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1 Introduction

We realized the existence of a coding mistake in Del Negro et al. (2016). The mistake was
not in the code for the “dynamic pools”, but rather in one of the primitives: the predictive
densities for the so-called SWπ model. While the model was estimated correctly, two of
the observables were swapped in the computation of the predictive densities. This mistake
penalized the predictive ability of the SWπ model relative to its alternative, the SWFF
model, and has implications for many of the results shown in the paper. In particular, as
discussed in the next section, the dynamic pools weight posterior distribution is substantially
more skewed toward the SWπ model before the Great Recession.

Nonetheless, the broad message of Del Negro et al. (2016) holds: dynamic pools is an
attractive alternative for combining density forecasts relative to Bayesian Model Averaging
and Static Pools (Geweke and Amisano (2011), Hall and Mitchell (2007)).

2 Replication Figures

Below we plot the main figures in Del Negro et al. (2016). For each pair of plots, the left
column replicates the paper’s results, which are obtained using the wrong predictive densities,
while the right column shows the results obtained from the correct predictive densities. Refer
to the original paper for definitions of the notation and objects.
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Figure 1 depicts the log scores p(yt+h,h|I m
t+ ,Mm) (semi-conditional forecasts) for the

predictions of four-quarter-ahead (h = 4) average output growth and inflation for the SWπ
(blue) and the SWFF (red) model. The forecast origins range from 1992:Q1 to 2011:Q2.
These scores are subsequently used as the inputs for the density combination.

(a) Replication (b) Corrected

Figure 1: Log scores comparisons of SWFF with SWπ

Comparing the replication with the correction, the salient difference is the improved log
scores of the SWπ model. While the relative performance of SWFF model still improves
during periods of financial turmoil, the SWπ model does not do as poorly, particularly
during the early-200-s dot-com bust. As we shall see, this difference will change the real-
time behavior of the dynamic prediction pool.

Figure 2 shows the weight on the SWFF model in forecast pools over the period 1992:Q1-
2011:Q2 obtained from the proposed dynamic pooling technique (λ̂DP

t|t –black) as well as the

static pool (λ̂MSP
t –purple) with weights estimated by maximum likelihood, and BMA (λ̂BMA

t -
green). All of the weights and the hyperparameter estimates for the DP are computed in
real time, based on information that would have been available to the policymaker at the
time of the combination of the model forecasts.

Because the SWπ model performs better in the corrected densities, the static pool and
BMA weights no longer rise toward 1 starting around 2001:Q3. Instead, they remain close
to zero even several quarters after the financial crisis. In contrast, while the dynamic pool
does place greater weight on the SWπ model in the early 2000s compared to the replication
results, the dynamic pool weights quickly rise to similar magnitudes as the replication when
the Great Recession occurs.

Figures 3 and 4 show the posterior distributions p
(h)
DP (λt|I P

t ,P) and p
(h)
BSP (λ|I P

t ,P),
respectively. Since the SWπ model performs better on the corrected density, the mode of
the dynamic pool posterior distribution p

(h)
DP (λt|I P

t ,P) stays much closer to λ = 0 until
the end of the data sample when the Great Recession occurs.

The change in the posterior distribution of the static pool is more pronounced. Because
the SWFF and SWπ log scores from using the incorrect predictive densities alternated in
relative performance much more frequently, the static pool’s mode switches between λ = 0
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(a) Replication (b) Corrected

Figure 2: Weight on SWFF in real time: Dynamic pool (DP, Prior 1), BMA, and maximum
likelihood static pool (MSP)

(a) Replication (b) Corrected

Figure 3: p
(h)
DP (λt|IP

t ,P) (using Prior 1)

and λ = 1 in the same way that the dynamic pool did. However, according to the corrected
predictive densities, the SWπ log scores are as good or better than the SWFF log scores
before the Great Recession. Due to this change, the static pool places almost all its weight
at λ = 0 for the majority of the data sample. It barely reacts to the Great Recession precisely
because it estimates λ as static.

Figures 5, 6, and 7 display the end-of-sample (t = T ) hyperparameter posterior distribu-
tions. Figure 5 shows the posterior p(h)(ρ|I P

T ,P) (histogram) using the following prior:

Hyperparameter Prior 1: ρ ∼ U [0, 1], µ = 0, σ2 = 1.

The corrected posterior has slightly more mass for low ρ, but the overall distribution does
not change much.

Posterior distributions for σ2 and Φ(µ)x are depicted in Figures 6 and 7, respectively.
These results are based on the following prior distribution:

Hyperparameter Prior 2: ρ ∼ B(0.8, 0.1), µ ∼ N (0,Φ−1(0.75)), σ2 ∼ I G (1, 4).
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(a) Replication (b) Corrected

Figure 4: p
(h)
BSP (λt|IP

t ,P)

(a) Replication (b) Corrected

Figure 5: Posterior distribution of ρ using Prior 1 (ρ ∼ U [0, 1])

Relative to the inverse Gamma prior distribution for σ2 (not plotted here) the posterior mass
is shifted toward the right and is greater than one with very high probability. Recall that
for values of σ2 > 1 the prior distribution of is U-shaped, which tends to shift the posterior
mean of toward one of the endpoints (λ = 0 or λ = 1). Thus, the estimation results indicate
that the data favor a parameterization in which the posterior mean is more sensitive to the
arrival of new information.

Note that the prior on σ2 is different from the one reported in the paper (I G (2, 1))
because the reported prior is a typo. The true prior used in the code is the prior stated
above. The posterior distribution for σ2 does not change much after using the corrected
densities. High values of σ2 have slightly less mass and a greater concentration around low
σ2. Intuitively, the estimation results indicate that the corrected data favor a parametrization
in which the posterior mean is a little more sensitive to the arrival of new information.

The hyperparameter µ determines the location of the seesaw fulcrum, which corresponds
to equal weights on both models if µ = 0. Unlike in Figures 5 and 6, the posterior distribution
of µ depicted in Figure 7 changes substantially. With the incorrect densities, the distribution
skewed left, and the mode occured around µ = 0.7. With the corrected densities, the



5

(a) Replication (b) Corrected

Figure 6: Posterior distribution of σ2 using Prior 2 (ρ ∼ B(0.8, 0.1), µ ∼ N (0,Φ−1(0.75)),
σ2 ∼ I G (1, 4))

(a) Replication (b) Corrected

Figure 7: Posterior distribution of Φ(µ) using Prior 2 (ρ ∼ B(0.8, 0.1), µ ∼ N (0,Φ−1(0.75)),
σ2 ∼ I G (1, 4))

distribution now skews right with a mode around µ = 0.3. Nevertheless, the posterior still
assigns substantial probability toward weights greater than 0.5, suggesting that the data
remain uninformative about which model is better than the other on average.

Figure 8 shows the effect of estimating the hyperparameters µ and σ on the evolution of
the posterior mean λ̂DP

t|t . The figure compares the weight on the SWFF under Priors 1 and

2. The effect of estimating µ and σ remain similar to the original results: the swings of λ̂DP
t|t

are more prounounced under Prior 2 than under Prior 1.

Figures 9 and 10 evaluate the performance of Prior 2. Figure 9 compares the log score
of the dynamic pool (black line) over time to that of its two components: the SWFF model
(red) and SW model (blue). Recall that the forecasts are generated based on an informa-
tion set that includes current interest rates and spreads (denoted by I P

t+ ). The predictive

density associated with the dynamic pool, p
(h)
DP (yt+h,h|I P

t+ ,P) is a linear combination of the

predictive densities of the two DSGE models, p(h)(yt+h,h|I m
t+ ,Mm), and, for every yt+h,h, has
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(a) Replication (b) Corrected

Figure 8: λ̂DP
t|t : Fixed vs. Estimated µ and σ (Prior 1 vs. Prior 2)

(a) Replication (b) Corrected

Figure 9: Log scores comparisons over time (using Prior 2)

to lie between the two model-specific density values.

Figure 10 shows the log predictive score differences between the dynamic pool and the
following alternatives: BMA (green area), maximum likelihood static pools (purple area),
and equal weights (black line). Positive differentials favor the dynamic pool. In the early
part of the sample there are no major differences in forecasting performance.

After correcting the predictive densities, the large performance differentials in the early
2000s vanishes. However, around the time of the Great Recession, large performance differ-
entials persist. Again, following the eight-year period in which SWπ has been the dominant
model, both BMA and MSP are caught off guard by the change in the relative forecast
performance of the two DSGE models. The DP also struggles to adjust, as evidenced by the
fact that it is still forecasting worse than the equal-weights combination scheme for part of
the Great Recession period.

Table 1 shows the cumulative log scores for three DP specifications, as well as the dif-
ference between the cumulative log scores of the dynamic pools and that of equal weights,
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(a) Replication (b) Corrected

Figure 10: Dynamic Pool (prior 2) relative to BMA, SP, and Equal Weights

Table 1: Cumulative log scores / differentials computed over the period 1992:Q1-2011:Q2.
This table adds an additional column “Orig. DP” because the paper’s original code for this
computation erroneously set µ = 0 even when it was being estimated by Prior 2. Differentials
are computed relative to DP (not Orig. DP)

Prior Density Log Score Differentials
DP Orig. DP EW BMA MSP

Prior 1 Replication -256.91 — 1.34 4.07 4.95
Corrected -246.07 — -0.35 9.13 8.65

Prior 2 Replication -257.31 -256.43 0.94 3.67 4.56
Corrected -246.26 — -0.55 8.93 8.46

Prior 3 Replication -255.90 — 2.35 5.07 5.96
Corrected -245.10 — 0.61 10.10 9.62

BMA, and the static pool (MSP), respectively. We report the log scores from both the repli-
cation and correction. Positive differentials favor the dynamic pool. The table also has an
additional column, “Orig. DP”, because there was a small error in the code computing the
log scores for Prior 2. The code computing the log score reported in the paper erroneously
set µ = 0. Correcting this error leads to a slightly higher cumulative log score.

The three dynamic pool specifications continue to have similar performances, but the
comparison with the other pooling methods changes. Equal weights now slightly outperform
the dynamic pool, owing to the fact that it takes the dynamic pool longer before it weights
the SWFF model more than the SWπ model. On the other hand, the performance of the
dynamic pool improves even further relative to BMA and the static pool.
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For reference, the priors are

• Prior 1: ρ ∼ U [0, 1], µ = 0, σ2 = 1

• Prior 2: ρ ∼ B(0.8, 0.1), µ ∼ N (0,Φ−1(0.75)), σ2 ∼ I G (1, 4)

– Note again that the Prior 2 reported in the paper was a typo.

• Prior 3: ρ ∼ B(0.8, 0.1), µ = 0, σ2 ∼ I G (1, 4)
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