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Abstract

We use a dynamic panel Tobit model with heteroskedasticity to generate forecasts

for a large cross-section of short time series of censored observations. Our fully Bayesian

approach allows us to flexibly estimate the cross-sectional distribution of heterogeneous

coefficients and then implicitly use this distribution as prior to construct Bayes forecasts

for the individual time series. In addition to density forecasts, we construct set forecasts

that explicitly target the average coverage probability for the cross-section. We present

a novel application in which we forecast bank-level loan charge-off rates for small banks.
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1 Introduction

This paper considers the problem of forecasting a large collection of short time series with

censored observations. In the empirical application we forecast charge-off rates on loans for a

panel of small banks. A charge-off occurs if a loan is deemed unlikely to be collected because

the borrower has become delinquent. The prediction of charge-off rates is interesting to

banks, regulators, and investors because they are losses on loan portfolios. If charge-off rates

are large, the bank may be entering a period of distress and require additional capital. Due to

mergers and acquisitions, changing business models, and changes in regulatory environments

the time series dimension that is useful for forecasting is often short. The general methods

developed in this paper are not tied to the charge-off rate application and can be used in

any setting in which a researcher would like to analyze a panel of censored data with a large

cross-sectional and a short time-series dimension.

In a panel data setting, cross-sectional heterogeneity in the data is modeled through unit-

specific parameters. The more precisely they are estimated, the more accurate the forecasts

are. The challenge in forecasting panels with a short time dimension is that the data set

does not contain a lot of information about the heterogeneous parameters. A natural way

of adding information to the estimation of these parameters is the use of prior distributions.

The key insight in panel data applications is that one can extract information from the

cross section and equate the prior distribution with the cross-sectional distribution of unit-

specific coefficients. An empirical Bayes implementation of this idea creates a point estimate

of the cross-sectional distribution of the heterogeneous coefficients and then conditions the

subsequent posterior calculations on the estimated prior distribution. The classic James-

Stein estimator for a vector of means can be interpreted as an empirical Bayes estimator.1

Rather than pursuing an empirical Bayes approach, we conduct a full Bayesian analysis

by specifying a hyperprior for the distribution of heterogeneous coefficients and constructing

a joint posterior for the coefficients of this hyperprior as well as the actual unit-specific

coefficients. This approach can in principle handle quite general nonlinearities and generate

predictions under a wide variety of loss functions. It is preferable for interval and density

forecasts, because it captures all sources of uncertainty.

The contributions of our paper are threefold. First, we extend the full Bayesian estimation

and prediction with a linear panel data model in Liu (2021) to a dynamic panel Tobit model

with heteroskedastic innovations and correlated random effects. We hereby build on work

1Empirical Bayes methods have a long history in the statistics literature going back to Robbins (1956);
see Robert (1994) for a textbook treatment.
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on the Bayesian estimation of static, dynamic, and panel Tobit models by Chib (1992), Wei

(1999), Baranchuk and Chib (2008), and Li and Zheng (2008).

Second, we construct interval forecasts that target average posterior coverage probability

across all units in our panel instead of pointwise coverage probability for each unit. We

show that it is optimal to generate these forecasts as highest posterior density sets that use

the same threshold for each unit instead of unit-specific thresholds. Because the predictive

distributions associated with the Tobit models are mixtures of discrete and continuous dis-

tributions, “interval” forecasts may take the form of the union of one or more intervals and

the value zero, and thus we refer to them as set forecasts subsequently. We prove that the

empirical coverage frequency converges to the average nominal coverage frequency of the

sets as the cross-sectional dimension of the panel tends to infinity. This result is connected

to similar findings in the literature on nonparametric function estimation and dates back to

Wahba (1983) and Nychka (1988). The underlying insights also have been recently used in

concurrent research by Armstrong, Kolesár, and Plagborg-Møller (2021) to construct empir-

ical Bayes confidence intervals for vectors of means that are valid for multiple priors. In the

Monte Carlo study and the empirical application the proposed Bayesian set forecasts have

good finite sample frequentist coverage properties in the cross-section.

Third, we present a novel application in which we forecast bank-level loan charge-off rates.

Our empirical analysis is based on more than 100 short panel data sets with a time dimension

of T = 10. These panel data sets include predominantly credit card (CC) and residential

real estate (RRE) loans and cover various (overlapping) time periods. We also include local

economic conditions as bank-specific regressors with homogeneous coefficients. For each data

set, we document the density forecasting performance of several model specifications. We

find that allowing for heteroskedasticity is important for good density and set forecasting

performance. Overall, a specification with flexibly modeled correlated random effects and

heteroskedasticity performs well in terms of density forecasting and is used in the subsequent

analysis. In addition, we generate maps that compare the spatial distribution of predicted

loan losses during and after the Great Recession and plot cross-sectional distribution of

set forecasts. We document how set forecasts change as we move from targeting pointwise

coverage probability to targeting average coverage probability. The latter approach smooths

out differences among the lengths of the set forecasts and overall improves the forecasts with

respect to both coverage probability and average length.

The heterogeneous intercepts in our model can be interpreted as estimates of the quality

of the banks’ loan portfolios. Loan quality is potentially determined by many factors: the
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risk taking behavior of the bank, the potential customer base, and its ability to efficiently

screen borrowers. In regressing heterogeneous coefficient estimates on bank characteristics

we find that bank size as measured in total assets is positively related to inverse quality of

the loan portfolio. A favorable interpretation of this finding is that larger banks are able to

take higher risks on loans because they are better diversified or have a higher tolerance for

risk. However, overall bank characteristics explain only a very small fraction of the estimated

heterogeneity.

Because the Tobit model is nonlinear, the effect of a change in local economic conditions

that enter the model with homogeneous coefficients depends on the heterogeneous intercept

and is thereby bank specific. We are able to compute a posterior distribution of the “treat-

ment” effect for each bank and decompose it into an extensive-margin effect (a bank switches

from no charge-offs to positive charge-offs during an economic downturn) and an intensive-

margin effect (a bank increases its positive charge-offs during a downturn). We find that the

variation in charge-off rates generated by local economic conditions is very small compared

to the variation due to the heterogeneous intercept estimates.

Our paper relates to several branches of the literature. We build on the Bayesian liter-

ature on the estimation of censored regression models.2 The approach of using data aug-

mentation for limited-dependent variable models that impute the latent uncensored variables

dates back to Chib (1992) and Albert and Chib (1993). To sample the latent observations we

rely on an algorithm tailored toward dynamic Tobit models by Wei (1999). Sampling from

Truncated Normal distributions is implemented with a recent algorithm of Botev (2017).

Bayesian panel Tobit models have been estimated by Baranchuk and Chib (2008) and Li

and Zheng (2008). Our flexible benchmark model is most closely related to the semipara-

metric model of Li and Zheng (2008) which we generalize by introducing heteroskedasticity

through a latent unit-specific error variance and allowing for a more flexible form of corre-

lated random effects. As mentioned previously, the former is very important for the density

and set forecast performance.3

We model the unknown distribution of the heterogeneous coefficients (intercepts and

innovation variances) as Dirichlet process mixtures (DPM) of Normals. Even though we do

not emphasize the nonparametric aspect of this modeling approach (due to a truncation, our

mixtures are strictly speaking finite and in that sense parametric), our paper is related to the

2A general survey of the literature on Bayesian estimation of univariate and multivariate censored regres-
sion models can be found, for instance, in the handbook chapter by Li and Tobias (2011).

3Baranchuk and Chib (2008) report some results on point forecasts of the probability of zeros versus
non-zeros, whereas we focus on set and density forecasts.
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literature on nonparametric density modeling using DPM.4 Examples of econometrics papers

that use DPMs in the panel data context are Hirano (2002), Burda and Harding (2013), Rossi

(2014), and Fisher and Jensen (2021). The implementation of our Gibbs sampler relies on

Ishwaran and James (2001, 2002).

As an alternative to a full Bayesian analysis, recent papers by Gu and Koenker (2017a,b)

and Liu, Moon, and Schorfheide (2020) have pursued an empirical Bayes strategy to generate

predictions based on linear panel data models with heterogeneous coefficients. Forecasts from

empirical Bayes and full Bayesian estimation approaches have desirable optimality properties

as the cross-sectional dimension of the data set gets large. Liu, Moon, and Schorfheide

(2020) generalize optimality results for the estimation of a vector of means in Brown and

Greenshtein (2009) to a linear dynamic panel data forecasting setting. Liu (2021) shows that

the predictive density obtained from the full Bayesian analysis of a linear panel data model

converges to the predictive density derived from the true cross-sectional distribution of the

heterogeneous coefficients as the cross-section gets large.

There also exists a literature on estimating the determinants of loan losses. This literature

often uses nonperforming loans (loans that have not been serviced for more than 90 days)

and tends to ignore the censoring which is reasonable if one uses an average across banks

but can be problematic if one uses bank-level data. The two papers most closely related to

our work are Ghosh (2015, 2017). We base our choice of bank-characteristic regressors on

these papers.

The remainder of our paper is organized as follows. Section 2 presents the specification

of our dynamic panel Tobit model, a characterization of the posterior predictive distribution

for future observations, and discusses the construction and evaluation of density and set

forecasts. Section 3 provides details on how we model the correlated random effects distri-

bution and heteroskedasticity. It also presents the prior distributions for the parametric and

flexible components of the model, and outlines a posterior sampler. We conduct a Monte

Carlo experiment in Section 4 to examine the performance of the proposed techniques in

a controlled environment. The empirical application in which we forecast charge-off rates

on various types of loans for a panel of banks is presented in Section 5. Finally, Section 6

concludes. Detailed derivations and proofs, a description of the data sets, and additional

simulation and empirical results are relegated to the Online Appendix.

4Keane and Stavrunova (2011) introduce a smooth mixture of Tobits to model a cross-section of healthcare
expenditures. Our model is related, but different in that we are using a DPM to average across different
intercept values and innovation variances.
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2 Model Specification and Forecast Evaluation

Throughout this paper we consider the following dynamic panel Tobit model with heteroge-

neous intercepts and innovation variances:

yit = y∗itI{y∗it ≥ 0}, (1)

y∗it|(Y ∗1:N,0:t−1, X1:N,−1:t−1, λ1:N , σ
2
1:N , ρ, β, ξ)

indep∼ N
(
λi + ρy∗it−1 + β′xit−1, σ

2
i

)
,

where i = 1, . . . , N , t = 1, . . . , T , and I{y ≥ a} is the indicator function that is equal to one

if y ≥ a and equal to zero otherwise. Throughout the paper, we abbreviate sequences of the

form (a1, . . . , an) by a1:n. For instance, Y ∗1:N,0:t−1 =
{

(y∗10, . . . , y
∗
N0), . . . , (y∗1t−1, . . . , y

∗
Nt−1)

}
,

and λ1:N = (λ1, . . . , λN). The nx × 1 vector xit comprises a set of sequentially exogenous

regressors. ξ is a vector of hyperparameters defined in (3) below that does not affect the

conditional distribution of y∗it. It is assumed that conditional on the parameters and the

regressors xit−1, the observations yit are cross-sectionally independent. The distributional

assumption in (1) implies that we can write

p(y∗it|Y ∗1:N,0:t−1, X1:N,−1:t−1, λ1:N , σ
2
1:N , ρ, β, ξ) = p(y∗it|y∗it−1, xit−1, λi, σ

2
i , ρ, β), (2)

which we will use subsequently to simplify formulas. Our specification uses the lagged latent

variable y∗it−1 on the right-hand side because it is more plausible for our empirical application.

The Bayesian computations described in Section 3.2 below can be easily adapted to the

alternative model, in which the lagged censored variable yit−1 appears on the right-hand

side.

We model the heterogeneous parameters as correlated random effects (CRE) with density

p(λi, y
∗
i0, σ

2
i |xi,−1, ξ), (3)

assuming cross-sectional independence of the heterogeneous coefficients.5 Here ξ is a hyper-

parameter vector that indexes a family of CRE distributions. For instance, the candidate

distribution of (λi, y
∗
i0, lnσ

2
i ) could be jointly Normal with a mean that is a linear function

of xi,−1. In this case ξ would include the parameters of the conditional mean function and

the non-redundant parameters of the covariance matrix. To achieve a flexible representation

of the distribution of (λi, y
∗
i0, σ

2
i ) we consider a family of mixtures of Normal distributions in

5We consider period t = −1 for x in the conditioning set because of the timing assumption that charge-off
rates can only respond with a one-period lag to changes in local economic conditions so as to accommodate
possible sequentially exogenous regressors. See Section 2.1 for more details.



This Version: July 8, 2022 6

Section 3. We define the homogeneous parameter θ = [ρ, β′]′ and complete the model with

the specification of a prior distribution for
(
θ, ξ
)
.

Our model is closely related to the panel Tobit models of Baranchuk and Chib (2008) and

Li and Zheng (2008), henceforth BC and LZ, respectively. However, the modeling approaches

differ with respect to the treatment of coefficient heterogeneity and heteroskedasticity.6 As

in LZ, we restrict regression coefficient heterogeneity to the intercept. We also follow LZ in

modeling the CRE distribution in (3) nonparametrically, albeit the details are slightly differ-

ent. Because the regressors xit in our application are not assumed to be strictly exogenous,

we condition the distribution of (λi, y
∗
i0) only on the initial values xi,−1 and not on other xits.

The most important difference between our specification and that of LZ is that we allow for

heterogeneous innovation variances σ2
i , whereas LZ set σ2

i = σ2 for all i. As documented

in Section 5.2, σ2
i heterogeneity is very important for the construction of accurate set and

density forecasts in our empirical application.

BC restrict the distribution of the heterogeneous coefficients to be Normal, but they

do allow regression coefficients other than the intercept to be heterogeneous.7 Rather than

linking the heterogeneity to the regressors xit, they let the mean of the distribution depend

on additional unit-specific covariates. Instead of embedding additional covariates (such as

bank characteristics) ex ante into (3), we run ex post regressions of estimates of the ratio

λ̂i/σi on additional unit-specific covariates to explore potential relationships. The reasons

for conducting an ex post analysis in our application are threefold: (i) it is not clear ex ante

which bank characteristics are relevant, (ii) the relationship between bank characteristics

and cross-sectional heterogeneity could be nonlinear, and (iii) bank characteristics may only

explain a small fraction of the cross-sectional heterogeneity.

BC’s interaction between regressors and the Normal CRE distribution generates het-

eroskedasticity in what could be interpreted as composite error term that consists of a

homoskedastic innovation in the regression equation for y∗it and the randomness in the het-

erogeneous coefficients scaled by the regressors. In our model specification, the heteroskedas-

ticity is unrelated to the regressors xit because we are treating the σ2
i as random effects. A

relationship to the regressors could be generated through a CRE specification for σ2
i , but we

did not pursue this extension because in our application the regressors, local unemployment

and house price growth, cannot explain the dispersion in σ2
i .

6As in the panel Probit model of Chib and Jeliazkov (2006), one could allow for additional lags of y∗it.
7Our framework can be easily extended to accommodate heterogeneous slope coefficients (see Liu, Moon,

and Schorfheide (2020) and Liu (2021)).
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In the remainder of this section, we discuss our assumptions about the simultaneous

determination of outcomes yit and regressors xit in Section 2.1, the derivation of the posterior

predictive density in Section 2.2, the density forecast evaluation criteria in Section 2.3, and

the construction and evaluation of set forecasts in Section 2.4.

2.1 Simultaneity and Timing Assumptions

In our application yit corresponds to bank-level loan charge-off rates and the regressors xit

measure local economic conditions, such as unemployment and house prices, in the state in

which the bank operates.8 In this context it is plausible to assume that there is feedback

from the bank charge-offs, which affect profitability and overall health of the banking sector,

to the local economic conditions.

The key assumption that we are making throughout the paper is that charge-off rates

are only affected by lagged economic conditions and not by contemporaneous economic

conditions. For concreteness, suppose that xit corresponds to economic conditions in the state

in which bank i operates. We assume that the state-level conditions in period t = 0, · · · , T
are described by the conditional density

p(X1:N,t|Y1:N,0:t, Y
∗

1:N,0:t, X1:N,−1:t−1, θx, λ1:N , σ
2
1:N , θ, ξ) = p(X1:N,t|Y1:N,0:t, X1:N,−1:t−1, θx). (4)

Thus, we allow current charge-offs to affect current state-level conditions. However, we

assume that X1:N,t does not separately depend on the latent variables Y ∗1:N,0:t and the hetero-

geneous coefficients (λi, σ
2
i ). In our application only actual charge-off rates are assumed to

matter for economic outcomes. θx is a vector of parameters determining the law of motion

for the state-level conditions.

Timing restrictions such as the one above have traditionally been widely used in the

macroeconometric literature on structural vector autoregressions; see, for instance, the sur-

vey by Ramey (2016). Here we are assuming that a deterioration of macroeconomic condi-

tions affects banks’ decisions to write off loans with a one period delay, where the length of

8We consider a sample of small banks that conduct most of their business locally.
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a period is a quarter in our application.9 Combining (1), (2), and (4), we can write

p(Y1:N,1:T , Y
∗

1:N,1:T , X1:N,0:T |Y1:N,0, Y
∗

1:N,0, X1:N,−1, λ1:N , σ
2
1:N , θ, ξ, θx) (5)

=
T∏
t=1

{
p(X1:N,t|Y1:N,0:t, X1:N,−1:t−1, θx)×

[
N∏
i=1

p(yit|y∗it)p(y∗it|y∗it−1, xit−1, λi, σ
2
i , θ)

]}
×p(X1:N,0|Y1:N,0, X1:N,−1, θx)

=

{
N∏
i=1

[
T∏
t=1

p(yit|y∗it)p(y∗it|y∗it−1, xit−1, λi, σ
2
i , θ)

]}
T∏
t=0

p(X1:N,t|Y1:N,0:t, X1:N,−1:t−1, θx).

In slight abuse of notation p(yi0|y∗i0) represents the censoring. The distribution of yit|y∗it is

a unit point mass that is located at 0 if y∗it ≤ 0 or at y∗it if y∗it > 0. Because the system

is triangular, the panel Tobit component in (1) can be estimated independently of (4) and

without the use of instrumental variables.

2.2 Posterior Predictive Densities

Our goal is to generate forecasts of Y1:N,T+h conditional on the observations (Y1:N,0:T , X1:N,−1:T ).

In the empirical analysis in Section 5 we focus on h = 1-step-ahead forecasts which require

the predictor xiT , which is known at the forecast origin t = T . The extension to multi-step

forecasts is discussed in Section 3.3. Because in a Bayesian framework uncertainty with re-

spect to parameters, latent variables, and future shocks is treated identically through the use

of random variables, it is conceptually straightforward to construct a predictive distribution

of Y1:N,T+1 conditional on (Y1:N,0:T , X1:N,−1:T ) by integrating out all sources of uncertainty.

The general approach is summarized, for instance, in Geweke and Whiteman (2006). We

subsequently describe the integration steps required for our panel Tobit model.

According to (3) the distribution of (Y1:N,0, Y
∗

1:N,0) conditional on X1:N,−1 does not depend

on θx. Using the factorization in (5), the CRE density (3), and the prior p(θ, ξ) = p(θ)p(ξ),

we can write the posterior distribution of the parameters and time-T latent variables as

p
(
Y ∗1:N,T , λ1:N , σ

2
1:N , θ, ξ|Y1:N,0:T , X1:N,−1:T

)
(6)

∝
[ N∏
i=1

∫ ( T∏
t=1

p(yit|y∗it)p(y∗it|y∗it−1, xit−1, λi, σ
2
i , θ)

)

×p(yi0|y∗i0)p
(
λi, y

∗
i0, σ

2
i |xi,−1, ξ

)
dY ∗i,0:T−1

]
p(θ)p(ξ),

9Relaxing this assumption is beyond the scope of this paper.
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where ∝ denotes proportionality. The posterior predictive distribution for units i = 1, . . . , N

is given by

p(Y1:N,T+1|Y1:N,0:T , X1:N,−1:T ) (7)

=

∫ N∏
i=1

[ ∫ ∫
p(yiT+1|y∗iT+1)p

(
y∗iT+1|y∗iT , xiT , λi, σ2

i , θ
)

×p
(
y∗iT , λi, σ

2
i |θ, ξ, Y1:N,0:T , X1:N,−1:T

)
dy∗iTd(λi, σ

2
i )

]
p(θ, ξ|Y1:N,0:T , X1:N,−1:T )d(θ, ξ).

Draws from p(Y1:N,T+1|Y1:N,0:T , X1:N,−1:T ) can be generated by sampling (Y ∗1:N,T , λ1:N , σ
2
1:N , θ, ξ)

from the posterior (6) and then evaluating the autoregressive law of motion for y∗it in (1) for

t = T + 1.

To simplify the notation, we drop X1:N,−1:T from the conditioning set in the remainder

of this section. Moreover, we denote the forecast horizon by h again with the understanding

that the discussion of multi-step forecasts is deferred to Section 3.3. We denote expectations

and probabilities under the posterior predictive distribution by EyiT+h

Y1:N,0:T
[·] and PyiT+h

Y1:N,0:T
{·},

respectively. More generally, we use subscripts to indicate the conditioning set and super-

scripts to denote the random variables over which the operators integrate. The predictive

distribution is a mixture of a point mass at zero and a continuous distribution for realizations

of yiT+h that are greater than zero:

p(yiT+h|Y1:N,0:T ) = PyiT+h

Y1:N,0:T
{yiT+h = 0}δ0(yiT+h) + pc(yiT+h|Y1:N,0:T )I{yiT+h ≥ 0}. (8)

Here δ0(y) is the Dirac function with the property δ0(y) = 0 for y 6= 0 and
∫
δ0(y)dy = 1.

The density pc(yiT+h|Y1:N,0:T ) represents the continuous part of the predictive distribution.

2.3 Evaluating Density Forecasts

To compare the density forecast performance of various model specifications M we report

the average log predictive scores

LPSh(M) =
1

N

N∑
i=1

ln
(
I{yiT+h = 0} · PyiT+h

Y1:N,0:T
{yiT+h = 0|M} (9)

+I{yiT+h > 0}p(yiT+h|Y1:N,0:T )
)

and continuous ranked probability scores (CRPSs). The CRPS measures the L2 distance

between the cumulative distribution function F
yiT+h

Y1:N,0:T
(y|M) associated with p(yiT+1|Y1:N,0:T )
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and a “perfect” density forecasts which assigns probability one to the realized yiT+h. Then,

CRPSh(M) =
1

N

N∑
i=1

∫ ∞
0

(
F
yiT+h

Y1:N,0:T
(y|M)− I{yiT+h ≤ y}

)2
dy. (10)

Both LPS and CRPS are proper scoring rules, meaning that it is optimal for the forecaster

to truthfully reveal her predictive density (Gneiting and Raftery, 2007).

2.4 Constructing and Evaluating Set Forecasts

We construct set forecasts from the posterior predictive distribution p(yiT+h|Y1:N,0:T ) in (7)

of the form:

CiT+h|T (Y1:N,0:T ) = {0} ∪

(
Ki⋃
k=1

[aik, bik]

)
(11)

with the understanding that (i) Ci = {0} if Ki = 0, (ii) ai1 may be equal to zero, and (iii)

ai1 < bi1 < ai2 < bi2 < . . . < aiKi < biKi .

The {0} value arises from the discrete portion of the predictive density, whereas the interval

components are obtained from the continuous portion of the predictive density; see the

decomposition in (8).10 The disjoint interval segments may arise if the continuous part of

the predictive density is multimodal. If we target an average coverage probability in the cross

section, then for some units i we might obtain the empty set, i.e., CiT+h|T (Y1:N,0:T ) = ∅.

Constructing Set Forecasts. To generate the set forecasts, we adopt a Bayesian ap-

proach and require that the probability of {yiT+h ∈ CiT+h|T (Y1:N,0:T )} conditional on having

observed Y1:N,0:T reaches a pre-specified level. Given that the estimation of the Tobit model

is executed with Bayesian techniques, the use of posterior predictive credible sets is natural.

We distinguish between forecasts that are constructed to satisfy the coverage probability

constraint pointwise, that is,

PyiT+h

Y1:N,0:T

{
yiT+h ∈ CiT+h|T (Y1:N,0:T )

}
≥ 1− α for all i, (12)

10Because in our model the support of the posterior predictive distribution of y∗iT+h includes y < 0, the
probability of censoring is strictly positive and the set that includes {0} is strictly shorter than the one
without zero.
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and sets that are constructed to satisfy the constraint on average:

1

N

N∑
i=1

PyiT+h

Y1:N,0:T

{
yiT+h ∈ CiT+h|T (Y1:N,0:T )

}
≥ 1− α. (13)

The latter approach allows the sets CiT+h|T (Y1:N,0:T ) for some units i to be “shortened” in

the sense that their posterior credible level drops below 1 − α, whereas sets for other units

are “lengthened.”

It is well known that the shortest credible sets take the form of highest posterior density

sets. Suppose that we require to satisfy the coverage constraint for each i individually. If

PyiT+h

Y1:N,0:T
{yiT+h = 0} ≥ 1−α, then CiT+h|T (Y1:N,0:T ) = {0}. Otherwise, the set takes the form

CiT+h|T (Y1:N,0:T ) = {0} ∪
{
yiT+h

∣∣ pc(yiT+h|Y1:N,0:T )I{yiT+h ≥ 0} ≥ κi
}
, (14)

where the threshold κi is chosen such that∫
yiT+h∈C

pc(yiT+h|Y1:N,0:T )I{yiT+h ≥ 0}dyiT+h = 1− α− PyiT+h

Y1:N,0:T
{yiT+h = 0}.

Because pc(y|·) is a continuous density, the HPD set can be represented as a collection of

disjoint intervals as in (11).

If the objective is to minimize average length across i conditional on the constraint on

coverage probability holding only on average, then the unit-specific thresholds κi in (14)

are replaced by a common threshold κ that applies to all units i. One can establish the

optimality of the common threshold as follows. Suppose that one lowers the threshold for

unit i (κi < κ) and raises it for unit j (κj > κ). This lengthens the set for unit i by δi > 0

and shortens the set for unit j by δj < 0. The increase in coverage probability for unit i,

∆πi > 0, is less than δiκ, whereas the decrease in coverage probability for unit j, ∆πj < 0, is

less than δjκ. Because we are holding the overall coverage probability constant, we obtain:

δiκ > ∆πi = −∆πj > −δjκ.

Thus, δi > −δj, which means that the overall average length increases and the uniform

threshold of κ dominates.

Evaluation of Set Forecasts. The assessment of the set forecasts in our simulation study
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and the empirical application is based on the cross-sectional coverage frequency

1

N

N∑
i=1

I
{
yiT+h ∈ CiT+h|T (Y1:N,0:T )

}
(15)

and the average length of the sets CiT+h|T (Y1:N,0:T )

1

N

N∑
i=1

Ki∑
k=1

(bik − aik). (16)

Rather than trading off average length against deviations of average coverage frequency from

the nominal coverage probability in a single criterion, we simply report both.11

The relationship between the nominal credible level of the set forecasts and the empir-

ical coverage frequency is delicate. In Theorem 2.1 below we provide high-level regularity

conditions under which

1

N

N∑
i=1

I
{
yiT+h ∈ CiT+h|T (Y1:N,0:T )

} p−→ 1− α (17)

in PY1:N,0:T ,Y1:N,T+h probability as N −→∞. Underlying this results is the well-known insight

– see, for instance, the textbook by Robert (1994) – that, for a generic parameter ς and data

set Y , the following relationship between credible sets and confidence sets holds:

Pς,Y {ς ∈ C(Y )} =

∫
Y

PςY {ς ∈ C(Y )}dPY =

∫
ς

PYς {ς ∈ C(Y )}dPς .

Thus, 1−α Bayesian credible sets have on average 1−α frequentist coverage probability, but

not pointwise for each ς. In our framework the cross-sectional averaging across i approximates

the integration under the prior distribution. The basic insight has previously been used in the

literature on nonparametric function estimation, dating back to Wahba (1983) and Nychka

(1988), to obtain results that link average coverage probabilities to Bayesian credible levels.

More recently, Armstrong, Kolesár, and Plagborg-Møller (2021) constructed empirical Bayes

confidence intervals for vectors of means that are valid for multiple priors.

Let ϑ = (θ, ξ). To state the theorem we define the following probability associated with

11For various approaches to rank set forecasts see Askanazi, Diebold, Schorfheide, and Shin (2018).
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the interval [aik,N , bik,N ] conditional on (Yi,0:T , ϑ):

Fik,N(ϑ) =

∫ bik,N

aik,N

p(y∗iT+h|Yi,0:T , ϑ)dy∗iT+h. (18)

Theorem 2.1 Suppose the following assumptions hold:

(i) The future observations are sampled from the predictive density p(y1:N,T+h|Y1:N,0:T ).

(ii) The posterior distribution p(ϑ|Y1:N,0:T ) has the unique mode ϑ̄N . There exists a

sequence of shrinking neighborhoods NN(ϑ̄N) with complements N c
N(ϑ̄N) and a sequence

δN , such that ‖ϑ− ϑ̄N‖ ≤ δN for all ϑ ∈ NN(ϑ̄N) and

PϑY1:N,0:T
{
ϑ ∈ N c

N(ϑ̄N)
} p−→ 0, δN

p−→ 0

in PY1:N,0:T probability as N −→∞.

(iii) The functions Fik,N(ϑ) defined in (18) are locally Lipschitz in any compact neigh-

borhood NN(ϑ) with Lipschitz constants Mik,N(NN(ϑ)).

(iv) For some M <∞ independent of N , the Lipschitz constants satisfy

PY1:N,0:T
{

1

N

N∑
i=1

Ki∑
k=1

Mik,N(NN(ϑ̄N)) > M

}
−→ 0.

(v) The Bayesian coverage probability constraint, see (12) or (13), holds with equality.

Then the empirical coverage frequency converges to the Bayesian credible level in the sense

of (17).

A proof of this theorem is provided in the Online Appendix. Assumption (i) states that

the future observations are generated from the “true” predictive density p(Y1:N,T+h|Y1:N,0:T ).

In Assumption (ii) we require the posterior distribution of ϑ to concentrate. Throughout the

paper, we represent the CRE distribution through finite-dimensional mixtures; see Section

3.1. Thus, ϑ is finite-dimensional and the concentration results can be obtained from the

literature on the consistency and asymptotic Normality of posterior distributions; see Har-

tigan (1983), van der Vaart (1998), Ghosh and Ramamoorthi (2003), or Ghosal and van der

Vaart (2017) for textbook treatments. The only difference to many of the results stated

in the literature is that we assume that the convergence in probability to occur under the

marginal distribution of Y1:N,0:T rather than its distribution conditional on a “true” parame-

ter which imposes some restrictions on the prior for ϑ. Assumptions (iii) and (iv) require the

probabilities Fik,N to be smooth functions of ϑ. In our model the probabilities are computed
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from finite-dimensional mixtures of Normal distributions, which are smooth functions of the

underlying parameters. However, the Lipschitz constants are generally sample dependent

and one needs to require that their average across i and k is stochastically bounded. In the

Online Appendix we verify the conditions for a simple model without censoring.

3 Correlated Random Effects, Priors, and Posteriors

We provide a characterization of the CRE distribution p(λi, y
∗
i0, σ

2
i |xi,−1, ξ) and a specification

of the prior distribution for (θ, ξ) in Section 3.1. Section 3.2 contains a description of the

posterior sampler, and Section 3.3 outlines multi-step forecasting approaches.

3.1 (Correlated) Random Effects and Prior Distributions

We now describe the prior distribution for θ, the parametrization of the distribution of

(λi, y
∗
i0), and the prior distribution for the hyperparameter vector ξ. We begin with a ho-

moskedastic random effects (RE) setup in which λi and y∗i0 are independent of each other

and of xi,−1. We then introduce heteroskedasticity and finally extend the model specification

to CRE. The prior distribution involves a small number of tuning constants, denoted by τ ,

that allow the researcher to scale the prior in various dimensions.

The subsequent exposition involves various parametric probability distributions in addi-

tion to the Normal distribution that appeared in (1). We use B(a, b), G(a, b), and IG(a, b)

to denote the Beta, Gamma, and Inverse Gamma distributions, respectively. The pair

(θ, σ2) has a Normal-Inverse-Gamma distribution NIG(m, v, a, b) if σ2 ∼ IG(a, b) and

θ|σ2 ∼ N(m,σ2v). Finally, the pair (Φ,Σ) has a matricvariate Normal-Inverse-Wishart

distribution MNIW (M,V, ν, S) if Σ ∼ IW (ν, S) has an inverse Wishart distribution and

vec(Φ)|Σ ∼ N(vec(M),Σ⊗ V ).

Prior for θ. We standardize the regressors xit to have zero mean and unit variance and use

the following Normal prior for the regression coefficients θ:

θ ∼ N(0, τθInx+1), (19)

where τθ is a tuning constant that controls the prior variance.
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Flexible RE with homoskedasticity. Under RE, the distribution of λi and y∗i0 does not

depend on xi,−1. Moreover, we assume that λi and y∗i0 are independent. Thus,

p(λi, y
∗
i0|xi,−1, ξ) = p(λi|ξ)p(y∗i0|ξ).

We consider a mixture representation for p(λi|ξ) while assuming that the initial values y∗i0

are normally distributed:

λi|ξ
iid∼ N(φλ,k,Σλ,k) with prob. πλ,k, k = 1, . . . , K (20)

y∗i0|ξ
iid∼ N(φy,Σy).

The maximum number of mixture components K is assumed to be pre-specified.12

A prior over the RE distributions is induced through a prior p(ξ) for the hyperparameter

vector

ξ =
[
φλ,1,Σλ,1, πλ,1, . . . , φλ,K ,Σλ,K , πλ,K , φy,Σy

]′
.

During the Bayesian inference stage, the prior is updated in view of the data and we obtain

a posterior distribution for ξ and hence a posterior distribution for the RE distribution. The

priors for the coefficients of the Normal distributions are

(φλ,k,Σλ,k)
iid∼ NIG(0, τφ, 3, 2τ

λ
σ ), (φy,Σy) ∼ NIG(0, τ yφ , 3, 2τ

y
σ ). (21)

We parameterized the IG distribution such that the variances Σλ,k and Σy have a prior dis-

tribution with mean τσ and variance τ 2
σ (omitting the superscripts).13 Conditional on Σ, the

mean parameter φ has a N(0, τφΣ) distribution (omitting the subscripts). The marginal dis-

tribution of y∗i0 implied by (20) and (21) is a Student-t distribution, whereas the distribution

of λi is a mixture of Student-t distributions. The tuning constants can be used to control

the spread of the means of the mixture components as well as the magnitude and variation

of the variances of the mixture components.

The prior for the probabilities πλ,1:K is generated by a mixture of truncated stick breaking

12We use K = 20 in the simulation exercise and the empirical analysis. This leads to the following
uniform bound on the approximation error (see Theorem 2 of Ishwaran and James (2001)): ‖fλ,K − fλ‖ ∼
4N exp[−(K−1)/α] ≤ 2.24×10−5, at the prior mean of α (= 1) and a cross-sectional sample size N = 1000.

13Under our parametrization of the X ∼ IG(a, b) distribution, E[X] = b/(a − 1) for a > 1, and V[X] =
(E[X])2/(a− 2) for a > 2.
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processes TSB(1, αλ, K) of the form

πλ,1:K |(αλ, K) ∼


ζ1, k = 1,∏k−1

j=1 (1− ζj) ζk, k = 2, . . . , K − 1,

1−
∑K−1

j=1 pj, k = K,

, ζk ∼ B(1, αλ), αλ ∼ G(2, 2).

(22)

Note that the B(1, αλ) prior has a density p(ζk) ∝ (1− ζk)(αλ−1). If αλ is close to zero, then

a lot of the mass of the distribution is concentrated near ζk = 1. This means that the first

mixture component has a probability that is close to one, whereas the remaining mixture

components have very small probabilities. If αλ is close to two, then most of the mass of

the distribution of ζk is concentrated on values of ζk that are close to zero. In turn, a larger

number of mixture components receive non-trivial probabilities. The G(2, 2) distribution is

recommended by Ishwaran and James (2002). It has a mean of one and draws fall with 95%

probability into the interval [0.12, 2.75] which means that the prior covers both mixtures

dominated by few components and mixtures with many non-trivial components.

In the homoskedastic specification, we use the conjugate prior for σ2 that arises in the

context of a linear regression model:

σ2 ∼ IG
(
3, 2τvV

∗). (23)

The IG distribution is parameterized in a similar way as the IG distributions in (21). V ∗ =
1
N

∑N
i=1 V̂i(yit) is the cross-sectional average of the time-series variances of yit and the tuning

constant τv provides additional flexibility to scale the prior for σ2.

Heteroskedasticity. To generate heteroskedasticity one could simply replace (23) by

σ2
i ∼ IG

(
3, 2τvV

∗). However, to make the distribution a bit more flexible, we augment

the hyperparameter vector ξ and also represent the distribution of lnσ2
i as a mixture of

Normals:14

lnσ2
i |ξ ∼ N

(
ψk, ω

2
k

)
with prob. πσ,k, k = 1, . . . , K. (24)

A straightforward change-of-variables yields the distribution p(σ2
i |ξ). As for the RE distri-

bution, the coefficients ψk and ωk have NIG priors:

(ψk, ω
2
k)

iid∼ NIG
(

ln (τvV
∗)− ln(2)/2, 1, 3, 2 ln 2

)
, k = 1, . . . , K. (25)

14In an earlier version of the paper we used a mixture of IG distributions. We switched to a mixture of
Normals for lnσ2

i for a more symmetric treatment of λi and σ2
i . Alternatively, Chib and Hamilton (2002)

used Dirichlet process prior with an IG base measure to generate scale mixtures of Normals.
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The parametrization is chosen so that the implied prior mean E[σ2
i ] and prior variance V[σ2

i ]

for each mixture component k matches the one implied by the prior used in the homoskedastic

version of the Tobit model; see (23).15 Moreover, we verified by simulation that the marginal

density of σ2
i under this prior is very similar to the IG(3, (3− 1)τvV

∗) distribution used for

the homoskedastic specification. It does, however, have fatter tails as it is a mixture of log

t distributions.

Flexible CRE with heteroskedasticity. We extend the RE specification in two directions:

first, we allow for correlation of λi and y∗i0 with xi,−1. Second, we allow λi and y∗i0 to

be correlated with each other conditional on xi,−1. The CRE distribution is given by the

following location and scale mixture of Normal distributions:

[
λi, y

∗
i0

] ∣∣ (xi,−1, ξ)
iid∼ N

(
[1, x′i,−1]Φk,Σk

)
with prob. πλ,k, k = 1, . . . , K, (26)

where Φk is an (nx + 1)× 2 matrix and Σk is a 2× 2 matrix. The hyperparameter vector ξ

is now defined to include the non-redundant elements of (Φk,Σk, πλ,k).

For the mixture probabilities πλ,1:K we use the same prior distribution as in (22). The

prior distribution for the coefficient matrices Φk and Σk is a multivariate generalization of

the RE distribution. We assume:

(Φk,Σk)
iid∼ MNIW

(
0, τφInx+1, 7, 4D(τσ)), k = 1, . . . , K, D(τσ) =

[
τλσ 0

0 τ yσ

]
. (27)

Under this parametrization the marginal IW distribution of the 2 × 2 matrix Σk has mean

D(τσ).The conditional distribution of Φk|Σk is MN(0, τφΣk ⊗ Inz+1), where τφ scales the

variance of the Normal distribution. The dimension of Σk is 2× 2 and, hence, the marginal

distribution of λi is identical to the RE case.16

Tuning of the Prior. The scale of the prior distribution is controlled by a vector of tuning

constants:

τ =
[
τθ, τφ, τ

λ
σ , τ

y
σ , τv

]′
.

While these tuning constants could in principle be determined in a data-driven way, using

a marginal data density criterion (see the approach used in the Bayesian vector autoregres-

sion (VAR) literature, for instance, Del Negro, Schorfheide, Smets, and Wouters (2007) and

15The marginal IG distribution implies E[ω2
k] = ln 2. Conditional on ω2

k = ln 2, the transformed parameter
exp(ψk) has a Lognormal distribution with mean τvV∗ and variance (τvV∗)

2.
16The marginal distribution of the (1,1) element of the IW (7, 4D(τΣ)) distribution is IW (6, 4D11(τΣ)).

Converted into the parametrization of the Gamma distribution, this corresponds to an IG(3, 2D11(τΣ)) =
IG(3, 2τλσ ) distribution.
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Giannone, Lenza, and Primiceri (2015)), we do not pursue that route in this paper. In-

stead we choose τ ex ante in an informal calibration step. While τθ has a straightforward

interpretation after the regressors have been normalized, the implications of the remaining

constants are less transparent because they control priors that are specified over a set of

distributions. We recommend the researcher makes an initial choice and then samples from

the prior. We found it useful to examine plots of moments or number of modes associated

with the distributions. Similar plots can be generated based on the posterior. If a researcher

finds that the posterior is located in an area that has essentially no prior mass, then the

scaling of the prior can be adjusted to examine whether the initial prior unduly biases the

posterior estimates. An example in the context of our empirical application is provided in

the Online Appendix.

3.2 Posterior Sampling

Draws from the posterior distribution can be obtained with a Gibbs sampling algorithm. We

subsequently describe the conditional distributions over which the Gibbs sampler iterates.

We focus on the flexible CRE specification with heteroskedasticity, which is the most com-

plicated specification. A key feature of the Gibbs sampler is that it uses data augmentation

by sampling the sequences of latent variables Y ∗i,0:T , i = 1, . . . , N . In this regard we are build-

ing on Tanner and Wong (1987) (data augmentation for a general state-space model), Chib

(1992) (static Tobit model), Albert and Chib (1993) (Probit model), Carter and Kohn (1994)

(linear state space model), and Wei (1999) (dynamic Probit model). The general blocking

of parameters in the Gibbs sampler is related to Baranchuk and Chib (2008) and Li and

Zheng (2008). The sampler for the flexible mixture representation of the CRE distribution

is based on Ishwaran and James (2001, 2002). In terms of the actual implementation, the

computations for the Tobit model are very similar to the ones for the linear model studied

in Liu (2021). The only exception is the treatment of the latent variables Y ∗i,0:T which closely

follows Wei (1999).

In order to characterize the conditional posterior distributions for the Gibbs sampler, we

introduce some additional notation. Because p(λi, y
∗
i0|xi,−1, ξ) and p(σ2

i |ξ) are mixture dis-

tributions, ex post each (λi, y
∗
i0) and σ2

i is associated with one of the K mixture components,

respectively. We denote the component membership indicators by γi,λ and γi,σ ∈ {1, . . . , K},
respectively.

Step 1: Drawing from Y ∗i,0:T |(Y1:N,0:T , X1:N,−1:T , λ1:N , σ
2
1:N , γ1:N,y, γ1:N,σ, θ, ξ). To fix ideas,
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consider the following sequence of observations yi0, . . . , yiT :

y∗i0, y
∗
i1, 0, 0, 0, y∗i5, y

∗
i6, 0, 0, 0, y∗i10.

Our model implies that whenever yit > 0 we can deduce that y∗it = yit. Thus, we can

focus our attention on periods in which yit = 0. In the hypothetical sample we observe

two strings of censored observations: (yi2, yi3, yi4) and (yi7, yi8, yi9). We use t1 for the start

date of a string of censored observations and t2 for the end date. In the example we have

two such strings, we write t
(1)
1 = 2, t

(1)
2 = 4, t

(2)
1 = 7, t

(2)
2 = 9. The goal is to characterize

p(Y ∗
i,t

(1)
1 :t

(1)
2

, Y ∗
i,t

(2)
1 :t

(2)
2

|Yi,0:T , . . .). Because of the AR(1) structure, observations in periods t <

t1 − 1 and t > t2 + 1 contain no additional information about y∗it1 , . . . , y
∗
it2

. Thus, we obtain

p(Y ∗
i,t

(1)
1 :t

(1)
2

, Y ∗
i,t

(2)
1 :t

(2)
2

|Yi,0:T , . . .)

= p(Y ∗
i,t

(1)
1 :t

(1)
2

|Y
i,t

(1)
1 −1:t

(1)
2 +1

, . . .)p(Y ∗
i,t

(2)
1 :t

(2)
2

|Y
i,t

(2)
1 −1:t

(2)
2 +1

, . . .),

which implies that we can sample each string of latent observations independently.

Let s = t2 − t1 + 2 be the length of the segment that includes the string of censored

observations as well as the adjacent uncensored observations. Iterating the AR(1) law of

motion for yit forward from period t1 − 1 we deduce that the vector of random variables

[Y ∗i,t1:t2
, yit2+1]′ conditional on yit1−1 is multivariate Normal with mean

M1:s|0 = [µ1, . . . , µs]
′, µ1 = λi+ρyit1−1+β′xit1−1, µτ = λi+ρµτ−1+β′xiτ−1 for τ = 2, . . . , s.

(28)

The covariance matrix takes the form

Σ1:s|0 = σ2
i


ρ1,1|0 · · · ρ1,s|0

...
. . .

...

ρs,1|0 · · · ρs,s|0

 , ρi,j|0 = ρj,i|0 = ρj−i
i−1∑
l=0

ρ2l for j ≥ i. (29)

We can now use the formula for the conditional mean and variance of a multivariate Normal

distribution

M1:s−1|0,s = M1:s−1|0 − Σ1:s−1,s|0Σ−1
ss|0(yit2+1 − µs) (30)

Σ1:s−1,1:s−1|0,s = Σ1:s−1,1:s−1|0 − Σ1:s−1,s|0Σ−1
ss|0Σs,1:s−1|0



This Version: July 8, 2022 20

to deduce that

Y ∗i,t1:t2
∼ TN−

(
M1:s−1|0,s,Σ1:s−1,1:s−1|0,s

)
. (31)

Here we use TN−(µ,Σ) to denote a Normal distribution that is truncated to satisfy y ≤
0. Draws from this Truncated Normal distribution can be efficiently generated using the

algorithm recently proposed by Botev (2017).

There are two important special cases. First, suppose that t2 = T , meaning that the last

observation in the sample is censored. Then the mean vector and the covariance matrix of

the Truncated Normal distribution are given by (28) and (29) with the understanding that

s = t2 − t1 + 1. Second, suppose that t1 = 0, meaning that the initial observation in the

sample yi0 = 0. Because in this case the observation yit1−1 = yi,−1 is missing, we need to

modify the expressions in (28) and (29). According to (26), the joint distribution of (λi, y
∗
i0)

is a mixture of Normals. Using the mixture component membership indicator γi,λ, we can

express y∗i0|(λi, xi,−1) ∼ N(µ∗(λi, xi,−1), σ2
∗). This leads to the mean vector

M1:s = [µ1, . . . , µs], µ1 = µ∗(λi, xi,−1), µτ = λi + ρµτ−1 + β′xiτ−1 for τ = 2, . . . , s (32)

and the covariance matrix

Σ1:s = σ2
i


0 0 · · · 0

0 ρ1,1 · · · ρ1,s−1

...
...

. . .
...

0 ρs−1,1 · · · ρs−1,s−1

+ σ2
∗


ρ0+0 · · · ρ0+(s−1)

...
. . .

...

ρ(s−1)+0 · · · ρ(s−1)+(s−1)

 , (33)

where the definition of ρi,j is identical to the definition of ρi,j|0 in (29). One can then use

the formulas in (30) to obtain the mean and covariance parameters of the Truncated Normal

distribution.

Step 2: Drawing from λi|(Y1:N,0:T , Y
∗

1:N,0:T , X1:N,−1:T , σ
2
1:N , γ1:N,y, γ1:N,σ, θ, ξ). Posterior

inference with respect to λi becomes “standard” once we condition on the latent variables

Y ∗i,0:T and the component membership γi,λ. It is based on the Normal location-shift model

y∗it − ρy∗it−1 − β′xit−1 = λi + uit, uit
iid∼ N(0, σ2

i ), t = 1, . . . , T. (34)

Because the conditional prior distribution λi|(y∗i0, xi,−1, γi,λ) is Normal, the posterior of λi is

also Normal and direct sampling is possible.

Step 3: Drawing from σ2
i |(Y1:N,0:T , Y

∗
1:N,0:T , , X1:N,−1:T , λ1:N , γ1:N,y, γ1:N,σ, θ, ξ). Posterior
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inference with respect to σ2
i is based on the Normal scale model

y∗it − ρy∗it−1 − β′xit−1 − λi = uit, uit
iid∼ N(0, σ2

i ), t = 1, . . . , T. (35)

However, even conditional on the mixture component membership indicator γi,σ, the prior for

σ2
i in (24) is not conjugate and direct sampling is not possible. Instead, we sample from this

non-standard posterior via an adaptive random walk Metropolis-Hastings (RWMH) step.17

Step 4: Drawing from θ|(Y1:N,0:T , Y
∗

1:N,0:T , , X1:N,−1:T , λ1:N , σ
2
1:N , γ1:N,λ, γ1:N,σ, ξ). Condi-

tional on the latent variables Y ∗i,0:T and the heterogeneous coefficients λi, σ
2
i , we can express

our model as

y∗it − λi = ρy∗it−1 + β′xit−1 + uit, uit
iid∼ N(0, σ2

i ), i = 1, . . . , N, t = 1, . . . , T. (36)

The temporal and spatial independence of the uit’s allows us to pool observations across i

and t. Under the Normal prior in (19), the posterior distribution of θ = [ρ, β′]′ is also Normal

and we can obtain draws by direct sampling.

Step 5: Drawing from (γi,λ, γi,σ)|(Y1:N,0:T , Y
∗

1:N,0:T , , X1:N,−1:T , λ1:N , σ
2
1:N , θ, ξ). We describe

how to draw the component membership indicator γi,λ. Straightforward modifications lead

to a sampler for γi,σ. Note that ξ contains the elements of Φ1:K , Σ1:K , and πλ,1:K . The prior

probability that unit i is a member of component k is given by πλ,k. Let π̄i,λ,k denote the

posterior probability of unit i belonging to component k conditional on the set of means

Φ1:K and variances Σ1:K as well as λi. The π̄i,λ,k’s are given by

π̄i,λ,k =
πλ,kpN

(
λi|y∗i0, xi,−1,Φk,Σk

)∑K
k=1 πλ,kpN

(
λi|y∗i0, xi,−1,Φk,Σk

) . (37)

Note that the conditional distribution λi|(y∗i0, xi,−1,Φk,Σk) is Normal, indicated by the nota-

tion pN(·), and can be derived from the joint Normal distributions of the mixture components

in (26). Thus,

γi,λ|(Φ1:k,Σ1:K , λi) = k with prob. π̄i,λ,k. (38)

Step 6: Drawing from ξ|(Y1:N,0:T , Y
∗

1:N,0:T , X1:N,−1:T , λ1:N , σ
2
1:N , γ1:N,λ, γ1:N,σ, θ). Sampling

from the conditional posterior of Φ1:K , Σ1:K , and πλ,1:K can be implemented as follows. Let

nλ,k be the number of units and Jλ,k the set of units that are members of component k. Both

17We use an adaptive procedure based on Atchadé and Rosenthal (2005), which adaptively adjusts the
random walk step size to keep acceptance rates around 30%.
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nλ,k and Jλ,k can be determined based on γ1:N,λ. The conditional posterior of the component

probabilities takes the form of a generalized truncated stick breaking process

πλ,1:K |(nλ,1:K , α,K) ∼ TSB

{1 + nλ,k}Kk=1,

{
αλ +

K∑
j=k+1

nλ,j

}K

k=1

, K

 , (39)

meaning that the ζk’s in (22) have a B
(
1 +nλ,k, αλ +

∑K
j=k+1 nλ,j

)
distribution. Conditional

on πλ,1:K the hyperparameter αλ has a Gamma posterior distribution of the form

αλ|πλ,1:K ∼ G(2 +K − 1, 2− ln πλ,K). (40)

The conditional posterior for (Φk,Σk) takes the form

p(Φk,Σk|Y1:N,0:T , Y
∗

1:N,0:T , λ1:N , σ
2
1:N , γ1:N,λ, γ1:N,σ, θ) (41)

∝ p(Φk,Σk)
∏
i∈Jλ,k

p(λi, y
∗
i0|xi,−1,Φk,Σk).

Because here the prior p(Φk,Σk) is MNIW and the likelihood
∏

i∈Jλ,k p(λi, y
∗
i0|xi,−1,Φk,Σk)

is derived from a multivariate Normal linear regression model, the conditional posterior of

(Φk,Σk) is also MNIW. All three conditional posteriors allow direct sampling. The deriva-

tions can be modified to obtain the conditional posterior of ψ1:K , ω1:K , and πσ,1:K .

Step 7: Drawing from the predictive density. Conditional on (y∗iT , λi, σ
2
i , θ) and

xi,T :T+h−1, paths from the predictive distribution for yi,T+1:T+h can be easily generated by

simulating (1) forward; see Section 3.3 for further details.

Modifications for the simplified model specifications. If the CRE distribution is

modeled parametrically instead of flexibly, then the drawing of the component membership

indicators (γi,λ, γi,σ) in Step 5 and the drawing of π·,1:K and α in Step 6 are unnecessary.

One only has to sample from the MNIW posterior of (Φ1,Σ1) and the NIG posterior of

(ψ1, ω1). Under homoskedasticity, i.e., σ2
i = σ2 for all i, we can pool (35) in Step 3 across t

and i. In combination with the prior in (23) this leads to an IG posterior for σ2 from which

one can sample directly. The RE specification requires modifications to Step 1, because

the distribution of yi0 is now simplified to y∗i0 ∼ N(φy,Σy), to Step 2 because the prior

distribution of λi is different, and to Step 6 because the pairs of VAR coefficients (Φk,Σk)

are replaced by (φλ,k,Σλ,k) and (φy,Σy), which leads to NIG posteriors.
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3.3 Multi-Step Forecasting

In general, there are two ways of extending one-step-ahead to multi-step-ahead forecasting:

an iterated approach and a direct approach.

First, iterating the law of motion of y∗it in (1) forward by h periods, starting from period

t = T , yields

y∗iT+h = λi

(
h−1∑
s=0

ρs

)
+ ρhy∗iT + β′

(
h−1∑
s=0

ρsxiT+h−1−s

)
+

h−1∑
s=0

ρsuiT+h−s. (42)

Thus, forecasting y∗iT+h iteratively requires the path xi,T :T+h−1. We can distinguish the fol-

lowing scenarios: (i) the path is given at time T . For instance, in a stress-testing application

of our framework the path of the exogenous variables would be specified by the regulator as

part of the stressed macroeconomic scenario. (ii) xit is strictly exogenous. In this case the

user has to specify a separate model for xit to simulate future trajectories along which (42) is

evaluated. Because of the exogeneity, this simulation can be conducted independently of the

simulation of (42). Suppose one has draws (λ
(j)
i , ρ(j), β(j), σ

2(j)
i ) and draws x

(j)
i,T :T+h−1 from

the posterior predictive distribution of the exogenous regressors, then one can define

µ
(j)
iT+h|T = λ

(j)
i

(
h−1∑
s=0

(ρ(j))s

)
+ (ρ(j))hy

∗(j)
iT + β(j)

(
h−1∑
s=0

(ρ(j))sx
(j)
iT+h−1−s

)

σ
2(j)
iT+h|T =

(
h−1∑
s=0

(ρ(j))2s

)
σ

2(j)
i .

One can sample y
∗(j)
iT+h from a N(µ

(j)
iT+h|T , σ

2(j)
iT+h|T ) and apply the censoring to obtain a draw

y
(j)
iT+h. (iii) The xits are endogenous and interact with the yits, which is the case in our

application. To capture the feedback from the dependent variables to the regressors, one has

to simulate (Y1:N,T+1:T+h, Y
∗

1:N,T+1:T+h, X1:N,T+1:T+h−1) jointly; see (5).

Second, rather than generating h-step ahead forecasts iteratively, in practice forecasters

often engage in direct estimation of an h-step-ahead prediction function. In our framework,

this approach amounts to estimating a model of the form

y∗it = λi + ρy∗it−h + β′xit−h + uit

with the understanding that the serial correlation in uit implied by our original model (1) is

ignored. A discussion of the disadvantages and advantages of multi-step estimation in the
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Table 1: Monte Carlo Design

Law of Motion: y∗it = λi + ρy∗it−1 + uit where uit ∼ N(0, σ2
i ) and ρ = 0.8

Initial Observations: y∗i0 ∼ N(0, 1)
Skewed Random Effects Distributions:

p(λi|y∗i0) = 1
9
pN
(
λi|52 ,

1
2

)
+ 8

9
pN
(
λi|14 ,

1
2

)
p(lnσ2

i |y∗i0) = 1
9
pN
(
lnσ2

i − c|52 ,
1
2

)
+ 8

9
pN
(
lnσ2

i − c|14 ,
1
2

)
, c is chosen such that E[σ2

i ] = 1
Sample Size: N = 1, 000, T = 10
Number of Monte Carlo Repetitions: Nsim = 100
Fraction of Zeros: 45%, Fraction of All-Zeros: 15%

context of VARs can be found in Schorfheide (2005).

4 Monte Carlo Experiment

We conduct a Monte Carlo experiment to illustrate the performance of the set and density

forecasts from the dynamic panel Tobit model in (1) under ideal conditions. We also discuss

the estimation of the heterogeneous coefficients. We simplify the model by omitting the

additional predictors xit and using the RE specification. We endow the forecaster with

knowledge of the true p(y∗i0) and factorize p(λi, y
∗
i0, lnσ

2
i |ξ) as p(λi|ξ)p(y∗i0)p(lnσi|ξ). The data

generating process (DGP) is summarized in Table 1. We set the autocorrelation parameter to

ρ = 0.8 and consider skewed random effects distributions for λi and lnσ2
i that are generated

as mixtures of Normals.

The simulated panel data sets consist of N = 1, 000 cross-sectional units and the number

of time periods in the estimation sample is T = 10. We generate one-step-ahead forecasts

for period t = T + 1. The fraction of zeros across all samples is 45% and for roughly 15% of

the cross-sectional units the sample consists of T = 10 zeros (“all zeros”).18 The measures

of forecast accuracy discussed in Sections 2.3 and 2.4 are first computed for the cross section

i = 1, . . . , N = 1, 000 and we then average the performance statistics over the nsim = 100

Monte Carlo repetitions.

Model Specifications and Predictors. We compare the performance of six predictors

described below: four Bayes predictors derived from different versions of the dynamic panel

Tobit model, a predictor derived from a Tobit model with homogeneous coefficients, and a

18In the Online Appendix we report additional results for Monte Carlo designs with 60% and 75% zeros,
respectively. The overall message from the baseline Monte Carlo design is preserved under the alternative
specifications.
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predictor from a linear model with homogeneous coefficients that ignores the censoring. The

prior distributions used for the estimation of the various models were described in Section 3.1

and are summarized in Table 2. Further implementation details are provided in the Online

Appendix.

We consider four versions of the dynamic panel Tobit model with random effects (see Sec-

tion 3.1 for details): (i) flexible RE and heteroskedasticity; (ii) Normal RE and heteroskedas-

ticity; (iii) flexible RE and homoskedasticity; and (iv) Normal RE and homoskedasticity.

Versions (ii)-(iv) are misspecified in light of the DGP. The pooled Tobit specification ignores

the heterogeneity in λi, setting λi = λ for all i, and imposes homoskedasticity. Finally, the

pooled linear specification imposes λi = λ, σi = σ2 for all i, and, in addition, ignores the

censoring of the observations during the estimation stage (and finally censors the forecasts

at 0).

Density and Set Forecasts. To assess the density forecasts we compute LPS and CRPS;

see Section 2.3. The larger LPS and the smaller CRPS the better the forecast. The accuracy

statistics are reported in columns 2 and 3 of Table 3. As expected, the flexible specification

with heteroskedasticity that nests the DGP delivers the most accurate density forecasts.

While replacing the flexible representations of the RE distributions with Normal distributions

only leads to a marginal deterioration of forecast performance, imposing homoskedasticity

generates a substantial drop in accuracy. The two “pooled” models that ignore the intercept

heterogeneity perform the worst.

We consider two types of set forecasts; see Section 2.4. The first type targets the av-

erage coverage probability in the cross-section (“average”), whereas the other type targets

the correct coverage probability for each unit i (“pointwise”). To assess the set forecasts

we compute the coverage frequency and the average length of 90% predictive sets. Results

are presented in columns 4 to 7 of Table 3. The “average” sets constructed from the het-

eroskedastic specification have good frequentist coverage properties. They attain coverage

frequencies of 91.0% and 90.8%, respectively. A comparison between the “average” and the

“pointwise” set forecasts from the heteroskedastic models highlights that the average length

of the “average” sets is indeed smaller. Moreover, the coverage frequency of the “pointwise”

sets exceeds the nominal coverage level of 90% by a larger amount. We observe a similar

pattern also for the set forecasts from the homoskedastic model specifications. Overall, the

homoskedastic specifications generate worse set forecasts, in terms of coverage frequency and

average length, than the heteroskedastic specifications.

Parameter Estimates. The last two columns of Table 3 summarize the bias and standard
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Table 3: Monte Carlo Experiment: Forecast Performance and Parameter Estimates

Density Fcst Set Forecast Set Forecast Estimates
“Average” “Pointwise”

LPS CRPS Cov. Length Cov. Length Bias(ρ̂) StdD(ρ̂)
Flexible & Heterosk. -0.757 0.277 0.910 1.260 0.933 1.503 -0.002 0.005
Normal & Heterosk. -0.758 0.277 0.908 1.248 0.932 1.498 -0.006 0.005
Flexible & Homosk. -0.902 0.294 0.929 1.506 0.942 1.698 0.007 0.008
Normal & Homosk. -0.903 0.294 0.929 1.501 0.942 1.699 0.001 0.007
Pooled Tobit -0.935 0.313 0.935 1.705 0.947 1.911 0.252 0.004
Pooled Linear -1.243 0.357 0.923 1.925 0.933 1.951 0.229 0.005

Notes: The Monte Carlo design is summarized in Table 1. The true values for ρ is 0.8. “Cov.” is coverage
frequency and “Length” is an average across i.

Figure 1: Posterior Means and Estimated RE Distributions for λi

Flexible & Heteroskedastic Normal & Heteroskedastic

Notes: The histograms depict E[λi|Y1:N,0:T ], i = 1, . . . , N , for two different model specifications. The
shaded areas are hairlines obtained by generating draws from the posterior distribution of ξ and plotting the
corresponding random effects densities p(λ|ξ). The black lines represent the true p(λ).

deviation of the posterior mean estimator of the homogeneous parameter ρ. Under the

correctly specified “Flexible & Heterosk.” model the bias is close to zero and the standard

deviation is small. Replacing the flexible RE specification by a Normal specification raises the

bias by a factor of three. Replacing heteroskedasticity by homoskedasticity approximately

increases the standard deviation by 50% because of a loss of efficiency. Imposing intercept

homogeneity (pooled Tobit and pooled linear specification) leads to a substantial increase in

the bias.

The panels of Figure 1 show the true RE density p(λ), hairlines that represent p(λ|ξ)
generated from posterior draws of ξ, and histograms of the point estimates E[λi|Y1:N,0:T ]. The
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left panel corresponds to the flexible specification, whereas the panel on the right displays

results for the Normal specification. In both cases we allow for heteroskedasticity. The

posterior distribution of p(λ|ξ) under the flexible specification concentrates near the true

density, whereas, not surprisingly, the parametric specification yields larger discrepancies

between the true RE density and the draws from the posterior distribution. Because of the

shrinkage effect of the prior distribution, we generally expect the cross-sectional distribution

of E[λi|Y1:N,0:T ] (histograms) to be less dispersed than the distribution of λi (density plots).

Moreover, if we observe sequences of all zeros for multiple units i, posterior inference of

the corresponding λis should be the same. This will create a spike in the left tail of the

E[λi|Y1:N,0:T ] distribution. Both features are present in the figure.19

5 Empirical Analysis

We now use different versions of the dynamic panel Tobit model to forecast loan charge-off

rates (charge-offs divided by the stock of loans in the previous period, multiplied by 400).

As mentioned in the introduction, a charge-off occurs if a loan is deemed unlikely to be

collected because the borrower has become substantially delinquent after a period of time.

The prediction of charge-off rates is interesting from the perspectives of banks, regulators,

and investors, because charge-offs generate losses on loan portfolios and are, in fact, a large

contributor to bank losses. If these charge-off rates are large, the bank may be entering a

period of distress and require additional capital.20

We consider a panel of “small” banks, which we define to be banks with total assets of

less than one billion dollars.21 For these banks it is reasonable to assume that they operate

in local markets. The forecasts are generated from model (1) where yit are charge-off rates.

As potential explanatory variables we consider the quarter-on-quarter inflation in the house

price index ∆ ln HPIit−1, the change in the unemployment rate ∆URit−1, and the growth

rate in personal income ∆ ln INCit−1. Here ∆ is the temporal difference operator. The term

19We provide illustrative analytical examples of these effects in the Online Appendix.
20The accounting details are more complicated: bank balance sheets contain a contra asset account called

“Allowance for Loan and Lease Losses” (ALLL). Provisions for LLL are created based on estimated credit
losses and reduce the income of the bank. Charge-offs reduce the ALLL and the gross loans on the bal-
ance sheet, leaving the net amount unchanged. At this stage, the charge-offs do not lead to a further
reduction of income. Whether or not a bank takes a loss provision or a charge-off is to some extent a man-
agerial/accounting decision, although regulators require loans they classify as losses to be charged off. We
abstract from strategic accounting aspects; see Moyer (1990) for a seminal paper.

21Monitoring potential loan losses in small banks is useful by itself. Moreover, the delinquency rates of
small banks could foreshadow those rates of large banks since the small banks tend to have more subprime
borrowers who are more vulnerable to minor deterioration in economic condition.
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β′xit−1 therefore captures variation in regional economic conditions which we measure at

the state level. Banks located in regions with poor economic conditions may be more likely

to encounter loan losses because of a higher fraction of borrowers that are unable to repay

their loans. Our baseline model is based on xit = [∆ ln HPIit,∆URit]
′, but we also consider a

specification that includes personal income as a third explanatory variable and a specification

without any explanatory variables.

The heterogeneous intercept λi can be interpreted as a bank-specific measure of the qual-

ity of the loan portfolio: the smaller λi, the higher the quality of the loan portfolio and the

less likely a charge-off is to occur. The autoregressive component in the model captures the

persistence of the composition of the loan portfolio over time, and the covariates shift the

density of repayment probabilities. We consider various choices of p
(
λi, y

∗
i0, σi|xi,−1, ξ

)
; see

Section 3.1. The data set is described in Section 5.1. Section 5.2 presents density forecast

comparisons for various model specifications. Estimates of the heterogeneous and homoge-

neous parameters are reported in Section 5.3. Posterior predictive checks are conducted in

Section 5.4. Finally, Section 5.5 contains the set forecast results.

5.1 Data

The raw data are obtained from “call reports” (FFIEC 031 and 041) that the banks have

to file with their regulator and are available through the website of the Federal Reserve

Bank of Chicago. Due to missing observations and outliers we restrict our attention to four

loan categories: credit card (CC) loans, other consumer credit (CON), construction and

land development (CLD), and residential real estate (RRE). We construct rolling panel data

sets for each loan category that have a time dimension of twelve quarterly observations:

one observation y0 to initialize the estimation, T = 10 observations for estimation, and one

observation to evaluate the one-step-ahead forecast. The number of banks N in the cross

section varies depending on market size and date availability. The earliest sample considered

in the estimation starts (t = 0) in 2001Q2 and the most recent sample starts in 2016Q1. A

detailed description of the construction of the data set is provided in the Online Appendix.

In the remainder of this section, we present two types of results: (i) forecast evalua-

tion statistics and parameter estimates for RRE and CC charge-off rates based on samples

that cover the Great Recession and range from 2007Q2 (t = 0) to 2009Q4 (t = T );22 (ii)

22There are, in general, large uncertainties during the Great Recession. Thus, accurate density and set
forecasts are important.
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Table 4: Summary Statistics for Baseline Samples

N Zeros [%] All Zeros [%] Mean 75th Max
RRE 2,576 76 61 0.25 0.00 33.1
CC 561 43 22 3.27 4.07 260

Notes: The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T = 10). We forecast 2010Q1
observations. “Zeros” refers to the fraction of zeros in the overall sample of observations (all i and all t),
“All Zeros” is the fraction of banks for which charge-off rates are zero in all periods. Mean, 75th percentile,
and maximum are computed based on the overall sample.

scatter plots summarizing forecast evaluation statistics for the 111 rolling samples that we

constructed (based on data availability) for the above-mentioned four loan categories.

Table 4 contains some summary statistics for the two baseline samples. For the small

banks in our sample, RRE loans are an important part of their loan portfolio. For approx-

imately 45% (25%) of the banks RREs account for 20% to 50% (more than 50%) of their

loan portfolio. CC loans, on the other hand, make up less than 2% of the loans held by the

banks in our sample. Both baseline samples contain a substantial fraction of zero charge-off

observations: 76% for RREs and 43% for CC, which makes it challenging to estimate the

coefficients of our panel data models. Moreover, 61% of the banks in the RRE sample never

write off any loans between 2007 and 2009. The distribution of charge-off rates, across banks

and time, is severely skewed. For RREs the 75th percentile is 0 and the maximum is 33.1%

annualized. For CCs the corresponding figures are 4.07% and 260%, respectively. A table

with summary statistics for the remaining samples is provided in the Online Appendix.

5.2 Density Forecasts and Model Selection

Selected Samples. We begin the empirical analysis by comparing the density forecast per-

formance of several variants of (1) for the two baseline samples using xit = [∆ ln HPIit,∆URit]
′.

This comparison includes forecasts from a Tobit model and a linear model with homogeneous

intercepts and homoskedastic innovation variances. Table 5 reports LPS (the larger the bet-

ter) and CRPS (the smaller the better). Several observations stand out. First, allowing for

heteroskedasticity improves the density forecasts unambiguously. Second, in both RRE and

CC samples, all four heteroskedastic specifications lead to very similar density forecasting

performance.

All Samples. Figure 2 summarizes the LPS comparisons for all 111 samples. We focus

on the comparison of predictive scores from the heteroskedastic specifications versus ho-
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Table 5: Density Forecast Performance

RRE CC
Specification LPS CRPS LPS CRPS
Heteroskedastic Models
Flexible CRE -0.523 0.240 -1.921 1.957
Normal CRE -0.521 0.240 -1.901 1.895
Flexible RE -0.525 0.238 -1.925 1.970
Normal RE -0.524 0.237 -1.912 1.936
Homoskedastic Models
Flexible CRE -0.751 0.272 -2.512 2.495
Normal CRE -0.751 0.272 -2.463 2.343
Flexible RE -0.751 0.270 -2.630 2.613
Normal RE -0.752 0.270 -2.535 2.391
Pooled Tobit -0.831 0.310 -2.642 2.620
Pooled Linear -1.594 0.374 -3.010 2.789

Notes: The estimation sample ranges from 2007Q2 (t = 0) to 2009Q4 (t = T = 10). We use xit =
[∆ ln HPIit,∆URit]

′ and forecast 2010Q1 observations.

moskedastic specifications using flexibly modeled correlated random effects. The solid line

is the 45-degree line and the blue and red circles correspond to the scores associated with

the baseline RRE and CC samples reported in Table 5. The figure shows that the results

for the baseline samples are qualitatively representative: incorporating heteroskedasticity is

important for density forecasting. We provide a figure in the Online Appendix that illus-

trates that LPS differentials between Normal versus flexible CREs and CREs versus REs are

small. In view of these results, we subsequently focus on the flexible CRE specification with

heteroskedasticity.

Tail Probabilities for Selected Samples. From the density forecasts we can compute

probability forecasts for particular events. We consider the tail event I{yiT+1 ≥ c} for

c = 1% for now. Figure 3 visualizes the probabilities of the tail event for RRE charge-

off rates for 2010Q1 and 2018Q1, emphasizing the spatial dimension.23 We associate each

bank i with a particular county. If there are multiple banks in one county, we average the

predicted probabilities. 2010Q1 is the immediate aftermath of the Great Recession and

the counties that are covered by our sample appear predominantly in dark blue, indicating

that predicted probabilities of the event exceed 9.1%. Banks in California, Florida, and

the Midwest from Minnesota, Wisconsin, and Michigan down to Arkansas, Mississippi, and

23Similar maps for CC charge-off rates are available in the Online Appendix.
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Figure 2: Log Predictive Density Scores – All Samples

Notes: Flexible CRE specification. The figure illustrates pairwise comparisons of log predictive scores. We
also show the 45-degree line. Log probability scores are depicted as differentials relative to pooled Tobit.
The blue (red) circle corresponds to RRE (CC). We use xit = [∆ ln HPIit,∆URit]

′.

Figure 3: RRE Charge-Off Rate Predictive Tail Probabilities, Spatial Dimension

2010Q1 2018Q1

Notes: Predictive tail probabilities are defined as P{yiT+1 ≥ c|Y1:N,0:T , X1:N,−1:T }, where c = 1%. Flexible
CRE specification with heteroskedasticity. The estimation samples range from 2007Q2 (t = 0) to 2009Q4
(t = T = 10) and 2015Q2 (t = 0) to 2017Q4 (t = T = 10).

Alabama are predicted to write off a considerable fraction of their RRE loans. Eight years

later, the situation has improved considerably, as the map now appears in light blue instead

of dark blue, in particular in hard hit states such as California and Florida.

While this paper focuses on forecasting problems, the predictive densities derived from

our empirical model can be embedded into more complex decision problems that more closely

capture the objectives of policy makers or regulators. In this case, the predictive density is
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Figure 4: Heterogeneous Coefficient Estimates, RRE Charge-Off Rates

E[λi/(1− ρ)|·] E
[

ln(σi/
√

1− ρ2)| ·
]

Scatter

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). A few extreme observations are not visible in the plots. The conditioning set is
(Y1:N,0:T , X1:N,−1:T ).

used to compute posterior expected losses associated with policy decisions. The accuracy of

the loss calculation is tied to the empirical adequacy of the predictive density, which is what

we are evaluating in this section.

5.3 Parameter Estimates for Selected Samples

Heterogeneous Parameters. The distributions of posterior mean estimates of the hetero-

geneous coefficients for the 2007Q2 sample of RRE charge-off rates are depicted in Figure 4.24

We use the AR coefficient ρ to rescale λi and σi. The panels on the left and in the center

of the figure show histograms for the posterior means of λi and σi, respectively, whereas

the right panel contains a scatter plot that illustrates the correlation between the posterior

means of intercepts and shock standard deviations.

A notable feature of the histogram for the posterior means of λi/(1 − ρ) is the spike in

the left tail of the distribution. Such spikes were also present in the Monte Carlo simulation;

see Figure 1. The spike corresponds to banks with predominantly zero charge-off rates. For

these banks, the sample contains very little information about λi other than that it has to be

sufficiently small to explain the zero charge-off rates. In turn, the posterior mean estimate

is predominantly driven by the prior. Similar spikes are visible in the histogram for the

posterior means of the re-scaled log standard deviations and the right panel shows that the

24Similar plots for CC charge-off rates are available in the Online Appendix.
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Figure 5: λ̂i/σi and P
{
i ∈ High

}
versus Log Assets (Bank Size)

RRE CC

λ̂
i/
σ
i

P {
i∈

H
igh }

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). Bank assets are measured at t = 0. We form a low-λ (blue) and high-λ (red) group
(left scale). The lines in the top segment of the plot are LAD regression lines. The black lines in the grey
shaded areas are predicted probabilities from the logit models (right scale).

σi spike and the λi spike are associated with the same banks. Small estimates of σi are

associated with near zero estimates of λi, whereas large estimates of σi are associated with

a broad range of λi estimates. The large dispersion of σi estimates is consistent with the

substantially better density forecast performance of the heteroskedastic models.

Because regional economic conditions have already been controlled for by β′xit−1, the

estimates of λi are more likely to be related to bank characteristics. Popular explanations

for the heterogeneity in loan losses across banks, here captured by the heterogeneity of λ̂i,

are attitude toward risk, i.e., some banks might have a greater propensity to take risk or

have better opportunities to diversify returns on their loan portfolio, and quality of credit

management; see Keeton and Morris (1987) for an early contribution and Ghosh (2015, 2017)

more recently.

In Figure 5 we illustrate the relationship between the posterior mean estimate of λ̂i/σi,

which for ρ = 0 and β = 0 determines the probability of non-zero charge-offs, and bank

size measured by the log of total assets. The top segments of the two panels contain scatter

plots with group-wise least-absolute-deviations (LAD) regression lines (left scale). As we

have seen previously in Figure 4 there are two groups of λ̂i estimates. For simplicity, we
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Table 6: Regressions of λ̂i/σi on Bank Characteristics

RRE CC
Low High Logit Low High Logit

Log Assets 0.05∗ (0.02) 0.20∗ (0.03) 1.55∗ (0.11) 0.00 (0.02) 0.21∗ (0.03) 1.27∗ (0.32)
Loan Fraction 0.07 (0.12) 0.17 (0.15) 5.07∗ (0.53) 10.4 (6.63) 0.61 (0.50) 1254∗ (179)
Capital-Asset 0.30 (0.51) -1.36 (0.99) -12.0∗ (2.83) 0.53 (0.41) -1.42 (1.02) -7.75 (7.53)
Loan-Asset 0.09 (0.14) 0.56∗ (0.23) 6.43∗ (0.66) -0.20 (0.14) -0.07 (0.21) 6.42∗ (2.23)
ALLL-Loan 5.82 (3.97) 12.0∗ (5.10) 88.1∗ (18.2) -0.01 (2.23) -1.45 (4.02) 85.8∗ (38.2)
Diversification 0.34 (0.35) -0.20 (0.13) -0.10 (0.63) -0.05 (0.31) 1.19∗ (0.42) 0.82 (4.69)
Ret. on Assets -26.1∗ (7.55) -1.08 (10.06) -122∗ (36.1) 28.7∗ (7.73) 11.1 (12.4) -225 (130)
OCA -19.4∗ (9.63) 8.25 (10.05) 47.9 (31.01) 6.38 (7.23) 16.92 (11.8) -125 (124)
Intercept -4.16∗ (0.32) -2.86∗ (0.47) -23.8∗ (1.60) -1.27∗ (0.28) -2.18∗ (0.45) -20.4∗ (4.79)

Pseudo R2 0.03 0.06 0.32 0.18 0.11 0.47

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to

2009Q4 (t = T = 10). Bank characteristics are measured at t = 0. Low (High) refers to small (large) λ̂i/σi
group of banks (cutoff is approx -2 for RRE and -1 for CC); see red and blue dots in Figure 5. For banks in Low

and High groups we regress λ̂i/σi on the variables listed in the first column using a least absolute deviations
estimator. Logit refers to estimates of a logit model for I{i ∈ High}. Standard errors are in parenthesis. ∗
indicates significance at 5% level. Pseudo R2 are computed as follows: LAD = 1−

∑
|ûi(all)|/

∑
|ûi(intcpt)|

(Koenker and Machado, 1999), Logit = 1− loglh(all)/loglh(intcpt) (McFadden, 1973).

refer to these groups as low-λ and high-λ groups respectively. For both the RRE and CC

samples the positive relationship between bank size and riskiness of the loan portfolio λ̂i/σi

is more pronounced for banks in the high-λ group. The slope coefficients are 0.18 and 0.19,

respectively. The shaded areas at the bottom of the panels contain fitted probabilities (right

scale) from a logit model that uses log assets as right-hand-side variable. The larger the

assets, the higher the probability that it belongs to the high-λ group. These results suggest

that larger banks in our sample tend to hold riskier loan portfolios.

In Table 6 we present estimates from LAD regressions of λ̂i/σi on multiple bank charac-

teristics (measured in period t = 0), separately for the low-λ and the high-λ group of banks.25

We also report estimates for a logit model for I{i ∈ High}. According to the logit estimates

bank size (log assets), the ratio of RRE or CC loans to all loans, lending specialization (ra-

tio of total loans to total assets), and lack of credit quality (ratio of ALLL to total loans)

increase the probability that a bank belongs to the high-λ group. Capitalization (capital-to-

asset ratio) and profitability (return on assets) lower the probability that a bank belongs to

the high-λ group. For the group-specific regressions only a few bank variables appear to be

significant. Foremost, it is bank size measured by log assets. For the RRE high-λ group it

also includes lending specialization, and for the CC high-λ group it includes diversification

25Data definitions and summary statistics for the bank characteristics are provided in the Online Appendix.
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(share of non-interest income to total income). Operational efficiency, measured by the ratio

of overhead costs to assets (OCA) is predominantly insignificant.

Ghosh (2017) studies macroeconomic and bank-level determinants of non-performing

loans, i.e., loans past due 90 days or more, for the 100 largest commercial banks over the

period 1992Q4 to 2016Q1. With the exception of log assets and loan fractions, we followed

his study in constructing our bank-level regressors. Although our sample differs from his in

several dimensions (selection of banks, measure of loan performance, and time period), we

provide a brief comparison of the results for real estate loans as follows.

Ghosh (2017) finds the following significant relationships for real estate loans: log capital-

to-assets (positive), log loans-to-assets (negative), log inverse credit quality (positive), log

return on assets (negative). In our logit regression the same bank characteristics have signif-

icant coefficients, but the signs of the estimates for the capital-to-asset and the loan-to-asset

ratio differ. As Ghosh (2017) points out, the effect of bank capitalization on loan quality is

theoretically ambiguous. On the one hand, managers in banks with low capital bases have

a moral hazard incentive to engage in risky lending practices (negative relationship). On

the other hand, managers in highly capitalized banks may feel confident to engage in risky

lending (positive relationship). With respect to the loan-to-asset ratio, our positive estimate

for RRE contradicts the notion that banks that are specialized in lending do a better job in

selecting high-quality loans, and the positive relationship may reflect that these banks could

have more liberal lending policies.

We also report goodness-of-fit (R2) measures in Table 6. For the LAD regressions we

report Koenker and Machado (1999)’s quantile regression R2. For the logit regressions we

compute McFadden (1973)’s pseudo R2. For the RRE loans the variation in loan quality

(λ̂i/σi) explained by bank characteristics is low. The R2s for the group-specific LAD re-

gressions are only 0.03 and 0.06, respectively. For the CC sample, bank characteristics are

more successful in explaining variations in loan quality. The R2 values are 0.18 and 0.11,

respectively. The logit regressions attain pseudo R2 values of 0.32 and 0.47 which indicate

that the bank characteristics considered here are partly successful in determining whether a

bank belongs to the low-λ or high-λ group.

Common Parameters. Parameter estimates of the common coefficients for the flexible

CRE specification with heteroskedasticity are reported in Table 7 for the 2007Q2 samples.

We report posterior means and 90% credible intervals. For each sample we consider three

specifications: (i) the baseline specification with ∆ ln HPIit−1 and ∆URit−1; (ii) an extended

version that also includes ∆ ln INCit−1; (iii) and a version without regressors.
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Table 7: Estimates of Common Parameters

y∗it−1 ∆ ln HPIit−1 ∆URit−1 ∆ ln INCit−1 LPS
Mean CI Mean CI Mean CI Mean CI

RRE 0.21 [ 0.18, 0.25] -0.03 [ -0.04, -0.02] 0.15 [ 0.13, 0.17] -0.5232
0.22 [ 0.18, 0.26] -0.03 [ -0.04, -0.02] 0.15 [ 0.12, 0.17] .001 [ -.005, .007] -0.5214
0.29 [ 0.27, 0.31] -0.5214

CC 0.41 [ 0.36, 0.46] -0.09 [-0.15, -0.04] 0.46 [0.30, 0.62] -1.9214
0.41 [ 0.36, 0.45] -0.10 [-0.16, -0.04] 0.46 [0.30, 0.63] .010 [ -.030, .051] -1.9216
0.48 [ 0.43, 0.52] -1.9268

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The table contains posterior means and 90% credible intervals in brackets.

Both samples exhibit mild autocorrelation. The point estimate of ρ is 0.21 for RRE and

0.41 for CC. To report the estimates of β we undo the standardization of the regressors. The

numerical values can be interpreted as follows. For the RRE sample, under the extended

specification that includes personal income growth a 1% quarter-on-quarter fall of house

prices leads to an increase in charge-off rates by 0.03 percentage points. A 1% increase

in the unemployment rate raises the charge-off rates by 0.15 percentage points. Finally,

a 1% growth of personal income increases the charge-off rates by 0.001 percentage points.

For both samples, the coefficients on persistence, house-price inflation, and unemployment

rate changes are “significant,” whereas the coefficient on the income growth regressor is

“insignificant” in that it is small and its sign is ambiguous. Adding income growth hardly

alters the coefficient estimates for house-price inflation and unemployment rate changes. The

estimates for the CC sample are qualitatively similar to RRE but about three times larger

in magnitude.

In the last column of Table 7 we report the LPS, now up to four decimal places, that were

previously used for the comparison of density forecasts in Table 5. The values for the three

configurations of xit are very close. For the CC sample the LPS criterion favors our baseline

specification with xit = [∆ ln HPIit,∆URit]
′, whereas for the RRE sample strictly speaking

the model without regressors is preferred. In the Online Appendix we show scatter plots of

λ̂i + β′xit−1 versus λ̂i which indicate that only a very small fraction is explained by local

economic conditions. Despite the quantitatively small effect of local economic conditions on

charge offs we proceed with xit = [∆ ln HPIit,∆URit]
′, whose coefficients are “significant,”

and examine the effects of changes in house prices and unemployment more carefully.

Because the Tobit model is nonlinear, the average effect of a change in the regressors
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Figure 6: Effects (Terms I and II) of HPI and UR on CC Charge-Off Rates

HPI Fall Unemployment Increase

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The banks i = 1, . . . , N along the x-axis are sorted based on the posterior means

λ̂i/σi. Terms Ii are shown in black/grey and terms IIi in dark/light blue. The units on the y-axis are in
percent. The solid lines indicate the posterior means of the treatment effect components and the shaded
areas delimit 90% credible bands.

(“treatment effect”) depends on λi. We consider a change of the regressor from its sample

value xiT to x̃iT = xiT + ι′∆x, where the unit-length vector ι determines the direction of the

perturbation of xiT and ∆x > 0 the magnitude. Accounting for censoring, we decompose

the treatment effect on yiT+1 as follows:

ỹiT+1 − yiT+1

∆x
= β′ιI{λi + ρy∗iT + β′xiT + uiT+1 > 0} (43)

+
λi + ρy∗iT + β′x̃iT + uiT+1

∆x

(
I{λi + ρy∗iT + β′x̃iT + uiT+1 > 0}

−I{λi + ρy∗iT + β′xiT + uiT+1 > 0}
)

= Ii + IIi.

Term Ii captures the intensive margin, i.e., a bank that has non-zero charge-offs conditional

on xiT and x̃iT . In this region the Tobit model is linear and the effect is β′ι. The second term,

IIi, captures the extensive margin of banks switching between zero and positive charge-offs.

Figure 6 depicts the posterior mean and the 90% credible band of the two components of

the treatment effect for the banks in the 2007Q2 CC sample.26 We sort the banks based on

the posterior means λ̂i/σi, which for ρ = 0 and β = 0 would determine the probability of a

positive charge-off. We consider two choices for ι′∆x: a 5% drop in house prices (left panels)

26A similar figure for the RRE sample is available in the Online Appendix.
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and a 5% rise in the unemployment rate within one quarter (right panels). These are severe

shocks to the local economies. For the first approximately 120 banks the posterior mean of

Ii (black/grey) is close to zero. These are the banks with low values of λ̂i that appear as

a mass in the left tail of the density plot in the left panel of Figure 4. Under the baseline

conditions xiT they are unlikely to have non-zero charge-offs. For the remaining banks the

posterior mean of the term I treatment effect rises under the HPI fall scenario from 0.03%

to 0.1%, where the latter value is the coefficient estimate reported in Table 7. The credible

intervals are fairly wide, ranging from 0% to 0.15%.

The posterior mean for component II (dark/light blue) of the treatment effect is quali-

tatively similar under the two economic scenarios. For the first 120 banks term II is small

because much of β′(x̃iT −xiT ) has to compensate for the low estimate of λi before the latent

variable y∗iT+1 becomes positive. For the remaining banks the term is also small, but for a

different reason: with high probability these banks already have positive charge-offs under

the baseline economic conditions. Quantitatively, the effects are larger under the very severe

unemployment scenario. The switch of low λi banks from zero to positive charge-offs leads

to a posterior mean of the average treatment effect of 0.04%. As λ̂i/σi increases, the ex-

pected value of term II decreases because it becomes more likely that the bank has positive

charge-offs even under the baseline scenario.

5.4 Posterior Predictive Checks for Selected Samples

In order to assess the fit of the estimated panel Tobit model, we report posterior predictive

checks in Figure 7. A posterior predictive check examines the extent to which the estimated

model can generate artificial data with sample characteristics that are similar to the charac-

teristics of the actual data that have been used for estimation.27 Consider the top left panel

of the figure. Here, the particular characteristic, or sample statistic, under consideration is

the cross-sectional density of yiT+1 conditional on yiT+1 > 0. The black line is computed

from the actual RRE loan sample. Each blue hairline is generated as follows: (i) take a

draw of (ρ, β, ξ) from the posterior distribution; (ii) conditional on these draws generate

λ1:N , Y ∗1:N,0, and σ2
1:N ; (iii) simulate a panel of observations Ỹ1:N,0:T+1; (iv) compute a kernel

density estimate based on Ỹ1:N,T+1. The swarm of hairlines visualizes the posterior predictive

distribution. A model passes a posterior predictive check if the observed value of the sample

27Textbook treatments of posterior predictive checks can be found, for instance, in Lancaster (2004) and
Geweke (2005).
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Figure 7: Posterior Predictive Checks: Cross-sectional Distribution of Sample Statistics

Density yiT+1|(yiT+1 > 0) Distr. of Frequency Correlation of (yit, yit−1)
of Zero Charge-Offs if Both Are Positive

R
R

E
C

C

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The black lines (left and right panels) and the histogram (center panels) are computed

from the actual data. Each hairline corresponds to a simulation of a sample Ỹ1:N,0:T+1 of the panel Tobit
model based on a parameter draw from the posterior distribution.

statistic does not fall too far into the tails of the posterior predictive distribution. Rather

than formally computing p-values, we focus on a qualitative assessment of the model fit.

By and large, the estimated models for RRE and CC charge-off rates do a fairly good job

in reproducing the cross-sectional densities of yiT+1 in that some of the hairlines generated

from the posterior cover the observed densities. The only discrepancies arise for charge-off

values close to zero. With high probability, the densities computed from simulated data have

less mass than the observed RRE and CC densities. Moreover, the modes of the simulated

densities are slightly to the right and lower than the modes in the two actual densities. The

hairlines depict the densities conditional on yiT+1 > 0. In the observed RRE sample the

fraction of yiT+1 = 0 is 0.71. The corresponding 90% interval obtained from the estimated

model is [0.73, 0.79]. For CC charge-off rates, the fraction in the data is 0.43 and the

corresponding 90% interval obtained from the estimated model is [0.37, 0.47].

The center panels of Figure 7 focus on the estimated models’ ability to reproduce the

number of zero charge-off observations. For each unit i we compute the number of periods in

which yit = 0. Because T = 10 the maximum number of zeros between t = 0 and t = T + 1
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is 12. The histogram is generated from the actual data, whereas the hairlines are computed

from the simulated data. For instance, 61% of the banks do not write off any RRE loans in

the twelve quarters of the sample and roughly 5% of the banks write off RRE loans in every

period. Overall, the estimated models do remarkably well in reproducing the patterns in the

data. For RRE loans, the model captures the large number of all-zero samples and the fairly

uniform distribution of the number of samples with zero to nine instances of yit = 0. The

only deficiency is that the model cannot explain the absence of samples with ten or eleven

instances of zero charge-off rates. In the case of CC loans, the estimated model underpredicts

the number of all-zero samples but generally is able to match the rest of the distribution.

The last column of Figure 7 provides information about the models’ ability to capture

some of the dynamics of the charge-off data. Here the test statistic is the first-order sam-

ple autocorrelation of the yi,0:T+1 sequence, conditional on both yit and yit−1 being greater

than zero. The panels in the figure depict the cross-sectional density of these sample au-

tocorrelations. For the RRE loans the density computed from the actual data is covered

by the hairlines generated from the posterior predictive distribution. For the CC loans the

estimated model generates somewhat higher sample autocorrelations than what is present

in the data.

In the Online Appendix (see Figure A-8) we consider three additional predictive checks

based on (i) the time series mean of yit after observing a zero (and, if applicable, before

observing the next zero), (ii) the time series mean of yit before observing a zero (and,

if applicable, after observing the previous zero), (iii) a robust estimate of the first-order

autocorrelation of yi,0:T+1 provided there are sufficiently many non-zero observations. With

the exception of the autocorrelations in the CC sample, the two estimated models are able

to reproduce the cross-sectional densities of the sample statistics.

5.5 Set Forecasts

Selected Samples. Set forecasts for 2010Q1, constructed as HPD sets from the posterior

predictive distribution, are visualized in Figure 8. The nominal credible level is 90%. We

distinguish forecasts targeting pointwise coverage probability (grey) from forecasts targeting

average coverage probability (pink). For each bank i we plot the set forecast, the posterior

mean forecast and the actual realization of the charge-off rate. The banks are sorted accord-

ing to E[yiT+1|Y1:N,0:T , X1:N,−1:T ]. We don’t show forecasts for the first 1,400 (100) banks for

the RRE (CC) sample because they are essentially zero.
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Figure 8: Set Forecasts, Banks Sorted by E[yiT+1|Y1:N,0:T , X1:N,−1:T ]

RRE CC

Notes: Flexible CRE specification with heteroskedasticity. The estimation sample ranges from 2007Q2
(t = 0) to 2009Q4 (t = T = 10). We forecast 2010Q1 observations. The nominal coverage probability is
90%. Posterior mean forecasts (solid black line), actuals (blue dots), and set forecasts targeting pointwise
(grey) and average (pink) coverage probability.

A comparison of the grey and the pink sets in Figure 8 shows the effect of targeting

average versus pointwise coverage. The upper bound as a function of i increases less under

targeting average coverage probability, because the criterion allows us to shorten very wide

predictive sets and lengthen narrow sets, while reducing the average length. For the RRE

sample set forecasts for banks with large expected charge-off rates E[yiT+1|Y1:N,0:T , X1:N,−1:T ]

become considerably shorter. In fact for i > 2, 500 many of them become {0}. Although we

plot the actual values of the charge-off rates in Figure 8, it is not possible to glean how close

the empirical coverage frequency is to the nominal coverage probability. Thus, in Table 8 we

report both the average length of the sets and the empirical coverage frequency. For both

samples the set forecasts that are constructed by targeting the average coverage probability

have a cross-sectional coverage frequency that is close to the nominal coverage probability

of 90% and they tend to be shorter than the ones obtained by targeting pointwise coverage

probability.28

We also report the frequency of the three types of set forecasts. Due to the large number

of zero observations in the RRE sample, there is a large fraction of banks, between 60% and

68%, for which the posterior predictive probability of observing yiT+1 = 0 exceeds 90%. This

leads to a forecast of {0}. For the CC sample the fraction of {0} forecasts is considerably

28We also computed evaluation statistics for the homoskedastic specification. It turns out that the set
forecasts generated by the homoskedastic specifications are substantially larger than the sets obtained from
the models with heteroskedasticity, without improving the coverage probability. This finding is consistent
with the density forecast results in Table 5.
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Table 8: Set Forecast Performance

Fraction of Sets of the Form
Coverage Ave. Len. {0} [0, b] {0} ∪ [a, b]

RRE Target Ave Coverage 0.88 0.31 0.68 0.28 0.04
Target Ptwise Coverage 0.94 0.75 0.61 0.36 0.03

CC Target Ave Coverage 0.91 6.48 0.02 0.81 0.17
Target Ptwise Coverage 0.91 7.74 0.19 0.56 0.25

Notes: Flexible CRE specification with heteroskedasticity. The estimation sample ranges from 2007Q2
(t = 0) to 2009Q4 (t = T = 10). We forecast 2010Q1 observations. The nominal coverage probability is
90%.

smaller.

As one switches from targeting pointwise coverage probability to average coverage prob-

ability the composition of the set types changes. Roughly speaking, the forecaster should

widen the “narrow” sets (small σi) by lowering their HPD threshold, and tighten the wide

sets (large σi) by raising their HPD threshold. For the RRE sample with a relatively high

fraction of zeros, when targeting pointwise coverage, the average coverage probability is

largely above 90%, so this mechanism manifests itself as reducing wider pointwise sets to

{0}, which decreases the average coverage probability and average length at the same time.

Thus, there is an increase in the fraction of {0} forecasts; also see the right tail in the left

panel of Figure 8.

For the CC sample with a relatively low fraction of zeros, when targeting pointwise

coverage, the average coverage probability is already close to 90%. Switching from targeting

pointwise to targeting average coverage, the majority of {0} forecasts are converted into [0, b]

forecasts by adding a small continuous portion and thereby increasing the pointwise coverage

of these units to more than 90%; see the left tail in the right panel of Figure 8. Moreover,

about one third of the disconnected forecasts are converted into connected forecasts, which

is due to a lengthening of the sets for small σi units. In the end, the fraction of [0, b] forecasts

increases substantially in this case.

All Samples. In Figure 9 we provide information about the coverage frequency and av-

erage length size of the set forecast for all samples. We focus on a comparison between

targeting pointwise versus average coverage probability in the flexible CRE specification

with heteroskedasticity. Each hairline corresponds to one of the 111 different samples and

the two endpoints of the hairlines indicate average length and deviation of the empirical
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Figure 9: Set Forecasts: Targeting Pointwise vs. Average Coverage – All Samples

Improvement in Length and Coverage Reduction in Length Only

Notes: Flexible CRE specification with heteroskedasticity. The blue (red) symbols correspond to the RRE
(CC) baseline sample. The two endpoints of each hairline indicate the coverage probability and length for
a particular estimation sample. Circled endpoints correspond to targeting average coverage probability, and
unmarked endpoints (or crosses for the baseline samples) represent pointwise coverage targeting. Hairlines
in the left panel represent samples for which the coverage frequency gets closer to the nominal coverage
probability of 90% and the length becomes shorter. The remaining samples are represented by the hairlines
in the right panel.

coverage frequency from the 90% nominal credible level. The circled endpoints correspond

to targeting average coverage, and unmarked endpoints (or crosses for the baseline samples)

represent pointwise coverage targeting. The left panel comprises samples for which targeting

average coverage brings the empirical coverage frequency closer to 90% and reduces the av-

erage length. Here the hairlines point into the lower left corner of the graph. The remaining

samples are represented by the hairlines in the right panel. Targeting the average coverage

unambiguously reduces the average length. For 52% of the samples it also improves the

empirical coverage frequency (left panel). For the remaining 48% of the samples the deteri-

oration of the coverage frequency is relatively small. The median improvement in coverage

probability in the left panel is 0.022, whereas the median deterioration in the right panel is

only 0.007. We conclude that, by and large, directly targeting the average posterior cover-

age probability improves the empirical coverage frequency in the cross section and produces

shorter set forecasts.
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6 Conclusion

The limited dependent variable panel with unobserved individual effects is a common data

structure but not extensively studied in the forecasting literature. This paper constructs

forecasts based on a flexible dynamic panel Tobit model to forecast individual future out-

comes based on a panel of censored data with large N and small T dimensions. Our empirical

application to loan charge-off rates of small banks shows that the estimation of heterogeneous

intercepts and conditional variances improves density and set forecasting performance in the

more than 100 samples considered. Posterior predictive checks conducted for two particular

samples indicate that the Tobit model is able to capture salient features of the charge-off

panel data sets. Our framework can be extended to allow for stronger forms of simultaneity

between the dependent variable and regressors and to account for dynamic panel versions of

more general multivariate censored regression models. We can also allow for missing obser-

vations in our panel data set. Finally, even though we focused on the analysis of charge-off

data, there are many other potential applications for our methods.
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A Theorem 2.1

A.1 Proof of Theorem 2.1.

Let ϑ = (θ, ξ). The Bayes model specifies a joint distribution for the observations (Y1:N,0:T , Y1:N,T+h)

and the parameters (ϑ, λ1:N , σ
2
1:N). This joint distribution can be factored into conditional

distributions as follows

p(Y1:N,0:T , Y1:N,T+1, ϑ, λ1:N) (A.1)

= p(Y1:N,0:T )p(ϑ|Y1:N,0:T )

(
N∏
i=1

p(λi, σ
2
i |ϑ, Yi,0:T )p(yiT+h|λi, σ2

i , ϑ, Yi,0:T )

)
.

Sampling in a Bayesian framework involves drawing parameters from the appropriate dis-

tribution and generating data conditional on these parameters. According to Assumption

(i), the future observations are sampled from the predictive density. This sampling can be

implemented as follows: let ϑ̃N be a draw from the posterior p(ϑ|Y1:N,0:T ) and sample the

future observations from p(Y1:N,T+h|Y1:N,0:T , ϑ̃N).
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We start with the bound∣∣∣∣∣ 1

N

N∑
i=1

I
{
yiT+h ∈ CiT+h|T (Y1:N,0:T )

}
− (1− α)

∣∣∣∣∣ (A.2)

≤

∣∣∣∣∣ 1

N

N∑
i=1

(
I
{
yiT+h ∈ CiT+h|T (Y1:N,0:T )

}
− PyiT+h

Y1:N,0:T ,ϑ̃N
{yiT+h ∈ CiT+h|T (Y1:N,0:T )}

)∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
i=1

PyiT+h

Y1:N,0:T ,ϑ̃N
{yiT+h ∈ CiT+h|T (Y1:N,0:T )} − (1− α)

∣∣∣∣∣
= B1

(
Y1:N,0:T , Y1:N,T+h, ϑ̃N

)
+B2

(
Y1:N,0:T , Y1:N,T+h, ϑ̃N

)
.

The desired result follows if we can show that for any ε > 0

lim
N−→∞

PY1:N,0:T ,Y1:N,T+h,ϑ̃N
{
Bj

(
Y1:N,0:T , Y1:N,T+h, ϑ̃N

)
> ε
}

= 0, j = 1, 2. (A.3)

Analysis of Term B1(·). Note that 0 ≤ B1(·) < 1. We write

lim
N−→∞

PY1:N,0:T ,Y1:N,T+h,ϑ̃N
{
B1

(
Y1:N,0:T , Y1:N,T+h, ϑ̃N

)
> ε
}

= lim
N−→∞

∫
PY1:N,T+h

Y1:N,0:T ,ϑ̃N

{
B1

(
Y1:N,0:T , Y1:N,T+h, ϑ̃N

)
> ε
}
p(Y1:N,0:T , ϑ̃N)d(Y1:N,0:T , ϑ̃N)

=

∫ [
lim

N−→∞
PY1:N,T+h

Y1:N,0:T ,ϑ̃N

{
B1

(
Y1:N,0:T , Y1:N,T+h, ϑ̃N

)
> ε
}]
p(Y1:N,0:T , ϑ̃N)d(Y1:N,0:T , ϑ̃N)

=

∫
0 · p(Y1:N,0:T , ϑ̃N)d(Y1:N,0:T , ϑ̃N)

= 0,

as required. The second equality follows from the Dominated Convergence Theorem and the

third equality follows from a Weak Law of Large Numbers for independently distributed ran-

dom variables. Conditional on (Y1:N,0:T , ϑ̃N), yiT+h is sampled independently from p(yiT+h|ϑ̃N , Y1:N,0:T );

see (A.1).

Analysis of Term B2(·). To capture the probability mass at zero, define ai0,N = −∞ and

bi0,N = 0. Let ϑ̃N be a draw from the posterior p(ϑ|Y1:N,0:T ). Recall that by construction of

the set forecast

1

N

N∑
i=1

Ki∑
k=0

∫ bik,N

aik,N

∫
p(y∗iT+h|Yi,0:T , ϑ)p(ϑ|Y1:N,0:T )dϑdy∗iT+h = 1− α.
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Then,∣∣∣∣∣ 1

N

N∑
i=1

Ki∑
k=0

∫ bik,N

aik,N

p(y∗iT+h|Yi,0:T , ϑ̃N)dy∗iT+h − (1− α)

∣∣∣∣∣ (A.4)

=

∣∣∣∣∣ 1

N

N∑
i=1

Ki∑
k=0

∫ bik,N

aik,N

p(y∗iT+h|Yi,0:T , ϑ̃N)dy∗iT+1 −
∫ [∫ bik,N

aik,N

p(y∗iT+h|Yi,0:T , ϑ)dy∗iT+h

]
p(ϑ|Y1:N,0:T )dϑ

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
i=1

Ki∑
k=0

∫ [∫ bik,N

aik,N

p(y∗iT+1|Yi,0:T , ϑ̃N)dy∗iT+1 −
∫ bik,N

aik,N

p(y∗iT+1|Yi,0:T , ϑ)dy∗iT+1

]
p(ϑ|Y1:N,0:T )dϑ

∣∣∣∣∣ ,
where we exchanged the order of integration in the second term on the right-hand side of

the first equality. Combining the definition of Fik,N(ϑ) in (18) with (A.4) and noting that

0 ≤ Fik,N(ϑ) ≤ 1, we obtain∣∣∣∣∣ 1

N

N∑
i=1

Ki∑
k=0

∫ bik,N

aik,N

p(y∗iT+1|Yi,0:T , ϑ̃N)dy∗iT+1 − (1− α)

∣∣∣∣∣ (A.5)

=

∣∣∣∣∣ 1

N

N∑
i=1

Ki∑
k=0

∫ [
Fik,N(ϑ̃N)− Fik,N(ϑ)

]
p(ϑ|Y1:N,0:T )dϑ

∣∣∣∣∣
≤ 1

N

N∑
i=1

Ki∑
k=0

∫ ∣∣∣Fik,N(ϑ̃N)− Fik,N(ϑ)
∣∣∣ p(ϑ|Y1:N,0:T )dϑ

≤ 1

N

N∑
i=1

Ki∑
k=0

∫
NN (ϑ̄N )

∣∣∣Fik,N(ϑ̃N)− Fik,N(ϑ)
∣∣∣ p(ϑ|Y1:N,0:T )dϑ+

∫
N cN (ϑ̄N )

p(ϑ|Y1:N,0:T )dϑ

= I + II,

say. The last inequality uses the bound
∣∣∣Fik,N(ϑ̃N)− Fik,N(ϑ)

∣∣∣ ≤ 1 for the second term.

According to Assumption (ii), we can choose a stochastic sequence of shrinking neigh-

borhoods NN(ϑ̄N) such that

II
p−→ 0

as N −→∞. Now consider term I. Write

I =
1

N

N∑
i=1

Ki∑
k=0

I{ϑ̃N ∈ NN(ϑ̄N)}
∫
NN (ϑ̄N )

∣∣∣Fik,N(ϑ̃N)− Fik,N(ϑ)
∣∣∣ p(ϑ|Y1:N,0:T )dϑ

+
1

N

N∑
i=1

Ki∑
k=0

I{ϑ̃N ∈ N c
N(ϑ̄N)}

∫
NN (ϑ̄N )

∣∣∣Fik,N(ϑ̃N)− Fik,N(ϑ)
∣∣∣ p(ϑ|Y1:N,0:T )dϑ

= Ia+ Ib,
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say. It is straightforward to establish that term Ib converges to zero. Recall that the posterior

mode is a function of Y1:N,0:T . For any ε > 0

PY1:N,0:T ,ϑ̃N{Ib > ε} ≤ PY1:N,0:T ,ϑ̃N
{
I
{
ϑ̃N ∈ N c

N(ϑ̄N)
}( 1

N

N∑
i=1

Ki

)
> ε

}
= PY1:N,0:T ,ϑ̃N

{
ϑ̃N ∈ N c

N(ϑ̄N)
}

=

∫
Pϑ̃NY1:N,0:T

{
ϑ̃N ∈ N c

N(ϑ̄N)
}
p(Y1:N,0:T )dY1:N,0:T

−→ 0.

The convergence statement in the last line follows from Assumption (ii) and the Dominated

Convergence Theorem:

lim
N−→∞

∫
Pϑ̃NY1:N,0:T

{
ϑ̃N ∈ N c

N(ϑ̄N)
}
p(Y1:N,0:T )dY1:N,0:T

=

∫ [
lim

N−→∞
Pϑ̃NY1:N,0:T

{
ϑ̃N ∈ N c

N(ϑ̄N)
}]
p(Y1:N,0:T )dY1:N,0:T

=

∫
0 · p(Y1:N,0:T )dY1:N,0:T .

To bound term Ia we use the Lipschitz condition in Assumption (iii):

Ia ≤ 1

N

N∑
i=1

Ki∑
k=1

Mik,N(NN(ϑ̄N))I{ϑ̃N ∈ NN(ϑ̄N)}
∫
NN (ϑ̄N )

‖ϑ̃N − ϑ‖p(ϑ|Y1:N,0:T )dϑ

≤ 1

N

N∑
i=1

Ki∑
k=1

Mik,N(NN(ϑ̄N))I{ϑ̃N ∈ NN(ϑ̄N)} (A.6)

×
∫
NN (ϑ̄N )

(
‖ϑ̃N − ϑ̄N‖+ ‖ϑ̄N − ϑ‖

)
p(ϑ|Y1:N,0:T )dϑ

≤

(
1

N

N∑
i=1

Ki∑
k=1

Mik,N(NN(ϑ̄N))

)
I{ϑ̃N ∈ NN(ϑ̄N)}‖ϑ̃N − ϑ̄N‖

+

(
1

N

N∑
i=1

Ki∑
k=1

Mik,N(NN(ϑ̄N))

)∫
NN (ϑ̄N )

‖ϑ̄N − ϑ‖p(ϑ|Y1:N,0:T )dϑ

≤

(
1

N

N∑
i=1

Ki∑
k=1

Mik,N(NN(ϑ̄N))

)
2δN .

The last inequality follows from the definition of the neighborhood NN(ϑ̄N). Using Assump-
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tions (ii) and (iv), we can deduce that

Ia
p−→ 0, (A.7)

in PY1:N,0:T probability, which completes the proof. �

A.2 A Simple Example

Consider a simple model without censoring:

yit = λi + θyit−1 + uit, yi0 ∼ N(0, 1), λi ∼ N(ξ, 1), uit ∼ N(0, 1), T = 1. (A.8)

Define the vector of homogeneous parameters as ϑ = [θ, ξ]′. We use a prior of the form

p(ϑ) ∼ N(0, I).

In this example the predictive distribution is unimodal, which means that the HPD set

constructed from the continuous part of the predictive density is a single interval. In turn,

the summation of predictive interval segments over k is unnecessary. Let zit = [1, yit−1]′.

The distribution of yi1|yi0, ϑ after integrating out λi is

yi1|(yi0, ϑ) ∼ iidN
(
z′i1ϑ, 2

)
, i = 1, . . . , N.

Convergence in probability statements in Theorem 2.1 refer to the marginal distribution of

the data characterized by the density

p(Y1:N,0:1) = (2π)−N/2−1

(∫
exp

{
− 1

2 · 2

(
N∑
i=1

(yi1 − z′i1ϑ)2

)
− 1

2
ϑ′ϑ

}
dϑ

)

×(2π)−N/2 exp

{
−1

2

N∑
i=1

y2
i0

}
.

Assumption (ii) This leads to the likelihood function

p(Y1:N,0:1|ϑ) ∝ exp

{
− 1

2 · 2

(
ϑ′

(
N∑
i=1

zi1z
′
i1

)
ϑ− 2ϑ′

(
N∑
i=1

zi1yi1

))}
.
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Under the Normal prior for ϑ we obtain the following posterior mean and (scaled) variance:

ϑ̄N =

(
1

2

N∑
i=1

zi1z
′
i1 + I

)−1(
1

2

N∑
i=1

zi1yi1

)
, V̄N =

(
1

2N

N∑
i=1

zi1z
′
i1 +

1

N
I

)−1

. (A.9)

The overall posterior distribution is given by

ϑ|Y1:N,0:1 ∼ N
(
ϑ̄N , V̄N/N

)
. (A.10)

We can define the shrinking neighborhood as the set

NN(ϑ̄N) =
{
ϑ
∣∣ (ϑ− ϑ̄N)′V̄ −1

N (ϑ− ϑ̄N)′ ≤ 2N−η}, 0 < η < 1. (A.11)

Thus, for ϑ ∈ NN(ϑ̄N) we have

λmin(V̄ −1
N )‖ϑ− ϑ̄N‖2 ≤ 2N−η

or

‖ϑ− ϑ̄N‖ ≤

√
2

λmin(V̄ −1
N )

N−η/2 ≡ δN .

The argument can be completed by showing that

λmin(V̄ −1
N )

p−→ ε∗, ε∗ > 0

under PY1:N,0 .

Assumption (iii) We now construct the Lipschitz constant. Consider

Fi,N(θ, ξ) =

∫ bi,N

ai,N

∫
λi

pN(yi2|λi + θyi1, 1)p(λi|yi,0:1, θ, ξ)dλidyi2

=

∫
λi

[∫ bi,N

ai,N

pN(yi2|λi + θyi1, 1)dyi2

]
p(λi|yi,0:1, θ, ξ)dλi

=

∫
λi

ΦN

(
g(λi + θyi1;ui,N)

)
p(λi|yi,0:1, θ, ξ)dλi

−
∫
λi

ΦN

(
g(λi + θyi1; li,N)

)
p(λi|yi,0:1, θ, ξ)dλi,

where

g(λi + θyi1; ζ) = ζ − λi − θyi1, ζ ∈ {ai,N , bi,N}.
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To find a Lipschitz constant, we construct a bound for∥∥∥∥ ∂

∂(θ, ξ)
Fi,N(θ, ξ)

∥∥∥∥ .
Define

Fi,N,ζ(θ, ξ) =

∫
λi

ΦN

(
g(λi + θyi1; ζ)

)
p(λi|yi,0:1, θ, ξ)dλi, ζ ∈ {ai,N , bi,N}.

Exchanging the order of differentiation and integration, write

∂

∂θ
Fi,N,ζ(θ, ξ) =

∫
λi

φN
(
g(λi + θyi1; ζ)

)( ∂

∂θ
g(λi + θyi1; ζ)

)
p(λi|yi,0:1, θ, ξ)dλi

+

∫
λi

ΦN

(
g(λi + θyi1; ζ)

)( ∂

∂θ
p(λi|yi,0:1, θ, ξ)

)
dλi

∂

∂ξ
Fi,N,ζ(θ, ξ) =

∫
λi

φN
(
g(λi + θyi1; ζ)

)( ∂

∂ξ
g(λi + θyi1; ζ)

)
p(λi|yi,0:1, θ, ξ)dλi

+

∫
λi

ΦN

(
g(λi + θyi1; ζ)

)( ∂

∂ξ
p(λi|yi,0:1, θ, ξ)

)
dλi.

Now note that

0 ≤ φN(·) ≤ (2π)−1/2, 0 ≤ ΦN(·) ≤ 1,

and
∂

∂θ
g(λi + θyi1; ζ) = yi1,

∂

∂ξ
g(λi + θyi1; ζ) = 0.

Finally, ∫
λi

(
∂

∂θ
p(λi|yi,0:1, θ, ξ)

)
dλi =

∂

∂θ

∫
λi

p(λi|yi,0:1, θ, ξ)dλi = 0.

The same result holds for differentiation with respect to ξ. In turn, we obtain∣∣∣∣ ∂∂θFi,N,ζ(θ, ξ)
∣∣∣∣ ≤ ∣∣∣∣ yi1√2π

∣∣∣∣ , ∣∣∣∣ ∂∂ξFi,N,ζ(θ, ξ)
∣∣∣∣ = 0. (A.12)

Noting that

Fi,N(θ, ξ) = Fi,N,ui,N (θ, ξ)− Fi,N,li,N (θ, ξ),

we can now define the Lipschitz constant

Mi,N = 2

∣∣∣∣ yi1√2π

∣∣∣∣ =

√
2

π
|yi1|,
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which does not depend on NN(ϑ̄N). Thus, Assumption (iii) is satisfied.

Assumption (iv) Notice that in our model E[h(yi1)] = E[h(y11)] for any i because the cross-

sectional units are exchangeable. Moreover, E[h(yi1)|ϑ] = E[h(y11)|ϑ] for any i. Choose M

such that M > E[|y11|]. Now consider the bound

I

{
1

N

N∑
i=1

Mi,N >
√

2/πM

}

= I

{
1

N

N∑
i=1

√
2/π|yi1| >

√
2/πM

}

= I

{
1

N

N∑
i=1

(
|yi1| − E

[
|y11|

∣∣ϑ]+ E
[
|y11|

∣∣ϑ]− E[|y11|]
)
> M − E[|y11|]

}

Let M̃ = (M − E[|y11|])/2 and write

I

{
1

N

N∑
i=1

1∑
k=0

Mi,N >
√

8/πM

}

≤ I

{
1

N

N∑
i=1

(
|yi1| − E

[
|y11|

∣∣ϑ]) > M̃

}
+ I
{(

E
[
|y11|

∣∣ϑ]− E[|y11|]
)
> M̃

}

We now analyze the two indicator functions separately. First,

lim
N−→∞

PY1:N,0:1,ϑ
{

1

N

N∑
i=1

(
|yi1| − E

[
|y11|

∣∣ϑ]) > M̃

}

= lim
N−→∞

Eϑ
[
PY1:N,0:1ϑ

{
1

N

N∑
i=1

(
|yi1| − E

[
|y11|

∣∣ϑ]) > M̃

}]

= Eϑ
[

lim
N−→∞

PY1:N,0:1ϑ

{
1

N

N∑
i=1

(
|yi1| − E

[
|y11|

∣∣ϑ]) > M̃

}]
= 0.

The exchange of the limit and expectation is justified by the Dominated Convergence The-

orem. Conditional on ϑ the random variables |yi1| are independently and identically dis-

tributed and using a weak law of large numbers for 1
N

∑N
i=1 |yi1| delivers the desired result.

Second, we need to control

Pϑ
{(

E
[
|y11|

∣∣ϑ]− E[|y11|]
)
> M̃

}
.



This Version: July 8, 2022 A-9

Under our prior distribution, the random variable E
[
|y11|

∣∣ϑ] is stochastically bounded,

which means that for any ε > 0 we can choose a M̃ such that

Pϑ
{(

E
[
|y11|

∣∣ϑ]− E[|y11|]
)
> M̃

}
< ε.

This delivers the desired result.

B Computational Details

B.1 Gibbs Sampling

The Gibbs sampler for the flexible RE/CRE specification with heteroskedasticity is initialized

as follows:

• Y ∗1:N,0:T with Y1:N,0:T ;

• ρ with a generalized method of moments (GMM) estimator ρ̂, such as the orthogonal

differencing in Arellano and Bover (1995) (implementation details can be found in the

working paper version of Liu, Moon, and Schorfheide (2018));

• λi with λ̂i = 1
T

∑T
t=1(y∗it − ρ̂y∗it−1);

• σ2
i with the variance of the GMM orthogonal differencing residues for each individual

i, i.e., let y⊥it , t = 1, · · · , T − 1, denote the data after orthogonal differencing transfor-

mation, then σ̂2
i = V̂i(y

⊥
it − ρ̂y⊥it−1), the time-series variances of y⊥it − ρ̂y⊥it−1;

• for z = λ, σ, αz with its prior mean; γz,i with k-means clustering where k = 10;

{Φk,Σk, πλ,k}Kk=1 and {ψk, ωk, πσ,k}Kk=1 are drawn from the conditional posteriors de-

scribed in Section 3.2.

The Gibbs samplers for the other dynamic panel Tobit specifications are special cases in

which some of the parameter blocks drop out. The Gibbs sampler for the pooled Tobit and

linear specifications are initialized via pooled OLS, which ignores the censoring. We generate

a total of M0 +M = 10, 000 draws using the Gibbs sampler and discard the first M0 = 1, 000

draws.
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B.2 Set Forecasts

To simplify the notation, we drop X1:N,−1:T from the conditioning set in the remainder of

this section. The HPD sets generated by the algorithms presented in this subsection always

include zero and be of the form

Ci = {0} ∪

(
Ki⋃
k=1

[aik, bik]

)

with the understanding that (i) Ci = {0} if Ki = 0, (ii) ai1 may be equal to zero, and (iii)

ai1 < bi1 < ai2 < bi2 < . . . < aiKi < biKi .

Based on posterior draws (λ
(j)
i , σ

2(j)
i , y

∗(j)
iT , θ(j)), we can compute the conditional mean

and variances µ
(j)
iT+h|T , and σ

2(j)
iT+h|T , which are the primitives for the subsequent algorithms.

The conditional predictive distribution of yiT+h is given by a truncated Normal of the form

p(yiT+h|µ(j)
iT+h|T , σ

2(j)
iT+h|T ) (A.13)

= ΦN

(
− µ(j)

iT+h|T/σ
(j)
iT+h|T

)
δ0(yiT+h) + pN(yiT+h|µ(j)

iT+h|T , σ
2(j)
iT+h|T )I{yiT+h > 0},

where δ0(y) is the Dirac function that is 0 for y 6= 0, and has the properties that δ0(y) ≥ 0

and
∫
δ0(y)dy = 1. Using a sampler for a truncated Normal distribution, it is straightforward

to generate draws from the conditional predictive density.

To construct highest posterior density (HPD) sets, we need to evaluate the posterior

predictive density, integrating out (µiT+h|T , σ
2
iT+h|T ) under the posterior distribution. We do

so using the Monte Carlo averages

πi0 =
1

M

M∑
j=1

ΦN

(
− µ(j)

iT+h|T/σ
(j)
iT+h|T

)
(A.14)

πi(y) =
1

M

M∑
j=1

pN

(
y
∣∣∣µ(j)
iT+h|T , σ

2(j)
iT+h|T

)
(A.15)

such that

πi0δ0(y) + πi(y)I{y > 0} ≈ p(y|Y1:N,0:T ). (A.16)

We also define the weights

W
(j)
i = 1− ΦN

(
− µ(j)

iT+h|T/σ
(j)
iT+h|T

)
, (A.17)
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which have the property that 1
M

∑M
j=1W

(j)
i = 1− πi0.

Algorithm for 1− α Set Forecasts Targeting Pointwise Coverage Probability:

For i = 1, . . . , N :

1. For j = 1, . . . ,M : compute (µ
(j)
iT+h|T , σ

2(j)
iT+h|T ) based on a draw (λ

(j)
i , σ

2(j)
i , y

∗(j)
iT , θ(j))

from the posterior distribution.

2. Evaluate the weights {W (j)
i }Mj=1 in (A.17) and compute πi0 in (A.14).

3. If πi0 ≥ 1− α, then Ci = {0}.

4. If πi0 < 1− α, then

(a) Draw {y(j)
iT+h}Mj=1 from the normalized continuous part of the predictive distribu-

tion πi(y)I{y > 0}/
∫
πi(y)I{y > 0}dy and form the pairs {(y(j)

iT+h,W
(j)
i )}Mj=1.

(b) Sort {(y(j)
iT+h,W

(j)
i )}Mj=1 in ascending order based on y

(j)
iT+h.

(c) For j = 1, . . . ,M : compute π
(j)
i = πi(y

(j)
iT+h) ≈ p(y

(j)
iT+h|Y1:N,0:T ) based on (A.15).

(d) Let Πi = {(π(j)
i , y

(j)
iT+h,W

(j)
i )}Mj=1. Sort the elements in Πi based on π

(j)
i in de-

scending order. Denote the sorted elements in Πi by (π
(s)
i , y

(s)
iT+h,W

(s)
i ).

(e) Note that by construction
∑M

s=1W
(s)
i = 1 − πi0. Let Π̄i be the set of largest

density values:

Π̄i =

{
(π

(s)
i , y

(s)
iT+h,W

(s)
i )

∣∣ s = 1, . . . , s̄,
s̄∑
s=1

W
(s)
i ≈ (1− α− πi0)M

}
.

(f) Recall that the (j) superscript refers to draws sorted according to y
(j)
iT+h. For

j = 1, . . . ,M :

i. If (A) j = 1 and (π
(j)
i , y

(j)
iT+h,W

(j)
i ) ∈ Π̄i, OR (B) j > 1, (π

(j−1)
i , y

(j−1)
iT+h ,W

(j−1)
i ) /∈

Π̄i, and (π
(j)
i , y

(j)
iT+h,W

(j)
i ) ∈ Π̄i, then y

(j)
iT+h is the start of an interval, denoted

by aik, where k is an index for the intervals.

ii. If (A) j = M and (π
(j)
i , y

(j)
iT+h,W

(j)
i ) ∈ Π̄i, OR (B) j < M , (π

(j)
i , y

(j)
iT+h,W

(j)
i ) ∈

Π̄i, and (π
(j+1)
i , y

(j+1)
iT+h ,W

(j+1)
i ) /∈ Π̄i, then y

(j)
iT+h is the end of an interval,

denoted by bik.

This leads to Ki intervals of the form [aik, bik], k = 1, . . . , Ki. If ai1 = y
(1)
iT+h, then

let ai1 = 0.
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(g) Delete intervals that are singletons and adjust Ki accordingly. Note that Ki may

be zero for some i’s.

(h) In the end, unit i’s set forecast takes form

Cit+h|T = {0} ∪

(
Ki⋃
k=1

[aik, bik]

)
.

Algorithm for 1− α Set Forecasts Targeting Average Coverage Probability:

1. For i = 1, . . . , N :

(a) For j = 1, . . . ,M : compute (µ
(j)
iT+h|T , σ

2(j)
iT+h|T ) based on a draw (λ

(j)
i , σ

2(j)
i , y

∗(j)
iT , θ(j))

from the posterior distribution.

(b) Evaluate the weights {W (j)
i }Mj=1 in (A.17) and compute πi0 in (A.14).

2. Define π0 = 1
N

∑N
i=1 πi0 (average probability of zero). Note that 1

NM

∑N
i=1

∑M
j=1 W

(j)
i =

1− 1
N

∑N
i=1 πi0 = 1− π0.

3. If π0 ≥ 1− α then:

(a) Sort the units i in descending order based πi0.

(b) Assign the set {0} to the units with the largest πi0 values until the desired coverage

is reached. All other units i are assigned ∅.

4. Elseif π0 < 1− α, then:

(a) For i = 1, . . . , N :

i. Draw {y(j)
iT+h}Mj=1 from the normalized continuous part of the predictive distri-

bution normalized continuous part of the predictive distribution πi(y)I{y >
0}/

∫
πi(y)I{y > 0}dy and form the pairs {(y(j)

iT+h,W
(j)
i )}Mj=1.

ii. Sort {(y(j)
iT+h,W

(j)
i )}Mj=1 in ascending order based on y

(j)
iT+h.

iii. For j = 1, . . . ,M : compute π
(j)
i = πi(y

(j)
iT+h) ≈ p(y

(j)
iT+h|Y1:N,0:T ) based on

(A.15).

(b) Let Π =
{

(π
(j)
i , y

(j)
iT+h,W

(j)
i ) | i = 1, . . . , N and j = 1, . . . ,M

}
. Sort the elements

in Π based on π
(j)
i in descending order. Denote the sorted elements in Π by

(π(s), y
(s)
T+h,W

(s)). We dropped the i subscript from the triplet, because we are

pooling across i.
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(c) Let Π̄ be the set of largest density values:

Π̄ =

{(
π(s), y

(s)
T+h,W

(s)
) ∣∣∣∣ s = 1, · · · , s̄,

s̄∑
s=1

W (s) ≈ (1− α− π0)NM

}
.

(d) For i = 1, . . . , N :

i. For j = 1, . . . ,M :

A. If (A) j = 1 and (π
(j)
i , y

(j)
iT+h,W

(j)
i ) ∈ Π̄, OR (B) j > 1, (π

(j−1)
i , y

(j−1)
iT+h ,W

(j−1)
i ) /∈

Π̄, and (π
(j)
i , y

(j)
iT+h,W

(j)
i ) ∈ Π̄, then y

(j)
iT+h is the start of an interval, de-

noted by aik, where k is an index for the intervals.

B. If (A) j = M and (π
(j)
i , y

(j)
iT+h,W

(j)
i ) ∈ Π̄ OR (B) j < M , (π

(j)
i , y

(j)
iT+h,W

(j)
i ) ∈

Π̄, and (π
(j+1)
i , y

(j+1)
iT+h ,W

(j+1)
i ) /∈ Π̄, then y

(j)
iT+h is the end of an interval,

denoted by bik.

This leads to Ki intervals of the form [aik, bik], k = 1, . . . , Ki. If ai1 = y
(1)
iT+h,

then let ai1 = 0.

ii. Delete intervals that are singletons and adjust Ki accordingly. Note that Ki

may be zero for some i’s.

iii. In the end, unit i’s set forecast takes form

Ci = {0} ∪

(
Ki⋃
k=1

[aik, bik]

)
.

B.3 Density Forecasts

The log-predictive density can be approximated by

ln p
(
yiT+h|Y1:N,0:T

)
≈

 lnP
[
yiT+h = 0|Y1:N,0:T

]
, if yiT+h = 0,

ln
(

1
M

∑M
j=1 pN

(
yiT+h|µ(j)

iT+h|T , σ
2(j)
iT+h|T

))
, otherwise.

(A.18)

Define the empirical distribution function based on the draws from the posterior predic-

tive distribution as

F̂ (yiT+h) =
1

M

M∑
j=1

I{y(j)
iT+h ≤ yiT+h}. (A.19)

Then the probability integral transform associated with the density forecast of yiT+h can be

approximated as

PIT (yiT+h) ≈ F̂ (yiT+h). (A.20)
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The continuous ranked probability score associated with the density can be approximated

as

CRPS(F̂ , yiT+h) =

∫ ∞
0

(
F̂ (x)− I{yiT+h ≤ x}

)2
dx. (A.21)

Because the density F̂ (yiT+h) is a step function, we can express the integral as a Riemann

sum. To simplify the notation we drop the iT +h subscripts and add an o superscript for the

observed value at which the score is evaluated. Drawing a figure helps with the subsequent

formulas. Define

M∗ =
M∑
j=1

I{y(j) ≤ yo}.

Case 1: M∗ = M . Then,

CRPS(F̂ , yo) =
M∑
j=2

[
F̂ (y(j−1))− 0

]2
(y(j) − y(j−1)) +

[
1− 0

]2
(yo − y(M)). (A.22)

Case 2: M∗ = 0. Then,

CRPS(F̂ , yo) =
[
0− 1

]2
(y(1) − yo) +

M∑
j=2

[
F̂ (y(j−1))− 1

]2
(y(j) − y(j−1)). (A.23)

Case 3: 1 ≤M∗ ≤M − 1. Then,

CRPS(F̂ , yo) (A.24)

=
M∗∑
j=2

[
F̂ (y(j−1))− 0

]2
(y(j) − y(j−1)) +

[
F̂ (y(M∗))− 0

]2
(yo − y(M∗))

+
[
F̂ (y(M∗))− 1

]2
(y(M∗+1) − yo) +

M∑
j=M∗+2

[
F̂ (y(j−1))− 1

]2
(y(j) − y(j−1)).

Equivalently, based on Gneiting and Raftery (2007) Equation (21), we have

CRPS(F̂ , yo) =
1

M

M∑
j=1

|y(j) − yo| − 1

M2

∑
1≤i<j≤M

(y(j) − y(i)). (A.25)
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To see their equivalence, note that (A.25) can be re-written as follows:

1

M

M∑
j=1

|y(j) − yo| − 1

M2

∑
1≤i<j≤M

(y(j) − y(i)) (A.26)

=
1

M

[∑
j>M∗

y(j) −
∑
j≤M∗

y(j) +
(
M∗ − (M −M∗)

)
yo

]
− 1

M2

M∑
j=1

(2j −M − 1)y(j).

=
1

M2

[
−

M∗∑
j=1

(2j − 1)y(j) +
M∑

j=M∗+1

(2M − 2j + 1)y(j)

]
+

2M∗ −M
M

yo.

Considering that F̂ (y(j)) is the empirical distribution, we have

F̂ (y(j)) =
j

M
.

First, let us look at the more general Case 3. After replacing F̂ (y(j)), the RHS of (A.24)

becomes

M∗∑
j=2

[
F̂ (y(j−1))− 0

]2
(y(j) − y(j−1)) +

[
F̂ (y(M∗))− 0

]2
(yo − y(M∗))

+
[
F̂ (y(M∗))− 1

]2
(y(M∗+1) − yo) +

M∑
j=M∗+2

[
F̂ (y(j−1))− 1

]2
(y(j) − y(j−1))

=
M∗∑
j=2

(j − 1)2

M2
(y(j) − y(j−1)) +

M2
∗

M2
(yo − y(M∗))

+
(M −M∗)2

M2
(y(M∗+1) − yo) +

M∑
j=M∗+2

(M − (j − 1))2

M2
(y(j) − y(j−1))

=
1

M2

[
− y(1) +

M∗∑
j=2

(
(j − 1)2 − j2

)
y(j) +

M−1∑
j=M∗+1

(
(M − (j − 1))2 − (M − j)2

)
y(j)

+y(M) +
(
M2
∗ − (M −M∗)2

)
yo
]

=
1

M2

[
−

M∗∑
j=1

(2j − 1)y(j) +
M∑

j=M∗+1

(2M − 2j + 1)y(j)

]
+

2M∗ −M
M

yo,

which is the same as (A.26). Similarly, for Case 1, after substituting F̂ , the RHS of (A.22)
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becomes

M∑
j=2

[
F̂ (y(j−1))− 0

]2
(y(j) − y(j−1)) +

[
1− 0

]2
(yo − y(M))

=
M∑
j=2

(j − 1)2

M2
(y(j) − y(j−1)) + (yo − y(M))

=
1

M2

[
− y(1) +

M∑
j=2

(
(j − 1)2 − j2

)
y(j)
]

+ yo

= − 1

M2

M∗∑
j=1

(2j − 1)y(j) + yo,

which is equal to (A.26) when M∗ = M . And for Case 2, after substituting F̂ , the RHS of

(A.23) becomes

[
0− 1

]2
(y(1) − yo) +

M∑
j=2

[
F̂ (y(j−1))− 1

]2
(y(j) − y(j−1))

= (y(1) − yo) +
M∑
j=2

(M − (j − 1))2

M2
(y(j) − y(j−1))

=
1

M2

[M−1∑
j=1

(
(M − (j − 1))2 − (M − j)2

)
y(j) + y(M)

]
− yo

=
1

M2

M∑
j=1

(2M − 2j + 1)y(j) − yo,

which is equal to (A.26) when M∗ = 0.
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C Supplemental Information on the Monte Carlo

Implementation of Forecasts. To generate forecasts, we first sample draws from the

posterior distribution of the model parameters and the latent variable y∗iT , and then, con-

ditional on each of these draws, simulate a trajectory {y∗iT+s, yiT+s}hs=1 from the predictive

distribution. While we ignore the censoring in the estimation of the pooled linear specifica-

tion, we do account for it when we generate forecasts from the linear model. In a final step,

the simulated trajectories are converted into density or set forecasts that reflect parameter

uncertainty, potential uncertainty about y∗iT , and uncertainty about future shocks.

Distribution of λi versus E[λi|Y1:N,0:T ]. The following two examples help to interpret

the comparison of the p(λ)s and the histograms of E[λi|Y1:N,0:T ] in Figure 1 in the main

paper. First, suppose that the model is static, linear, and homoskedastic, i.e., yit = λi +

uit, uit ∼ N(0, σ2) and λi ∼ N(φλ, 1), and φλ is known (which implies p(λ) is known).

Therefore, the maximum likelihood estimator (MLE) λ̂i = λi + 1
T

∑T
t=1 uit has the cross-

sectional distribution λ̂i ∼ N
(
φλ, 1 + σ2/T

)
and the posterior means have the distribution

E[λi|Y1:N,1:T ] =
T/σ2

T/σ2 + 1
λ̂i +

1

T/σ2 + 1
φλ ∼ N

(
φλ,

1

1 + σ2/T

)
.

In this example, the distribution of the posterior mean estimates is less dispersed than the

distribution of the λi’s, but centered at the same mean, which is qualitatively consistent

with Figure 1.

Second, to understand the effect of censoring, suppose that y∗it = λi + uit and we ob-

serve a sequence of zeros. The likelihood associated with this sequence of zeros is given by

ΦT
N(−λi/σ). The posterior mean for a sequence of zeros is then given by

E[λi|Y1:N,1:T = 0] =

∫
λΦT

N(−λ/σ)p(λ)dλ∫
ΦT
N(−λ/σ)p(λ)dλ

and provides a lower bound for the estimator λ̂i. If the λi’s are sampled from the prior, we

should observe this posterior mean with probability
∫

ΦT
N

(
− λ/σ

)
p(λ)dλ. Thus, according

to this example, there should be a spike in the left tail of the distributions of E[λi|Y1:N,1:T ].

This spike is clearly visible in the two panels of Figure 1.

Sensitivity to Fraction of Zeros in Sample. To examine the sensitivity of the MCMC

algorithm to the fraction of zeros in the sample, we changed the design of the Monte Carlo
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Figure A-1: Convergence Diagnostics Based on ρ(j) Sequence
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Notes: The dashed horizontal lines in the first row and the dashed vertical lines in the last row indicate
the “true” value of ρ = 0.8. (j) in the superscript indicates the MCMC draws. The first 1,000 draws are
discarded as burn-in, so the shaded regions in the first row indicate the MCMC draws kept for posterior
analyses.

experiment to raise the fraction of zeros. Recall from Table 1 in the main text that

Fraction of zeros = 45% : p(λi|y∗i0) =
1

9
pN (λi|2.25, 0.5) +

8

9
pN (λi|0, 0.5) .

To increase the number of zeros to 60% and 75%, respectively, we consider

Fraction of zeros = 60% : p(λi|y∗i0) =
1

9
pN (λi|1.85, 0.5) +

8

9
pN (λi| − 0.4, 0.5)

Fraction of zeros = 75% : p(λi|y∗i0) =
1

9
pN (λi|1.3, 0.5) +

8

9
pN (λi| − 0.95, 0.5) .

Under the baseline configuration, the number fraction of trajectories with all zeros was 15%.

Under the alternative scenarios, this fraction increases to 23% and 34%, respectively.

Under the alternative DGPs, the MCMC remains stable, despite the larger number of
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zeros in the samples. In Figure A-1 we show some convergence diagnostics based on the

sequence of draws ρ(j). The first row contains trace plots, the second row autocorrelation

functions, and the third row posterior density estimates. As the number of zeros increases,

the chain becomes more persistent and the spread of the posterior increases because ρ is effec-

tively estimated from fewer observations. Nonetheless, the algorithm remains well behaved.

While 75% appears to be a large fraction, notice that the sample size is T · N = 10, 000.

Thus, we still have 2,500 non-zero observations.29

Table A-1 reproduces and extends the results reported in Table 3 of the main text. The

overall message from the baseline MC design is preserved under the alternative specifications

of the DGP. The forecasts get more precise as we increase the fraction of zeros. The more

zeros in the sample and the longer the zero spells, the stronger the evidence that the next

observation will also be a zero. In fact, under all three designs, 100% of the units with

all-zero observations assign a probability of no less than 95% to yiT+1 = 0.30 This improves

the density forecasts (lower LPS and CRPS) and shortens the predictive sets. The downside

of more zeros is that the estimation of the homogeneous parameter ρ becomes more difficult.

Both bias and standard deviation of ρ̂ across Monte Carlo repetitions increase which is

mirrored in the shape of the posterior depicted in the last row of Figure A-1. As mentioned

before, this is plausible: the fewer non-zero observations, the less information about ρ is in

the sample.

In Figure A-2 we plot the cross-sectional distribution of posterior means of λi as well as

the estimated and “true” RE distribution. The left panel of the figure reproduces the left

panel of Figure 1 in the main paper. By construction, the “true” distribution of the λis

shifts to the left for the other two designs (center and right panel of Figure A-2). The spike

in the empirical distribution of E[λi|Y1:N,0:T ] shifts to the left and increases in height because

the estimated model needs to reproduce the number of zeros in the sample, which is done

by lower estimates for λi. We are using a proper prior for the RE distribution to reduce the

chance that draws of λi take very large negative values. This contributes to the stability of

the MCMC.

29We also tried a design with 95% zeros. Not surprisingly, we experienced convergence problems for this
rather extreme design.

30For units with all zeros, the chance of predicting zeros is large in practice, though in principle, these units
still convey a slight amount of information about the common parameters and the left tail of the underlying
distribution of cross-sectional heterogeneity.
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Table A-1: Monte Carlo Experiment: Forecast Performance and Parameter Estimates

Density Forecast Set Forecast Set Forecast Estimates
“Average” “Pointwise”

LPS CRPS Cov. Length Cov. Length Bias(ρ̂) StdD(ρ̂)
Fraction of Zeros in Panel is 45% (From Paper)

Flexible & Heterosk. -0.757 0.277 0.910 1.260 0.933 1.503 -0.002 0.005
Normal & Heterosk. -0.758 0.277 0.908 1.248 0.932 1.498 -0.006 0.005
Flexible & Homosk. -0.902 0.294 0.929 1.506 0.942 1.698 0.007 0.008
Normal & Homosk. -0.903 0.294 0.929 1.501 0.942 1.699 0.001 0.007

Fraction of Zeros in Panel is 60%
Flexible & Heterosk. -0.552 0.194 0.909 0.706 0.948 1.023 0.005 0.006
Normal & Heterosk. -0.553 0.194 0.908 0.702 0.948 1.024 0.001 0.006
Flexible & Homosk. -0.655 0.206 0.931 0.878 0.955 1.162 0.012 0.009
Normal & Homosk. -0.656 0.207 0.931 0.880 0.956 1.169 0.009 0.009

Fraction of Zeros in Panel is 75%
Flexible & Heterosk. -0.316 0.109 0.909 0.219 0.970 0.567 0.015 0.009
Normal & Heterosk. -0.316 0.109 0.909 0.220 0.971 0.571 0.013 0.009
Flexible & Homosk. -0.375 0.117 0.931 0.310 0.974 0.660 0.020 0.012
Normal & Homosk. -0.376 0.117 0.932 0.315 0.975 0.668 0.022 0.013

Notes: “Cov.” is coverage frequency and “Length” is an average across i.

Figure A-2: Posterior Means and Estimated RE Distributions for λi, Flexible & Heterosk.
Specification

45% Zeros 60% Zeros 75% Zeros

Notes: The histograms depict E[λi|Y1:N,0:T ], i = 1, . . . , N . The shaded areas are hairlines obtained by
generating draws from the posterior distribution of ξ and plotting the corresponding random effects densities
p(λ|ξ). The black lines represent the true p(λ).
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D Data Set

Charge-off rates. The raw data are obtained from the website of the Federal Reserve Bank

of Chicago.31 The raw data are available at a quarterly frequency. The charge-off rates are

defined as charge-offs divided by the stock of loans and constructed in a similar manner as

in Tables A-1 and A-2 of Covas, Rump, and Zakrajsek (2014). However, the construction

differs in the following dimensions: (i) We focus on charge-off rates instead of net charge-

off rates. (ii) We divide the charge-offs by the lagged stock of loans instead of the current

stock of loans to reduce the timing issue.32 (iii) For banks with domestic offices only (Form

FFIEC 041), RIAD4645 (numerator for commercial and industrial loans) is not reported, so

we switch to its domestic counterpart, RIAD4638.

The charge-offs are reported as year-to-date values. Thus, in order to obtain quarterly

data, we take differences: Q1 7→ Q1, (Q2−Q1) 7→ Q2, (Q3−Q2) 7→ Q3, and (Q4−Q3) 7→
Q4. The loans are stock variables and no further transformation is needed. We multiply the

charge-off rates by 400 to convert them into annualized percentages. We construct charge-off

rates for the following types of loans:

• CI = commercial & industrial;

• CLD = construction & land development;

• MF = multifamily real estate;

• CRE = (nonfarm) nonresidential commercial real estate;

• HLC = home equity lines of credit (HELOCs);

• RRE = residential real estate, excluding HELOCs;

• CC = credit card;

• CON = consumer, excluding credit card loans.

We focus on “small” banks and relate the charge-off rates to local economic conditions.

We include a bank in the sample if its assets are below one billion dollars. The raw data set

contains missing observations and outliers that we are unable to explain with our econometric

31https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data
32According to bank report forms (e.g. FFIEC 041), the stocks of loans are given by quarterly averages.

“For all items, banks have the option of reporting either (1) an average of DAILY figures for the quarter, or
(2) an average of WEEKLY figures (i.e., the Wednesday of each week of the quarter).”

https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC041_201709_f.pdf#https://www.ffiec.gov/pdf/FFIEC_forms/FFIEC041_201709_f.pdf
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model. Thus, we proceed as follows to select a subset of observations from the raw data.

For each rolling sample:

1. Eliminate banks for which domestic total assets are missing for all time periods in the

sample.

2. Compute average non-missing domestic total assets and eliminate banks with average

assets above 1 billion dollars.

3. For each loan category, eliminate banks for which the target charge-off rate is missing

for at least one period of the sample.

4. For each loan category, eliminate banks for which the target charge-off rate is negative

or greater than 400% for at least one period of the sample.

5. For each loan category proceed as follows: First, for each bank, drop the two largest

observations yit, t = 0, · · · , T + 1, and calculate the standard deviation (stdd) of the

remaining observations. Then, eliminate a bank if any successive change |yit− yit−1|+
|yit+1 − yit| > 10stdd. For t = 0 and t = T + 1, we only have one of the two terms and

we set the other term in this selection criterion to zero.

The remaining sample sizes after each of these steps as well as some summary statistics for

loan charge-off rates are reported in Table A-2.
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Table A-2: Sample Sizes After Selection Steps and Summary Statistics for Charge-Off Rates

Sample Sizes Cross-sectional Statistics
Loan t0 Initial Step1 Step2 Step3 Step4 Step5 % 0s Mean 75% Max
CLD 2007Q3 7,903 7,903 7,299 3,290 3,146 1,304 77 1.5 0.0 106.8
CLD 2007Q4 7,835 7,835 7,219 3,244 3,088 1,264 74 1.9 0.1 106.8
CLD 2008Q1 7,692 7,692 7,084 3,204 3,032 1,257 71 2.2 0.5 180.2
RRE 2007Q1 7,991 7,991 7,393 6,260 5,993 2,654 77 0.2 0.0 33.1
RRE 2007Q2 7,993 7,993 7,383 6,152 5,894 2,576 76 0.3 0.0 33.1
RRE 2007Q3 7,903 7,903 7,299 6,193 5,920 2,606 73 0.3 0.0 35.9
RRE 2007Q4 7,835 7,835 7,219 6,146 5,859 2,581 70 0.4 0.1 69.2
RRE 2008Q1 7,692 7,692 7,084 6,106 5,792 2,561 68 0.4 0.2 45.6
RRE 2008Q2 7,701 7,701 7,080 6,029 5,721 2,492 67 0.4 0.2 63.6
RRE 2008Q3 7,631 7,631 7,008 6,052 5,743 2,577 65 0.5 0.3 39.2
RRE 2008Q4 7,559 7,559 6,938 6,005 5,679 2,600 63 0.5 0.3 45.6
RRE 2009Q1 7,480 7,480 6,849 5,971 5,634 2,588 62 0.5 0.3 45.0
RRE 2009Q2 8,103 8,103 7,381 5,895 5,564 2,536 62 0.5 0.3 45.0
RRE 2009Q3 8,016 8,016 7,302 5,899 5,568 2,563 61 0.5 0.4 47.6
RRE 2009Q4 7,940 7,940 7,229 5,846 5,508 2,553 60 0.5 0.4 45.0
RRE 2010Q1 7,770 7,770 7,077 5,765 5,426 2,494 61 0.5 0.4 45.0
RRE 2010Q2 7,770 7,770 7,072 5,635 5,308 2,420 61 0.5 0.4 45.0
RRE 2010Q3 7,707 7,707 7,013 5,632 5,298 2,441 61 0.5 0.4 45.6
RRE 2010Q4 7,608 7,608 6,910 5,583 5,255 2,443 61 0.5 0.3 38.2
RRE 2011Q1 7,469 7,469 6,784 5,520 5,220 2,437 62 0.4 0.3 38.2
RRE 2011Q2 7,472 7,472 6,783 5,398 5,110 2,385 62 0.4 0.3 38.2
RRE 2011Q3 7,402 7,402 6,716 5,395 5,110 2,397 64 0.4 0.2 38.2
RRE 2011Q4 7,334 7,334 6,649 5,341 5,059 2,395 65 0.3 0.2 38.2
RRE 2012Q1 7,236 7,236 6,546 5,284 5,008 2,349 67 0.3 0.2 38.2
RRE 2012Q2 7,234 7,234 6,534 5,584 5,283 2,430 66 0.3 0.2 38.2
RRE 2012Q3 7,170 7,170 6,465 5,576 5,267 2,416 67 0.2 0.1 28.4
RRE 2012Q4 7,073 7,073 6,358 5,495 5,197 2,362 69 0.2 0.1 22.2
RRE 2013Q1 6,931 6,849 6,212 5,420 5,121 2,341 71 0.2 0.1 28.7
RRE 2013Q2 6,934 6,857 6,200 5,296 5,008 2,298 71 0.2 0.1 28.7
RRE 2013Q3 6,884 6,807 6,144 5,291 4,999 2,307 72 0.2 0.0 28.7
RRE 2013Q4 6,803 6,726 6,061 5,212 4,932 2,271 74 0.1 0.0 28.7
RRE 2014Q1 6,650 6,576 5,913 5,144 4,870 2,258 75 0.1 0.0 27.2
RRE 2014Q2 6,650 6,578 5,897 5,012 4,746 2,190 76 0.1 0.0 16.9
RRE 2014Q3 6,582 6,510 5,821 5,004 4,742 2,178 77 0.1 0.0 22.2
RRE 2014Q4 6,502 6,431 5,729 4,945 4,691 2,210 78 0.1 0.0 16.9
RRE 2015Q1 6,342 6,271 5,564 4,874 4,611 2,200 79 0.1 0.0 11.1
RRE 2015Q2 6,348 6,278 5,560 4,751 4,500 2,134 79 0.1 0.0 11.1
CC 2001Q2 9,031 9,031 8,532 1,691 1,540 875 33 3.4 4.7 162.5
CC 2001Q3 8,995 8,995 8,491 1,666 1,515 844 33 3.4 4.8 88.9
CC 2001Q4 8,887 8,887 8,382 1,636 1,489 836 34 3.3 4.6 88.9

Notes: This table provides summary statistics for samples with cross-sectional dimension N > 400 and
percentage of zeros less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning
information used to initialize the lag in the dynamic Tobit. We assume that T = 10, which means that
each sample has 12 time periods. The descriptive statistics are computed across N and T dimension of each
panel.
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Table A-2: Sample Sizes After Selection Steps and Summary Statistics for Charge-Off Rates
(cont.)

Sample Sizes Cross-sectional Statistics
Loan t0 Initial Step1 Step2 Step3 Step4 Step5 % 0s Mean 75% Max
CC 2002Q1 8,723 8,723 8,228 1,612 1,466 814 35 3.3 4.4 400.0
CC 2002Q2 8,823 8,823 8,312 1,670 1,519 817 38 3.2 4.3 88.9
CC 2002Q3 8,805 8,805 8,286 1,631 1,488 821 38 3.2 4.3 88.9
CC 2002Q4 8,728 8,728 8,199 1,606 1,468 813 39 3.1 4.1 88.9
CC 2003Q1 8,611 8,611 8,077 1,573 1,445 811 40 3.0 4.0 128.5
CC 2003Q2 8,754 8,754 8,203 1,544 1,422 787 40 3.0 3.9 136.1
CC 2003Q3 8,755 8,755 8,198 1,513 1,395 754 41 2.9 3.8 136.1
CC 2003Q4 8,671 8,671 8,120 1,500 1,387 724 42 2.8 3.6 136.1
CC 2004Q1 8,526 8,526 7,989 1,468 1,355 707 43 2.7 3.6 136.1
CC 2004Q2 8,662 8,662 8,108 1,440 1,331 677 42 2.8 3.6 136.1
CC 2004Q3 8,626 8,626 8,067 1,411 1,308 664 43 2.7 3.5 136.1
CC 2004Q4 8,552 8,552 7,989 1,391 1,284 657 44 2.6 3.3 140.9
CC 2005Q1 8,384 8,384 7,829 1,369 1,271 639 44 2.5 3.2 151.3
CC 2005Q2 8,507 8,507 7,938 1,332 1,236 611 44 2.6 3.2 175.0
CC 2005Q3 8,482 8,482 7,897 1,315 1,218 596 45 2.6 3.2 175.0
CC 2005Q4 8,404 8,404 7,816 1,290 1,203 604 46 2.6 3.2 210.5
CC 2006Q1 8,263 8,263 7,674 1,275 1,188 614 47 2.6 3.1 175.0
CC 2006Q2 8,307 8,307 7,708 1,247 1,164 594 47 2.7 3.2 269.2
CC 2006Q3 8,240 8,240 7,639 1,231 1,156 594 46 2.8 3.4 269.2
CC 2006Q4 8,137 8,137 7,537 1,211 1,139 595 45 3.0 3.6 269.2
CC 2007Q1 7,991 7,991 7,393 1,197 1,129 574 44 3.2 3.9 269.2
CC 2007Q2 7,993 7,993 7,383 1,173 1,107 561 43 3.3 4.1 269.2
CC 2007Q3 7,903 7,903 7,299 1,159 1,091 544 44 3.2 4.2 175.0
CC 2007Q4 7,835 7,835 7,219 1,133 1,066 534 43 3.3 4.2 175.0
CC 2008Q1 7,692 7,692 7,084 1,123 1,056 527 44 3.3 4.2 175.0
CC 2008Q2 7,701 7,701 7,080 1,101 1,035 512 45 3.2 4.1 158.3
CC 2008Q3 7,631 7,631 7,008 1,096 1,036 509 44 3.1 4.0 158.3
CC 2008Q4 7,559 7,559 6,938 1,082 1,020 506 45 3.1 3.9 149.4
CC 2009Q1 7,480 7,480 6,849 1,059 999 498 46 3.0 3.7 147.3
CC 2009Q2 8,103 8,103 7,381 1,045 989 492 45 2.8 3.7 78.5
CC 2009Q3 8,016 8,016 7,302 1,042 988 492 47 2.7 3.5 77.6
CC 2009Q4 7,940 7,940 7,229 1,032 978 479 49 2.7 3.3 400.0
CC 2010Q1 7,770 7,770 7,077 1,020 963 459 49 2.5 3.2 100.0
CC 2010Q2 7,770 7,770 7,072 997 940 454 50 2.3 3.0 62.0
CC 2010Q3 7,707 7,707 7,013 994 940 450 50 2.2 2.8 62.0
CC 2010Q4 7,608 7,608 6,910 976 920 454 51 2.1 2.6 56.3
CC 2011Q1 7,469 7,469 6,784 961 906 451 52 2.0 2.5 68.6
CC 2011Q2 7,472 7,472 6,783 941 889 450 53 1.9 2.4 67.9
CC 2011Q3 7,402 7,402 6,716 933 879 443 54 1.9 2.3 67.9
CC 2011Q4 7,334 7,334 6,649 920 869 430 55 1.8 2.2 67.9

Notes: This table provides summary statistics for samples with cross-sectional dimension N > 400 and
percentage of zeros less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning
information used to initialize the lag in the dynamic Tobit. We assume that T = 10, which means that
each sample has 12 time periods. The descriptive statistics are computed across N and T dimension of each
panel.
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Table A-2: Sample Sizes After Selection Steps and Summary Statistics for Charge-Off Rates
(cont.)

Sample Sizes Cross-sectional Statistics
Loan t0 Initial Step1 Step2 Step3 Step4 Step5 % 0s Mean 75% Max
CC 2012Q1 7,236 7,236 6,546 913 862 438 56 1.7 2.1 67.9
CC 2012Q2 7,234 7,234 6,534 916 862 430 54 1.8 2.2 67.9
CC 2012Q3 7,170 7,170 6,465 907 853 409 55 1.7 2.1 67.9
CON 2009Q2 8,103 8,103 7,381 5,837 5,698 2,600 77 0.4 0.0 77.4
CON 2009Q3 8,016 8,016 7,302 5,872 5,693 2,672 71 0.5 0.2 202.2
CON 2009Q4 7,940 7,940 7,229 5,814 5,584 2,723 65 0.5 0.5 202.2
CON 2010Q1 7,770 7,770 7,077 5,735 5,461 2,680 58 0.7 0.7 202.2
CON 2010Q2 7,770 7,770 7,072 5,602 5,339 2,600 53 0.7 0.8 202.2
CON 2010Q3 7,707 7,707 7,013 5,596 5,311 2,555 47 0.8 0.9 202.2
CON 2010Q4 7,608 7,608 6,910 5,545 5,227 2,473 42 0.9 1.0 202.2
CON 2011Q1 7,469 7,469 6,784 5,482 5,133 2,427 36 1.0 1.1 202.2
CON 2011Q2 7,472 7,472 6,783 5,361 5,026 2,328 37 1.0 1.1 202.2
CON 2011Q3 7,402 7,402 6,716 5,377 5,028 2,333 38 1.0 1.1 202.2
CON 2011Q4 7,334 7,334 6,649 5,324 4,979 2,377 38 0.9 1.0 202.2
CON 2012Q1 7,236 7,236 6,546 5,266 4,932 2,403 39 0.9 1.0 202.2
CON 2012Q2 7,234 7,234 6,534 5,544 5,195 2,530 42 0.8 1.0 76.0
CON 2012Q3 7,170 7,170 6,465 5,536 5,184 2,541 43 0.8 0.9 76.0
CON 2012Q4 7,073 7,073 6,358 5,457 5,117 2,526 43 0.8 0.9 44.7
CON 2013Q1 6,931 6,849 6,212 5,379 5,042 2,548 44 0.8 0.9 100.0
CON 2013Q2 6,934 6,857 6,200 5,254 4,932 2,465 43 0.8 0.9 100.0
CON 2013Q3 6,884 6,807 6,144 5,246 4,917 2,512 44 0.7 0.9 76.0
CON 2013Q4 6,803 6,726 6,061 5,165 4,843 2,470 44 0.7 0.9 76.0
CON 2014Q1 6,650 6,576 5,913 5,094 4,767 2,415 44 0.7 0.9 76.0
CON 2014Q2 6,650 6,578 5,897 4,969 4,651 2,326 44 0.7 0.9 35.7
CON 2014Q3 6,582 6,510 5,821 4,954 4,638 2,297 43 0.7 0.9 35.7
CON 2014Q4 6,502 6,431 5,729 4,894 4,585 2,324 43 0.7 0.9 76.0
CON 2015Q1 6,342 6,271 5,564 4,827 4,515 2,298 43 0.7 0.9 35.7
CON 2015Q2 6,348 6,278 5,560 4,704 4,406 2,214 43 0.7 0.9 52.9
CON 2015Q3 6,271 6,204 5,479 4,689 4,402 2,209 43 0.7 0.9 52.9
CON 2015Q4 6,183 6,117 5,395 4,625 4,337 2,222 42 0.8 0.9 113.8
CON 2016Q1 6,059 5,993 5,256 4,538 4,252 2,179 43 0.7 0.9 52.9

Notes: This table provides summary statistics for samples with cross-sectional dimension N > 400 and
percentage of zeros less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning
information used to initialize the lag in the dynamic Tobit. We assume that T = 10, which means that
each sample has 12 time periods. The descriptive statistics are computed across N and T dimension of each
panel.
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Local Market. We use the annual Summary of Deposits data from the Federal Deposit

Insurance Corporation to determine the local market for each bank. This data set contains

information about the locations (at ZIP code level) in which deposits were made. Based on

this information, for each bank in the charge-off data set we compute the amount of deposits

received by state. We then associate each bank with the state from which it received the

largest amount of deposits.

Unemployment Rate (URit). Obtained from the Bureau of Labor Statistics. We use sea-

sonally adjusted monthly data, time-aggregated to quarterly frequency by simple averaging.

Housing Price Index (HPIit). Obtained from the Federal Housing Finance Agency on

all transactions, not seasonally adjusted. The index is available at a quarterly frequency.

Personal Income (INCit). Raw data are obtained from the Bureau of Labor Statistics.

All quarterly series are seasonally adjusted. We first construct quarterly state-level personal

income per capita, which is only available after 2010Q1. Before 2010Q1, there is no quarterly

state-level population series available. We interpolate the annual population to quarterly

frequency by assuming constant population growth rate within a year, and then divide the

quarterly personal income by the imputed quarterly population.33 Then, we deflate the

personal income per capita by the personal consumption expenditure price index.

Geo Coding. The annual Summary of Deposits data from the Federal Deposit Insurance

Corporation also contains the state and county FIPS code associated with the headquarter

location of each bank. Based on this information we can link the banks to counties and

compute average forecasts for each county which are displayed in Figure 3 in the main text.

Bank Characteristics. Quarterly raw data are obtained from the website of the Federal

Reserve Bank of Chicago (see above). We construct bank-characteristics variables as follows:

• Log Assets = log(RCON2170);

• Loan Fraction = specific loan stock / sum of all loan stocks;

• Capital-To-Asset Ratio= RCON3210/RCON2170;

• Loan-To-Asset Ratio = RCON3360/RCON2170;

• ALLL-To-Loan Ratio = RCON3123/RCON3360;

• Diversification = RIAD4079/(RIAD4079+RIAD4107);

33To check whether this interpolation is reasonable, we also experimented with the same interpolation
after 2010Q1, and the resulting time series are comparable to the available data.
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Table A-3: Summary Statistics for Bank Characteristics, RRE and CC 2007Q2

RRE CC
Low High All Low High All

Mean StdD Mean StdD Mean StdD Mean StdD Mean StdD Mean StdD
Log Assets 11.607 0.865 12.427 0.719 12.088 0.880 12.105 0.726 12.501 0.674 12.440 0.696
Loan Fraction 0.193 0.163 0.285 0.154 0.247 0.164 0.001 0.002 0.013 0.040 0.012 0.037
Capital-Asset 0.104 0.037 0.095 0.023 0.099 0.030 0.099 0.040 0.095 0.021 0.095 0.025
Loan-Asset 0.642 0.147 0.712 0.099 0.683 0.126 0.699 0.102 0.684 0.103 0.686 0.103
ALLL-Loan 0.013 0.005 0.012 0.005 0.013 0.005 0.012 0.007 0.013 0.006 0.013 0.006
Diversification 0.099 0.093 0.099 0.178 0.099 0.149 0.102 0.054 0.126 0.081 0.122 0.078
Ret. on Assets 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.002 0.003 0.002 0.003 0.002
OCA 0.008 0.003 0.008 0.003 0.008 0.003 0.008 0.002 0.008 0.003 0.008 0.003

Sample Size 515 731 1246 61 333 394

Notes: Bank characteristics are the values observed at 2007Q2 (t = 0). Low (High) refers to small (large)

λ̂i/σi group of banks (cutoff is approx -2 for RRE and -1 for CC); see red and blue dots in Figure 5. The
samples sizes of the “All” groups are smaller than those in Table 4 because the regression samples in Table 6
only include banks with a full set of covariates.

• Return on Assets = RIAD4340/RCON2170;

• Overhead Costs-To-Asset Ratio (OCA) = RIAD4093/RCON2170.

The unit of the balance sheet variables is thousand dollars. Except for log assets and loan

fraction, the variables are similar to Ghosh (2017). The RIAD variables are year-to-date, so

we take differences to obtain quarterly data. The RCON variables are stock quantities, so

we use lagged values instead of current values to overcome the timing issue in ratios. The

regressions in Table 6 are based on period t = 0 bank characteristics, to reduce concerns

about simultaneity. Summary statistics for the variables are provided in Table A-3.

E Additional Empirical Results

E.1 Tuning the CRE Prior

In order to tune the prior for the CRE distribution, we recommend visualizing certain char-

acteristics of these distributions, such as moments and number of modes. In this subsection

we consider two choices of the tuning constants, summarized in Table A-4. We refer to the

first choice of τ as “initial,” and the second choice as “adjusted,” based on the examination

of the prior and posterior distribution resulting from the “initial” choice of τ .
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Table A-4: Tuning Constants for Prior Distribution, CC Sample

τθ τν τφ τλσ τ yσ
Initial 5.0 1.0 5.0 1.0 1.0
Adjusted 5.0 1.0 20.0 1.0 4.0

For each draw of the hyperparameter vector ξ from either the prior or posterior distribu-

tion, one can evaluate the moments of the CRE distribution, which is a mixture of Normals.

The evaluation of a moment maps an infinite-dimensional object into a one-dimensional ob-

ject whose distribution can be more easily visualized. Features of the prior for the CRE

distribution for the CC sample are summarized in Figure A-3. To generate the figure, we

need to choose values for the regressors xit−1. Recall that the regressors are standardized to

have mean zero and variance one. We set xit−1 = x̃it−1 = κ[1, 1] and choose κ such that x̃it−1

lies on the boundary of a 50% coverage set constructed from a bivariate Normal distribution

with mean zero, variances one, and a correlation that matches the correlation of xit−1 in the

sample.

The dots in the scatter plots of the first three rows of Figure A-3 represent moments of the

marginal distribution of y∗i0. The initial prior covers a wide range of distributions: the mean

can range from -10 to 10, the standard deviation from close to 0 to 7, the distributions can

be left-skewed or right-skewed, they may have a kurtosis similar to a Normal distribution

or they may be very fat-tailed. The fourth row of the figure shows scatter plots of the

correlation between λi and yi0, which can range from -1 to 1.

A comparison of the prior and posterior plots under the initial tuning of the prior raises

two concerns. First, the posterior location and scale of the distribution of means appear to

be very similar to the prior location and scale. This could mean that the likelihood function

does not contain any information about the mean of the distribution of y∗i0. Second, the

posterior location of the distribution of standard deviations appears to be very different

from the prior location. Moreover, the posterior seems to be more spread out than the prior.

Thus, in this particular dimension the prior seems to assign essentially no mass in an area of

the parameter space that is favored by the likelihood function which could bias the posterior

estimates in a way that may not be intended by the researcher.

In view of these findings, we modify the choice of τ by raising τφ from 5 to 20 and τ yσ

from 1 to 4. A comparison of the first and third columns of Figure A-3 indicates that the

change in τ has the desired effect: the distribution of moments exhibits a larger variance.
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We proceed by computing the posterior distribution for the adjusted prior. Now the prior of

the means is substantially more diffuse than the posterior of the means, and the posterior of

the standard deviation does no longer lie in the far tail of the prior distribution. Comparing

the posterior under the initial prior to the posterior under the adjusted prior, we find that

the location of the posterior distributions is quite similar. The variance of the posterior

increases slightly after the adjustment of τ , but much less than the variance of the prior, so

we see that the posterior is anchored by the information in the likelihood function.

The last row of Figure A-3 shows histograms of the number of modes of the CRE distri-

bution. Recall that the CRE distribution is a mixture of Normal distribution with K = 20

components. This means that it could have up to 20 modes. Under the initial tuning, the

prior distribution assigns probability close to one to the number of modes being between

0 to 10. The highest probability mass is associated with 3 to 5 modes. The posterior has

a similar scale as the prior but is shifted to the right and peaks at 8 modes. Under the

adjusted tuning, the prior distribution is more spread out which makes the posterior appear

to be more concentrated relative to the prior.
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Figure A-3: Prior and Posterior for CRE Distribution, CC
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Notes: The dots in the scatter plots in rows 1 to 4 correspond to draws from the prior or posterior distribution
of the hyperparameter ξ that indexes the CRE distribution. For each ξ draw we compute the implied moments
of the mixture of Normals CRE distribution. SD is the standard deviation and Correlation is the correlation
between λi and y∗i0. The last row show the distribution of the number of modes.
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E.2 Density Forecasts

Figure A-4 resembles Figure 2 in the main text and shows that accuracy differentials of

Normal versus flexible CREs and of CREs versus REs are small.

Figure A-4: Log Predictive Density Scores – All Samples

CRE & Heteroskedastic Flexible & Heteroskedastic

Notes: The panels provide pairwise comparisons of log predictive scores. We also show the 45-degree line.
Log probability scores are depicted as differentials relative to pooled Tobit. The blue (red) circle corresponds
to RRE (CC). We use xit = [∆ ln HPIit,∆URit]

′.
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Figure A-5 resembles Figure 3 in the main text and shows the spatial distribution of CC

charge-off rate forecasts. Averaging across banks in each county contained in our sample we

report predictive tail probabilities P{yiT+1 ≥ 5%|Y1:N,0:T , X1:N,−1:T}.

Figure A-5: CC Charge-Off Rate Predictive Tail Probabilities, Spatial Dimension

2010Q1 2015Q2

Notes: Predictive tail probabilities are defined as P{yiT+1 ≥ c|Y1:N,0:T , X1:N,−1:T }, where c = 5%. Flexible
CRE specification with heteroskedasticity. The estimation samples range from 2007Q2 (t = 0) to 2009Q4
(t = T = 10) and 2012Q3 (t = 0) to 2015Q1 (t = T = 10).
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E.3 Parameter Estimates

Figures A-6 (CC charge-off rates) and A-7 (RRE charge-off rates) resemble Figures 4 and 6

in the main text.

Figure A-6: Heterogeneous Coefficient Estimates, CC Charge-Off Rates

E[λi/(1− ρ)|·] E
[

ln(σi/
√

1− ρ2)| ·
]

Scatter

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). A few extreme observations are not visible in the plots. The conditioning set is
(Y1:N,0:T , X1:N,−1:T ).

Figure A-7: Effects (Terms I and II) of HPI and UR on RRE Charge-Off Rates

HPI Fall Unemployment Increase

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The banks i = 1, . . . , N along the x-axis are sorted based on the posterior means

λ̂i/σi. Terms Ii are shown in black/grey and terms IIi in dark/light blue. The units on the y-axis are in
percent. The solid lines indicate the posterior means of the treatment effect components and the shaded
areas delimit 90% credible bands.
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E.4 Predictive Checks

Figure A-8: Additional Posterior Predictive Checks: Cross-sectional Distribution of Sample
Statistics

Robust
Mean of YiT+1 Mean of YiT+1 Correlation of (yit, yit−1)

After Obs. Zero Before Obs. Zero All Observations

R
R

E
C

C

Notes: Heteroskedastic flexible CRE specification. The estimation sample ranges from 2007Q2 (t = 0) to
2009Q4 (t = T = 10). The black lines are computed from the actual data. Each hairline corresponds to a

simulation of a sample Ỹ1:N,0:T+1 of the panel Tobit model based on a parameter draw from the posterior
distribution. Robust autocorrelations are computed using the MM estimator in Chang and Politis (2016).
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