1 = Yit−1.

We develop methods to generate point forecasts of YiT+1 which are evaluated under a

quadratic loss function. Our paper builds on the dynamic panel literature that has developed

consistent estimators of the common parameters (ρ, α) and focuses on the estimation of λi,

which is essential for the prediction of Yit. The benchmark for our prediction methods is the

forecast that is based on the knowledge of the common coefficients (ρ, α) and the distribution

π(λi|·) of the heterogeneous coefficients λi, but not the values λi themselves. This forecast is

called oracle forecast. A natural notion of risk is that of compound risk, which is a (possibly

weighted) cross-sectional average of expected losses. In a correlated random-effects setting,

this averaging is done under the distribution π(λi|·), which means that the compound risk

associated with the forecasts of the N units is the same as the integrated risk for the forecast

of a particular unit i. It is well known, that the integrated risk is minimized by the Bayes
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predictor that minimizes the posterior expected loss conditional on time T information for

unit i. Thus, the oracle replaces λi by its posterior mean under the prior distribution π(λi|·).

In practice neither the common coefficients (ρ, α) nor the distribution of the unit-specific

coefficients π(λi|·) are known. Thus, we first replace the unknown common parameters by

a consistent (N −→ ∞, T is fixed) estimator. Second, rather than computing the posterior

mean of λi based on the likelihood function and an estimate of π(λi|·), we use a formula

– attributed to the astronomer Arthur Eddington and the statistician Maurice Tweedie –

that expresses the posterior mean of λi as a function of the cross-sectional density of certain

sufficient statistics. We estimate this density either parametrically or non-parametrically

from the cross-sectional information and plug it into what is in the statistics literature

commonly referred to as Tweedie’s formula. This leads to an empirical Bayes estimate of

λi and an empirical Bayes predictor of YiT+1. The posterior mean predictor shrinks the

estimates of the unit-specific coefficients toward a common prior mean, which reduces its

sampling variability.

Our paper makes three contributions. First, we show in the context of the basic dynamic

panel data model that an empirical Bayes predictor based on a consistent estimator of (ρ, α)

and a kernel estimator of the cross-sectional density of the relevant sufficient statistics can

asymptotically (N −→ ∞, T is fixed) achieve the same compound risk as the oracle pre-

dictor. Our main theorem provides a significant extension of the central result in Brown

and Greenshtein (2009) from a vector-of-means model to a panel data model with estimated

common coefficients. Importantly, the convergence result is uniform over families Π of cor-

related random effects distributions π(λi|yi0) that contain point masses, i.e., span parameter

homogeneity. As in Brown and Greenshtein (2009), we are able to show that the rate of con-

vergence to the oracle risk accelerates in the case of homogeneous λ coefficients. Second, we

provide a detailed Monte Carlo study that compares the performance of various implemen-

tations, both non-parametric and parametric, of our predictor. Third, we use our techniques

to forecast pre-provision net-revenues (PPNRs) of a panel of banks.1 Such forecasts are of

interest to bank regulators and supervisors such as the Federal Reserve Board of Governors

and the Office of the Comptroller of the Currency in the U.S.

Our empirical Bayes predictor can be compared to two easily implementable benchmark

predictors whose implicit assumptions about the distribution of the λis correspond to special

1For a bank PPNR is the sum of net interest income and non-interest income less expenses, before making
provisions for future losses on loans.
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cases of our π(λi|·). The first predictor, which we call plug-in predictor, is obtained by esti-

mating λi conditional on (ρ̂, α̂) by maximum likelihood for each unit i. This predictor can be

viewed as an approximation to the empirical Bayes predictor if π(λi|·) is very uninformative

relative to the likelihood function associated with unit i. The second predictor, which we

call pooled-OLS predictor, assumes homogeneity, i.e., λi = λ for all i, and is based on a joint

maximum likelihood estimate of (ρ, α, λ). It approximates the empirical Bayes estimator if

π(λi|·) is very concentrated relative to unit i’s likelihood. Asymptotically, the plug-in pre-

dictor and the pooled-OLS predictor are suboptimal because they do not converge to the

oracle predictor. However, in finite samples at least one of them, depending on the amount

of heterogeneity in the data, may work quite well because they do not rely on (potentially

noisy) density estimates. In our Monte Carlo simulations and in the empirical analysis we

document that in practice the empirical Bayes predictor dominates, either weakly or strictly,

both the plug-in predictor and the pooled-OLS predictor.2

In our empirical application we forecast PPNRs of bank holding companies. The stress

tests that have become mandatory under the Dodd-Frank Act require banks to establish

how revenues vary in stressed macroeconomic and financial scenarios. We capture the effect

of macroeconomic conditions on bank performance by including the unemployment rate,

an interest rate, and an interest rate spread in the vector Wit−1 in (1). Our analysis con-

sists of two steps. We first document the superior forecast accuracy of the empirical Bayes

predictor developed in this paper under the actual economic conditions, meaning that we

set the aggregate covariates to their observed values. In a second step, we replace the ob-

served values of the macroeconomic covariates by counterfactual values that reflect severely

adverse macroeconomic conditions. According to our estimates, the effect of stressed macroe-

conomic conditions on bank revenues is heterogeneous, but typically small relative to the

cross-sectional dispersion of revenues across holding companies.

Our paper is related to several strands of the literature. For α = ρ = 0 and Wit = 1

the problem analyzed in this paper reduces to the classic problem of estimating a vector of

means. In this context, Tweedie’s formula has been used, for instance, by Robbins (1951)

and more recently by Brown and Greenshtein (2009) and Efron (2011) in a “big data”

application. Throughout this paper we are adopting an empirical Bayes approach, that uses

cross-sectional information to estimate aspects of the prior distribution of the correlated

random effects and then conditions on these estimates. Empirical Bayes methods date back

2While our theoretical results are based on a kernel implementation of the empirical Bayes predictor,
the Monte Carlo experiments also include results for finite-mixture and nonparametric maximum likelihood
estimates of the Tweedie correction.
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to Robbins (1956); see Robert (1994) for a textbook treatment. We use compound decision

theory as in Robbins (1964), Brown and Greenshtein (2009), Jiang and Zhang (2009) to

state our optimality result. Because our setup nests the linear dynamic panel data model,

we utilize results on the consistent estimation of ρ in dynamic panel data models with fixed

effects when T is small, e.g., Anderson and Hsiao (1981), Arellano and Bond (1991), Arellano

and Bover (1995), Blundell and Bond (1998), Alvarez and Arellano (2003).

The papers that are most closely related to ours are Gu and Koenker (2017a,b). They also

consider a linear panel data model and use Tweedie’s formula to construct an approximation

to the posterior mean of the heterogeneous regression coefficients. However, their main

object of interest is the estimation of the heterogeneous coefficients, and not out-of-sample

forecasting. Their papers implement the empirical Bayes predictor based on a nonparametric

maximum likelihood estimator, following Kiefer and Wolfowitz (1956), of the cross-sectional

distribution of the sufficient statistics, but do not provide any theoretical optimality result.

A key contribution of our work is to establish a rate at which the regret associated with the

empirical Bayes predictor vis-a-vis the oracle predictor vanishes uniformly across families

of correlated random-effects distributions Π that include point masses. Moreover, we also

provide novel Monte Carlo and empirical evidence on the performance of the empirical Bayes

procedures.

Building on the Bayesian literature on dynamic panel data models, e.g., Chamberlain

and Hirano (1999), Hirano (2002), and Lancaster (2002), the paper by Liu (2018) develops

a fully Bayesian (as opposed to empirical Bayes) approach to generate panel data forecasts.

She uses mixtures of Gaussian linear regressions to construct a prior for the correlated

random effects, which then is updated in view of the observed panel data. While the fully

Bayesian approach is more suitable for density forecasting and can be more easily extended

to nonlinear panel data models (see Liu, Moon, and Schorfheide (2018a) for an extension to

a panel Tobit model), it is also a lot more computationally intensive. Moreover, it is much

more difficult to establish convergence rates. Liu (2018) shows that her posterior predictive

density converges strongly to the oracle’s predictive density, but does not establish uniform

bounds on the regret associated with the Bayes predictor.

There is an earlier panel forecast literature on the best linear unbiased prediction (BLUP)

proposed by Goldberger (1962); see the survey article by Baltagi (2008). Compared to the

BLUP-based forecasts, our forecasts based on Tweedie’s formula have several advantages.

First, it is known that the estimator of the unobserved individual heterogeneity parameter

based on the BLUP method corresponds to the Bayes estimator based on a Gaussian prior
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(see, for example, Robinson (1991)), while our estimator based on Tweedie’s formula is

consistent with much more general prior distributions. Second, the BLUP method finds the

forecast that minimizes the expected quadratic loss in the class of linear (in (Yi0, ..., YiT )′)

and unbiased forecasts. Therefore, it is not necessarily optimal in our framework. Third,

the existing panel forecasts based on the BLUP were developed for panel regressions with

random effects and do not apply to correlated random effects settings.

The empirical application is related to the literature on “top-down” stress testing, which

relies on publicly available bank-level income and capital data. Some authors, e.g. Covas,

Rump, and Zakrajsek (2014), use time series quantile regression techniques to analyze rev-

enue and balance sheet data for the relatively small set of bank holding companies with

consolidated assets of more than 50 billion dollars. There are slightly more than 30 of these

companies and they are subject to the Comprehensive Capital Analysis and Review (CCAR)

conducted by the Federal Reserve Board of Governors. Because of mergers and acquisitions

a lot of care is required to construct sufficiently long synthetic data sets that are amenable

to time series analysis.

Closer to our work are the studies by Hirtle, Kovner, Vickery, and Bhanot (2016) and

Kapinos and Mitnik (2016), which analyze PPNR components for a broader panel of banks.

The former paper considers, among other techniques, pooled OLS estimation of models for

bank income components and then uses the models to compute predictions under stressed

macroeconomic conditions. The latter paper compares a standard fixed effect approach, a

bank-by-bank time series approach, and fixed effects with optimal grouping in terms of out-

of-sample forecasts, and finds that the bank-by-bank time-series approach does not perform

well while the grouping approach provides better performance, which parallels our findings

that the empirical Bayes methods usually outperform pooled OLS and plug-in predictors.

The remainder of the paper is organized as follows. Section 2 specifies the forecasting

problem in the context of the basic dynamic panel data model. We introduce the compound

decision problem, present the oracle forecast and its implementation through Tweedie’s for-

mula, and discuss the practical implementation. Section 3 establishes the ratio optimality of

the empirical Bayes predictor and contains the main theoretical result of the paper. Monte

Carlo simulation results are presented in Section 4. Section 5 discusses extensions to multi-

step forecasting and a more general linear panel data model with covariates. The empirical

application is presented in Section 6 and Section 7 concludes. Technical derivations, proofs,

and the description of the data set used in the empirical analysis are relegated to the Ap-

pendix.
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2 The Basic Dynamic Panel Data Model

We consider a panel with observations for cross-sectional units i = 1, . . . , N in periods

t = 1, . . . , T . The goal is to generate a point forecast for each unit i for period t = T + h.

For now, we set h = 1 and assume that the observations Yit are generated from a basic

dynamic panel data model with homoskedastic Gaussian innovations:

Yit = λi + ρYit−1 + Uit, Uit ∼ iidN(0, σ2), (2)

where (λi, Yi0) is independently and identically distributed (iid) with density π(λ, y0). This

model is a restricted version of (1), where Wit−1 = 1, Xit−1 = Yit−1, and α = 0. Thus, λi is

a unit-specific (heterogeneous) intercept. We combine the homogeneous parameters into the

vector

θ = (ρ, σ2).

The purpose of investigating the simple model is to develop a full econometric theory of

optimal forecasting.

In Section 2.1 we define the loss function under which the forecasts are evaluated and

specify how we take expectations to construct our measure of risk. We construct an infeasible

benchmark forecast in Section 2.2. This so-called oracle forecast is based on the posterior

mean of λi under the prior π(λ, y0). The posterior mean can be conveniently evaluated using

Tweedie’s formula, which is discussed in Section 2.3. Finally, Section 2.4 describes how the

infeasible oracle forecast can be turned into a feasible forecast by replacing unknown objects

with estimates based on the cross-sectional information contained in the panel. Later in

Section 5, we discuss extensions to the more general forecasting model (1), which is more

relevant to empirical applications.

2.1 Compound Risk

The unit-specific forecasts ŶiT+1 are evaluated under the conventional quadratic loss function

and the forecast error losses are summed over the units i to obtain the compound loss

LN(Ŷ N
T+1, Y

N
T+1) =

N∑
i=1

(ŶiT+1 − YiT+1)2, (3)
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where Y N
T+1 = (Y1T+1, . . . , YNT+1). We define the compound risk by taking expectations over

(indicated by superscripts) the observed trajectories YN = (Y 0:T
1 , . . . , Y 0:T

N ) with Y 0:T
i =

(Yi0, Yi1, . . . , YiT ), the unobserved heterogeneous coefficients λN = (λ1, . . . , λN), and future

shocks UN
T+1 = (U1T+1, . . . , UNT+1):

RN(Ŷ N
T+1) = EY

N ,λN ,UNT+1

θ,π

[
LN(Ŷ N

T+1, Y
N
T+1)

]
. (4)

We use the subscripts to indicate that the expectation is conditional on the homogeneous

parameter θ and the correlated random effects distribution π. Upper case variables, e.g., Yit,

are generally used to denote random variables, and lower case variables, e.g., yit, to denote

their realizations.

2.2 Oracle Forecast

In order to develop an optimality theory for the panel data forecasts, we begin by character-

izing an infeasible benchmark forecast, which is called the oracle forecast. In the compound

decision theory it is assumed that the oracle knows the distribution of the heterogeneous

coefficients π(λi, hi), but it does not know the specific λi for unit i. In addition, the oracle

knows θ and has observed the trajectories YN .

Conditional on θ, the compound risk takes the form of an integrated risk that can be

expressed as

RN(Ŷ N
T+1) = EYNθ,π

[
Eλ

N ,UNT+1

θ,π,YN [LN(Ŷ N
T+1, Y

N
T+1)]

]
. (5)

The inner expectation can be interpreted as posterior risk, which is obtained by conditioning

on the observations YN and integrating over the heterogeneous parameter λN and the shocks

UN
T+1. The outer expectation averages over the possible trajectories YN . It is well known that

the integrated risk is minimized by choosing the forecast that minimizes the posterior risk

(with the understanding that we are conditioning on (θ, π) throughout) for each realization

YN .

Using the independence across i, the posterior risk can be written as follows:

Eλ
N ,UNT+1

θ,π,YN [LN(Ŷ N
T+1, Y

N
T+1)] =

N∑
i=1

{(
ŶiT+1 − Eλi,UiT+1

θ,π,Yi [YiT+1]
)2

+ Vλi,UiT+1

θ,π,Yi [YiT+1]

}
, (6)

where Vλi,UiT+1

θ,π,Yi [·] is the posterior predictive variance of YiT+1. The decomposition of the risk
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into a squared bias term and the posterior variance of YiT+1 implies that the optimal predictor

is the mean of the posterior predictive distribution. Because UiT+1 is mean-independent of

λi and Yi, we obtain

Ŷ opt
iT+1 = Eλi,UiT+1

θ,π,Yi [YiT+1] = Eλiθ,π,Yi [λi] + ρYiT . (7)

The compound risk associated with the oracle forecast is

Ropt
N = EYNθ

[
N∑
i=1

{
Vλi
θ,π,Yi [λi] + σ2

}]
. (8)

According to (8), the compound oracle risk has two components. The first component re-

flects uncertainty with respect to the heterogeneous coefficient λi and the second component

captures uncertainty about the error term UiT+1. Unfortunately, the direct implementation

of the oracle forecast is infeasible because neither the parameter vector θ nor the correlated

random effect distribution (or prior) π(·) are known. Thus, the oracle risk Ropt
N provides a

lower bound for the risk that is attainable in practice.

2.3 Tweedie’s Formula

The posterior mean Eλiθ,Yi [λi] that appears in (7) can be evaluated using a formula which

is named after the statistician Maurice Tweedie (though it had been previously derived by

the astronomer Arthur Eddington). This formula is convenient for our purposes, because it

expresses the posterior mean not as a function of the in practice unknown correlated random

effects density π(λi, yi0) but instead in terms of the marginal distribution of a sufficient

statistic, which can be estimated from the cross-sectional information.

The contribution of unit i to the likelihood function associated with the basic dynamic

panel data model in (2) is given by

p(y1:T
i |yi0, λi, θ) ∝ exp

{
− 1

2σ2

T∑
t=1

(yit − ρyit−1 − λi)2

}
∝ exp

{
− T

2σ2

(
λ̂i(ρ)− λi

)2
}
, (9)

where ∝ denotes proportionality and the sufficient statistic λ̂i(ρ) is

λ̂i(ρ) =
1

T

T∑
t=1

(yit − ρyit−1). (10)
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Using Bayes Theorem, the posterior distribution of λi can be expressed as

p(λi|y0:T
i , θ) = p(λi|λ̂i, yi0, θ) =

p(λ̂i|λi, yi0, θ)π(λi|yi0)

exp
{

ln p(λ̂i|yi0)
} , (11)

where p(λ̂i|λi, yi0, θ) is proportional to the right-hand side of (9).

To obtain a representation for the posterior mean, we now differentiate the equation∫
p(λi|λ̂i, yi0, θ)dλ = 1 with respect to λ̂i. Exchanging the order of integration and differen-

tiation and using the properties of the exponential function, we obtain

0 =
T

σ2

∫
(λi − λ̂i)p(λi|λ̂i, yi0, θ)dλi −

∂

∂λ̂i
ln p(λ̂i|yi0, θ)

=
T

σ2

(
Eλiθ,π,Yi [λi]− λ̂i

)
− ∂

∂λ̂i
ln p(λ̂i|yi0, θ).

Solving this equation for the posterior mean yields Tweedie’s formula:3

Eλiθ,π,Yi [λi] = λ̂i(ρ) +
σ2

T

∂

∂λ̂i(ρ)
ln p(λ̂i(ρ), yi0). (12)

Tweedie’s formula was used by Robbins (1951) to estimate a vector of means λN for

the model Yi|λi ∼ N(λi, 1), λi ∼ π(·), i = 1, . . . , N . Recently, it was extended by Efron

(2011) to the family of exponential distributions, allowing for an unknown finite-dimensional

parameter θ. The posterior mean takes the form of the sum of the sufficient statistic λ̂i(θ) and

a correction term that captures the effect of the prior distribution of λi on the posterior. The

correction term is expressed as a function of the marginal density of the sufficient statistic

λ̂i(θ) conditional on Yi0 and θ. Thus, to evaluate the posterior mean, it is not necessary to

explicitly solve a deconvolution problem that separates the prior density π(λi|yi0) from the

distribution of the error terms Uit.

Provided that the vector of homogeneous parameters θ is identifiable, it is possible to iden-

tify the cross-sectional distribution of the sufficient statistic λ̂(θ). This, through Tweedie’s

formula, also identifies the posterior mean Eλθ,π,Y [λ] and leads to a unique Bayes predictor.

3We replaced the conditional log density ln p(λ̂i(ρ)|yi0) by the joint log density ln p(λ̂i(ρ), yi0) because
the two differ only by a constant which drops out after the differentiation.
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2.4 Implementation

We approximate the oracle forecast using an empirical Bayes approach that replaces the

unknown objects θ and p(λ̂i(ρ), Yi0) in (12) by estimates that exploit the cross-sectional in-

formation. A key requirement for an estimator of the homogeneous parameter θ is that it is

consistent. In our basic dynamic panel data model, consistency can be achieved by various

types of generalized method of moments (GMM) estimators, e.g., Arellano and Bond (1991),

Arellano and Bover (1995), or Blundell and Bond (1998), or by a quasi-maximum-likelihood

estimator (QMLE) that integrates out the heterogeneous λis under the misspecified corre-

lated random effects distribution λi|Yi0 ∼ N(φ0 + φ1Yi0,Ω).4 The density p(λ̂i(ρ), Yi0) could

be estimated using kernel methods, a mixture approximation, or nonparametric maximum

likelihood. In the next section, we provide an optimality result for the kernel estimator and

we illustrate the performance of other estimators in a Monte Carlo study in Section 4.

3 Ratio Optimality

We now will prove that the predictor Ŷ N
T+1 that is constructed by replacing θ with a consistent

estimator θ̂ and by replacing p(λ̂i(ρ), Yi0) with a kernel density estimator achieves ε0-ratio

optimality uniformly for priors π ∈ Π. That is, for any ε0 > 0

lim sup
N→∞

sup
π∈Π

RN(Ŷ N
T+1; π)−Ropt

N (π)

NEYNθ,π
[
Vλi
θ,π,Yi [λi]

]
+N ε0

≤ 0. (13)

The convergence is uniform with respect to the correlated random effects distributions π

in some set Π that we will characterize in more detail below. The uniformity holds in the

neighborhood of point masses for which the prior and posterior variances of λi are zero.

Thus, the convergence statement covers the case of λi being homogeneous across i.

First, consider the numerator in (13). The autoregressive coefficient in basic dynamic

panel model can be
√
N -consistently estimated, which suggests that

∑N
i=1(ρ̂ − ρ)2Y 2

iT =

Op(1). Thus, whether a predictor ŶiT+1 attains ratio optimality crucially depends on the

rate at which the discrepancy between Eλiθ,π,Yi [λi] and Êλiθ,π,Yi [λi] vanishes, where the latter is

a function of a nonparametric estimate of p(λ̂i(ρ), Yi0). Second, note that the denominator of

the ratio in (13) is strictly positive and divergent due to the N ε0 term. The rate of divergence

4This estimator is described in more detail in Section 4 and its consistency is proved in the Online
Appendix.
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depends on the posterior variance of λi. If the posterior variance is strictly greater than zero,

then the denominator is of order O(N). Because the posterior is based on a finite number of

observations T , the posterior variance is zero only if the prior density π(λ) is a point mass.

In this case the definition of ratio optimality requires that the regret vanishes at a faster

rate, because the rate of the numerator drops from O(N) to N ε0 .5

The proof of the ratio-optimality result presented below in Theorem 3.7 below is a signif-

icant generalization of the proof in Brown and Greenshtein (2009), allowing for the presence

of estimated parameters in the sufficient statistic λ̂(·) and uniformity with respect to the

correlated random effect density π(·), which is allowed to have a unbounded support. The

remainder of this section is organized as follows. The kernel estimator of p(λ̂i(ρ), Yi0) and

the resulting formula for the predictor ŶiT+1 are presented in Section 3.1. In Section 3.2

we provide high-level assumptions that lead to the main theorem. In Section 3.3 we show

that the high-level conditions are satisfied if π(·) belongs to a collection of finite-mixtures of

Gaussian random variables with bounded means and variances.

3.1 Kernel Estimation and Truncation

To facilitate the theoretical analysis, we use a leave-one-out kernel density estimator of the

form:

p̂(−i)(λ̂i(ρ), yi0) =
1

N − 1

∑
j 6=i

1

BN

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
1

BN

φ

(
Yj0 − yi0
BN

)
, (14)

where φ(·) is the pdf of a N(0, 1) and BN is the kernel bandwidth. Using the fact that the

observations are cross-sectionally independent and conditionally normally distributed, one

can directly compute the expected value of the leave-one-out estimator:

EY(−i)

θ,π,Yi [p̂
(−i)(λ̂i, yi0)] =

∫
1√

σ2/T +B2
N

φ

(
λ̂i − λi√
σ2/T +B2

N

)
(15)

×
[∫

1

BN

φ

(
yi0 − ỹi0
BN

)
p(ỹi0|λi)dỹi0

]
p(λi)dλi.

Taking expectations of the kernel estimator leads to a variance adjustment for the conditional

distribution of λ̂i|λi (σ2/T + B2
N instead of σ2/T ) and the density of Yi0|λi is replaced by a

5If it were known that the λis are in fact homogeneous and the model is estimated with a common
intercept, then

√
N(λ̂− λ) = Op(1) and the regret in the numerator would be O(1). Thus, the convergence

result could also be achieved by standardizing with sequences that diverge at a rate slower than N ε0 .
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convolution. We define:

π∗(λ, y0) =

∫
1

BN

φ

(
y0 − ỹ0

BN

)
π(λ, ỹ0)dỹ0

p∗(λ̂, y0; π) =

∫
1√

σ2/T +B2
N

φ

(
λ̂− λ√

σ2/T +B2
N

)
π∗(λ, y0)dλ, (16)

such that we can write

EY(−i)

θ,π,Yi [p̂
(−i)(λ̂i, yi0)] = p∗(λ̂i, yi0; π). (17)

In view of the variance adjustment for the distribution of λ̂i|λi induced by taking expec-

tations of the kernel estimator, we replace the scale factor σ2/T in the Tweedie correction

term in (12) by σ̂2/T +B2
N . Moreover, we truncate the absolute value of the posterior mean

approximation from above. For C > 0 and for any x ∈ R, define [x]C = sgn(x) min{|x|, C}.
The resulting predictor is

ŶiT+1 =

[
λ̂i(ρ) +

(
σ̂2

T
+B2

N

)
∂

∂λ̂i(ρ)
ln p̂−i(λ̂i(ρ), Yi0)

]CN
+ ρ̂YiT , (18)

where CN −→∞ slowly.

3.2 Main Theorem

Let Π be a collection of joint densities π(λ, y). The theoretical analysis relies heavily on

slowly diverging sequences. To state the assumptions and prove the main theorem, the

following definitions will be convenient:

Definition 3.1

(i) AN(π) = ou.π(N ε), for some ε > 0, if there exists a sequence ηN −→ 0 that does not
depend on π ∈ Π such that N−εAN(π) ≤ ηN .

(ii) AN = o(N+) if for every ε > 0 there exists a sequence ηN(ε) −→ 0 such that
N−εAN(π) ≤ ηN(ε).

(iii) AN(π) = ou.π(N+) (sub-polynomial) if for every ε > 0 there exists a sequence ηN(ε) −→
0 that does not depend on π ∈ Π such that N−εAN(π) ≤ ηN(ε).
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Our first assumption controls the tails of the marginal distributions of λ and the initial

condition Y0.6 We essentially assume that λ and Y0 are subexponential random variables

with finite fourth moments. The assumed tail probability and moment bounds are uniform

for π ∈ Π.

Assumption 3.2 (Correlated Random Effects Distribution, Part 1) There exist pos-
itive constants M1 <∞, M2 <∞, M3 <∞, and M4 <∞ such that for every π ∈ Π:

(i)
∫
|λ|≥C π(λ)dλ ≤M1 exp(−M2(C −M3)) and

∫
λ4π(λ)dλ ≤M4.

(ii)
∫
|y0|≥C π(y0)dy0 ≤M1 exp(−M2(C −M3)) and

∫
y4

0π(y0)dy0 ≤M4.

The proof of the main theorem relies on truncations. Assumption 3.3 imposes a lower

bound and an upper bound on the diverging truncation sequences CN and C ′N . These

bounds on the truncation sequences constrain the rate at which the bandwidth BN of the

kernel density estimator has to shrink to zero. For technical reasons, the bandwidth cannot

shrink as quickly as in typical density estimation problems.7

Assumption 3.3 (Trimming and Bandwidth)

(i) The truncation sequence CN satisfies CN = o(N+) and CN ≥ 2(lnN)/M2.

(ii) The truncation sequence C ′N satisfies C ′N = CN +
√

(2σ2 lnN)/T .

(ii) The bandwidth sequence BN is bounded by BN ≤ BN ≤ B̄N , where 1/B2
N = o(N+),

B̄N(CN + C ′N) = o(1) and the bounds do not depend on the observed data or π ∈ Π.

We also need to impose a restriction on the conditional distribution of Y0 given λ. First,

we assume that the conditional density is bounded. Second, we regularize the shape of

the conditional density π(y0|λ) by assuming that the density of as a function of y0 should

be uniformly “smooth” such that its convolution with the Kernel density remains close (in

relative terms) to the original density. This assumption is required because we use a single

bandwidth (independent of y0) when estimating the density p(λ̂(ρ), y0) for the Tweedie

correction term. Thus, we rule out, for instance, that π(y0|λ) is a point mass. However, it

is important to note that we do allow the marginal distribution π(λ) to be a point mass (or

discrete).

6To simplify the notation we write π(λ) and π(y0) to denote the marginals of π(λ, y0).
7In a nutshell, we need to control the behavior of p̂(λ̂i, Yi0) and its derivative uniformly, which, in certain

steps of the proof, requires us to consider bounds of the form M/B2
N , where M is a generic constant. If

the bandwidth shrinks too fast, the bounds diverge too quickly to ensure that it suffices to standardize the
regret in Theorem 3.7 by N ε if the λi coefficients are identical for each cross-sectional unit.
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Assumption 3.4 (Correlated Random Effects Distribution, Part 2)

(i) There exists an M <∞ such that π(y0|λ) ≤M for all π ∈ Π.

(ii) For given sequences CN , C ′N , and BN satisfying Assumption 3.3, the conditional dis-
tribution π(y0|λ) satisfies

sup
|y0|≤C′N ,|λ|≤CN ,π∈Π

∣∣∣∣∣∣
1
BN

∫
φ
(
ỹ0−y0
BN

)
π(ỹ0|λ)dỹ0

π(y0|λ)
− 1

∣∣∣∣∣∣ = o(1).

Next, we impose some restrictions on the sampling distributions of the posterior means.

To do so, define the posterior mean function as

m(λ̂, y0; π) = λ̂+
(
σ2/T

) ∂ ln p(λ̂, y0; π)

∂λ̂
, (19)

where the joint sampling distribution of the sufficient statistic and the initial condition is

given by

p(λ̂, y0; π) =

∫
1√
σ2/T

φ

(
λ̂− λ√
σ2/T

)
π(y0, λ)dλ.

In order to be precise about the uniformity requirements for π ∈ Π, we now included the

prior density π as a conditioning argument in the functions m(·) and p(·). Moreover, we

denote the posterior mean function under the ∗-distribution defined in (16) as

m∗(λ̂, y0; π,BN) = λ̂+
(
σ2/T +B2

N

) ∂ ln p∗(λ̂, y0; π,BN)

∂λ̂
. (20)

While the sampling distribution of (λ̂i, Yi0) is tightly linked to the prior π(λ, y0) and the

distribution of the sufficient statistic λ̂|λ ∼ N(λ, σ2/T ), we find it convenient to postulate

some high-level conditions, that we will verify for collections of finite mixtures of multivariate

Normals (FNMN) in Section 3.3.

Assumption 3.5 (Posterior Mean Functions) For a given sequence CN satisfying As-
sumption 3.3, the posterior mean functions satisfy:

(i) N

∫ ∫
m(λ̂, y0; π)2 I

{
|m(λ̂, y0; π)| ≥ CN

}
p(λ̂, y0; π) dλ̂dy0 = ou.π(N+),

(ii) N

∫ ∫
m∗(λ̂, y0; π,BN)2 I

{
|m∗(λ̂, y0; π,BN)| ≥ CN

}
p(λ̂, y0; π) dλ̂dy0 = ou.π(N+),
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(iii) N

∫ ∫
m(λ̂, y0; π)2 I

{
|m(λ̂, y0; π)| ≥ CN

}
p∗(λ̂, y0; π∗, BN) dλ̂dy0 = ou.π(N+).

Finally, we impose moment restrictions on the sampling distribution of the estimators of

the homogeneous parameters ρ̂, and σ̂2.

Assumption 3.6 (Estimators of ρ and σ2) The estimators ρ̂ and σ̂2 have the follow-

ing properties: (i) EYNθ,π
[
|
√
N(ρ̂ − ρ)|4

]
= ou,π(N+), (ii) EYNθ,π

[
σ̂4
]

= ou.π(N+), and (iii)

EYNθ,π
[
|
√
N(σ̂2 − σ2)|2

]
= ou.π(N+).

An example of an estimator ρ̂ that satisfies Assumption (3.6)(i) is the truncated instru-

mental variable (IV) estimator

ρ̂IV =

( N∑
i=1

T∑
t=2

Yit−2∆Yit−1,

)−1
MN (

N∑
i=1

T∑
t=2

Yit−2∆Yit

)
,

where MN is a sequence that slowly diverges to infinity. Define the residuals Ûit = Yit −
−λ̂(ρ̂IV )− ρ̂IV Ŷit−1. Then, the sample variance of the Ûit’s is an estimator of σ2 that satisfies

Assumption (3.6).

We are now in a position to present the main result, which states that the regret as-

sociated with the vector of predictors Ŷ N
T+1, standardized by the posterior variance of the

heterogeneous parameters λi, converges to zero as the cross-sectional dimension N of the

sample becomes large.

Theorem 3.7 Suppose that Assumptions 3.2 to 3.6 are satisfied. Then, in the basic dynamic

panel model (2), the predictor ŶiT+1 defined in (18) achieves ε0-ratio optimality uniformly in

π ∈ Π, that is, for every ε0 > 0

lim sup
N→∞

sup
π∈Π

RN(Ŷ N
T+1; π)−Ropt

N (π)

NEYNθ,π
[
Vλi
θ,π,Yi [λi]

]
+N ε0

≤ 0. (21)

A detailed proof of Theorem 3.7 can be found in the Online Appendix. We will provide

a brief outline of the main steps subsequently. The statement in the theorem follows if we

show

lim sup
N−→∞

sup
π∈Π

NEY
N ,λi

θ,π

[(
ŶiT+1 − (λi + ρYiT )

)2
]

NEYi,λiθ,π

[
(λi − Eλi

θ,π,Yi [λi])
2
]

+N ε0
≤ 1. (22)
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The numerator involves integration over the entire sample YN because the estimation of

the Tweedie correction relies on cross-sectional information. The discrepancy between the

predictor ŶiT+1 and λi + ρYiT can be decomposed into three terms:

ŶiT+1 − λi − ρYiT =

[
λ̂i(ρ̂) +

(
σ̂2

T
+B2

N

)
∂

∂λ̂i(ρ̂)
ln p̂−i(λ̂i(ρ̂), Yi0)

]CN
−m∗(λ̂i, yi0; π,BN)

+
[
m∗(λ̂i, yi0; π,BN)− λi

]
+ (ρ̂− ρ)YiT

= A1i + A2i + A3i, say.

We use the insight of Brown and Greenshtein (2009), that it is convenient to center the

predictor ŶiT+1 at the posterior mean of YiT+1 under the ∗-distribution – see (16) and (20)

– because the leave-i-out cross-sectional averaging of the Tweedie correction generates an

approximation of m∗(λ̂i, yi0; π,BN); see (17).

In the above decomposition, the term A1i captures the difference between the posterior

mean of λi obtained from the estimated Tweedie correction (with the truncation) and the

posterior mean of λi under the ∗-distribution. The term A2i is the difference between the

posterior mean m∗(λ̂i, yi0; π,BN) of λi under the ∗-distribution defined in (16), and the

“true” parameter λi. Finally, A3i captures the direct effect of replacing ρ by ρ̂. To prove the

sufficient condition (22) of Theorem 3.7, we show that

(i) NEYNθ,π
[
A2

1i

]
= ou.π(N ε0), (ii) lim sup

N−→∞
sup
π∈Π

NEY
i,λi

θ,π

[
A2

2i

]
NEYi,λiθ,π

[
(λi − Eλi

θ,π,Yi [λi])
2
]

+N ε0
≤ 1,

(iii) NEYNθ,π
[
A2

3i

]
= ou.π(N+)

Result (iii) is relatively straightforward under Assumption 3.6. Result (ii) is based on

the inequalities

EYi,λiθ,π [(λi −mi)
2] ≤ EYi,λiθ,π [(λi −m∗i)2], EYi,λi∗,θ,π [(λi −m∗i)2] ≤ EYi,λi∗,θ,π [(λi −mi)

2],

where mi = m(λ̂i, yi0; π,BN) and m∗i = m∗(λ̂i, yi0; π,BN), and EY
i,λi
∗,θ,π [·] is the expectation

operator associated with the ∗− distribution defined in (16). The inequalities exploit the

insight that the posterior means m∗i and mi minimize the integrated risk under the ∗-
distribution and the baseline distribution, respectively. Moreover, because BN −→ 0 the

discrepancies between expectations under the ∗-distribution and the benchmark distribution

will vanish asymptotically.
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Establishing Result (i) is the most complicated part of the proof. One can obtain the

following inequality:

|A1i| ≤
(
σ̂2

T
+B2

N

) ∣∣∣∣ dp̃
(−i)
i − dp∗i

p̃
(−i)
i − p∗i + p∗i

− dp∗i
p∗i

(
p̃

(−i)
i − p∗i

p̃
(−i)
i − p∗i + p∗i

)∣∣∣∣
+
∣∣ρ̂− ρ∣∣∣∣Ȳi,−1

∣∣+

∣∣∣∣ σ̂2

T
− σ2

T

∣∣∣∣∣∣∣∣dp∗ip∗i

∣∣∣∣,
where

p̃
(−i)
i = p̂(−i)(λ̂i(ρ̂), Yi0), dp̃

(−i)
i =

1

∂λ̂i(ρ̂)
∂p̂(−i)(λ̂i(ρ̂), Yi0)

p∗i = p∗(λ̂i(ρ), Yi0), dp∗i =
1

∂λ̂i(ρ)
∂p∗(λ̂i(ρ), Yi0).

While the second and third term can be handled in a relatively straightforward manner,

the first term is delicate. The λ̂i(ρ̂) argument needs to be replaced by λ̂i(ρ). Moreover,

the bandwidth BN of the kernel estimator has to be chosen to ensure that the numerators

converge while the denominators are bounded away from zero using Bernstein’s inequality.

3.3 Two Examples of Π

We now provide two specific examples of classes of distributions Π that satisfy Assump-

tions 3.2, 3.4, and 3.5.

Multivariate Normal Distributions. To simplify the notation we write y instead of y0.

We define the class Π of correlated random effects densities as

Π =
{
π(λ, y) = π(λ)π(y|λ)

∣∣ π(λ) ∈ Πλ, π(y|λ) ∈ Πy|λ
}

(23)

where

Πλ :
{
N(µλ, σ

2
λ)
∣∣ |µλ| ≤Mµλ , 0 ≤ σ2

λ ≤Mσ2
λ

}
Πy|λ :

{
N(α0 + α1λ, σ

2
y|λ)

∣∣ |α0| ≤Mα0 , |α1| ≤Mα1 , 0 < δσ2
y|λ
≤ σ2

y|λ ≤Mσ2
y|λ

}
We interpret σ2

λ = 0 as a point mass and impose upper bounds on the mean and the variance

of λ. To obtain joint normality of (λ, y) the conditional mean function for y|λ is linear in λ

and the conditional variance is constant. We bound the absolute values of the conditional
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mean parameters α0 and α1 as well as the conditional variance from above. The lower bound

δσ2
y|λ

rules out a point-mass prior for y|λ. Let Π = Πλ ⊗ Πy|λ.

Finite Mixtures of Multivariate Normals. This class of distribution is able to ap-

proximate a wide variety of distributions with exponential tails as the number of mixture

components, K, increases. Formal approximation results are provided, for instance, in Norets

and Pelenis (2012). Let K <∞ be the maximum number of mixture components and define:

Π
(K)
mix =

{
πmix(λ, y) =

K∑
k=1

ωkπk(λ, y)

∣∣∣∣ πk ∈ Π ∀k, 0 ≤ ωk ≤ 1,
K∑
k=1

ωk = 1

}
, (24)

where the class Π is defined in (23).

Theorem 3.8 Assumptions 3.2, 3.4, and 3.5 are satisfied by (i) Π in (23) and (ii) Π
(K)
mix in

(24).

4 Monte Carlo Simulations

We now conduct three Monte Carlo experiments based on the basic dynamic panel data

model in (2) to illustrate the performance of the empirical Bayes predictor and compare it

to two alternative predictors.8

Empirical Bayes Predictors. The empirical Bayes predictors used in this section are

based on the QMLE of θ. The QMLE is derived from the possibly misspecified distribution

λi|(Yi0, ξ) ∼ N(φ0 + φ1Yi0,Ω), where ξ = (φ0, φ1,Ω), with density πQ(λi|Yi0, ξ):

(
θ̂QMLE, ξ̂QMLE

)
= argmaxθ,ξ

N∏
i=1

∫
p(y1:T

i |yi0, λi, θ)πQ(λi|Yi0, ξ)dλi. (25)

We show in the Online Appendix that the QMLE in our Monte Carlo designs is consistent

under misspecification of πQ(·).

The kernel estimator (14) of the Tweedie correction for which we developed the asymp-

totic theory in Section 3 is implemented as follows. Prior to the density estimation we

standardize the sequences λ̂i(ρ̂) and Yi0, i = 1, . . . , N . For the standardized series, we set

8In the working paper versions Liu, Moon, and Schorfheide (2016, 2018b) we report results for additional
predictors, none of which dominate the ones considered here.
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the bandwidth to BN = bB∗N , where b ∈ B and B is a finite grid for the scaling constant.

The baseline value for the bandwidth as well as lower and upper bounds for b are given by

B∗N =

(
4

d+ 2

)1/(d+4)

max

{
1

N1/(d+4)
,

1

(lnN)1.01

}
, b ≤ b ≤ b̄. (26)

Here d corresponds to the dimension of the density that is being estimated and is either one

or two. The scaling constant in front of the max operator as well as the first rate inside the

max operator correspond to Silverman (1986)’s rule-of-thumb bandwidth choice. The second

rate in the max operator is consistent with Assumption 3.3. We report forecast evaluation

statistics for various choices of b as well as a b̂ that is generated by minimizing the average

forecast error loss for b ∈ B when predicting the last set of observations in the estimation

sample, YiT , based on Yi0, . . . , YiT−1.9 By setting BN = bB∗N and B̄N = b̄B∗N we can deduce

that the kernel-estimator with data-driven bandwidth scaling still satisfies Assumption 3.3.

QMLE Plug-In Predictor. This predictor takes the form ŶiT+1 = λ̂i(ρ̂QMLE) + ρ̂QMLEYiT

and does not use the Tweedie correction.

Pooled-OLS Predictor. Ignoring the heterogeneity in the λis and imposing that λi = λ

for all i, we can define (ρ̂P , λ̂P ) = argminρ,λ
1
NT

∑N
i=1

∑T
t=1

(
Yit− ρYit−1− λ

)2
. The resulting

predictor is ŶiT+1 = λ̂P + ρ̂PYiT .

4.1 Gamma-Distributed Random Effects

The design of the first experiment is summarized in Table 1. We assume that the λis follow

a Gamma(2, b) distribution and are uncorrelated with the initial condition Yi0 (random

effects). The Gamma distribution has exponential tails and satisfies the tail bound condition

in Assumption 3.2. We set ρ = 0.8, σ2 = 1, and choose the parameter b to generate various

values for V[λi]. The number of time periods is T = 4. The subsequent results are based on

Nsim = 1, 000 Monte Carlo repetitions.

Kernel-Based Tweedie Corrections. We begin with a visual inspection of the Tweedie

corrections for N = 1, 000, comparing V[λi] = 1 and V[λi] = 0. In the first and third panels

of Figure 1 we plot (σ2/T )∂ ln p(λ̂i|θ)/∂λ̂i for the oracle forecast in (7) and estimates for

the kernel-based empirical Bayes predictors with b = b̂. Each hairline corresponds to an

estimate from a particular Monte Carlo repetition. We overlay the density of λ̂i to indicate

9To do so, we also re-estimate the homogeneous parameter θ based on the reduced sample Yi0, . . . , YiT−1.
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Table 1: Monte Carlo Design 1

Law of Motion: Yit = λi + ρYit−1 + Uit where Uit ∼ iidN(0, γ2). ρ = 0.8, γ = 1
Initial Observations: Yi0 ∼ N(0, 1)
Random effects: λi|Yi0 ∼ Gamma(2, b), various choices of b
Sample Size: N = 1, 000, T = 4
Number of Monte Carlo Repetitions: Nsim = 1, 000

Figure 1: Tweedie Correction and Squared Forecast Error Losses as a Function of λ̂i

V[λi] = 1 V[λi] = 0
Tweedie MSE Tweedie MSE

Notes: The Monte Carlo design is described in Table 1, N = 1, 000. Tweedie: Solid (black) lines depict

oracle Tweedie correction based on p(λ̂i|yi0, θ) (scale on the left). Grey “hairs” depict estimates from the

Monte Carlo repetitions. MSE: Each dot corresponds to a λ̂i bin and the average squared-forecast error for
observations assigned to that bin (scale on the left). The panels also show density estimates of the empirical

distribution of λ̂i(ρ) based on Nsim ·N = 106 simulations of λ̂i(ρ) (scale on the right).

the likelihood of the various λ̂i values on the x-axis. For V[λi] = 1 the oracle correction is

L-shaped. In the left tail of the λ̂i distribution there is a lot of shrinkage to the prior mean

and the correction is approximately linear with a large slope. In the right tail, the correction

is essentially flat, meaning that for large values of λ̂i (outliers) the optimal shrinkage is

small in relative terms. For V[λi] = 0 the p(λ̂i|θ) density is Normal and the oracle Tweedie

correction is linear.

The second and fourth panels of Figure 1 depict forecast errors as a function of λ̂i and

overlays the density of λ̂i. The plots are generated as follows. For N = 1, 000 we have a

total of Nsim ·N = 106 forecasts across the 1,000 repetitions of the Monte Carlo experiment.

We group the λ̂i’s into 500 bins such that each bin contains 2,000 observations. For each

bin, we compute the mean squared forecast error, which leads to 500 pairs of bin location

and forecast performance which are plotted in the figure. For V[λi] = 1, the further λ̂ is in
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Table 2: Relative Regrets for Monte Carlo Design 1

ε0 = 0.7 ε0 = 0.2
N V[λi] = 1 0.1 0.01 0 V[λi] = 1 0.1 0.01 0

Empirical Bayes

Kernel b = b̂ 100 .067 .097 .120 .129 .143 .333 .899 1.286
1,000 .027 .043 .067 .073 .044 .117 .664 2.313

10,000 .011 .021 .038 .045 .015 .040 .268 4.526
100,000 .005 .009 .005 .029 .005 .013 .088 9.087

Kernel b = 1.0 100 .080 .154 .177 .189 .169 .529 1.326 1.889
1,000 .056 .136 .173 .187 .093 .367 1.725 5.920

10,000 .045 .128 .177 .205 .060 .245 1.261 2.507
100,000 .029 .099 .044 .228 .034 .145 .714 72.214

Kernel b = 1.5 100 .062 .074 .093 .100 .130 .256 .702 1.004
1,000 .028 .042 .059 .067 .047 .112 .594 2.108

10,000 .014 .030 .045 .053 .019 .057 .320 5.328
100,000 .007 .021 .010 .052 .008 .031 .163 16.536

Kernel b = 2.0 100 .077 .105 .144 .156 .163 .359 1.083 1.558
1,000 .039 .051 .083 .094 .065 .136 .826 2.961

10,000 .016 .021 .039 .047 .021 .040 .274 4.671
100,000 .005 .010 .005 .028 .006 .014 .087 8.929

Plug-in Predictor 100 .194 .583 .856 .915 .411 1.999 6.431 9.155
1,000 .249 .983 1.765 1.954 .417 2.652 17.622 61.785

10,000 .304 1.410 3.302 3.929 .411 2.696 23.483 392.877
100,000 .350 1.835 1.500 7.890 .412 2.686 24.171 2495.149

Pooled OLS 100 .804 .062 .024 .024 1.702 .212 .183 .238
1,000 1.090 .060 .005 .004 1.823 .161 .047 .135

10,000 1.364 .085 .002 .001 1.843 .163 .017 .098
100,000 1.564 .111 .001 .000 1.842 .163 .011 .056

Notes: The Monte Carlo design is summarized in Table 1. The regret is standardized by the average posterior
variance of λi and we consider ε0 equal to 0.7 and 0.2; see Theorem 3.7.

the tails of its distribution, the larger the MSEs. This is the result of two effects. First, the

Tweedie correction is less precisely estimated in the tails, because there are fewer realizations

of λ̂i. Second, the population Tweedie correction in the right tail of the λ̂i distribution is

essentially flat. Thus, there is less shrinkage and the posterior mean has a higher sampling

variance.

Table 2 summarizes the regret associated with each predictor relative to the posterior

variance of λi, averaged over all trajectories YN , as specified in Theorem 3.7. We report

results for two choices of the constant ε0 (0.7 and 0.2), four choices of cross-sectional hetero-

geneity V[λi] (1.0, 0.1, .01, and 0), and four different values for the number of cross-sectional

units N (100, 1,000, 10,000 and 100,000).
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The empirical Bayes estimators in Table 2 differ in the bandwidth used for the density

estimation required to calculate the Tweedie correction. If the squared forecast error losses

are averaged across all units, then a scaling of B∗N between 1.5 and 2.0 minimizes the relative

regret ex post. The ex ante selection of this scaling constant based on the pseudo-out-of-

sample forecast of YiT works very well. We determine b̂ by minimizing the regret over the

interval [1, 3] using a grid-spacing of 0.1. The regret obtained by setting b = b̂ is very close

to the regret with the ex-post optimal b. Thus, much of the subsequent discussion will focus

on the results for b = b̂.

Holding N fixed, the relative regret increases as V[λi] decreases to zero because the nu-

merator of the relative regret formula in Theorem 3.7 is decreasing in V[λi]. Our asymptotic

theory predicts that the regret associated with the empirical Bayes predictors should con-

verge to zero as N −→∞. Holding V[λi] fixed, the table confirms that except for the case of

ε0 = 0.2 and V[λi] = 0, the relative regret decreases with the sample size N . Our theory also

predicts that this convergence is uniform in V[λi], meaning that for sequences of N −→ ∞
and V[λi] −→ 0 we should also observe that the relative regret vanishes. Consider ε0 = 0.7

and the sequence of (N,V[λi]) given by

(100, 1), (1000, 0.1), (10000, 0.01), (100000, 0). (27)

Along this sequence, the relative regret is clearly decreasing for b = b̂ and b = 2.0. According

to the asymptotic theory of Section 3, the bandwidth of the kernel estimator needs to be

larger than in standard density estimation problems to achieve ratio optimality. Setting

b = 1 corresponds to the density-estimation bandwidth choice because for the sample sizes

considered N−1/5 > (lnN)−1.01. Thus a choice of b = 2 can be interpreted as oversmoothing,

which improves the forecasting performance.

For the suboptimal choices of b = 1.5 the relative regret first falls and then stays approx-

imately constant; and for b = 1.0 the regret is increasing along the sequence (27). The large

sample behavior of the regret is linked to the divergence rates of the sequences lnN and N ε0 .

Asymptotically, lnN/N ε0 −→ 0 for any ε0 > 0. However, if ε0 is small, an N much larger

than the sample sizes in the Monte Carlo simulation is required for N ε0 > lnN . For this

reason, we do not observe a monotonically decreasing regret along all (N,V[λi]) sequences.

This problem becomes more pronounced for ε0 = 0.2, where regrets tend to increase along

the sequence (27).10

10Note that ln(100, 000) ≈ 11.5 whereas 100, 0000.2 = 10.
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The last eight rows of Table 2 contain relative regrets for the plug-in predictor and the

pooled-OLS predictor. The plug-in predictor is clearly dominated by the empirical Bayes

predictors and its regret increases with sample size N , holding V[λi] fixed, for both choices

of ε0. It also increases along the sequence (27). The relative performance of the pooled-OLS

predictor depends on the level of heterogeneity captured by V[λi]. For V[λi] = 1, the pooled-

OLS predictor is dominated by the empirical Bayes predictors and exhibits a regret that is

increasing in N . On the other hand, if the population is near-homogeneous, i.e., V[λi] is 0.01

or 0, then its regret is smaller than the regret associated with the empirical Bayes predictor.

We conclude that the predictions of the theory are confirmed by the Monte Carlo exper-

iment, with the caveat that small values of ε0 require very large sample sizes for the relative

regret to vanish as V[λi] −→ 0. The empirical Bayes predictor clearly dominates the plug-in

predictor. If there is no heterogeneity in the population, then, not surprisingly, imposing

coefficient homogeneity through pooled OLS estimation, leads, in finite samples, to sharper

forecasts. However, even for a small level of heterogeneity, e.g., V[λi] = 0.1, the empirical

Bayes estimator is associated with lower regrets for samples sizes of N = 1, 000 or larger.

Alternative Estimates of the Tweedie Correction. We include two additional estima-

tors of the Tweedie correction in the Monte Carlo. First, Gu and Koenker (2017a) proposed

to estimate the density of the sufficient statistic by nonparametric maximum likelihood esti-

mation (NP MLE), which can be implemented using the GLmix function in their REBayes

package. The estimator is constructed by specifying bounds for the domain of λi and par-

tition it into K = 300 (default setting) bins. Let λk be the right endpoint of bin k and

∆k its width. Moreover, let ω̃k be the probability associated with the k’th bin and define

ωk = ω̃k∆k. Then

pNP
(
λ̂i
∣∣{ωk}Kk=1

)
=

K∑
k=1

ωkpN(λ̂i|λk, σ2/T ), ωk ≥ 0,
K∑
k=1

ωk = 1.

The bin probabilities are estimated by maximizing the log likelihood function and the

Tweedie corrections is computed conditional on the estimates ω̂k.

Second, we consider a finite mixture of normal distributions to approximate p(λ̂i(ρ̂), Yi0):

pmix
(
λ̂i, Yi0

∣∣{ωk, µk,Σk}Kk=1

)
=

K∑
k=1

ωkpN(λ̂i, Yi0|µk,Σk), ωk ≥ 0,
K∑
k=1

ωK = 1,

where pN(·) is the density of a N(µk,Σk) random variables. The mixture probabilities as
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Table 3: Relative Regrets for Alternative Tweedie Corrections for Monte Carlo Design 1

V[λi] = 1 0.1 0.01 0

Kernel b = b̂ .027 .043 .067 .073

Mixture K = K̂ .022 .019 .010 .010
NP MLE .018 .013 .011 .011

Notes: The design of the experiment is summarized in Table 1. We report results for N = 1, 000. The regret
is standardized by the average posterior variance of λi and we set ε0 = 0.7; see Theorem 3.7.

well as the means and covariance matrices are estimated by maximizing the log likelihood

function using an EM algorithm. The Tweedie corrections are then computed conditional on

the estimates (ω̂k, µ̂k, Σ̂k). We report forecast evaluation statistics for the K̂ that is obtained

by minimizing the average forecast error loss for 1 ≤ K ≤ K̄ when predicting the last set of

observations in the estimation sample, YiT , based on Yi0, . . . , YiT−1.

Table 3 provides relative regrets for the three different estimates of the Tweedie correc-

tion. The mixture approximation of p(λ̂i) leads to a Tweedie correction that tends to generate

more accurate forecasts than the kernel-based correction, in particular for small V[λi]. The

selection of the number of mixture components, K, based on pseudo-out-of-sample forecast

errors for period T also works well. For large values of V[λi] when the distribution of λ̂i has

a long right tail, we select a large value of K, whereas for small values of V[λi] when the

distribution of λ̂i is approximately normal, we select a small value of K.

The NP MLE of p(λ̂i) proposed by Gu and Koenker (2017a) is similar to the mixture

estimator in this experiment. While the regret differentials, say, between the kernel-based

correction versus the mixture-based or NP-MLE correction appear to be large, overall, in

terms of MSE, the forecast performance of the various estimators is very similar. For instance,

for V[λi] = 1 the average MSEs for kernel b = b̂, mixture K = K̂, and NP MLE are 1.185,

1.184, and 1.183, respectively.

To summarize, the kernel estimators of the Tweedie correction lead to a predictor that

has ratio optimality in the sense of Theorem 3.7 and performs well in the Monte Carlo ex-

periment. In particular, the empirical Bayes predictor dominates the naive plug-in predictor

and pooled OLS (unless coefficients are homogeneous). Our simulations also indicate that in

finite samples the performance of the empirical Bayes predictor can be improved by replacing

the kernel estimator with an NP MLE or a mixture estimator. The large sample analysis of

these two alternative predictors is beyond the scope of this paper. Some results for NP MLE
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Figure 2: Monte Carlo Designs 2 and 3

Design 2 Design 3

δ = 0.05 δ = 0.1 δ = 0.3 Uit Density

Notes: Design 2: The plots depict contours of the density π(λi, Yi0|δ) for different settings for the hyperpa-
rameter δ; x-axis is λi and y-axis is yi0. Design 3: The plot overlays a N(0, 1) density (black, dotted), the
scale mixture (teal, solid), and the location mixture (orange, dashed). All three densities have E[Uit] = 0,
V[Uit] = 1. Formulas are provided in the Online Appendix.

in the context of the basic vector-of-means (or Gaussian denoising) problem are available in

Jiang and Zhang (2009) and Saha and Guntuboyina (2019).

4.2 Alternative Monte Carlo Designs

We consider two additional Monte Carlo designs and describe in which dimensions they differ

from the experiment described in Table 1. One of them, which we refer to as Design 2, is

based on a correlated random effects distribution for λi and the initial condition Yi0. The first

three panels of Figure 2 show contours of the joint density of π(λi, yi0) for three choices of a

hyperparameter δ. The precise formula for the densities is provided in the Online Appendix.

The contours have the shape of a pair of scissors that opens up as δ increases from 0.05 to

0.3. For large values of δ the marginal densities of λi and yi0 become multi-modal.

Design 3 features non-Gaussian innovations Uit, which means that the Gaussian likelihood

function, that is the basis for the posterior mean predictor and the Tweedie correction, is

misspecified. We consider a scale mixture that generates excess kurtosis and a location

mixture that generates skewness. The innovation distributions are normalized such that

E[Uit] = 0 and V[Uit] = 1 and their densities are plotted in the rightmost panel of Figure 2.

For (λi, Yi0) we continue to use the correlated random effects distribution of Design 2 with

δ = 0.1.
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Table 4: Relative Regrets for Monte Carlo Designs 2 and 3

Design 2 Design 3
Uit Distribution Normal Normal Normal Scale Mix. Loc. Mix.
CRE Distribution δ = 0.05 δ = 0.1 δ = 0.3 δ = 0.1 δ = 0.1
Empirical Bayes

Kernel b = b̂ .106 .112 .188 .411 .259

Mixture K = K̂ .027 .027 .025 .306 .154
Plug-in Predictor .611 .515 .709 .970 .744
Pooled OLS .096 .392 2.17 .786 .583

Notes: The Monte Carlo designs are illustrated in Figure 2. We report results for N = 1, 000. The regret is
standardized by the average posterior variance of λi and we set ε0 = 0.7; see Theorem 3.7.

The results are similar to Design 1 and summarized in Table 4.11 The plug-in predictor

is clearly dominated by the empirical Bayes predictors. The empirical Bayes predictors also

beat the pooled OLS predictor by a significant margin for δ = 0.1 and δ = 0.3. At first glance

the good performance of pooled OLS for δ = 0.05 is surprising in view of the heterogeneity in

λi implied by the Monte Carlo design. It turns out that under pooled OLS λ̂ is close to zero

and ρ̂ is approximately one. Thus, the predictor essentially generates no-change forecasts

that perform quite well.

For δ = 0.05 and δ = 0.1 the ex post optimal bandwidth scaling b is close to one, which

is picked up by our bandwidth selection procedure based on pseudo-out-of-sample forecasts.

For δ = 0.3 the optimal scaling is approximately 0.5. This is qualitatively plausible, because

the scissor-shape density of (λ̂i, Yi0) has a relatively large overall variance, which translates

into a large baseline bandwidth, but at the same time it has sharp peaks in the modal regions

which require a small bandwidth. As in Experiment 1, the performance of the empirical Bayes

estimator can be improved by replacing the kernel estimate of the correction with a mixture

estimate, in part because the latter is more stable in the tails of the (λ̂i, Yi0) distribution

and in part because the density of p(λ̂i, Yi0) is in fact a mixture of normal distributions.

The last two columns of Table 4 provide results under a misspecified likelihood func-

tion and can be compared to the results reported in the second column which are based on

normally-distributed error terms Uit. The QMLE estimator of θ remains consistent under

the likelihood misspecification. However, the (non-parametric) Tweedie correction no longer

delivers a valid approximation of the posterior mean. Accordingly, the regrets under mixture

11The bandwidth scaling constant b is selected over the range 0.1, 0.2, . . . , 1.9. We dropped the NP MLE,
because its performance under Design 1 was similar to the mixture estimator and Gu and Koenker (2017a)’s
software is not written for a correlated random-effects specification.
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innovations are generally higher than under the normal innovations. However, in comparison

to the plug-in and pooled-OLS predictors the empirical Bayes predictors continue to per-

form very well and attain relative regrets that are more than 50% smaller than the regrets

associated with the best competitors.

5 Extensions

Multi-Step Forecasting. While this paper focuses on single-step forecasting, we briefly

discuss in the context of the basic dynamic panel data model how the framework can be

extended to multi-step forecasts. Under the assumption that the oracle knows ρ and π(λi, Yi0)

we can express the oracle forecast as

Ŷ opt
iT+h =

(
h−1∑
s=0

ρs

)
Eλiθ,Yi [λi] + ρhYiT .

As in the case of the one-step-ahead forecasts, the posterior mean Eλiθ,Yi [λi] can be replaced

by an approximation based on Tweedie’s formula and the ρ’s can be replaced by consistent

estimates. A model with additional covariates would require external multi-step forecasts of

the covariates, or the specification in (1) would have to be modified such that all exogenous

regressors appear with an h-period lag.

Tweedie’s Formula (Generalization). The general model (1) distinguishes three types of

regressors. First, the vector Wit interacts with the heterogeneous coefficients λi. In addition

to a constant, we allow Wit to also include deterministic time effects such as seasonality, time

trends and/or strictly exogenous variables observed at time t. To distinguish deterministic

time effects w1,t+1 from cross-sectionally varying and strictly exogenous variables W2,it, we

partition the vector into Wit = (w1,t+1,W2,it).
12 Second, Xit is a vector of predetermined

predictors with homogeneous coefficients. Because the predictors Xit may include lags of

Yit+1, we collect all the predetermined variables other than the lagged dependent variable

into the subvector X2,it. Third, Zit is a vector of strictly exogenous regressors, also with

common coefficients. Let Hi = (Xi0,W
0:T
2,i , Z

0:T
i ).

Heteroskedasticity can be introduced as follows:

Uit = σtVit = ς(Hi, γt)Vit, Vit | (Y 1:t−1
i , X1:t−1

i , Hi, λi) ∼ N(0, 1), (28)

12Because Wit is a predictor for Yit+1 we use a t+ 1 subscript for the deterministic trend component w1.
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where ς(·) is a parametric function indexed by the (time-varying) finite-dimensional parame-

ter γt. We allow ς(·) to be dependent on the initial condition of the predetermined predictors,

Xi0, and other exogenous variables. Because the time dimension T is assumed to be small,

the dependence through Xi0 can generate a persistent ARCH effect. Note that even in the

homoskedastic case σt = σ, the distribution of Yit given the regressors is non-normal because

the distribution of the λi parameters is fully flexible.

Let γ = [γ′1, . . . , γ
′
T ], θ = [α′, ρ′, γ′]′, ỹt(θ) = yt − ρ′xt−1 − α′zt−1, and Σ(θ, h) =

diag
(
σ2

1, . . . , σ
2
T

)
(the i subscripts are dropped to simplify the notation). Moreover, let

ỹ(θ) and w be the matrices with rows ỹt(θ) and w′t−1, t = 1, ..., T . To generalize Tweedie’s

formula, we re-define the sufficient statistic λ̂ as follows:

λ̂(θ) =
(
w′Σ−1(θ, h)w

)−1
w′Σ−1(θ, h)ỹ(θ). (29)

Using the same calculations as in Section 2.3, it can be shown that the posterior mean of λi

has the representation

Eλθ,π,Y [λ] = λ̂(θ) +

(
W 0:T−1′Σ−1(θ,H)W 0:T−1

)−1
∂

∂λ̂(·)
ln p
(
λ̂(·), H|θ

)
. (30)

The existing panel data model literature has developed numerous estimators for the homo-

geneous parameters that could be used to generate a θ̂ for the general model (1). In principle

one can proceed with the estimation of the Tweedie correction as for the basic model. How-

ever, the larger the set of conditioning variables Hi the more difficult it becomes to estimate

p(λ̂i(θ,Hi), Hi|θ) precisely.

6 Empirical Application

We will now use the previously-developed predictors to forecast pre-provision net revenues

of bank holding companies (BHC). The stress tests that have become mandatory under the

2010 Dodd-Frank Act require banks to establish how PPNRs vary in stressed macroeconomic

and financial scenarios. A first step toward building and estimating models that provide

trustworthy projections of PPNRs and other bank-balance-sheet variables under hypothetical

stress scenarios, is to develop models that generate reliable forecasts under the observed

macroeconomic and financial conditions. Because of changes in the regulatory environment

in the aftermath of the financial crisis as well as frequent mergers in the banking industry
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our large N small T panel-data-forecasting framework is particularly attractive for stress-test

applications.

We generate a collection of panel data sets in which PPNR as a fraction of consolidated

assets (the ratio is scaled by 400 to obtain annualized percentages) is the dependent variable.

The quarterly data sets are based on the FR Y-9C consolidated financial statements for bank

holding companies for the years 2002 to 2014. We construct rolling samples that consist of

T + 2 observations, where T is the size of the estimation sample and varies between T = 4

and T = 10 quarters. The additional two observations are used, respectively, to initialize

the lag in the first period of the estimation sample and to compute the error of the one-step-

ahead forecast. For instance, with data from 2002:Q1 to 2014:Q4 we can construct M = 45

samples of size T = 6 with forecast origins running from τ = 2003:Q3 to τ = 2014:Q3. Each

rolling sample is indexed by the pair (τ, T ). The cross-sectional dimension N varies from

sample to sample and ranges from 613 to 920.

We discuss the accuracy of baseline forecasts for various model specifications and pre-

dictors in Section 6.1 and compare the baseline predictions to predictions under stressed

macroeconomic and financial conditions in Section 6.2. The Online Appendix provides fur-

ther details about the data set.

6.1 Baseline Forecast Results

The forecast evaluation criterion is the mean-squared error (MSE) computed across institu-

tions:

MSE(Ŷ N
τ+1) =

1
Nτ

∑Nτ
i=1

(
Yiτ+1 − Ŷiτ+1

)2

1
Nτ

∑Nτ
i=1

. (31)

We consider four predictors. The first two predictors are empirical Bayes predictors based

on θ̂QMLE. The Tweedie corrections are generated either using a kernel estimator with b = b̂

or a mixture estimator with K = K̂. As in Section 4, we also report results for the plug-in

predictor and the pooled-OLS predictor. We estimate three model specifications. The first

model is the basic dynamic panel data model in (2). The other two specifications include

additional covariates that reflect aggregate macroeconomic and financial conditions, which

we will use subsequently to generate counterfactual forecasts under stress scenarios. We as-

sume that the banks’ exposure to the aggregate condition is heterogeneous and include these

predictors into the vector Wit−1, using the notation in (1). The second model includes the

unemployment rate as an additional predictor. The third model includes the unemployment
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rate, the federal funds rate, and an interest rate spread.13 When analyzing stress scenarios,

one is typically interested in the effect of stressed economic conditions on the current perfor-

mance of the banking sector. For this reason, we are changing the timing convention slightly

and include the time t macroeconomic and financial variables into the vector Wit−1.

Figure 3 depicts MSE differentials relative to the MSE of the plug-in predictor:

∆(Ŷ N
τ+1) =

MSE(Ŷ N
τ+1)−MSE(plug-in)

MSE(plug-in)
,

where MSE(Ŷ N
τ+1) is defined in (31) and for now we set the selection operator Di(Yiτ ) = 1,

meaning we are averaging over all banks. If ∆(Ŷ N
τ+1) < 0, then the predictor Ŷ N

τ+1 is more

accurate than the plug-in predictor. The three columns correspond to the three different

forecast models under consideration and the three rows correspond to the sample sizes T = 4,

T = 6, and T = 10, respectively. In the x-dimension, the MSE differentials are not arranged

in chronological order by τ . Instead, we sort the samples based on the magnitude of the

MSE differential for the pooled OLS predictor.

The plug-in predictor (the zero lines in Figure 3) and the pooled-OLS predictor (black

dotted lines) provide natural benchmarks for the assessment of the empirical Bayes pre-

dictors. The former is optimal if the heterogeneous coefficients are essentially “uniformly”

distributed in Rkw , whereas the latter is optimal in the absence of heterogeneity. The plug-in

predictor dominates the pooled-OLS predictor whenever the number of heterogeneous coeffi-

cients is small relative to the time series dimension, which is the case for the basic model. For

the unemployment model with T = 4 and the model with three covariates the pooled OLS

predictor is more accurate than the plug-in predictor. For the model with unemployment

only, the ranking is sample dependent.

The empirical Bayes procedure works generally well, in that it is adaptive: for most

samples the empirical Bayes predictor is at least as accurate as the better of the plug-in and

the pooled-OLS predictor. The unemployment-rate model provides a nice illustration of this

adaptivity. In panels (2,2) and (3,2) the fraction of samples in which the plug-in predictor

dominates the pooled-OLS predictor ranges from 1/3 to 1/2. In all of these samples the MSE

differential for the empirical Bayes predictor is close to zero or below zero. In the remaining

13All three series are obtained from the FRED database maintained by the Federal Reserve Bank of St.
Louis: Unemployment is UNRATE, the effective federal funds rate is EFFR, and the spread between the
federal funds rate and the 10-year treasury bill is T10YFF. We use temporal averaging to convert high-
frequency observations into quarterly observations.
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Figure 3: Percentage Change in MSE Relative to Plug-in Predictor, All Banks

Basic w/ UR w/ UR, FFR, Spread
T = 4

T = 6

T = 10

Notes: Benchmark is the plug-in predictor. y-axis shows percentage changes in MSE, whereby a negative
value is an improvement compared to the plug-in predictor. Time periods are sorted such that the relative
MSE of pooled OLS is monotonically increasing. Comparison to: (i) empirical Bayes predictor with kernel

estimator (b = b̂), dashed orange; (ii) empirical Bayes predictor with mixture estimator (K = K̂), solid teal;
(iii) pooled OLS, dotted black.

samples the MSE differential of the empirical Bayes predictor tends to be smaller than the

MSE differential associated with pooled OLS, highlighting that the shrinkage induced by the

estimated correlated random effects distribution improves on the two benchmark procedures.

For the basic panel data model, we report results for two versions of the empirical Bayes

predictor: one is based on the kernel estimation of the Tweedie correction term with b = b̂

and the other one is based on the mixture estimation with K = K̂. Here the dimension
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Figure 4: Squared Forecast Error Differentials Relative To Plug-in, Model w/ UR, T = 6

2007:Q1 – All 2009:Q1 – All 2012:Q1 - All
Emp. Bayes: 0.08 Emp. Bayes: -0.40 Emp. Bayes: -0.24

Pooled OLS: 0.38 Pooled OLS: -0.39 Pooled OLS: -0.10

2007:Q1 – Zoom 2009:Q1 – Zoom 2012:Q1 - Zoom

Notes: Figure depicts scatter plots of scaled squared forecast error differentials for pooled OLS and empirical
Bayes with mixture estimator (K = K̂) relative to the plug-in predictor. The differentials are divided by
the average MSE (across all units) of the plug-in predictor. Cross-sectional averaging of the dots yields the
values (%) that are listed above the plots and depicted in panel (2,2) of Figure 3 for the corresponding time
periods. Negative values are improvements compared to the plug-in predictor. Teal dots indicate banks for
which yiτ ≤ 0. The thin solid lines correspond to zero lines and the 45-degree line, respectively.

of the density that needs to be estimated to construct the correction is equal to two and

the kernel and mixture estimation perform approximately equally well. For the models with

covariates, a higher-dimensional density needs to be estimated, and the mixture estimation

approach works generally better. In fact, for some of the samples the kernel estimates were

quite erratic, which is why in columns 2 and 3 of Figure 3 we only report results for the

mixture-based predictor.

Figure 4 examines the bank-specific squared forecast error loss differentials (subtracting

the squared forecast error associated with the plug-in predictor) for the unemployment model.

Each dot corresponds to a bank. We standardize the squared forecast error loss differentials
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by the MSE of the plug-in predictor, i.e., we are plotting

1

MSE(plug-in)

[(
Yiτ+1 − Ŷiτ+1

)2 −
(
Yiτ+1 − Ŷiτ+1(plug-in)

)2
]
.

Thus, averaging the dots leads to the MSE differentials in Figure 3. The two zero lines and

the 45-degree line partition each panel into six segments. Dots to the left of the vertical zero

line correspond to banks for which the pooled OLS forecast is more accurate (lower squared

forecast error) than the plug-in predictor. Dots below the horizontal zero line are associated

with banks for which the empirical Bayes forecast is more accurate than the forecast from

the plug-in predictor. Finally, dots below the 45-degree line correspond to institutions for

which the empirical Bayes forecast is more accurate than the pooled OLS forecast.

We focus on three different time periods. In 2007:Q1 the MSE of the pooled OLS predictor

is 38% larger than that of the plug-in predictor, whereas the empirical Bayes predictor is only

slightly worse, an 8% MSE increase, than the plug-in predictor. In 2009:Q1, the pooled OLS

and empirical Bayes predictors perform equally well, and generate a 40% MSE reduction

relative to the plug-in predictor. Finally, in 2012:Q1, the empirical Bayes predictor performs

better than both the pooled OLS and the plug-in predictor. The top row of Figure 4 shows

squared forecast error differentials for all banks, whereas the bottom figure zooms in on

differentials between -5 and 5.

The visual impression from the panels is consistent with the MSE ranking of the predic-

tors. For instance, in the left panels there are more banks above the horizontal zero line (410

vs. 317) and to the right of the vertical zero line (470 vs. 257). Moreover, there are more

banks below the 45-degree line than above (440 vs. 287). The panels in the center column

of the figure indicate that the good performance of the empirical Bayes and pooled OLS pre-

dictors is driven in part by some banks for which the plug-in predictor performs very poorly.

The corresponding squared forecast error differentials line up along the 45-degree line. It is

important to note that the empirical Bayes predictor and the pooled-OLS predictor, despite

the similarity in average performance, are not based on the same prediction function. The

estimated autoregressive coefficient for the pooled-OLS predictor is much larger than the

QMLE estimate of ρ that is used for the empirical Bayes predictor.
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6.2 Forecasts Under Stressed Macroeconomic Conditions

We proceed by comparing the baseline forecasts from the previous subsection to predictions

under a stressed scenario, in which we use hypothetical values for the predictors. Our

subsequent analysis assumes that in the short run there is no feedback from disaggregate

BCH revenues to aggregate conditions. While this assumption is inconsistent with the notion

that the performance of the banking sector affects macroeconomic outcomes, elements of the

Comprehensive Capital Analysis and Review (CCAR) conducted by the Federal Reserve

Board of Governors have this partial equilibrium flavor.

Each circle in Figure 5 corresponds to a one-quarter-ahead point prediction for a particu-

lar BHC. We indicate institutions with assets greater than 50 billion dollars14 by teal circles,

while the other BHCs appear as black circles. The x-dimension is the forecast under actual

macroeconomic conditions and the y-dimension indicates the forecast under the stressed sce-

nario. For the model with unemployment as covariate we impose stress by increasing the

unemployment rate by 5%. This is a similar magnitude to the unemployment increase in

the severely adverse macroeconomic scenario in the Federal Reserve’s CCAR. For the model

with three covariates the stressed scenario consists of an increase in the unemployment rate

by 5% (as before) and an increase in nominal interest rates and spreads by 5%. This sce-

nario could be interpreted as an aggressive monetary tightening that induced a sharp drop

in macroeconomic activity. In each panel of Figure 5 we also report the MSE associated

with the various forecasts conditional on the actual macroeconomic conditions.

The graphs in the top two rows of Figure 5 depict forecasts for 2009:Q1 made in the midst

of the Great Recession. For the majority of banks – 90% or more based on the empirical

Bayes and pooled OLS predictors, and between 80% and 85% under the plug-in predictor –

the predicted PPNRs under the actual macroeconomic conditions are positive. The MSEs

reported in the figure imply that the predictions from the model with one covariate are

more accurate than the prediction for the model with three covariates. This result is not

surprising, because in our sample we only have 10 time periods to disentangle the marginal

effects of unemployment, federal funds rate, and spreads on bank revenues. For each of the

two model specifications, empirical Bayes predictor dominates the pooled-OLS predictor,

which in turn attains a lower MSE than the plug-in predictor.15 Thus, overall, the lowest

14These are the BHCs that are subject to the CCAR requirements.
15The computation of the empirical Bayes predictor in this section is slightly different. After fitting mixture

models to p(λ̂|y0) we discovered that our data driven selection typically generates K̂ = 1, which means that

λ̂|y0 is multivariate normal. Rather than directly estimating a normal distribution with an unrestricted
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Figure 5: Predictions under Actual and Stressed Scenarios, T = 10

Empirical Bayes Pooled OLS Plug-In

Predictions for τ + 1 = 2009:Q1, Model w/ UR
MSE = 0.25 MSE = 0.30 MSE = 0.81

Predictions for τ + 1 = 2009:Q1, Model w/ UR, FFR, Spread
MSE = 0.33 MSE = 0.81 MSE = 1.29

Predictions for τ + 1 = 2011:Q1, Model w/ UR
MSE = 0.22 MSE = 0.32 MSE = 0.23

Notes: Forecast origins are τ = 2008:Q4 (panels in rows 1 and 2) and τ = 2010:Q4 (panels in row 3). Each
dot corresponds to a BHC in our dataset. We indicate institutions with assets greater than 50 billion dollars
by teal circles. We plot point predictions of PPNR under the actual macroeconomic conditions and a stressed
scenario. Model w/ UR: the unemployment rate is 5% higher than its actual level. Model w/ UR, FFR,
Spread: the unemployment rate, the federal funds rate, and spread are 5% higher than their actual level.
We also report actual MSEs.

variance-covariance matrix, we parameterize p(λ̂|y0) in terms of the coefficients of a Gaussian prior π(λ|y0),
imposing that the prior covariance matrix is diagonal. While in most periods the two approaches lead to the
same results, there are some periods in which the latter approach is numerically more stable.
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MSE among the six predictors depicted in the top two rows of the figure is attained by the

empirical Bayes predictor based on the model with unemployment.

Now consider the predictions under stressed macroeconomic conditions. Based on the

model with one covariate, pooled OLS essentially predicts no effects on bank revenues in

2009:Q1 because the dots line up along the 45-degree line. The plug-in predictor, on the

other hand, predicts a response that is very heterogeneous across institutions: 33% of the

banks are predicted to be able to raise their revenues, whereas for 67% of the institutions the

revenues are expected to fall relative to the baseline scenario. Predicted losses are as large

as 10% of the bank assets. According to the preferred (based on the MSE under the baseline

scenario) empirical Bayes predictor, 93% of the institutions are expected to experience a drop

in PPNRs by 1 to 2 percent of their assets. In the model with three covariates, the drop

in revenues is generally more pronounced, in particular for BHCs with negative predicted

revenues under the actual macroeconomic conditions.

The last row of Figure 5 shows predictions for 2011:Q1 made during the recovery, based

on the one-variable model. Unlike in the earlier sample, now the plug-in predictor generates

more accurate forecasts (lower MSE) than the pooled-OLS predictor. As before, the empirical

Bayes predictor beats both alternatives, albeit the plug-in predictor only by a small margin.

The actual-versus-stressed predictions from the empirical Bayes procedure line up along the

45-degree line. For 68% of the institutions predicted profits are lower under the stressed

scenario than under the benchmark scenario, but the drop in revenues is very small. Under

the plug-in predictor, there is more heterogeneity in the response of banks’ PPNRs, with

some banks revenues dropping by 1.5 percentage points, whereas other banks are predicted

to observe a modest increase in revenues. However, the baseline forecasts of this predictor

are less accurate than those from the empirical Bayes predictor, lending more credibility to

the latter.

We view this analysis as a first step toward applying state-of-the-art panel data forecast-

ing techniques to stress tests. First, it is important to ensure that the empirical model is

able to accurately predict bank revenues and balance sheet characteristics under observed

macroeconomic conditions. Our analysis suggests that there are substantial performance

differences among various plausible estimators and predictors. Second, a key challenge is

to cope with the complexity of models that allow for heterogeneous coefficients in view of

the limited information in the sample. There is a strong temptation to over-parameterize

models that are used for stress tests. We use prior information to discipline the inference.

In our empirical Bayes procedure, this prior information is essentially extracted from the
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cross-sectional variation in the data set. Third, our empirical results indicate that relative

to the cross-sectional dispersion of PPNRs, the effect of severely adverse scenarios on rev-

enue point predictions are very small. We leave it future research to explore richer empirical

models that focus on specific revenue and accounting components, consider a broader set of

covariates, and possibly allow for feedback from the performance of the banking sector into

the aggregate conditions.

7 Conclusion

The literature on panel data forecasting in settings in which the cross-sectional dimension

is large and the time-series dimension is small is very sparse. Our paper contributes to this

literature by developing an empirical Bayes predictor that uses the cross-sectional informa-

tion in the panel to construct a prior distribution that can be used to form a posterior mean

predictor for each cross-sectional unit. The shorter the time-series dimension and the smaller

the parameter heterogeneity, the more important this prior becomes for forecasting and the

larger the gains from using the posterior mean predictor instead of a plug-in predictor. We

consider a particular implementation of this idea for linear models with Gaussian innovations

that is based on Tweedie’s posterior mean formula. It can be implemented by estimating

the cross-sectional distribution of sufficient statistics for the heterogeneous coefficients in

the forecast model. We provide a theorem that establishes a ratio-optimality property for

a nonparametric kernel estimator of the Tweedie correction and consider implementations

based on the estimation of mixtures of normals and nonparametric MLE in Monte Carlo

simulations. We illustrate in an application that our forecasting techniques work well in

practice and may be useful to execute bank stress tests.
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Supplemental Appendix to “Forecasting with Dynamic
Panel Data Models”

Laura Liu, Hyungsik Roger Moon, and Frank Schorfheide

A Theoretical Derivations and Proofs

A.1 Proofs for Section 3.2

A.1.1 Preliminaries

Throughout the proofs, we use the notation ε for a small positive constant such that

0 < ε < ε0.

In addition, we will make use of the following two lemmas.

Lemma A.1 If AN(π) = ou.π(N+) and BN(π) = ou.π(N+), then CN(π) = AN(π)+BN(π) =

ou.π(N+).

Proof of Lemma A.1. Take an arbitrary ε > 0. We need to show that there exists a

sequence ηcN(ε) such that

N−εCN(π) ≤ ηcN(ε).

Write

N−εCN(π) = N−ε(AN(π) +BN(π)).

Because AN and BN are subpolynomial, there exist sequences ηaN(ε) and ηbN(ε) such that

N−ε(AN(π) +BN(π)) ≤ ηaN(ε) + ηbN(ε).

Thus, we can choose ηcN(ε) = ηaN(ε) + ηbN(ε) −→ 0 to establish the claim. �

Lemma A.2 If AN(π) = ou.π(N+) and BN(π) = ou.π(N+), then CN(π) = AN(π)BN(π) =

ou.π(N+).
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Proof of Lemma A.2. Take an arbitrary ε > 0. We need to show that there exists a

sequence ηcN(ε) such that

N−εCN(π) ≤ ηcN(ε).

Write

N−εCN(π) =
(
N−ε/2AN(π)

)(
N−ε/2BN(π)

)
.

Because AN and BN are subpolynomial, there exist sequences ηaN(ε/2) and ηbN(ε/2) such that

(
N−ε/2AN(π)

)(
N−ε/2BN(π)

)
≤ ηaN(ε/2)ηbN(ε/2).

Thus, we can choose ηcN(ε) = ηaN(ε/2)ηbN(ε/2) −→ 0 to establish the claim. �

A.1.2 Main Theorem

Proof of Theorem 3.7. The goal is to prove that for any given ε0 > 0

lim sup
N−→∞

sup
π∈Π

RN(Ŷ N
T+1; π)−Ropt

N (π)

NEYi,λiθ,π

[
(λi − Eλi

θ,π,Yi [λi])
2
]

+N ε0
≤ 0, (A.1)

where

RN(Ŷ N
T+1; π) = NEY

N ,λi
θ,π

[(
λi + ρYiT − ŶiT+1

)2
]

+Nσ2

Ropt
N (π) = NEYi,λiθ,π

[(
λi − Eλi

θ,π,Yi [λi]
)2
]

+Nσ2.

Here we used the fact that there is cross-sectional independence and symmetry in terms of

i. The desired statement follows if we show

lim sup
N−→∞

sup
π∈Π

NEY
N ,λi

θ,π

[(
λi + ρYiT − ŶiT+1

)2
]

NEYi,λiθ,π

[
(λi − Eλi

θ,π,Yi [λi])
2
]

+N ε0
≤ 1. (A.2)

Here we made the dependence on π of the risks and the posterior moments explicit. In the

calculations below, we often drop the π argument to simplify the notation.

In the main text we asserted that

p∗(λ̂i, yi0) = EY(−i)

θ,π,Yi [p̂
(−i)(λ̂i, yi0)]. (A.3)
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This assertion can be verified as follows. Taking expectations with respect to (λ̂j, yj,0) for

j 6= i yields

EY(−i)

θ,π,Yi;π[p̂(−i)(λ̂i, yi0)]

=
∑
j 6=i

∫ ∫
1

BN

φ

(
λ̂i − λ̂j
BN

)
1

BN

φ

(
yi0 − yj0
BN

)
p(λ̂j, yj0)dλ̂jdyj0

=

∫ ∫
1

BN

φ

(
λ̂i − λ̂j
BN

)
1

BN

φ

(
yi0 − yj0
BN

)
p(λ̂j, yj0)dλ̂jdyj0.

The second equality follows from the symmetry with respect to j and the fact that we

integrate out (λ̂j, yj0). We now substitute in

p(λ̂j, yj0) =

∫
p(λ̂j|λj)π(λj, yj0)dλj,

where

p(λ̂j|λj) =
1

σ/T
φ

(
λ̂j − λj
σ/T

)
,

and change the order of integration. This leads to:

EY(−i)

θ,π,Yi [p̂
(−i)(λ̂i, yi0)]

=

∫ ∫ [∫
1

BN

φ

(
λ̂i − λ̂j
BN

)
p(λ̂j|λj)dλ̂j

]
1

BN

φ

(
yi0 − yj0
BN

)
π(λj, yj0)dλjdyj0

=

∫ ∫
1√

σ2/T +B2
N

φ

(
λ̂i − λj√
σ2/T +B2

N

)
1

BN

φ

(
yi0 − yj0
BN

)
π(λj, yj0)dλjdyj0

=

∫
1√

σ2/T +B2
N

φ

(
λ̂i − λj√
σ2/T +B2

N

)[∫
1

BN

φ

(
yi0 − yj0
BN

)
π(yj0|λj)dyj0

]
π(λj)dλj.

Now re-label λj and λi and yj0 as ỹi0 to obtain:

p∗(λ̂i, yi0)

=

∫
1√

σ2/T +B2
N

φ

(
λ̂i − λi√
σ2/T +B2

N

)[∫
1

BN

φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0

]
π(λi)dλi.

Risk Decomposition. We begin by decomposing the forecast error. Let

µ
(
λ, ω2, p(λ, y0)

)
= λ+ ω2∂ ln p(λ, y0)

∂λ
. (A.4)
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Using the previously developed notation, we expand the prediction error due to parameter

estimation as follows:

ŶiT+1 − λi − ρYiT
=

[
µ
(
λ̂i(ρ̂), σ̂2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)]CN
−m∗(λ̂i, yi0; π,BN)

+m∗(λ̂i, yi0; π,BN)− λi
+(ρ̂− ρ)YiT

= A1i + A2i + A3i, say.

Now write

NEYNθ,π

[(
λi + ρYiT − ŶiT+1

)2
]

= NEYNθ,π
[
(A1i + A2i + A3i)

2
]
.

We deduce from the Cr inequality that the statement of the theorem follows if we can show

that

(i) NEYNθ,π
[
A2

1i

]
= ou.π(N ε0),

(ii) lim sup
N−→∞

sup
π∈Π

NEY
N ,λi

θ,π

[
A2

2i

]
NEYi,λiθ,π

[
(λi − Eλi

θ,π,Yi [λi])
2
]

+N ε0
≤ 1,

(iii) NEYNθ,π
[
A2

3i

]
= ou.π(N+).

The required bounds are provided in Lemmas A.3 (term A1i), A.4 (term A2i), A.5 (term

A3i). �

A.1.3 Three Important Lemmas

Truncations. The remainder of the proof involves a number of truncations that we will

apply when analyzing the risk terms. We take the sequence CN as given from Assumption 3.3.

Recall that
2

M2

lnN ≤ CN <
1

BN

.

We introduce a new sequence diverging sequence LN with the properties

lim inf
N

LNBN > 1 and LN = o(N+). (A.5)

Even though we do not indicate this explicitly through our notation, we also restrict the

domain of (λ, y0) arguments that appear in numerous expressions throughout the proof
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to the support of the distribution of the random variables (λi, Yi0), which is defined as

Suppλ,Y0 = {(λ, y0) ∈ R2 |π(λ, y0) > 0}.

1. Define the truncated region Tλ = {|λ| ≤ CN}. From Assumption 3.2 we obtain for

CN ≥M3 that

N1−εP(T cλ ) ≤ M1 exp
(
(1− ε) lnN −M2(CN −M3)

)
(A.6)

= M̃1 exp

(
−M2

[
CN −

1− ε
M2

lnN

])
= o(1),

for all 0 < ε because, according to Assumption 3.3, CN > 2(lnN)/M2. Thus, we can

deduce

NP(T cλ ) = ou.π(N+).

2. Define the truncated region TY0 = {max1≤i≤N |Yi0| ≤ LN}. Then,

N1−εP(T cY0) = N1−εP{ max
1≤i≤N

|Yi0| ≥ LN} (A.7)

≤ N1−ε
N∑
i=1

P{|Yi0| ≥ LN}

= N2−ε
∫
|y0|≥LN

π(y0)dy0

≤ M̃1 exp

(
−M2

[
LN −

2− ε
M2

lnN

])
= o(1),

for all ε > 0 because according to (A.5) LN > (2/M2) lnN . Thus, we deduce that

NP(T cY0) = ou.π(N+).

3. Define the truncated region Tρ̂ = {|ρ̂ − ρ| ≤ 1/L2
N}. By Chebyshev’s inequality,

Assumption 3.6, and (A.5), we can bound

NP(T cρ̂ ) = NP{|ρ̂− ρ| > 1/L2
N} ≤ L4

NE
[
N(ρ̂− ρ)2

]
= ou.π(N+). (A.8)

4. Define the truncated region Tσ̂2 = {|σ̂2 − σ2| ≤ 1/LN}. By Chebyshev’s inequality,
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Assumption 3.6, and (A.5), we can bound

NP(T cσ̂2) = NP{|σ̂2 − σ2| > 1/LN} ≤ L2
NE[N(σ̂2 − σ2)2] = ou.π(N+). (A.9)

5. Let Ūi,−1(ρ) = 1
T

∑T
t=2 Uit−1(ρ) and Uit(ρ) = Uit+ρUit−1+· · ·+ρt−1Ui1. Define the trun-

cated region TŪ =
{

max1≤i≤N |Ūi,−1(ρ)| ≤ LN
}

. Notice that Ūi,−1(ρ) ∼ iidN(0, σ2
Ū

)

with 0 < σ2
Ū
<∞. Thus, we have

NP(T cŪ ) = NP{ max
1≤i≤N

|Ūi,−1(ρ)| ≥ LN} (A.10)

≤ N
N∑
i=1

P{|Ūi,−1(ρ)| ≥ LN} = N2P{|Ūi,−1(ρ)| ≥ LN}

≤ 2N2 exp

(
− L

2
N

2σ2
Ū

)
= 2 exp

(
− L

2
N

2σ2
Ū

+ 2 lnN

)
≤ 2 exp

(
−2

(
lnN

M2
2σ

2
Ū

− 1

)
lnN

)
= ou.π(N+),

where the last inequality holds by (A.5).

6. Let Ȳi,−1 = C1(ρ)Yi0 + C2(ρ)λi + Ūi,−1(ρ), where C1(ρ) = 1
T

∑T
t=1 ρ

t−1, C2(ρ) =
1
T

∑T
t=2(1 + · · · + ρt−2). Because T is finite and |ρ| is bounded, there exists a fi-

nite constant, say M such that |C1(ρ)| ≤ M and |C2(ρ)| ≤ M . Then, in the region

Tλ ∩ TY0 ∩ TŪ :

max
1≤i≤N

|Ȳi,−1| ≤ |C1(ρ)| max
1≤i≤N

|λi|+ |C2(ρ)| max
1≤i≤N

|Yi0|+ max
1≤i≤N

|Ūi,−1(ρ)|

≤ M(CN + LN + LN),

which leads to

max
1≤i,j≤N

|Ȳj,−1 − Ȳi,−1| ≤ 2 max
1≤i≤N

|Ȳi,−1| ≤ 2M (CN + 2LN) = ou.π(N+). (A.11)

7. For the region Tλ∩TY0∩Tρ̂∩TŪ and with some finite constant M , we obtain the bound

max
1≤i,j≤N

|(ρ̂− ρ)(Ȳj,−1 − Ȳi,−1)| ≤ M (CN + LN)

L2
N

= ou.π(N+). (A.12)
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8. Define the regions Tm = {|m(λ̂i, Yi0)| ≤ CN} and Tm∗ = {|m∗(λ̂i, Yi0)| ≤ CN}. By

Chebyshev’s inequality and Assumption 3.5, we deduce

NP(T cm) ≤ 1

C2
N

NE(m(λ̂i, Yi0)2T cm) ≤ ou.π(N+) (A.13)

NP(T cm∗) ≤
1

C2
N

NE(m∗(λ̂i, Yi0)2T cm∗) ≤ ou.π(N+).

We will subsequently use indicator function notation, abbreviating, say, I{λ ∈ Tλ} by

I(Tλ) and I(Tλ)I(TY0) by I(TλTY0).

A.1.3.1 Term A1i

Lemma A.3 Suppose the assumptions in Theorem 3.7 hold. Then,

NEYNθ,π

[( [
µ
(
λ̂i(ρ̂), σ̂2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)]CN
−m∗(λ̂i, yi0; π,BN)

)2]
= ou.π(N ε0).

Proof of Lemma A.3. We begin with the following bound: since (a+ b)2 ≤ 2a2 + 2b2,

|A1i|2 =

([
µ
(
λ̂i(ρ̂), σ̂2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)]CN
−m∗(λ̂i, yi0; π,BN)

)2

≤ 2C2
N + 2m2

∗(λ̂i, yi0; π,BN)

= 2C2
N + 2m2

∗(λ̂i, yi0; π,BN)I(Tm∗) + 2m2
∗(λ̂i, yi0; π,BN)I(T cm∗)

≤ 4C2
N + 2m2

∗(λ̂i, yi0; π,BN)I(T cm∗). (A.14)

Then,

NEYNθ,π [A2
1i] ≤ NEYNθ,π [A2

1iI(Tσ̂2 Tρ̂ TŪ TY0 Tm∗ Tλ) (A.15)

+NEYNθ,π
[
A2

1i

(
I(T cσ̂2) + I(T cρ̂ ) + I(T cŪ ) + I(T cY0) + I(T cm∗) + I(T cλ )

)]
≤ NEYNθ,π [A2

1iI(Tσ̂2 Tρ̂ TŪ TY0 Tm∗ Tλ)]

+4C2
NN
(
P(T cσ̂2) + P(T cρ̂ ) + P(T cŪ ) + P(T cY0) + P(T cm∗) + P(T cλ )

)
+12NEYNθ,π [m2

∗(λ̂i, yi0; π,BN)I(T cm∗)]

= NEYNθ,π [A2
1iI(Tσ̂2 Tρ̂ TŪ TY0 Tm∗ Tλ)] + ou.π(N+) + ou.π(N+).

The first ou.π(N+) follows from the properties of the truncation regions discussed above

and the second ou.π(N+) follows from Assumption 3.5. In the remainder of the proof we will
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construct the desired bound, ou.π(N ε0), for the first term on the right-hand side of (A.15).

We proceed in two steps.

Step 1. We introduce two additional truncation regions, Tλ̂Y0 and Tp(·), which are defined

as follows:

Tλ̂Y0 =
{

(λ̂i, Yi0)
∣∣ − C ′N ≤ λ̂i ≤ C ′N , −C ′N ≤ Yi0 ≤ C ′N

}
Tp(·) =

{
(λ̂i, Yi0)

∣∣∣∣ p(λ̂i, Yi0) ≥ N ε

N

}
,

where it is assumed that 0 < ε < ε0.

Notice that since CN = o(N+) and
√

lnN = o(N+),

C ′N = o(N+). (A.16)

In the first truncation region both λ̂i and Yi0 are bounded by C ′N . In the second truncation

region the density p(λ̂i, Yi0) is not too low. We will show that

NEYNθ,π [A2
1iI(Tλ̂Y0 T

c
p(·))] ≤ ou.π(N ε0) (A.17)

NEYNθ,π [A2
1iI(TλT cλ̂Y0)] ≤ ou.π(N+). (A.18)

Step 1.1. First, we consider the case where (λ̂i, Yi0) are bounded and the density p(λ̂i, yi0)

is “low” in (A.17). Using the bound for |A1i| in (A.14) we obtain:

NEYNθ,π
[
A2

1iI(Tλ̂Y0)I(T
c
p(·))
]

≤ 4NC2
NP(Tλ̂Y0 ∩ T

c
p(·)) + 2NEYNθ,π

[
m2
∗(λ̂i, yi0; π,BN)I(T cm∗)

]
= 4NC2

N

∫ C′N

λ̂i=−C′N

∫ C′N

yi0=−C′N
I
{
p(λ̂i, yi0) <

N ε

N

}
p(λ̂i, yi0)d(λ̂i, yi0) + ou.π(N+)

≤ 4NC2
N

∫ C′N

λ̂i=−C′N

∫ C′N

yi0=−C′N

(
N ε

N

)
dyi0dλ̂i + ou.π(N+)

= 4C2
N(2C ′N)2N ε + ou.π(N+)

≤ ou.π(N ε0).

The ou.π(N+) term in the first equality follows from Assumption 3.5. The last equality holds

because CN , C
′
N = ou.π(N+) (Assumption 3.3 and (A.16)) and 0 < ε < ε0. This establishes

(A.17).



This Version: May 29, 2019 A-9

Step 1.2. Next, we consider the case where (λ̂i, yi0) exceed the C ′N bound and the density

p(λ̂i, yi0) is “high.” We will immediately replace the contribution of 2Nm2
∗(λ̂i, yi0; π,BN)I(T cm∗)

to the expected value of A2
1i by ou.π(N+).

NEYNθ,π
[
A2

1iI(TλT cλ̂Y0))
]

≤ 4NC2
NP(Tλ ∩ T cλ̂Y0) + ou.π(N+)

= 4NC2
N

∫
T c
λ̂Y0

[∫
λi

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
π(λi, yi0)dλi

]
d(λ̂i, yi0) + ou.π(N+)

≤ 4NC2
N

∫
λi

∫
|λ̂i|>C′N

[∫
yi0

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
π(yi0|λi)dyi0

]
π(λi)d(λ̂i, λi)

+4NC2
N

∫
λi

∫
|yi0|>C′N

[∫
λ̂i

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
dλ̂i

]
π(λi, yi0)d(λi, yi0) + ou.π(N+)

= 4NC2
N

∫
|λi|≤CN

[∫
|λ̂i|>C′N

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
dλ̂i

]
π(λi)dλi

+4NC2
N

∫
|yi0|>C′N

[∫
λi

π(λi|yi0)dλi

]
π(yi0)dyi0

+ou.π(N+)

≤ 4NC2
N

∫
|λi|≤CN

[∫
|λ̂i|>C′N

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
dλ̂i

]
π(λi)dλi

+4NC2
N

∫
|yi0|>C′N

π(yi0)dyi0

+ou.π(N+)

= B1 + ou.π(N+) + ou.π(N+), say.

The second equality is obtained by integrating out λ̂i, recognizing that the integrand is a

properly scaled probability density function that integrates to one. The last line follows from

the calculations in (A.6), Lemma A.2, and C ′N > CN .
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We will first analyze term B1. Note by the change of variable that

∫
|λ̂i|>C′N

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
dλ̂i

=

∫ −√T (C′N+λi)/σ

−∞
φ(λ̃i)dλ̃i +

∫ ∞
√
T (C′N−λi)/σ

φ(λ̃i)dλ̃i

≤
∫ −√T (C′N−|λi|)/σ

−∞
φ(λ̃i)dλ̃i +

∫ ∞
√
T (C′N−|λi|)/σ

φ(λ̃i)dλ̃i

≤ 2

∫ ∞
√
T (C′N−|λi|)/σ

φ(λ̃i)dλ̃i

≤ 2
φ
(√

T (C ′N − |λi|)/σ
)

√
T (C ′N − |λi|)/σ

,

where we used the inequality
∫∞
x
φ(λ)dλ ≤ φ(x)/x. Using the definition of C ′N in Assump-

tion 3.3 we obtain the bound (for
√

2 lnN ≥ 1):

B1 ≤ 4NC2
N

∫
|λi|<CN

φ
(√

T (C ′N − |λi|)/σ
)

√
T (C ′N − |λi|)/σ

π(λi)dλi

≤ 4NC2
N

∫
|λi|<CN

φ
(√

2 lnN
)
π(λi)dλi

≤ 4NC2
N exp

(
− lnN)

∫
|λi|<CN

π(λi)dλi

≤ 4C2
N

= ou.π(N+).

This leads to the desired bound in (A.18).

Step 2. It remains to be shown that

NEYNθ,π [A2
1iI(Tσ̂2 Tρ̂ TŪ TY0 Tm∗ Tλ Tλ̂Y0 Tp(·))] ≤ ou.π(N+). (A.19)
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We introduce the following notation:

p̃
(−i)
i = p̂(−i)(λ̂i(ρ̂), Yi0) (A.20)

dp̃
(−i)
i =

1

∂λ̂i(ρ̂)
∂p̂(−i)(λ̂i(ρ̂), Yi0)

p̂
(−i)
i = p̂(−i)(λ̂i(ρ), Yi0)

dp̂
(−i)
i =

1

∂λ̂i(ρ)
∂p̂−i(λ̂i(ρ), Yi0)

pi = p(λ̂i(ρ), Yi0)

p∗i = p∗(λ̂i(ρ), Yi0)

dp∗i =
1

∂λ̂i(ρ)
∂p∗(λ̂i(ρ), Yi0).

Moreover, we introduce another truncation

Tp̃(·) =

{
(λ̂i, Yi0)

∣∣∣∣ p̃(−i)
i >

p∗i
2

}
. (A.21)

On the set Tm∗, we have |m∗(λ̂i, yi0; π,BN)| ≤ CN , and so

|A1i| ≤ 2CN . (A.22)

For the required result of Step 2 in (A.19), we show the following two inequalities; see Steps

2.1 and 2.2 below:

NEYNθ,π [A2
1iI(Tσ̂2 Tρ̂ TŪ TY0 Tm∗ Tλ Tλ̂Y0 Tp(·)) Tp̃(·)] ≤ ou.π(N+) (A.23)

NEYNθ,π [A2
1iI(Tσ̂2 Tρ̂ TŪ TY0 Tm∗ Tλ Tλ̂Y0 Tp(·)) T

c
p̃(·)] ≤ ou.π(N+). (A.24)
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Step 2.1. Using the triangle inequality, we obtain

|A1i| =

∣∣∣∣ [µ(λ̂i(ρ̂), Yi0, σ̂
2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)]CN
−m∗(λ̂i, yi0; π,BN)

∣∣∣∣
≤

∣∣∣∣µ(λ̂i(ρ̂), Yi0, σ̂
2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)
−m∗(λ̂i, yi0; π,BN)

∣∣∣∣
=

∣∣∣∣λ̂i(ρ̂)− λi(ρ) +

(
σ̂2

T
− σ2

T

)
dp∗i
p∗i

+

(
σ̂2

T
+B2

N

)(
dp̃

(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)∣∣∣∣
≤

∣∣ρ̂− ρ∣∣∣∣Ȳi,−1

∣∣+

∣∣∣∣ σ̂2

T
− σ2

T

∣∣∣∣∣∣∣∣dp∗ip∗i

∣∣∣∣+

(
σ̂2

T
+B2

N

) ∣∣∣∣dp̃(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

∣∣∣∣,
= A11i + A12i + A13i, say.

Recall that Ȳi,−1 = 1
T

∑T
t=1 Yit−1. Using the Cauchy-Schwarz inequality, it suffices to show

that

NEYNθ
[
A2

1jiI(Tσ̂2 Tρ̂ TŪ TY0 Tm∗ Tλ Tλ̂Y0 Tp(·) Tp̃(·))
]
≤ ou.π(N+), j = 1, 2, 3.

For term A11i. First, using a slightly more general argument than the one used in the

proof of Lemma A.5 below, we can show that

NEYNθ
[
A2

11i

]
= EYNθ

[
N(ρ̂− ρ)2Ȳ 2

i,−1

]
= ou.π(N+).

For term A12i. Second, in the region Tλ̂Y0 ∩Tm∗ we can bound the Tweedie correction term

under p∗i by (
σ2

T
+B2

N

) ∣∣∣∣dp∗ip∗i

∣∣∣∣ =

∣∣∣∣m∗(λ̂i, yi0; π,BN)− λ̂i(ρ)

∣∣∣∣ ≤ CN + C ′N . (A.25)

Using Assumption 3.3, Assumption 3.6, and (A.16), we obtain the bound

NEYNθ,π
[
A2

12iI(Tλ̂Y0)I(Tm∗)
]
≤ 1

(σ2/T +B2
N)

2E
YN
θ

[
N(σ̂2 − σ2)2

]
(C ′N + CN)2 = ou.π(N+).

For term A13i. Finally, note that

A2
13iI(Tσ̂2) ≤

(
σ2

T
+B2

N +
1

T

1

LN

)2
(
dp̃

(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)2

.
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Thus, the desired result follows if we show

NEYNθ,π

(dp̃(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)2

I(Tρ̂ TŪ TY0 Tm∗ Tλ Tλ̂Y0 Tp(·))

 = ou.π(N+) (A.26)

Decompose

dp̃
(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

=
dp̃

(−i)
i − dp∗i

p̃
(−i)
i − p∗i + p∗i

− dp∗i
p∗i

(
p̃

(−i)
i − p∗i

p̃
(−i)
i − p∗i + p∗i

)
.

Using the Cr inequality, we obtain

NEYNθ,π

(dp̃(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)2

I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))


≤ 2NEYNθ,π

( dp̃
(−i)
i − dp∗i

p̃
(−i)
i − p∗i + p∗i

)2

I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))


+2NEYNθ,π

(dp∗i
p∗i

)2
(

p̃
(−i)
i − p∗i

p̃
(−i)
i − p∗i + p∗i

)2

I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))


= 2EYNθ,π

(√N(dp̃
(−i)
i − dp∗i)

p̃
(−i)
i − p∗i + p∗i

)2

I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))


+2ou.π(N+)EYNθ,π

(√N(p̃
(−i)
i − p∗i)

p̃
(−i)
i − p∗i + p∗i

)2

I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))


= 2B1i + 2ou.π(N+)B2i,

say. The ou.π(N+) bound follows from (A.25). Using the mean-value theorem, we can express

√
N(dp̃

(−i)
i − dp∗i) =

√
N(dp̂

(−i)
i − dp∗i) +

√
N(ρ̂− ρ)R1i(ρ̃)

√
N(p̃

(−i)
i − p∗i) =

√
N(p̂

(−i)
i − p∗i) +

√
N(ρ̂− ρ)R2i(ρ̃),
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where

R1i(ρ) = − 1

N − 1

N∑
j 6=i

1

BN

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
λ̂j(ρ)− λ̂i(ρ)

BN

)2 (
Ȳj,−1 − Ȳi,−1

) 1

BN

φ

(
Yj0 − Yi0
BN

)

+
1

N − 1

N∑
j 6=i

1

B2
N

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
Ȳj,−1 − Ȳi,−1

) 1

BN

φ

(
Yj0 − Yi0
BN

)
,

R2i(ρ) =
1

N − 1

N∑
j 6=i

1

BN

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
Ȳj,−1 − Ȳi,−1

) 1

BN

φ

(
Yj0 − Yi0
BN

)
,

and ρ̃ is located between ρ̂ and ρ.

We proceed with the analysis of B2i. Over the region Tp̃(·), p̃(−i)
i −p∗i+p∗i > p∗i/2. Using

this, the Cr inequality, and the law of iterated expectations, we obtain

B2i ≤ 4EYiθ,π

[
1

p2
∗i
EY(−i)

θ,π,Yi
[
N(p̂

(−i)
i − p∗i)2I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))

]]
+4EYiθ,π

[
1

p2
∗i
EY(−i)

θ,π,Yi
[
N(ρ̂− ρ)2R2

2i(ρ̃)I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))
]]

= 4EYiθ,π[B21i +B22i],

say.

According to Lemma A.8(c) (see Section A.1.4),

EY(−i)

θ,π,Yi
[
N(p̂

(−i)
i − p∗i)2I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))

]
≤ M

B2
N

piI(Tλ̂Y0Tp(·)).

This leads to

EYiθ,π[B21i] ≤
M

B2
N

EYiθ,π

[
pi
p2
∗i
I(Tλ̂Y0Tp(·))

]
=

M

B2
N

∫
Tλ̂Y0∩Tp(·)

p2
i

p2
∗i
dλ̂idyi0.

According to Lemma A.8(e) (see Section A.1.4),∫
Tλ̂Y0∩Tp(·)

p2
i

p2
∗i
dλ̂idyi0 = ou.π(N+).

Because 1/B2
N = o(N+) according to Assumption 3.3, we can deduce that

EYiθ,π[B21i] ≤ ou.π(N+).
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Using the Cauchy-Schwarz Inequality, we obtain

B22i ≤
1

p2
∗i

√
EY(−i)

θ,π,Yi
[
N2(ρ̂− ρ)4

]√
EY(−i)

θ,π,Yi
[
R4

2i(ρ̃)I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))
]
.

Using the inequality once more leads to

EYiθ,π[B22i] ≤
√

EYNθ,π
[
N2(ρ̂− ρ)4

]√
EYiθ,π

[
1

p4
∗i
EY(−i)

θ,Yi
[
R4

2i(ρ̃)I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))
]]

≤ ou.π(N+)

√
EYiθ,π

[
1

p4
∗i
EY(−i)

θ,π,Yi
[
R4

2i(ρ̃)I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))
]]
.

The second inequality follows from Assumption 3.6.

According to Lemma A.8(a) (see Section A.1.4),

EY(−i)

θ,π,Yi
[
R4

2i(ρ̃)I(Tρ̂TŪTY0Tm∗TλTλ̂Y0Tp(·)Tp̃(·))
]
≤ML4

Np
4
i I(Tλ̂Y0Tp(·)),

where LN = o(N+) was defined in (A.5). This leads to the bound

EYiθ,π[B22i] ≤ ou.π(N+)ML2
N

√√√√EYiθ,π

[(
pi
p∗i

)4

I(Tλ̂Y0Tp(·))

]

= ou.π(N+)ML2
N

√√√√∫
Tλ̂Y0∩Tp(·)

(
pi
p∗i

)4

pidλ̂idyi0

≤ ou.π(N+)M∗L
2
N

√√√√∫
Tλ̂Y0∩Tp(·)

(
pi
p∗i

)4

dλ̂idyi0

≤ ou.π(N+).

The second inequality holds because the density pi is bounded from above and M∗ is a

constant. The last inequality is proved in Lemma A.8(e) (see Section A.1.4).

We deduce that B2i = ou.π(N+). A similar argument can be used to establish that

B1i = ou.π(N+).

Step 2.2. Recall from (A.22) that over Tm∗ ,

|A1i| ≤ 2CN = ou.π(N+).
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Then,

NEYNθ,π [A2
1iI(Tσ̂2 Tρ̂ TŪ TY0 Tm∗ TλTλ̂Y0 Tp(·)) T

c
p̃(·)]

≤ ou.π(N+)NPYNθ,π (Tσ̂2Tρ̂TŪTY0TλTλ̂Y0Tp(·)T
c
p̃(·)).

Notice that

T cp̃(·) =
{
p̂

(−i)
i − p∗i + (ρ̂− ρ)R2i(ρ̃) < −p∗i

2

}
⊂

{
p̂

(−i)
i − p∗i − |ρ̂− ρ||R2i(ρ̃)| < −p∗i

2

}
⊂

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
∪
{
|ρ̂− ρ||R2i(ρ̃)| > p∗i

4

}
.

Then,

NPY(−i)

θ,π,Yi(Tσ̂2Tρ̂TŪTY0TλTλ̂Y0Tp(·)T
c
p̃(·))

≤ NPY(−i)

θ,π,Yi

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
+NPY(−i)

θ,π,Yi

[{
|ρ̂− ρ||R2i(ρ̃)| > p∗i

4

}
I(Tσ̂2Tρ̂TŪTY0TλTλ̂Y0Tp(·))

]
≤ NPY(−i)

θ,π,Yi

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
+

16L4
N

p2
∗i

EY(−i)

θ,π,Yi
[
R2i(ρ̃)2I(Tσ̂2Tρ̂TŪTY0TλTλ̂Y0Tp(·))

]
≤ NPY(−i)

θ,π,Yi

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
+
ML6

N

p2
∗i

p2
i I(Tλ̂Y0Tp(·)).

The first inequality is based on the superset of T cp̃(·) from above. The second inequality is

based on Chebychev’s inequality and truncation Tρ̂. The third inequality uses a version of

the result in Lemma A.8(a) in which the remainder is raised to the power of two instead of

to the power of four. Assumption 3.4 implies that pi is bounded from above:

pi =

∫
p(λ̂|λ)π(Yi0|λ)π(λ)dλ ≤ M̃

∫
π(λ)dλ = M̃ <∞, (A.27)

because p(λ̂|λ) is the density of a N(λ, σ2/T ) and π(Yi0|λ) is bounded for every π ∈ Π

according to Assumption 3.4. Thus, in the previous calculation we can absorb one of the pi

terms in the constant M .

In Lemma A.8(f) (see Section A.1.4) we apply Bernstein’s inequality to bound the prob-
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ability PY(−i)

θ,π,Yi

{
p̂

(−i)
i − p∗i < −p∗i

4

}
uniformly over (λ̂i, Yi0) in the region Tλ̂Y0 , showing that

NEYiθ,π
[
PY(−i)

θ,π,Yi

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
I(Tλ̂Y0Tp(·))

]
= ou.π(N+),

as desired. Moreover, according to Lemma A.8(e) (see Section A.1.4)

EYiθ,π

[
pi
p2
∗i
I(Tλ̂Y0Tp(·))

]
=

∫
Tλ̂Y0∩Tp(·)

(
pi
p∗i

)2

dλ̂idyi0 = ou.π(N+),

which gives us the required result for Step 2.2. Combining the results from Steps 2.1 and

2.2 yields (A.19).

The bound in (A.15) now follows from (A.17), (A.18), and (A.19), which completes the

proof of the lemma. �

A.1.3.2 Term A2i

Lemma A.4 Suppose the assumptions in Theorem 3.7 hold. Then, for every ε0 > 0,

lim sup
N→∞

sup
π∈Π

NEY
i,λi

θ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2]
NEYi,λiθ,π

[
(λi − Eλi

θ,π,Yi [λi])
2
]

+N ε0
≤ 1.

Proof of Lemma A.4. Recall that m∗(λ̂i, yi0; π,BN) can be interpreted as the posterior

mean of λi under the p∗(λ̂i, yi0; π) defined in (16). We will use EY
i,λi
∗,θ,π [·] to denote the integral

EY
i,λi
∗,θ,π [·] =

∫
[·]p∗(λ̂|λ)π∗(y0|λ)π(λ)d(λ̂, λ, y0),

where

p∗(λ̂|λ) =
1√

σ2/T +B2
N

φ

(
λ̂− λ√

σ2/T +B2
N

)

π∗(y0|λ) =

∫
1

BN

φ

(
y0 − ỹ0

BN

)
π(ỹ0|λ)dỹ0.
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The desired result follows if we can show that

(i) lim sup
N→∞

lim sup
π∈Π

NEY
i,λi
∗,θ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2
]

+N ε0

NEYi,λiθ,π

[(
λi −m(λ̂i, yi0; π)

)2
]

+N ε0

≤ 1

(ii) lim sup
N→∞

lim sup
π∈Π

NEY
i,λi

θ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2
]

NEYi,λi∗,θ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2
]

+N ε0

≤ 1.

Part (i): Notice that the denominator is bounded below by N ε0 . We will proceed by

constructing an upper bound for the numerator. Using the fact that the posterior mean

minimizes the integrated risk, we obtain

NEYi,λi∗,θ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2
]

≤ NEYi,λi∗,θ,π

[(
m(λ̂i, yi0; π)− λi

)2
]

≤ NEYi,λi∗,θ,π

[(
m(λ̂i, yi0; π)− λi

)2

I(Tλ̂Y0Tp(·)TmTλ)
]

+NEYi,λi∗,θ,π

[(
m(λ̂i, yi0; π)− λi

)2 (
I(T c

λ̂Y0
) + I(T cp(·)Tλ̂Y0) + I(T cm) + I(T cλ )

)]
= B1i +B2i,

say.

A bound for B1i can be obtained as follows:

B1i = N

∫ ∫ (
m(λ̂i, yi0; π)− λi

)2

I(Tλ̂Y0Tp(·)TmTλ)p∗(λ̂i|λi)π∗(yi0|λi)π(λi)d(λ̂i, λi, yi0)

≤ (1 + o(1))N

∫ ∫ (
m(λ̂i, yi0; π)− λi

)2

I(Tλ̂Y0Tp(·)TmTλ)p(λ̂i|λi)π(yi0|λi)π(λi)d(λ̂i, λi, yi0)

≤ (1 + o(1))NEY
i,λi

θ,π

[(
λi −m(λ̂i, yi0; π)

)2
]
.

The first inequality is based on Assumption 3.4 and an argument similar to the one used in

the analysis of term I in the proof of Lemma A.7. The o(1) term does not depend on π ∈ Π.
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To derive a bound for B2i first consider the inequalities(
m(λ̂i, yi0; π)− λi

)2

≤ 2m2(λ̂i, yi0; π)
(
I(Tm) + I(T cm)) + 2λ2

i

(
I(Tλ) + I(T cλ )

)
≤ 4C2

N + 2m(λ̂i, yi0; π)2I(T cm) + 2λ2
i I(T cλ ).

Thus,

B2i ≤ 4C2
NN
(
P(Tλ̂Y0T

c
p(·)) + P(T c

λ̂Y0
) + P(T cm) + P(T cλ )

)
+8NEY

i,λi
θ,π

[
m(λ̂i, yi0; π)2I(T cm)

]
+ 8NEY

i,λi
θ,π

[
λ2
i I(T cλ )

]
.

Notice that C2
N = ou.π(N+), NP(Tλ̂Y0T

c
p(·)) = ou.π(N ε0) (see Step 1.1), NP(T c

λ̂Y0
) = ou.π(N+)

(see Step 1.2), and NP(T cm) = ou.π(N+) (see Truncation 1). Also, notice that

NEY
i,λi

θ,π

[
λ2
i I(T cλ )

]
= N

∫
|λ|>CN

λ2π(λ)dλ

≤
√∫

|λ|>CN
λ4π(λ)dλ

√
N2

∫
|λ|>CN

π(λ)dλ

≤M

√
N2

∫
|λ|>CN

π(λ)dλ

= ou.π(N+).

The first inequality is the Cauchy-Schwartz inequality, the second inequality holds by As-

sumption 3.2, and the last line follows from calculations similar to the ones in (A.6). There-

fore,

B2i ≤ ou.π(N ε0).
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Combining the bounds for B1i and B2i, we have

lim sup
N→∞

lim sup
π∈Π

NEY
i,λi
∗,θ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2
]

+N ε0

NEYi,λiθ,π

[(
λi −m(λ̂i, yi0; π)

)2
]

+N ε0

≤ lim sup
N→∞

lim sup
π∈Π

(1 + o(1))NEY
i,λi

θ,π

[(
m(λ̂i, yi0; π,BN)− λi

)2
]

+ ou.π(N ε0) +N ε0

NEYi,λiθ,π

[(
λi −m(λ̂i, yi0; π)

)2
]

+N ε0

≤ lim sup
N→∞

lim sup
π∈Π

(1 + o(1))

[
NEY

i,λi
θ,π

[(
m(λ̂i, yi0; π,BN)− λi

)2
]

+N ε0

]
NEYi,λiθ,π

[(
λi −m(λ̂i, yi0; π)

)2
]

+N ε0

= 1,

where the term o(1) holds uniformly in π ∈ Π. We have the required result for Part (i).

Part (ii): The proof of Part (ii) is similar to that of Part (i). We construct an upper bound

for the numerator as follows

NEYi,λiθ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2
]

≤ NEYi,λiθ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2

I(Tλ̂Y0Tp(·)Tm∗Tλ)
]

+NEYi,λiθ

[(
m∗(λ̂i, yi0; π,BN)− λi

)2 (
I(T c

λ̂Y0
) + I(Tλ̂Y0T

c
p(·)) + I(T cm∗) + I(T cλ )

)]
= B1i +B2i,

say. Now consider the term B1i:

B1i = N

∫ ∫ ∫ (
m∗(λ̂i, yi0; π,BN)− λi

)2

p∗(λ̂i|λi)π∗(yi0|λi)
p(λ̂i|λi)π(yi0|λi)
p∗(λ̂i|λi)π∗(yi0|λi)

π(λi)

×I(Tλ̂Y0Tp(·)Tm∗Tλ)d(λ̂i, λi, yi0)

= (1 + o(1))N

∫ ∫ ∫ (
m∗(λ̂i, yi0; π,BN)− λi

)2

p∗(λ̂i|λi)π∗(yi0|λi)π(λi)

×I(Tλ̂Y0Tp(·)Tm∗Tλ)d(λ̂i, dλi, dyi0)

≤ (1 + o(1))NEYi,λi∗,θ,π

[(
m∗(λ̂i, yi0; π,BN)− λi

)2
]
,
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where the o(1) term is uniform in π ∈ Π. Using the a similar argument as in Part (i) we can

establish that B2i = ou.π(N ε0), which leads to the desired result. �

A.1.3.3 Term A3i

Lemma A.5 Suppose the assumptions in Theorem 3.7 hold. Then,

NEYNθ,π
[(
ρ̂− ρ

)2
Y 2
iT

]
= ou.π(N+).

Proof of Lemma A.5. Using the Cauchy-Schwarz inequality, we can bound

EYNθ,π
[(√

N(ρ̂− ρ)
)2
Y 2
iT

]
≤

√
EYNθ,π

[(√
N(ρ̂− ρ)

)4
]
EYNθ,π [Y 4

iT ].

By Assumption 3.6, we have

EYNθ,π
[(√

N(ρ̂− ρ)
)4
]
≤ ou.π(N+).

For the second term, write

YiT = ρTYi0 +
T−1∑
τ=0

ρτ (λi + UiT−τ ).

Using the Cr inequality and noting that T is finite and Uit ∼ iidN(0, σ2), we deduce that

there is a finite constant M that does not depend on π ∈ Π such that

EYNθ,π
[
Y 4
iT

]
≤ M

(
EYNθ

[
Y 4
i0

]
+ EYNθ,π

[
λ4
i

]
+ EYNθ,π

[
U4
i1

])
= ou.π(N+).

The last line holds according to Assumption 3.2 and because Ui1 is normally distributed and

therefore all its moments are finite. �
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A.1.4 Further Details

We now provide more detailed derivations for some of the bounds used in Section A.1.3.

Recall that

R1i(ρ) = − 1

N − 1

N∑
j 6=i

1

BN

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
λ̂j(ρ)− λ̂i(ρ)

BN

)2 (
Ȳj,−1 − Ȳi,−1

) 1

BN

φ

(
Yj0 − Yi0
BN

)

+
1

N − 1

N∑
j 6=i

1

B2
N

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
Ȳj,−1 − Ȳi,−1

) 1

BN

φ

(
Yj0 − Yi0
BN

)

R2i(ρ) =
1

N − 1

N∑
j 6=i

1

BN

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
Ȳj,−1 − Ȳi,−1

) 1

BN

φ

(
Yj0 − Yi0
BN

)

For expositional purposes, our analysis focuses on the slightly simpler term R2i(ρ̃). The

extension to R1i(ρ̃) is fairly straightforward. By definition,

λ̂j(ρ̃)− λ̂i(ρ̃) = λ̂j(ρ)− λ̂i(ρ)− (ρ̃− ρ)(Ȳj,−1 − Ȳi,−1).

Therefore,

R2i(ρ̃) =
1

N − 1

N∑
j 6=i

1

BN

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

− (ρ̃− ρ)

(
Ȳj,−1 − Ȳi,−1

BN

))

×

(
λ̂j(ρ)− λ̂i(ρ)

BN

− (ρ̃− ρ)

(
Ȳj,−1 − Ȳi,−1

BN

))

×
(
Ȳj,−1 − Ȳi,−1

) 1

BN

φ

(
Yj0 − Yi0
BN

)
.

Consider the region Tρ̂ ∩ TŪ ∩ TY0 . First, using (A.12) we can bound

max
1≤i,j≤N

∣∣(ρ̂− ρ)(Ȳj,−1 − Ȳi,−1)
∣∣ ≤ M

LN
.



This Version: May 29, 2019 A-23

Thus,

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

− (ρ̃− ρ)

(
Ȳj,−1 − Ȳi,−1

BN

))
I(Tρ̂TŪTY0)

≤ φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

+

(
M

LNBN

))
I

{
λ̂j(ρ)− λ̂i(ρ)

BN

≤ − M

LNBN

}

+φ(0)I

{∣∣∣∣∣ λ̂j(ρ)− λ̂i(ρ)

BN

∣∣∣∣∣ ≤ M

LNBN

}

+φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

−
(

M

LNBN

))
I

{
λ̂j(ρ)− λ̂i(ρ)

BN

≥ M

LNBN

}

= φ̄

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
,

say. The function φ̄(x) is flat for |x| < M
LNBN

and is proportional to a Gaussian density

outside of this region.

Second, we can use the bound∣∣∣∣∣ λ̂j(ρ)− λ̂i(ρ)

BN

− (ρ̃− ρ)

(
Ȳj,−1 − Ȳi,−1

BN

)∣∣∣∣∣ ≤
∣∣∣∣∣ λ̂j(ρ)− λ̂i(ρ)

BN

∣∣∣∣∣+
M

LNBN

.

Third, for the region TŪ ∩ TY0 we can deduce from (A.11) that

max
1≤i,j≤N

|Ȳj,−1 − Ȳi,−1| ≤MLN .

Therefore, ∣∣Ȳj,−1 − Ȳi,−1

∣∣ 1

BN

φ

(
Yj0 − Yi0
BN

)
≤ MLN

BN

φ

(
Yj0 − Yi0
BN

)
.

Now, define the function

φ̄∗(x) = φ̄ (x)

(
|x|+ M

LNBN

)
.

Because for random variables with bounded densities and Gaussian tails all moments exist

and because LNBN > 1 by definition of LN in (A.5), the function φ̄∗(x) has the property

that for any finite positive integer m there is a finite constant M such that∫
φ̄∗(x)mdx ≤M.
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Combining the previous results we obtain the following bound for R2i(ρ̃):

∣∣R2i(ρ̃)I(Tρ̂TŪTY0)
∣∣ ≤ MLN

N − 1

N∑
j 6=i

1

BN

φ̄∗

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
1

BN

φ

(
Yj0 − Yi0
BN

)
. (A.28)

For the subsequent analysis it is convenient define the function

f(λ̂j − λ̂i, Yj0 − Yi0) =
1

B2
N

φ̄∗

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
φ

(
Yj0 − Yi0
BN

)
. (A.29)

In the remainder of this section we will state and prove three technical lemmas that establish

moment bounds for R1i(ρ̃) and R2i(ρ̃). The bounds are used in Section A.1.3. We will

abbreviate EY(−i)

θ,π,Yi [·] = Ei[·] and simply use E[·] to denote EYNθ,π [·].

Lemma A.6 Suppose the assumptions in Theorem 3.7 hold. Then, for any finite positive

integer m ≥ 1, over the regions Tλ̂Y0 and Tp(·), there exists a finite constant M that does not

depend on π such that

Ei
[
fm(λ̂j − λ̂i, Yj0 − Yi0)

]
≤ M

B
2(m−1)
N

pi.

Proof of Lemma A.6. We have

Ei
[
fm(λ̂j − λ̂i, Yj0 − Yi0)

]
=

1

B
2(m−1)
N

∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN

φ

(
y0 − Yi0
BN

)m
p(λ̂, y0)d(λ̂, y0)

=
1

B
2(m−1)
N

∫ [∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN

φ

(
y0 − Yi0
BN

)m
p(λ̂, y0|λi)d(λ̂, y0)

]
π(λi)dλi

=
1

B
2(m−1)
N

∫
Tλ

[∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN

φ

(
y0 − Yi0
BN

)m
p(λ̂, y0|λi)d(λ̂, y0)

]
π(λi)dλi

+
1

B
2(m−1)
N

∫
T cλ

[∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN

φ

(
y0 − Yi0
BN

)m
p(λ̂, y0|λi)d(λ̂, y0)

]
π(λi)dλi.
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The required result of the lemma follows if we show

I =
1

p(λ̂i, Yi0)

∫
Tλ

[∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN

φ

(
y0 − Yi0
BN

)m
p(λ̂, y0|λi)d(λ̂, y0)

]
π(λi)dλi

≤M (A.30)

II =
1

p(λ̂i, Yi0)

∫
T cλ

[∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN

φ

(
y0 − Yi0
BN

)m
p(λ̂, y0|λi)d(λ̂, y0)

]
π(λi)dλi

≤M (A.31)

over the regions Tλ̂Y0 and Tp(·) and uniformly in π.

For (A.30), notice that the inner integral of term I is

∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN

φ

(
y0 − Yi0
BN

)m
p(λ̂, y0|λ)d(λ̂, y0)

=

∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

σ/
√
T

exp

−1

2

(
λ̂− λi
σ/
√
T

)2
 dλ̂

×
∫

1

BN

φ

(
y0 − Yi0
BN

)m
π(y0|λ)dy0

= I1 × I2,

say.
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Notice that

I1 =

∫
1

BN

φ̄∗

(
λ̂− λ̂i
BN

)m
1

σ/
√
T

exp

−1

2

(
λ̂− λi
σ/
√
T

)2
 dλ̂

=

∫
φ̄∗(λ

∗)m
1

σ/
√
T

exp

−1

2

(
λ̂i − λi +BNλ

∗

σ/
√
T

)2
 dλ∗

=

∫
φ̄∗(λ

∗)m exp

(
−
(

(λ̂i − λi)BNλ
∗
) 1

σ2/T

)
exp

(
−1

2

(
BNλ

∗

σ/
√
T

)2
)
dλ∗

×

 1

σ/
√
T

exp

−1

2

(
λ̂i − λi
σ/
√
T

)2


≤
∫
φ̄∗(λ

∗)m exp

(
−

(
(λ̂i − λi)BN

σ2/T

)
λ∗

)
dλ∗

×

 1

σ/
√
T

exp

−1

2

(
λ̂i − λi
σ/
√
T

)2


≤ M

(∫ ∞
0

φ̄∗(λ
∗)m exp (vNλ

∗) dλ∗
) 1

σ/
√
T

exp

−1

2

(
λ̂i − λi
σ/
√
T

)2


≤ M

 1

σ/
√
T

exp

−1

2

(
λ̂i − λi
σ/
√
T

)2


= Mp(λ̂i|λi),

where vN = T
σ2 (C ′N + CN)BN .

Here, for the second equality, we used the change-of-variable λ∗ = (λ̂− λ̂i)/BN to replace

λ̂. The first inequality holds because the exponential function exp

(
−1

2

(
BNλ

∗

σ/
√
T

)2
)

is bounded

by one. Moreover, under truncations Tλ̂Y0 and Tλ, |λ̂i| ≤ C ′N and |λi| ≤ CN . According to

Assumption 3.3, vN = T
σ2 (C ′N + CN)BN = o(1). Thus, the last inequality holds because∫∞

0
φ̄∗(λ

∗)m exp (vNλ
∗) dλ∗ is finite.

We now proceed with a bound for the second integral, I2. Using the fact that the Gaussian
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pdf φ(x) is bounded and by Assumption 3.4, we can write

I2 =

∫
1

BN

φ

(
y0 − Yi0
BN

)m
π(y0|λ)dy0

≤ M

∫
1

BN

φ

(
y0 − Yi0
BN

)
π(y0|λ)dy0

= M
(
1 + o(1)

)
π(Yi0|λ),

uniformly in |y0| ≤ C ′N and |λ| ≤ CN and in π ∈ Π.

Combining the bounds for I1 and I2 and integrating over λ, we obtain

I ≤M
1

p(λ̂i, Yi0)

∫
Tλ

[
p(λ̂i|λi)π(Yi0|λi)

]
π(λi)dλi

≤M
1

p(λ̂i, Yi0)

∫
p(λ̂i|λi)π(Yi0|λi)π(λi)dλi = M,

as required for (A.30).

Next, for (A.31), since φ̄∗(x), φ(x), p(λ̂, y0|λi) are bounded uniformly in π and p(λ̂i, Yi0) >

N ε−1 over Tp(·), we have

II ≤ M

p(λ̂i, Yi0)B2
N

∫
T cλ

π(λi)dλi

≤MN−ε
(

1

B2
N

)(
N

∫
T cλ

π(λi)dλi

)
≤MN−εou.π(N+)ou.π(N+)

≤M,

where the second-to-last line holds because according to Assumption 3.3 1/B2
N = ou.π(N+)

and because of the tail bound in (A.6). This yields the required result for (A.31). �

Lemma A.7 Suppose the assumptions required for Theorem 3.7 are satisfied. Then,

(a) sup
π∈Π

sup
(λ̂i,Yi0)∈Tλ̂Y0∩Tp(·)

∣∣∣∣p∗ipi − 1

∣∣∣∣ = o(1),

(b) sup
π∈Π

sup
(λ̂i,Yi0)∈Tλ̂Y0∩Tp(·)

∣∣∣∣ pip∗i − 1

∣∣∣∣ = o(1).
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Proof of Lemma A.7.

Part (a). Denote

p(λ̂i, yi0|λi) =
1√
σ2/T

φ

(
λ̂i − λi√
σ2/T

)
π(yi0|λi)

p∗(λ̂i, yi0|λi) =
1√

B2
N + σ2/T

φ

(
λ̂i − λi√
B2
N + σ2/T

)[∫
1

BN

φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0

]
,

so that

pi =

∫
p(λ̂i, yi0|λi)π(λi)dλi, p∗i =

∫
p∗(λ̂i, yi0|λi)π(λi)dλi.

Notice that ∣∣∣∣p∗ipi − 1

∣∣∣∣ =

∣∣∣∣p∗i − pipi

∣∣∣∣
≤ 1

pi

∫ ∣∣∣p∗(λ̂i, yi0|λi)− p(λ̂i, yi0|λi)∣∣∣ π(λi)dλi

=
1

pi

∫
Tλ

∣∣∣p∗(λ̂i, yi0|λi)− p(λ̂i, yi0|λi)∣∣∣ π(λi)dλi

+
1

pi

∫
T cλ

∣∣∣p∗(λ̂i, yi0|λi)− p(λ̂i, yi0|λi)∣∣∣ π(λi)dλi

= I + II, say.

For term I, since |λi| ≤ CN in the region Tλ and |λ̂i| ≤ C ′N in the region Tλ̂Y0 , we can

choose a constant M that does not depend on π such that for N sufficiently large

1√
B2
N + σ2/T

φ

(
λ̂i − λi√
B2
N + σ2/T

)
=

1√
σ2/T

φ

(
λ̂i − λi√
σ2/T

)

×
√
σ2/T√

B2
N + σ2/T

exp

1

2

(
λ̂i − λi√
B2
N + σ2/T

)2
B2
N

σ2/T


≤ 1√

σ2/T
φ

(
λ̂i − λi√
σ2/T

)
exp(M(C ′N + CN)2B2

N)

=
1√
σ2/T

φ

(
λ̂i − λi√
σ2/T

)
(1 + o(1)),

where the inequality holds by Assumption 3.3 which implies that (C ′N +CN)BN = o(1), and

the o(1) term in the last line is uniform in (λ̂i, Yi0) ∈ Tλ̂Y0 ∩ Tp(·) and in π ∈ Π.
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According to Assumption 3.4,∫
1

BN

φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0 = (1 + o(1))π(yi0|λi)

uniformly in |yi0| ≤ C ′N and |λi| ≤ CN and in π ∈ Π.

Then,

I =
1

pi

∫
Tλ

∣∣∣p∗(λ̂i, yi0|λi)− p(λ̂i, yi0|λi)∣∣∣ π(λi)dλi

=
1

pi

∫
Tλ

∣∣∣∣∣ 1√
B2
N + σ2/T

φ

(
λ̂i − λi√
B2
N + σ2/T

)∫
1

BN

φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0

− 1√
σ2/T

φ

(
λ̂i − λi√
σ2/T

)
π(yi0|λi)

∣∣∣∣∣ π(λi)dλi

≤ |(1 + o(1))2 − 1| 1
pi

∫
Tλ

1√
σ2/T

φ

(
λ̂i − λi√
σ2/T

)
π(yi0|λi)π(λi)dλi

≤ |(1 + o(1))2 − 1| = o(1).

Note that the o(1) term does not depend on (λ̂i, Yi0) ∈ Tλ̂Y0 ∩ Tp(·) nor on π ∈ Π.

For term II, calculations similar to the one in (A.27) imply that the densities p∗(λ̂i, yi0|λi)
and p(λ̂i, yi0|λi) are bounded, say, by M . Thus, we have

II =
1

pi

∫
T cλ

∣∣∣p∗(λ̂i, yi0|λi)− p(λ̂i, yi0|λi)∣∣∣ π(λi)dλi

≤ 2M

pi

∫
T cλ

π(λi)dλi

≤ 2M sup
π∈Π

N1−ε
∫
T cλ

π(λi)dλi

= o(1),

where the second inequality holds since pi >
Nε

N
under the truncation Tp(·) and the last line

holds according to (A.6).

Combining the upper bounds of I and II yields the required result for Part (a).

Part (b). According to Part (a),

p∗i = pi(1 + o(1))
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uniformly in (λ̂i, Yi0) ∈ Tλ̂Y0 ∩Tp(·) and in π ∈ Π. Then, for some finite constant M that does

not depend on (λ̂i, Yi0) and π,

sup
π∈Π

sup
(λ̂i,Yi0)∈Tλ̂Y0∩Tp(·)

|pi − p∗i|
p∗i

= sup
π∈Π

sup
(λ̂i,Yi0)∈Tλ̂Y0∩Tp(·)

|pi − p∗i|
pi

pi
p∗i

= sup
π∈Π

sup
(λ̂i,Yi0)∈Tλ̂Y0∩Tp(·)

|pi − p∗i|
pi

pi
pi(1 + o(1))

≤M sup
π∈Π

sup
(λ̂i,Yi0)∈Tλ̂Y0∩Tp(·)

|pi − p∗i|
pi

= o(1),

as required for Part (b). �

Lemma A.8 Under the assumptions required for Theorem 3.7, we obtain the following

bounds:

(a) Ei
[
R4

2i(ρ̃)I(Tρ̂TŪTY0Tλ̂Y0Tp(·)Tp̃(·))
]
≤ML4

Np
4
i I(Tλ̂Y0Tp(·)),

(b) Ei
[
R4

1iI(Tρ̃TŪTY0Tλ̂Y0Tp(·)Tp̃(·))
]
≤M

L4
N

B4
N
p4
i I(Tλ̂Y0Tp(·)),

(c) Ei
[
N(p̂

(−i)
i − p∗i)2I(Tρ̂TŪTY0Tλ̂Y0Tp(·)Tp̃(·))

]
≤ M

B2
N
piI(Tλ̂Y0Tp(·)),

(d) Ei
[
N(dp̂

(−i)
i − dp∗i)2I(Tρ̂TŪTY0Tλ̂Y0Tp(·)Tp̃(·))

]
≤ M

B2
N
piI(Tλ̂Y0Tp(·)), where M is a finite

constant that does not depend on π ∈ Π.

(e) For any finite m > 1,
∫
Tλ̂Y0∩Tp(·)

(
pi
p∗i

)m
dλ̂idyi0 = ou.π(N+).

(f) NE
[
Pi
{
p̂

(−i)
i − p∗i < −p∗i/4

}
I(Tλ̂Y0Tp(·))

]
= ou.π(N+).

Proof of Lemma A.8. Part (a). Recall the following definitions

φ̄(x) = φ

(
x+

M

LNBN

)
I
{
x ≤ − M

LNBN

}
+ φ(0)I

{
|x| ≤ M

LNBN

}
+φ

(
x− M

LNBN

)
I
{
x ≥ M

LNBN

}
φ̄∗(x) = φ̄ (x)

(
|x|+ M

LNBN

)
.
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First, recall that according to (A.28) and (A.29), in the region Tρ̂ ∩ TŪ ∩ TY0

|R2i(ρ̃)| ≤ MLN
N − 1

N∑
j 6=i

f(λ̂j − λ̂i, Yj0 − Yi0).

Then,

|R2i(ρ̃)|4 ≤

[
MLN
N − 1

N∑
j 6=i

f(λ̂j − λ̂i, Yj0 − Yi0)

]4

=

[
MLN
N − 1

N∑
j 6=i

{
f(λ̂j − λ̂i, Yj0 − Yi0)− Ei[f(λ̂j − λ̂i, Yj0 − Yi0)]

+Ei[f(λ̂j − λ̂i, Yj0 − Yi0)]

}]4

≤ ML4
N

[
1

N − 1

N∑
j 6=i

(
f(λ̂j − λ̂i, Yj0 − Yi0)− Ei[f(λ̂j − λ̂i, Yj0 − Yi0)]

)]4

+ML4
N

[
Ei[f(λ̂j − λ̂i, Yj0 − Yi0)]

]4

= ML4
N

(
A1 + A2

)
,

say. The first equality holds since f(λ̂j − λ̂i, Yj0 − Yi0) are iid conditional on (λ̂i, Yi0). The

second inequality holds because |x+ y|4 ≤ 8(|x|4 + |y|4).

The term (N − 1)4A1 takes the form

(∑
aj

)4

=

(∑
a2
j + 2

∑
j

∑
i>j

ajai

)2

=
(∑

a2
j

)2

+ 4
(∑

a2
j

)(∑
j

∑
i>j

ajai

)
+ 4

(∑
j

∑
i>j

ajai

)2

=
∑

a4
j + 6

∑
j

∑
i>j

a2
ja

2
i

+4
(∑

a2
j

)(∑
j

∑
i>j

ajai

)
+ 4

∑
j

∑
i>j

∑
l 6=j

∑
k>l

ajaialak,

where

aj = f(λ̂j − λ̂i, Yj0 − Yi0)− Ei[f(λ̂j − λ̂i, Yj0 − Yi0)], j 6= i.

Notice that conditional on (λ̂i(ρ), Yi0), the random variables aj have mean zero and are iid
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across j 6= i. This implies that

Ei
[(∑

aj

)4
]

=
∑

Ei
[
a4
j

]
+ 6

∑
j

∑
i>j

Ei
[
a2
ja

2
i

]
.

The remaining terms drop out because they involve at least one term aj that is raised to the

power of one and therefore has mean zero.

Using the Cr inequality, Jensen’s inequality, the conditional independence of a2
j and a2

i

and Lemma A.6, we can bound

Ei[a4
j ] ≤

M

B6
N

pi, Ei[a2
ja

2
i ] ≤

M

B4
N

p2
i .

Thus, in the region Tρ̂ ∩ TŪ ∩ TY0 ∩ Tλ̂Y0 ∩ Tp(·) ∩ Tp̃(·),

Ei[A1] ≤ Mpi
N3B6

N

+
Mp2

i

N2B4
N

≤Mp4
i ,

The second inequality holds because over Tp(·), pi ≥ Nε

N
≥ M

NB2
N

and for N large, N3B6
N and

N2B4
N are larger than one under Assumption 3.3. Here M is uniform in π ∈ Π.

Using a similar argument, we can also deduce that

Ei[A2] ≤Mp4
i ,

which proves Part (a) of the lemma.

Part (b). Similar to proof of Part (a).

Part (c). Can be established using existing results for the variance of a kernel density

estimator.

Part (d). Similar to proof of Part (c).

Part (e). We have the desired result because by Lemma A.7 we can choose a constant c

that does not depend on π such that

pi − p∗i ≤ cp∗i
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over the region Tλ̂Y0 ∩ Tp(·). Thus,(
pi
p∗i

)m
=

(
1 +

pi − p∗i
p∗i

)m
≤ (1 + c)m.

We deduce that∫
Tλ̂Y0∩Tp(·)

(
pi
p∗i

)m
dλ̂idyi0 ≤ (1 + c)m

∫
Tλ̂Y0∩Tp(·)

dλ̂idyi0 ≤ (1 + c)m
(
2C ′N

)2
= ou.π(N+),

as required.

Part (f). Define

ψi(λ̂j, Yj0) = φ

(
λ̂j − λ̂i
BN

)
φ

(
Yj0 − Yi0
BN

)
and write

p̂
(−i)
i − p∗i =

1

N − 1

N∑
j 6=i

{
1

BN

φ

(
λ̂j − λ̂i
BN

)
1

BN

φ

(
Yj0 − Yi0
BN

)

− Ei

[
1

BN

φ

(
λ̂j − λ̂i
BN

)
1

BN

φ

(
Yj0 − Yi0
BN

)]}

=
1

B2
N(N − 1)

N∑
j 6=i

(
ψi(λ̂j, Yj0)− Ei[ψi(λ̂j, Yj0)]

)
.

Notice that conditional on (λ̂i, Yi0), ψi(λj, Yj0) ∼ iid across j 6= i with |ψi(λ̂j, Yj0)| ≤ M

for some finite constant M . Then, by Bernstein’s inequality 16 (e.g., Lemma 19.32 in van

der Vaart (1998)),

NPi
{
p̂

(−i)
i − p∗i < −

p∗i
4

}
I(Tλ̂Y0Tp(·))

= NPi

{
1

B2
N(N − 1)

N∑
j 6=i

(
ψi(λ̂j, Yj0)− Ei[ψi(λ̂j, Yj0)]

)
< −p∗i

4

}
I(Tλ̂Y0Tp(·))

≤ 2N exp

(
−1

4

B4
N(N − 1)p2

∗i/16

Ei[ψi(λ̂j, Yj0)2] +MB2
Npi∗/4

)
I(Tλ̂Y0Tp(·)).

16For a bounded function f and a sequence of iid random variables Xi,

P

{∣∣∣∣∣ 1√
N

N∑
i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ > x

}
≤ 2 exp

(
−1

4

x2

E[f(Xi)2] + 1√
N
x supx |f(x)|

)
.
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Using an argument similar to the proof of Lemma A.6 one can show that

Ei[ψi(λj, Yj0)2/B4
N ] ≤Mpi/B

2
N .

In turn

NPi
{
p̂

(−i)
i − p∗i < −

p∗i
4

}
I(Tλ̂Y0Tp(·)) ≤ 2 exp

(
−MNB2

N

p2
∗i

pi + p∗i
+ lnN

)
I(Tλ̂Y0Tp(·)).

From Lemma A.7 we can find a constant c such that pi ≤ (1 + c)p∗i and p∗i ≤ (1 + c)pi.

This leads to

p2
∗i

pi + p∗i
≥ pi

(2 + c)(1 + c)2
.

Then, on the region Tp(·)

NE
[
Pi
{
p̂

(−i)
i − p∗i < −

p∗i
4

}
I(Tλ̂Y0Tp(·))

]
≤ 2E

[
exp

(
−MNB2

N

p2
∗i

pi + p∗i
+ lnN

)
I(Tλ̂Y0Tp(·))

]
≤ 2E

[
exp

(
−MNB2

Npi + lnN
)
I(Tλ̂Y0Tp(·))

]
≤ 2 exp

(
−MB2

NN
ε + lnN

)
= o(1),

where the last line holds by Assumption 3.3 and the o(1) bound in the last line is uniform

in π ∈ Π. Then, we have the required result for Part (f). �

A.2 Proofs for Section 3.3

Proof of Theorem 3.8.

Part (i): we verify that our assumptions hold uniformly for the multivariate normal distri-

butions π ∈ Π.

Assumption 3.2. Because λ is normally distributed, the uncentered fourth moment is finite

for each π(λ) ∈ Πλ and can be bounded uniformly. Note that

P
(
|λ| ≥ C

)
≤ P

(
|λ− µλ| ≥ C − |µλ|

)
≤ 2 exp

(
−C − |µλ|

2σ2
λ

)
(A.32)
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for C > |µλ| + 1. By plugging the bounds from (23) into (A.32) one can obtain constants

M1, M2, and M3 such that Assumption 3.2(i) is satisfied. The second part can be verified

by noting that Y0 ∼ N(µy, σ
2
y), where µy = α0 + α1µλ and σ2

y = σ2
y|λ + α2

1σ
2
λ.

Assumption 3.4 The boundedness of the conditional density follows from 0 < δσ2
y|λ
≤ σ2

y|λ

in (23). To verify Part (ii) define µy(λ) = α0+α1λ and notice that ỹ|λ ∼ N
(
µy(λ), σ2

y|λ+B2
N).

Thus, we can write

sup
π∈Π

sup
|y|≤C′N ,|λ|<CN

∣∣∣∣∣∣
∫

1
BN
φ
(
ỹ−y
BN

)
π(ỹ|λ)dỹ

π(y|λ)
− 1

∣∣∣∣∣∣ = sup
π∈Π

sup
|y|≤C′N ,|λ|<CN

∣∣R1,N · R2,N − 1
∣∣,

where

R1,N =

√√√√ σ2
y|λ

σ2
y|λ +B2

N

≤ 1, R2,N = exp

{
−1

2
(y − µy(λ))2

(
1

σ2
y|λ +B2

N

− 1

σ2
y|λ

)}
≥ 1.

R1,N can be bounded from below by replacing σ2
y|λ with δσ2

y|λ
. Because BN −→ 0 asN −→∞,

R1,N −→ 1 uniformly. For the term R2,N notice that

(
y − µy(λ)

)2

(
1

σ2
y|λ
− 1

σ2
y|λ +B2

N

)
=

(
y − α0 − α1λ

)2 B2
N

σ2
y|λ
(
σ2
y|λ +B2

N

)
≤ 3

(
(C ′N)2 +M2

α0
+M2

α1
C2
N

) B2
N(

δσ2
y|λ

)2 −→ 0

as N −→ ∞ because BNCN = o(1) and BNC
′
N = o(1) according to Assumption 3.3. Thus,

R2,N −→ 1 uniformly which delivers the desired result.

Assumption 3.5. The first step is to derive the conditional prior distribution π(λ|y) which

is of the form λ|y ∼ N(µλ|y, σ
2
y|λ). The prior mean function is of the form µλ|y = γ0 + γ1y.

If the prior for λ is a point mass, i.e., σ2
λ = 0, then the distribution of (λ|y) is also a point

mass with µλ|y = µλ and σ2
λ|y = 0. It can be verified that the coefficients γ0, γ1, and the

variance σ2
y|λ are bounded from above in absolute value.

The prior is combined with the Gaussian likelihood function λ̂|λ ∼ N
(
λ, σ2/T

)
, which

leads to a posterior mean function that is linear in λ̂ and y:

m(λ̂, y; π) =

(
1

σ2
y|λ

+
1

σ2/T

)−1(
1

σ2
y|λ

(γ0 + γ1y0) +
1

σ2/T
λ̂

)
= γ̄0 + γ̄1y0 + γ̄2λ̂. (A.33)
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The γ̄ coefficients are also bounded in absolute value for π ∈ Π.

The sampling distribution of (λ̂, y0) is jointly normal with mean and covariance matrix

µλ̂,y =

[
µλ

α0 + α1µλ

]
, Σλ̂,y =

[
σ2
λ + σ2/T γ1

(
σ2
y|λ + α2

1σ
2
λ

)
γ1

(
σ2
y|λ + α2

1σ
2
λ

)
σ2
y|λ + α2

1σ
2
λ

]
. (A.34)

It can be verified that the covariance matrix is always positive definite. The variances of λ̂

and y0 are strictly greater than some δ > 0 and the two random variables are never perfectly

correlated because λ̂ = λ + (
∑T

t=1 ut)/T . Moreover, the covariance matrix can be bounded

from above. By combining (A.33) and (A.34) we can deduce that the posterior mean has a

Gaussian sampling distribution and we can use standard moment and tail bounds to establish

the validity of the assumption. Calculations under the p∗(·) distributions are very similar.

Part (ii): we verify that our assumptions hold uniformly for the finite mixtures of multi-

variate normal distributions πmix ∈ Π
(K)
mix.

Assumption 3.2. Consider the marginal density of λ given by πmix(λ) =
∑K

k=1 ωkπk(λ).

Thus, for any non-negative integrable function h(·) we can use the crude bound

∫
h(λ)πmix(λ)dλ ≤

K∑
k=1

∫
h(λ)πk(λ)dλ.

In turn, uniform tail probability and moment bounds for the mixture components translate

into uniform bounds for πmix(·).

Assumption 3.4 The key insight is that we can express

πmix(y|λ) =

∑K
k=1 ωkπk(λ, y)∑K
k=1 ωkπk(λ)

=
K∑
k=1

(
ωkπk(λ)∑K
k=1 ωkπk(λ)

)
πk(λ, y)

πk(λ)
≤

K∑
k=1

πk(y|λ).

This allows us to directly translate bounds for the mixture components πk(y|λ) ∈ Πy|λ into

results for πmix(y|λ). Using a similar argument, we can also deduce that

sup
πmix∈Π

(K)
mix

sup
|y|≤C′N ,|λ|<CN

∣∣∣∣∣∣
∫

1
BN
φ
(
ỹ−y
BN

) [
πmix(ỹ|λ)− πmix(y|λ)

]
dỹ

πmix(y|λ)

∣∣∣∣∣∣
≤

K∑
k=1

sup
πk∈Πk

sup
|y|≤C′N ,|λ|<CN

∣∣∣∣∣∣
∫

1
BN
φ
(
ỹ−y
BN

) [
πk(ỹ|λ)− πk(y|λ)

]
dỹ

πk(y|λ)

∣∣∣∣∣∣
= o(1).
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Assumption 3.5. The prior distribution of λ given y is a mixture of normals with weights

that are a function of y:

πmix(λ|y) =
K∑
k=1

(
ωkπk(y)∑K
k=1 ωkπk(y)

)
πk(λ, y)

πk(y)
=

K∑
k=1

ωk(y)πk(λ|y). (A.35)

Because λ̂|λ ∼ N(λ, σ2/T ), the posterior mean function is given by

m(λ̂, y; πmix) (A.36)

=
K∑
k=1

(
ωk(y)

∫
πk(λ|y)φN(λ̂;λ, σ2/T )dλ∑K

k=1 ωk(y)
∫
πk(λ|y)φN(λ̂;λ, σ2/T )dλ

) ∫
λπk(λ|y)φN(λ̂;λ, σ2/T )dλ∫
πk(λ|y)φN(λ̂;λ, σ2/T )dλ

=
K∑
k=1

ω̄k(λ̂, y)m(λ̂, y; πk).

Thus, the posterior mean is a weighted average of the posterior means derived from the K

mixture components. The ω̄(λ̂, y) can be interpreted as posterior probabilities of the mixture

components. We can bound the posterior mean as follows:

∣∣m(λ̂, y; πmix)
∣∣ ≤ K∑

k=1

∣∣m(λ̂, y; πk)
∣∣ =

K∑
k=1

∣∣γ̄0,k + γ̄1,ky+ γ̄2,kλ̂
∣∣ ≤M0 +My|y|+Mλ̂|λ̂|, (A.37)

where the γ̄ coefficients were defined in (A.33) and are bounded for πk ∈ Π. Thus, that

the overall bound for
∣∣m(λ̂, y; πmix)

∣∣ is piecewise linear in y and λ̂. The joint sampling

distribution of (λ̂, y) is given by the following mixture of normals:

p(λ̂, y; πmix) =

∫
p(λ̂|λ)

K∑
k=1

ωkπk(λ, y)dλ =
K∑
k=1

ωkp(λ̂, y; πk). (A.38)

Based on (A.37) and (A.38) one can establish the uniform tailbounds in the assumption.

Calculations under the p∗(·) distributions are very similar. �
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B Monte Carlo Experiments

B.1 Data Generating Processes

Monte Carlo Design 2:

• Law of Motion: Yit = λi + ρYit−1 + Uit where Uit ∼ iidN(0, γ2); ρ = 0.8, γ = 1.

• Initial Observation: Yi0 ∼ N
(
µ
λ

1−ρ , VY +
V λ

(1−ρ)2

)
, VY = γ2/(1− ρ2); µ

λ
= 1, V λ = 1.

• Correlated Random Effects, δ ∈ {0.05, 0.1, 0.3}:

λi|Yi0 ∼

{
N
(
φ+(Yi0),Ω

)
with probability pλ

N
(
φ−(Yi0),Ω

)
with probability 1− pλ

,
φ+(Yi0) = φ0 + δ + (φ1 + δ)Yi0

φ−(Yi0) = φ0 − δ + (φ1 − δ)Yi0

Ω =

[
1

(1− ρ)2
V −1
Y + V −1

λ

]−1

, φ0 = ΩV −1
λ µ

λ
, φ1 =

1

1− ρ
ΩV −1

Y , pλ = 1/2

• Sample Size: N = 1, 000, T = 4.

• Number of Monte Carlo Repetitions: Nsim = 1, 000

Monte Carlo Design 3:

• Law of Motion: Yit = λi + ρYit−1 + Uit, ρ = 0.8, E[Uit] = 0, V[Uit] = 1

• Scale Mixture:

Uit ∼ iid

{
N(0, γ2

+) with probability pu

N(0, γ2
−) with probability 1− pu

,

where γ2
+ = 4, γ2

− = 1/4, and pu = (1− γ2
−)/(γ2

+ − γ2
−) = 1/5.

• Location Mixture:

Uit ∼ iid

{
N(µ+, γ

2) with probability pu

N(µ−, γ
2) with probability 1− pu

,

where µ− = −1/4, µ+ = 2, pu = |µ−|
/

(|µ−| + µ+
u ) = 1/9, and γ2 = 1 − puµ2

+ − (1 −
pu)µ

2
− = 1/2.
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• Correlated Random Effects, Initial Observations: same as Design 2 with δ = 0.1.

• Sample Size: N = 1, 000, T = 4.

• Number of Monte Carlo Repetitions: Nsim = 1, 000.

B.2 Consistency of QMLE in Monte Carlo Designs 2 and 3

We show for the basic dynamic panel data model that even if the Gaussian correlated ran-

dom effects distribution is misspecified, the pseudo-true value of the QMLE estimator of θ

corresponds to the “true” θ0. We do so, by calculating

(θ∗, ξ∗) = argmaxθ,ξ EYθ0 [ln p(Y,X2|H, θ, ξ)] , (A.39)

and verifying that θ∗ = θ0. Because the observations are conditionally independent across i

and the likelihood function is symmetric with respect to i, we can drop the i subscripts.

We make some adjustment to the notation. The covariance matrix Σ only depends on

γ, but not on (ρ, α). Moreover, we will split ξ into the parameters that characterize the

conditional mean of λ, denoted by Φ, and ω, which are the non-redundant elements of the

prior covariance matrix Ω. Finally, we define

Ỹ (θ1) = Y −Xρ− Zα

with the understanding that θ1 = (ρ, α) and excludes γ. Moreover, let φ = vec(Φ′) and

h̃′ = I ⊗ h′, such that we can write Φh = h̃′φ. Using this notation, we can write

ln p(y, x2|h, θ1, γ, φ, ω) (A.40)

= C − 1

2
ln |Σ(γ)| − 1

2

(
ỹ(θ1)− wλ̂(θ)

)′
Σ−1(γ)

(
ỹ(θ1)− wλ̂(θ)

)
−1

2
ln
∣∣Ω∣∣+

1

2
ln
∣∣Ω̄(γ, ω)

∣∣
−1

2

(
λ̂(θ)′w′Σ−1(γ)wλ̂(θ) + φ′h̃Ω−1h̃′φ− λ̄′(θ, ξ)Ω̄−1(γ, ω)λ̄(θ, ξ)

)
,

where

λ̂(θ) = (w′Σ−1(γ)w)−1w′Σ−1(γ)ỹ(θ1)

Ω̄−1(γ, ω) = Ω−1 + w′Σ−1(γ)w, λ̄(θ, ξ) = Ω̄(γ, ω)
(
Ω−1h̃′φ+ w′Σ−1(γ)wλ̂(θ)

)
.
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In the basic dynamic panel data model λ is scalar, w = ι, Σ(γ) = γ2I, x2 = ∅, z = ∅,
h = [1, y0]′, Ω = ω2. Thus, splitting the (T − 1)(ln γ2)/2, we can write

ln p(y|h, ρ, γ, φ, ω) = C − T − 1

2
ln |γ2| − 1

2γ2

(
ỹ(ρ)− ιλ̂(ρ)

)′(
ỹ(ρ)− ιλ̂(ρ)

)
−1

2
ln
∣∣ω2
∣∣− 1

2
ln
∣∣γ2/T

∣∣+
1

2
ln(1/T ) +

1

2
ln
∣∣Ω̄(γ, ω)

∣∣
−1

2

(
T

γ2
λ̂2(ρ) +

1

ω2
φ′h̃h̃′φ− 1

Ω̄(γ, ω)
λ̄2(θ, ξ)

)
,

where

λ̂(ρ) =
1

T
ι′ỹ(ρ)

Ω̄−1(γ, ω) =
1

ω2
+

1

γ2/T
, λ̄(θ, ξ) = Ω̄(γ, ω)

(
1

ω2
h̃′φ+

T

γ2
λ̂(ρ)

)
.

Note that

−1

2
ln
∣∣ω2
∣∣+

1

2
ln
∣∣T/γ2

∣∣+
1

2
ln
∣∣Ω̄(γ, ω)

∣∣ =
1

2
ln

∣∣∣∣∣
1
ω2

T
γ2

1
ω2 + T

γ2

∣∣∣∣∣ = −1

2
ln
∣∣ω2 + γ2/T

∣∣.
In turn, we can write

ln p(y|h, ρ, γ, φ, ω)

= C − T − 1

2
ln |γ2| − 1

2γ2
ỹ(ρ)′(I − ιι′/T )ỹ(ρ)− 1

2
ln
∣∣ω2 + γ2/T

∣∣
−1

2

(
T

γ2
λ̂2(ρ) +

1

ω2
φ′h̃h̃′φ− ω2γ2/T

ω2 + γ2/T

(
1

ω2
h̃′φ+

T

γ2
λ̂(ρ)

)2)
= C − T − 1

2
ln |γ2| − 1

2γ2
ỹ(ρ)′(I − ιι′/T )ỹ(ρ)− 1

2
ln
∣∣ω2 + γ2/T

∣∣
− 1

2(ω2 + γ2/T )

(
φ′h̃h̃′φ− 2λ̂(ρ)h̃′φ+ λ̂2(ρ)

)
.
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Taking expectations (we omit the subscripts from the expectation operator), we can write

E
[

ln p(Y |H, ρ, γ, φ, ω)
]

(A.41)

= C − T − 1

2
ln |γ2| − 1

2γ2
E
[
Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]
− 1

2
ln
∣∣ω2 + γ2/T

∣∣
− 1

2(ω2 + γ2/T )

((
φ−

(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]
)′E[H̃H̃ ′]

(
φ−

(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]
)

−E[λ̂(ρ)H̃ ′]
(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)] + E[λ̂2(ρ)]

)
.

We deduce that

φ∗(ρ) =
(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]. (A.42)

To evaluate φ∗(ρ0), note that λ̂(ρ0) = λ+ ι′u/T . Using that fact that the initial observation

Yi0 is uncorrelated with the shocks Uit, t ≥ 1, we deduce that E[H̃λ̂(ρ0)] = E[H̃λ]. Thus,

φ∗(ρ0) =
(
E[H̃H̃ ′]

)−1E[H̃λ]. (A.43)

The pseudo-true value is obtained through a population regression of λ on H.

Plugging the pseudo-true value for φ into (A.41) yields the concentrated objective func-

tion

E
[

ln p(Y |H, ρ, γ, φ∗(ρ), ω)
]

(A.44)

= C − T − 1

2
ln |γ2| − 1

2γ2
E
[
Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]
−1

2
ln
∣∣ω2 + γ2/T

∣∣− 1

2(ω2 + γ2/T )

(
E[λ̂2(ρ)]− E[λ̂(ρ)H̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]
)
.

Using well-known results for the maximum likelihood estimator of a variance parameter in

a Gaussian regression model, we can immediately deduce that

γ2
∗(ρ) =

1

T − 1
E
[
Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]
(A.45)

ω2
∗(ρ) + γ2

∗(ρ)/T =
(
E[λ̂2(ρ)]− E[λ̂(ρ)H̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]
)
.

At ρ = ρ0 we obtain Ỹ (ρ0) = ιλ+u. Thus, E[λ̂2(ρ0)] = γ2
0/T+E[λ2] and E[H̃λ̂(ρ0)] = E[H̃λ].

In turn,

γ2
∗(ρ0) = γ2

0 , ω2
∗(ρ0) = E[λ2]− E[λH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]. (A.46)
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Given ρ = ρ0 the pseudo-true value for γ2 is the “true” γ2
0 and the pseudo-true variance

of the correlated random-effects distribution is given by the expected value of the squared

residual from a projection of λ onto H.

Using (A.45), we can now concentrate out γ2 and ω2 from the objective function (A.44):

E
[

ln p(Y |H, ρ, γ∗(ρ), φ∗(ρ), ω∗(ρ)
]

(A.47)

= C − T − 1

2
ln
∣∣E[Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]∣∣
−1

2
ln
∣∣E[Ỹ ′(ρ)ιι′Ỹ (ρ)]− E[Ỹ ′(ρ)ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ)]
∣∣.

To find the maximum of E
[

ln p(Y |H, ρ, γ∗(ρ), φ∗(ρ), ω∗(ρ)
]

with respect to ρ we will calculate

the first-order condition. Differentiating (A.47) with respect to ρ yields

F.O.C.(ρ) = (T − 1)
E
[
X ′(I − ιι′/T )Ỹ (ρ)

]
E
[
Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]
+

E[X ′ιι′Ỹ (ρ)]− E[X ′ιH̃ ′]
(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ)]

E[Ỹ ′(ρ)ιι′Ỹ (ρ)]− E[Ỹ ′(ρ)ιH̃ ′]
(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ)]
.

We will now verify that F.O.C.(ρ0) = 0. Because both denominators are strictly positive,

we can rewrite the condition as

F.O.C.(ρ0) = (T − 1)E
[
X ′(I − ιι′/T )Ỹ (ρ0)

]
(A.48)

×
(
E[Ỹ ′(ρ0)ιι′Ỹ (ρ0)]− E[Ỹ ′(ρ0)ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ0)]

)
+E
[
Ỹ (ρ0)′(I − ιι′/T )Ỹ (ρ0)

]
×
(
E[X ′ιι′Ỹ (ρ0)]− E[X ′ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ0)]

)
.

Using again the fact that Ỹ (ρ0) = ιλ + U , we can rewrite the terms appearing in the first-

order condition as follows:

E
[
X ′(I − ιι′/T )Ỹ (ρ0)

]
= E

[
X ′(I − ιι′/T )u

]
= E[X ′u]− E[X ′ιι′u]/T = −E[X ′ιι′u]/T

E[Ỹ ′(ρ0)ιι′Ỹ (ρ)] = E
[
(λι′ + u′)ιι′(ιλ+ u)

]
= T 2E[λ2] + E[u′ιι′u] = T 2E[λ2] + Tγ2

0

E[H̃ι′Ỹ (ρ0)] = E[H̃ι′(ιλ+ u)] = TE[H̃λ]

E
[
Ỹ (ρ0)′(I − ιι′/T )Ỹ (ρ0)

]
= E

[
u′(I − ιι′/T )u

]
= (T − 1)γ2

E[X ′ιι′Ỹ (ρ0)] = E[X ′ιι′(ιλ+ u)] = TE[X ′ιλ] + E[X ′ιι′u].
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For the first equality we used the fact that Xit = Yit−1 is uncorrelated with Uit. We can now

re-state the first-order condition (A.48) as follows:

F.O.C.(ρ0) (A.49)

= −(T − 1)
(
E[X ′ιι′u]

)(
γ2

0 + T
(
E[λ2]− E[λH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]
))

+

(
E[X ′ιι′u] + T

(
E[X ′ιλ]− E[X ′ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]
))

(T − 1)γ2
0

= T (T − 1)

[
γ2

0

(
E[X ′ιλ]− E[X ′ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]

)
−E[X ′ιι′u]

(
E[λ2]− E[λH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]

)]
.

We now have to analyze the terms involving X ′ι. Note that we can express

Yt = ρt0Y0 +
t−1∑
τ=0

ρτ0(λ+ Ut−τ ).

Define at =
∑t−1

τ=0 ρ
τ
0 and b =

∑T−1
t=1 at. Thus, we can write

Yt = ρt0Y0 + λat +
t−1∑
τ=0

ρτ0Ut−τ , t > 0.

Consequently,

X ′ι =
T−1∑
t=0

Yt = Y0

(
T−1∑
t=0

ρt0

)
+ λ

(
T−1∑
t=1

at

)
+

T−1∑
t=1

t−1∑
τ=0

ρτ0Ut−τ = aTy0 + bλ+
T−1∑
t=1

atUT−t.

Thus, we obtain

E[X ′ιι′u] = E

[(
aTY0 + bλ+

T−1∑
t=1

atUT−t

)(
T∑
t=1

Ut

)]
= bγ2

0

E[X ′ιλ] = E

[(
aTY0 + bλ+

T−1∑
t=1

atUT−t

)
λ

]
= aTE[Y0λ] + bE[λ2]

E[X ′ιH̃ ′] = E

[(
aTY0 + bλ+

T−1∑
t=1

atUT−t

)
H̃ ′

]
= aTE[Y0H̃

′] + bE[λH̃ ′].

Using these expressions, most terms that appear in (A.49) cancel out and the condition
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simplifies to

F.O.C.(ρ0) = T (T − 1)γ0aT

(
E[Y0λ]− E[Y0H̃

′]
(
E[H̃H̃ ′]

)−1E[H̃λ]

)
. (A.50)

Now consider

E[Y0H̃
′]
(
E[H̃H̃ ′]

)−1E[H̃λ]

=
1

E[Y 2
0 ]− (E[Y0])

[
E[Y0] E[Y 2

0 ]
] [ E[Y 2

0 ] −E[Y0]

−E[Y0] 1

][
E[Y0]

E[Y 2
0 ]

]
= E[Y0λ].

Thus, we obtain the desired result that F.O.C.(ρ0) = 0. To summarize, the pseudo-true

values are given by

ρ∗ = ρ0, γ2
∗ = γ0, φ∗ =

(
E[H̃H̃ ′]

)−1E[H̃λ], (A.51)

ω2
∗ = E[λ2]− E[λH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]. �

B.3 Computation of the Oracle Predictor in Design 3

We are using a Gibbs sampler to compute the oracle predictor under the mixture distributions

for both λi and Uit.

Here we combine the scale mixture and the location mixture in a unified framework. Let

ait = 1 if Uit is generated from the mixture component with mean µ+ and variance γ2
+, and

ait = 0 if Uit is generated from the mixture component with mean µ− variance γ2
−. Then,

µ+ = µ− = 0 for the scale mixture, and γ2
+ = γ2

− = γ2 for the location mixture. Also, let bi

be an indicator of the components in the correlated random effects distribution, such that

φ(Yi0, bi) =

{
φ+(Yi0), if bi = 1,

φ−(Yi0), if bi = 0.

Omitting i subscripts from now on, define

Ỹt = Yt − ρYt−1 − (atµ+ + (1− at)µ−), γ2(at) = atγ
2
+ + (1− at)γ2

−,
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so we have

Ỹt(at)|(λ, at) ∼ N
(
λ, γ2(at)

)
.

Conditional on b, the prior distribution is

λ|(Y0, b) ∼ N(φ(Y0, b),Ω),

and we obtain a posterior distribution of the form

λ|(Y0:T , a1:T , b) ∼ N
(
λ̄(a1:T , b), Ω̄(a1:T )

)
, (A.52)

where

Ω̄(a1:T ) =
(
Ω−1 +

T∑
t=1

(γ2(at))
−1
)−1

λ̄(a1:T , b) = Ω̄(a1:T )
(
Ω−1φ(Y0, b) +

T∑
t=1

(γ2(at))
−1Ỹt(at)

)
.

The posterior probability of at = 1 conditional on (λ, Y0:T ) is given by

P
(
at = 1|λ, Y0:T ) (A.53)

=
pu(γ+)−1 exp

{
− 1

2γ2+
(Ỹt(1)− λ)2

}
pu(γ+)−1 exp

{
− 1

2γ2+
(Ỹt(1)− λ)2

}
+ (1− pu)(γ−)−1 exp

{
− 1

2γ2−
(Ỹt(0)− λ)2

} ,
And the posterior probability of b = 1 conditional on (λ, Y0:T , a1:T ) is given by

P
(
b = 1|λ, Y0:T , a1:T ) (A.54)

=
pλ exp

{
−1

2

∑T
t=1

(Ỹt(at)−φ+(Y0))2

Ω+γ2(at)

}
pλ exp

{
−1

2

∑T
t=1

(Ỹt(at)−φ+(Y0))2

Ω+γ2(at)

}
+ (1− pλ) exp

{
−1

2

∑T
t=1

(Ỹt(at)−φ−(Y0))2

Ω+γ2(at)

} .
The posterior mean E[λ|Y0:T ] can be approximated with the following Gibbs sampler.

Generate a sequence of draws {λs, as1:T , b
s}Nsims=1 by iterating over the conditional distributions
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given in (A.52), (A.53), and (A.54). Denote p̄(a1:T , b) = P
(
b|λ, Y0:T , a1:T ), then,

Ê[λ|Y0:T ] =
1

Nsim

Nsim∑
s=1

1∑
b=0

p̄(as1:T , b)λ̄(as1:T , b), (A.55)

V̂[λ|Y0:T ] =
1

Nsim

Nsim∑
s=1

(
Ω̄(as1:T ) +

1∑
b=0

p̄(as1:T , b)λ̄
2(as1:T , b)

)
−
(
Ê[λ|Y0:T ]

)2

.
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C Data Set

The construction of our data is based on Covas, Rump, and Zakrajsek (2014). We down-

loaded FR Y-9C BHC financial statements for the quarters 2002Q1 to 2014Q4 using the

web portal of the Federal Reserve Bank of Chicago. We define PPNR (relative to assets) as

follows

PPNR = 400
(
NII + ONII−ONIE

)
/ASSETS,

where

NII = Net Interest Income BHCK 4074

ONII = Total Non-Interest Income BHCK 4079

ONIE = Total Non-Interest Expenses BHCK 4093 - C216 - C232

ASSETS = Consolidated Assets BHCK 3368

Here net interest income is the difference between total interest income and expenses. It

excludes provisions for loan and lease losses. Non-interest income includes various types of

fees, trading revenue, as well as net gains on asset sales. Non-interest expenses include, for

instance, salaries and employee benefits and expenses of premises and fixed assets. As in

Covas, Rump, and Zakrajsek (2014), we exclude impairment losses (C216 and C232). We

divide the net revenues by the amount of consolidated assets. This ratio is multiplied by 400

to annualize the flow variables and convert the ratio into percentages.

The raw data take the form of an unbalanced panel of BHCs. The appearance and

disappearance of specific institutions in the data set is affected by entry and exit, mergers

and acquisitions, as well as changes in reporting requirements for the FR Y-9C form. Note

that NII, ONII, and ONIE are reported as year-to-date values. Thus, in order to obtain

quarterly data, we take differences: Q1 7→ Q1, (Q2 − Q1) 7→ Q2, (Q3 − Q2) 7→ Q3, and

(Q4−Q3) 7→ Q4. ASSETS is a stock variable and no further transformation is needed.

Our goal is to construct rolling samples that consist of T + 2 observations, where T is

the size of the estimation sample and varies between T = 3 and T = 11. The additional

two observations in each rolling sample are used, respectively, to initialize the lag in the first

period of the estimation sample and to compute the error of the one-step-ahead forecast. We

index each rolling sample by the forecast origin t = τ . For instance, taking the time period t

to be a quarter, with data from 2002Q1 to 2014Q4 we can construct M = 45 samples of size

T = 6 with forecast origins running from τ = 2003Q3 to τ = 2014Q3. Each rolling sample is
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indexed by the pair (τ, T ). The following adjustment procedure that eliminates BHCs with

missing observations and outliers is applied to each rolling sample (τ, T ) separately:

1. Eliminate BCHs for which total assets are missing for all time periods in the sample.

2. Compute average non-missing total assets and eliminate BCHs with average assets

below 500 million dollars.

3. Eliminate BCHs for which one or more PPNR components are missing for at least one

period of the sample.

4. Eliminate BCHs for which the absolute difference between the temporal mean and the

temporal median exceeds 10.

5. Define deviations from temporal means as δit = yit − ȳi. Pooling the δit’s across insti-

tutions and time periods, compute the median q0.5 and the 0.025 and 0.975 quantiles,

q0.025 and q0.975. We delete institutions for which at least one δit falls outside of the

range q0.5 ± (q0.975 − q0.025).

The effect of the sample-adjustment procedure on the size of the rolling samples is sum-

marized in Table A-1. Here we are focusing on samples with T = 6 as in the main text.

The column labeled N0 provides the number of raw data for each sample. In columns Nj,

j = 1, . . . , 4, we report the observations remaining after adjustment j. Finally, N is the

number of observations after the fifth adjustment. This is the relevant sample size for the

subsequent empirical analysis. For many BCHs we do not have information on the consoli-

dated assets, which leads to reduction of the sample size by 60% to 80%. Once we restrict

average consolidated assets to be above 500 million dollars, the sample size shrinks to ap-

proximately 700 to 1,200 institutions. Roughly 10% to 25% of these institutions have missing

observations for PPNR components, which leads to N3. The outlier elimination in Steps 4.

and 5. have a relatively small effect on the sample size.

Descriptive statistics for the T = 6 rolling samples are reported in Table A-2. For each

rolling sample we pool observations across institutions and time periods. We do not weight

the observations by the size of the institution. Notice that the mean PPNR falls from

about 2% for the 2003 samples to 1.24% for the 2010Q2 sample, which includes observations

starting in 2008Q4. Then, the mean slightly increases and levels off at around 1.3%. The

means are close to the medians, suggesting that the samples are not very skewed, which is
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confirmed by the skewness measures reported in the second to last column. The samples

also exhibit fat tails. The kurtosis statistics range from 4 to 190.
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Table A-1: Size of Adjusted Rolling Samples (T = 6)

Sample Adjustment Step
τ N0 N1 N2 N3 N4 N
2003Q3 6176 2258 710 653 653 614
2003Q4 6177 2289 730 658 658 618
2004Q1 6142 2351 744 660 660 622
2004Q2 6089 2375 754 657 657 613
2004Q3 6093 2416 778 669 668 624
2004Q4 6090 2448 787 668 667 621
2005Q1 6101 2486 797 680 679 629
2005Q2 6077 2489 809 695 694 644
2005Q3 6083 2473 826 718 717 660
2005Q4 6050 2451 828 728 727 658
2006Q1 6054 2425 834 715 715 664
2006Q2 6024 2403 849 734 734 685
2006Q3 6053 2376 858 747 747 697
2006Q4 6038 2367 880 757 757 711
2007Q1 6075 2355 905 772 772 727
2007Q2 6044 2337 929 777 777 732
2007Q3 6054 1101 941 773 773 712
2007Q4 6038 1061 919 769 769 710
2008Q1 6014 1081 945 770 770 713
2008Q2 5997 1070 942 775 775 722
2008Q3 5953 1062 949 784 784 731
2008Q4 5947 1058 949 792 792 741
2009Q1 5904 1113 1006 795 795 744
2009Q2 5878 1104 996 795 795 745
2009Q3 5805 1087 986 799 799 749
2009Q4 5793 1081 977 809 808 754
2010Q1 5709 1124 1015 800 799 744
2010Q2 5700 1116 1005 800 799 738
2010Q3 5665 1105 997 795 794 727
2010Q4 5652 1105 996 844 843 780
2011Q1 5586 1131 1027 838 837 773
2011Q2 5566 1129 1027 836 836 777
2011Q3 5483 1119 1018 833 833 770
2011Q4 5636 1115 1011 864 864 797
2012Q1 5876 1259 1154 863 863 794
2012Q2 5847 1240 1140 858 858 792
2012Q3 5809 1226 1135 849 849 789
2012Q4 5793 1216 1124 878 878 811
2013Q1 5749 1246 1157 875 875 808
2013Q2 5739 1245 1153 874 874 806
2013Q3 5699 1230 1142 874 874 805
2013Q4 5695 1233 1143 997 995 920
2014Q1 5603 1253 1162 979 977 899
2014Q2 5572 1237 1143 973 972 897
2014Q3 5514 1231 1140 966 965 898
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Table A-2: Descriptive Statistics for Rolling Samples (T = 6)

Sample Statistics
τ Min Mean Median Max StdD Skew Kurt
2003Q3 2.04 -2.10 2.00 12.01 0.90 3.00 29.46
2003Q4 2.02 -1.43 1.98 11.18 0.87 2.75 25.03
2004Q1 1.99 -2.10 1.95 11.18 0.91 3.13 29.90
2004Q2 1.96 -0.98 1.92 11.18 0.83 2.76 27.24
2004Q3 1.92 -0.98 1.89 10.80 0.76 2.06 22.28
2004Q4 1.90 -0.83 1.88 6.06 0.69 0.52 4.85
2005Q1 1.89 -0.73 1.87 6.01 0.70 0.62 4.94
2005Q2 1.90 -0.73 1.87 5.76 0.70 0.61 4.74
2005Q3 1.91 -0.60 1.87 9.99 0.74 1.56 13.97
2005Q4 1.88 -0.60 1.85 5.30 0.70 0.46 4.13
2006Q1 1.87 -0.60 1.84 5.30 0.69 0.50 4.09
2006Q2 1.86 -0.89 1.82 5.30 0.71 0.50 4.09
2006Q3 1.83 -2.05 1.80 5.30 0.74 0.30 4.58
2006Q4 1.81 -2.05 1.77 5.30 0.75 0.32 4.45
2007Q1 1.78 -2.19 1.73 5.30 0.76 0.30 4.46
2007Q2 1.75 -2.36 1.70 5.68 0.77 0.32 4.97
2007Q3 1.71 -1.67 1.67 5.68 0.75 0.40 4.94
2007Q4 1.67 -1.67 1.63 6.00 0.75 0.50 5.33
2008Q1 1.64 -2.20 1.59 15.92 0.88 4.21 61.22
2008Q2 1.59 -2.20 1.56 15.92 0.88 4.23 63.45
2008Q3 1.52 -2.61 1.51 15.92 0.90 3.69 57.87
2008Q4 1.46 -3.56 1.47 15.70 0.90 3.12 50.67
2009Q1 1.39 -2.61 1.42 6.53 0.81 -0.13 6.22
2009Q2 1.33 -2.61 1.37 6.53 0.83 -0.23 6.33
2009Q3 1.29 -4.10 1.35 7.53 0.89 -0.46 7.09
2009Q4 1.27 -4.10 1.33 7.53 0.87 -0.45 6.93
2010Q1 1.26 -3.59 1.32 7.53 0.86 -0.41 6.92
2010Q2 1.24 -3.59 1.30 5.83 0.85 -0.68 5.97
2010Q3 1.26 -3.54 1.32 5.83 0.85 -0.56 5.70
2010Q4 1.27 -3.78 1.32 7.29 0.88 -0.26 6.51
2011Q1 1.29 -3.32 1.34 7.29 0.87 -0.27 6.58
2011Q2 1.31 -3.32 1.36 8.65 0.90 0.10 8.05
2011Q3 1.31 -2.83 1.36 8.65 0.91 0.38 9.20
2011Q4 1.32 -2.83 1.36 7.98 0.88 0.26 8.57
2012Q1 1.31 -2.80 1.36 7.98 0.87 0.22 8.48
2012Q2 1.30 -2.87 1.35 7.98 0.88 0.24 8.46
2012Q3 1.32 -3.03 1.35 7.98 0.90 0.47 9.09
2012Q4 1.32 -3.03 1.35 7.98 0.89 0.49 9.36
2013Q1 1.33 -3.03 1.35 7.98 0.86 0.51 9.31
2013Q2 1.36 -2.87 1.34 22.32 1.07 7.15 125.30
2013Q3 1.32 -2.78 1.32 6.89 0.82 0.71 9.54
2013Q4 1.32 -2.78 1.29 22.32 1.03 7.39 133.39
2014Q1 1.31 -2.78 1.28 22.32 1.01 8.43 160.34
2014Q2 1.29 -2.78 1.28 7.75 0.79 1.38 13.12
2014Q3 1.33 -2.78 1.28 24.49 1.08 9.82 191.05

Notes: The descriptive statistics are computed for samples in which we pool observations across institutions
and time periods. We did not weight the statistics by size of the institution.


