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Abstract

We develop a state-space model with a state-transition equation that takes the

form of a functional vector autoregression and stacks macroeconomic aggregates and a

cross-sectional density. The measurement equation captures the error in estimating log

densities from repeated cross-sectional samples. The log densities and the transition

kernels in the law of motion of the states are approximated by sieves, which leads to

a finite-dimensional representation in terms of macroeconomic aggregates and sieve

coefficients. We use this model to study the joint dynamics of technology shocks,

per capita GDP, employment rates, and the earnings distribution. We find that the

estimated spillovers between aggregate and distributional dynamics are generally small,

a positive technology shock tends to decrease inequality, and a shock that raises the

inequality of earnings leads to a small and insignificant response in GDP.(JEL C11,

C32, C52, E32)
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1 Introduction

Models with household or firm heterogeneity are widely used to study distributional effects of

macroeconomic policies. In these models heterogeneity evolves dynamically and potentially

interacts closely with macroeconomic aggregates like GDP, unemployment, and investment.

However, it is an open question to what extent model predictions are consistent with em-

pirical evidence. This paper develops a state-space model that can provide semi-structural

evidence about the interaction of aggregate and distributional dynamics at business cy-

cle frequencies. The state-transition equation takes the form of a linear functional vector

autoregression (VAR), stacking macroeconomic aggregates and the log density of a cross-

sectional distribution. We treat this log density as unobserved and specify a measurement

equation for unit-level cross-sectional observations. Our model can be used to trace out the

effects of aggregate shocks on cross-sectional distributions; assess whether fluctuations in

cross-sectional distributions are important for aggregate fluctuations in the sense of Granger

causality; and identify shocks to cross-sectional distributions and examine their effects on

aggregate variables.

Modeling the cross-sectional distribution in terms of its log density function has the

advantage that its law of motion is not constrained by non-negativity or monotonicity re-

strictions and hence can be linear. We represent the log-densities and the transition kernels in

the functional VAR by finite-dimensional sieves with fixed basis functions and time-varying

coefficients that capture the dynamics. This turns the state-transition equation into a linear

VAR for the aggregate variables and the time-varying sieve coefficients. To avoid nonlinear

filtering, we effectively linearize the measurement equation for the cross-sectional observation

which leads to a convenient two-step estimation procedure. First, one computes maximum

likelihood estimates (MLE) of the sieve coefficients from the cross-sectional data, separately

for each time period. Second, one estimates a linear state-space model in which the MLEs

summarize the cross-sectional data and serve as noisy measures of the sieve coefficients. We

implement the second step with Bayesian techniques. A novel feature of our two-step ap-

proach is its ability to capture estimation uncertainty about the unobserved cross-sectional

densities. For data driven selection of the sieve dimension, the number of VAR lags, and hy-

perparameters that control the variance of the prior distribution, we derive an approximation

of the Bayesian marginal data density (MDD).

We present two asymptotic results, assuming that the number of sieve dimension K, the

cross-sectional sample size N , and the time series length T tend to infinity. Assuming that
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K3/N = o(1) our first Theorem shows that the difference between the exact likelihood and

the likelihood under the linearized measurement equation vanishes. This result is confirmed

in a computational exercise in which we use an approximately conditionally optimal par-

ticle filter, see Herbst and Schorfheide (2015), to numerically evaluate the exact likelihood

function of the K-dimensional nonlinear state-space model. Because the error from lineariz-

ing the measurement equation is small and the runtime is reduced by orders of magnitude,

we recommend the linearization for empirical work. Our second Theorem shows that the

discrepancy between the exact MDD and our MDD approximation also vanishes, provided

that KT/N = o(1) holds in addition. As a corollary, by maximizing the approximate MDD

we also “almost” achieve the maximum value for the exact MDD. Again, we think that the

computational gain (in terms of time and precision) from working with an approximation

outweighs potential distortions from the approximation error in empirical work.

In a simulation experiment, we generate data from a version of the Krusell and Smith

(1998) model, henceforth KS, which we solve using the method proposed by Winberry (2018).

The estimates of our functional model can reproduce the evolution of the distribution of asset

holdings and the response of the cross-sectional distribution to a technology shock. The MDD

shrinks the coefficients that control the spillover from the lagged cross-sectional distribution

to current aggregate capital to zero. The estimated response of capital to technology is

identical to that from a VAR in the two aggregate variables only. Thus, our estimates

recover a well-known feature of the KS data generating process (DGP). We conduct a second

experiment with a modified KS model in which the cross-sectional distribution Granger-

causes aggregate capital. In this case the MDD does not shrink the spillover coefficients to

zero and there are some discrepancies between the functional and aggregate VAR impulse

response function (IRF) of capital. However, there is significant overlap of the credible bands,

and increasing the number of lags in the aggregate VAR makes this discrepancy vanish.

In the empirical application we fit our model to aggregate total factor productivity (TFP)

growth, GDP growth, employment, and cross-sectional data on labor earnings divided by

GDP per capita. We obtain the following results. First, based on the degree of shrinkage

selected with the MDD criterion, the Granger-causal relationship from the cross-sectional

income distribution to the aggregate variables is weak, albeit not fully absent. There is sub-

stantial overlap between the impulse responses of the aggregate variables estimated through

the functional model and an aggregate VAR. Second, the earnings density responds to a

TFP shock in a way that inequality falls. The implied 10th percentile and the fraction of

individuals earning less than per capita GDP rise, whereas normalized earnings at the 50th
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and 90th percentile and the Gini coefficient fall. Overall, the effects are quantitatively small

and largely driven by individuals transitioning between work and unemployment. Third,

in the KS simulation and the empirical application the proposed functional model delivers

sharper estimates of percentile and inequality measure IRFs than a VAR that combines these

statistics directly with the aggregate variables.1 Our functional approach guarantees that

percentiles do not cross in response to shocks and in a forward simulation of the model.

Fourth, using maximum share-of-variance identification schemes, we find that IRFs from

shocks that maximize the variance share of GDP or employment look very similar to TFP

IRFs. Distributional shocks that explain the maximal variance share in the overall cross-

sectional distribution or the Gini coefficient do not have a significant effect on GDP.2

The methods developed in this paper speak to some but not all aspects of the broader

question of whether heterogeneity matters for business cycle fluctuations. The functional

model generates direct estimates for responses of cross-sectional distributions to aggregate

shocks and for the effects of shocks to the cross-sectional distribution on aggregate outcomes.

Quantitative HA models can be evaluated on their ability to replicate these empirical IRFs.

Assessing the role that heterogeneity plays for the propagation of aggregate shocks on ag-

gregate outcomes is more delicate. Heterogeneity may matter because it affects the mapping

from deep technology and preference parameters into the VAR representation. Our functional

model cannot unveil this mapping; it simply generates estimates of the VAR parameters that

can track the observed business cycle fluctuations.3 The proposed method can, however, be

used to assess whether cross-sectional distributions Granger-cause aggregates and to exam-

ine discrepancies between IRFs from the estimated functional model and a VAR that only

uses aggregate data. A well-fitting quantitative heterogeneous agent (HA) model will have

to be able to reproduce the empirical Granger causality and IRF mismatch patterns.

The strong overlap between estimated IRFs from the functional model and an aggregate

VAR is consistent with the HA and RA New Keynesian model estimation results reported

in Bayer, Born, and Luetticke (2020). It is also consistent with the notion that many HA

models deliver approximate aggregation results; see Chang, Kim, and Schorfheide (2013),

1An example of this approach is Coibion, Gorodnichenko, Kueng, and Silvia (2017).
2Identification based on the maximum share-of-variance of an observable dates back to Faust (1998) and

Uhlig (2003), and has recently been applied by Angeletos, Collard, and Dellas (2020) to study what the
authors refer to as the anatomy of business cycles.

3There is no analogue in our framework to the popular experiment of comparing HA and RA IRFs by
shutting down cross-sectional heterogeneity as in, for instance, Krueger, Mitman, and Perri (2016), Ahn,
Kaplan, Moll, Winberry, and Wolf (2018), Kaplan and Violante (2018), Ottonello and Winberry (2020),
Bayer, Born, and Luetticke (2020), Cho (2020), and Villalvazo (2021).
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Werning (2015) and Berger, Bocola, and Dovis (2019). The latter paper finds that the

role of state-dependent preference shocks, which summarize all the information from the

cross-section relevant for aggregate dynamics, is quantitatively small. Bilbiie, Primiceri, and

Tambalotti (2022) estimate the amplification of business cycle fluctuations due to precau-

tionary savings in a medium-scale New Keynesian model with savers and hand-to-mouth

households. The estimated amplification is observationally similar to more volatile shocks

in an RA environment. This suggests that their framework will also be consistent with the

strong overlap between IRFs from the functional model and the aggregate VAR that we

document.

HA models are frequently used to study the effect of aggregate shocks on cross-sectional

distributions. For instance, the paper by Ahn, Kaplan, Moll, Winberry, and Wolf (2018)

studies the effect of factor-specific productivity shocks on inequality dynamics, whereas Ka-

plan and Violante (2018) examine the distributional effects of monetary policy shocks. Bayer,

Born, and Luetticke (2020) use their estimated HA model to construct a historical decom-

position of an inequality measure with respect to a collection of aggregate shocks. Bhandari,

Evans, Golosov, and Sargent (2021) report responses of the dispersion of assets to a TFP

shock in a HANK model under optimal monetary-fiscal policy. Mongey and Williams (2017)

analyze the effect of macro shocks on the dispersion of sales growth. Examples of research

examining the effect of distributional shocks on aggregate variables are papers by Huggett

(1997) and Auclert and Rognlie (2020). The former shows that a redistribution of asset

holdings among households while keeping the overall capital stock fixed at its steady state

level, triggers a response of the aggregate variables. Auclert and Rognlie (2020) show that

a rise in inequality may lower aggregate output if monetary policy does not react to it.

The structure of the transition equation in our functional model resembles that of HA

models solved with linearization techniques. This solution method was initially proposed by

Reiter (2009), has been further developed in several papers, including Kaplan and Violante

(2018), Childers (2018), and Winberry (2018), and is often used for the likelihood-based

estimation of HA models as in Mongey and Williams (2017), Acharya, Chen, Del Negro,

Dogra, Matlin, and Sarfati (2019), Bayer, Born, and Luetticke (2020), Cho (2020), and Liu

and Plagborg-Møller (2022). In terms of likelihood construction, the Liu and Plagborg-

Møller (2022) paper is most closely related to ours, because it also uses the density of

cross-sectional observations. However, in their case the density is part of the HA model

solution, whereas we estimate it flexibly from the data.

There is an extensive literature on the statistical analysis of functional data. General



5

treatments are provided in the books by Bosq (2000), Ramsey and Silverman (2005), and

Horvath and Kokoszka (2012). Unlike the majority of papers, we do not assume that the

functions are observed without error. Applications of functional data analysis in macroe-

conometrics are growing steadily. Many of them are related to the yield curve, e.g., Diebold

and Li (2006) and Inoue and Rossi (2021). Meeks and Monti (2019) use functional principal

component regression to estimate a New Keynesian Phillips curve in which the distribution

of inflation expectations appears on the right-hand side. Hu and Park (2017) develop an

estimation theory for a functional autoregressive model with unit roots and fit it to yield

curve data and Chang, Kim, and Park (2016) use a functional time series process to capture

the evolution of earnings densities with a focus on unit-root components. Both papers use

functional principal components analysis.

The remainder of this paper is organized as follows. In Section 2 we present our functional

state-space model for a group of macroeconomic time series and a sequence of cross-sectional

distributions. We develop an approximate filter for the state-space model that facilitates the

likelihood-based estimation. We use Bayesian inference and derive an approximation to

the marginal data density that is used for dimensionality and hyperparameter selection.

Theoretical results on the accuracy of the approximations are presented in Section 3. Im-

plementation details such as the choice of basis functions, the choice of prior distributions,

and the posterior sampler are discussed in Section 4. Section 5 contains the results from the

simulation experiment in which we estimate the functional state-space model based on data

generated from the KS economy. The empirical application is presented in Section 6 and

Section 7 concludes. Supplemental derivations, and additional computational details and

empirical results are relegated to the Online Appendix.

2 A Functional State Space Model

We now develop the functional model, starting from an infinite-dimensional specification

in Section 2.1. Rather than working with an infinite-dimensional model, we consider a

collection of finite-dimensional models, presented in Section 2.2, in which log densities and

kernels associated with integral operators are represented through finite-dimensional sieves.

Section 2.3 develops an approximate linear filter for the finite-dimensional functional state-

space models and in Section 2.4 we propose a large-sample approximation of the marginal

data density that can be used to select the degree of the sieve-approximation, the number

of lags, and prior hyperparameters in a data-driven manner.
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2.1 An Infinite-Dimensional Model

To fix ideas, we start with an infinite-dimensional model for an ny×1 vector of macroeconomic

aggregates Yt and a cross-sectional density pt(x). In our empirical application Yt consists

of (log) TFP growth, per-capita GDP growth, and the log employment rate. The cross-

sectional variable x is earnings as a fraction of per-capita GDP. Throughout this paper, we

work with log densities defined as `t(x) = ln pt(x). The advantage of log-densities is that

they are not subject to non-negativity or monotonicity restrictions that would be difficult

to enforce in a linear vector autoregressive law of motion. We decompose Yt and `t into a

deterministic component
(
Y∗, `∗(x)

)
and fluctuations around it. Let

Yt = Y∗ + Ỹt, `t = `∗ + ˜̀
t. (1)

For notational convenience we assume that the deterministic component is time-invariant

and could be interpreted as a steady state. This assumption could be easily relaxed by

letting (Y∗, `∗) depend on t. The deviations from the deterministic component
(
Yt, `t(x)

)
evolve jointly according to the following linear functional VAR:

Ỹt = ByyỸt−1 +

∫
Byl(x̃)˜̀

t−1(x̃)dx̃+ uy,t (2)

˜̀
t(x) = Bly(x)Ỹt−1 +

∫
Bll(x, x̃)˜̀

t−1(x̃)dx̃+ ul,t(x).

Here uy,t is mean-zero random vector with covariance Ωyy and ul,t(x) is a random element

in a Hilbert space with covariance function Ωll(x, x̃). We denote the covariance function for

uy,t and ul,t(x) by Ωyl(x). For now, (2) should be interpreted as a reduced-form functional

VAR in which uy,t and ul,t(x) are one-step-ahead forecast errors. The time t density for the

cross-sectional observations xit is given by

pt(x) =
exp{`∗(x) + ˜̀

t(x)}∫
exp{`∗(x) + ˜̀

t(x)}dx
. (3)

The numerator ensures that the density pt(x) integrates to one, which is not automatically

guaranteed by the linear law of motion in (2).
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2.2 A Collection of Finite-Dimensional Models

Instead of working with the infinite-dimensional model comprising (1), (2), and (3) we es-

timate a K-dimensional specification, where K is determined in a data-driven manner.4

Let

`
(K)
t (x) =

K∑
k=1

αk,tζk(x) =
[
ζ1(x), . . . , ζK(x)

]
·


α1,t

...

αK,t

 = ζ ′(x)αt, (4)

`
(K)
∗ (x) = ζ ′(x)α∗, and ˜̀(K)

t (x) = ζ ′(x)α̃t. To simplify the notation a bit, we did not use

(K) superscripts for the vectors ζ(x), αt, and α∗. Here ζ1(x), ζ2(x), . . . is a sequence of

basis functions. For theoretical considerations it is convenient to demean the vector of

basis functions and assume that
∫
ζ(x)dx = 0. For applications this normalization is not

important.

We represent the kernels Bll(x, x̃) and Byl(x̃), the function Bly(x), and the functional

innovation ul,t(x) that appear in the state-transition equation (2) as follows:

B
(K)
ll (x, x̃) = ζ ′(x)Bllξ(x̃), B

(K)
yl (x) = Bylξ(x̃) (5)

B
(K)
ly (x) = ζ(x)′Bly, u

(K)
l,t (x) = ζ ′(x)uα,t,

where ξ(x) is a second K×1 vector of basis functions and uα,t is a K×1 vector of innovations.

The matrix Bll is of dimension K ×K, Byl is of dimension ny ×K, and Bly is of dimension

K×ny. Plugging (5) into (2) and assuming that the innovations u′t = [u′y,t, u
′
α,t] are Gaussian

yields the following vector autoregressive system for the macroeconomic aggregates and the

sieve coefficients (omitting K superscripts):[
Yt − Y∗
αt − α∗

]
=

[
Φyy Φyα

Φαy Φαα

][
Yt−1 − Y∗
αt−1 − α∗

]
+

[
uy,t

uα,t

]
, ut ∼ N (0,Σ), (6)

where Φyy = Byy, Φyα = BylCα, Φly = Bly, Φαα = BllCα, and Cα =
∫
ξ(x̃)ζ ′(x̃)dx̃.

We assume that in every period t = 1, . . . , T an econometrician observes the macroeco-

nomic aggregates Yt as well as a sample of N draws xit, i = 1, . . . , N from the K’th order

4We discuss in the Online Appendix how a finite-dimensional approximation can be derived from the
infinite-dimensional specification. In this derivation, given the dimension K, the αts minimize the Kullback-
Leibler divergence from the infinite-dimensional density.
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cross-sectional density p
(K)
t (x):

xit ∼ iid p
(K)
t (x) =

exp{`(K)
t (x)}∫

exp{`(K)
t (x)}dx

, i = 1, . . . , N, t = 1, . . . , T. (7)

Write the joint density of the xits as the product of the marginals and let L(K)(αt|Xt) =
1
N

∑N
i=1 `

(K)
t (xit). Then the measurement equation for the time t cross-sectional observations

Xt = [x1t, . . . , xNt]
′ can be expressed as

p(K) (Xt|αt) = exp
{
NL(K)(αt|Xt)

}
, L(K)(αt|Xt) = ζ̄ ′(Xt)αt − ϕ(αt) (8)

ζ̄(Xt) =
1

N

N∑
i=1

ζ(xit), ϕ(αt) = ln

∫
exp {ζ ′(x)αt} dx.

Here ζ̄(Xt) is the K-dimensional vector of sufficient statistics and ϕ(αt) is the log normaliza-

tion constant for the density p
(K)
t (x). Below we will sometimes use β as a generic parameter

for the log likelihood function L(K)(·|Xt). The assumption of xit being iid across i and t

is consistent with data sets that comprise repeated cross sections.5 To the extent that the

cross-sectional densities p
(K)
t (x) are estimated from a panel data set, there is some poten-

tial loss of information in our functional modeling approach. However, on the positive side,

the functional modeling approach does not require the econometrician to make assumptions

about the evolution of xit at the level of an individual, a household, or a firm.

To summarize, our K-dimensional functional model has a state-space representation with

with state vector αt, measurement equation (8), and state-transition equation (6). When

estimating the functional model we allow for p > 1 lags in the state-transition equation.

However, to keep the notation simple, we will for now proceed with a single lag, p = 1.

2.3 Approximate Filtering

The likelihood function of the functional model can be evaluated using a filter. To simplify

the notation, we collect the parameters (α∗, Y∗,Φ,Σ) in the vector θ. Here the matrix Φ

comprises Φyy, Φyα, Φαy, and Φαα. Although the dimension of θ depends on the degree

of approximation K, we omit the (K) superscript. Let Y1:t denote the sequence Y1, . . . , Yt.

5In practice N may vary with t. If the data exhibit spatial correlation, then our estimation approach
below essentially replaces the likelihood function for x1t, . . . , xNt by a composite likelihood function that
ignores the spatial correlation; see Varin, Reid, and Firth (2011).
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Starting from a distribution p(K)(αt−1|Y1:t−1, X1:t−1, θ), for each period t the filter computes:

p(K)(Yt, αt|Y1:t−1, X1:t−1, θ) =

∫
p

(K)
G (Yt, αt|Yt−1, αt−1, θ)p

(K)(αt−1|Y1:t−1, X1:t−1, θ)dαt−1

p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ) =

∫
p(K)(Xt|αt)p(K)(Yt, αt|Y1:t−1, X1:t−1, θ)dαt (9)

p(K)(αt|Y1:t, X1:t, θ) ∝ p(K)(Xt|αt)p(K)(Yt, αt|Y1:t−1, X1:t−1, θ).

The first equation in display (9) iterates the state-transition equation (6) forward and inte-

grates over the hidden state αt−1. We use the G subscript to indicate that the state-transition

equation is linear and Gaussian. The second equation generates a forecast of the observables

(Yt, Xt) using the measurement equation (8). The third equation updates the density of

the hidden state αt using Bayes Theorem (here ∝ denotes proportionality). The density

p(K)(Xt|αt) defined in (8) does not depend on θ.

Because the measurement equation for Xt is nonlinear and non-Gaussian, the predictive

density p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ) cannot be calculated analytically. While one could use

a sequential Monte Carlo filter to generate a numerical approximation, we approximate the

measurement equation p(K)(Xt|αt) in a way that enables analytical calculations using the

Kalman filter recursions. A second-order Taylor series expansion of L(αt|Xt) in (8) around

the maximum likelihood estimator (MLE)

α̂t = argmaxβ∈A L(K)(β|Xt) (10)

yields (A is defined in Assumption 1 below)

p(K)(Xt|αt) = exp

{
NL(K)(α̂t|Xt)−

N

2
(αt − α̂t)′V̂ −1

t (αt − α̂t) +NR(αt)

}
. (11)

V̂t is the negative inverse Hessian associated with L(β|Xt) evaluated at α̂t, and R(αt) is the

remainder term from the second-order Taylor series approximation. Define

p
(K)
KF (Xt|αt) = exp

{
NL(K)(α̂t|Xt)−

N

2
(αt − α̂t)′V̂ −1

t (αt − α̂t)
}

(12)

= p(K)
pen (Xt|α̂t)× p(K)

G (α̂t|αt),

where

p(K)
pen (Xt|α̂t) = exp

{
NL(K)(α̂t|Xt)

}(2π

N

)K/2
|V̂t|1/2.
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We use the pen subscript to indicate that the expression can be interpreted as the maximized

likelihood function of Xt penalized by (2π/N)K/2|V̂t|1/2. The p
(K)
G (α̂t|αt) term in (12) is the

Gaussian density corresponding to the “measurement” equation6

α̂t = αt +N−1/2ηt, ηt ∼ N
(
0, V̂t

)
. (13)

Replacing the exact measurement equation p(K)(Xt|αt) by the approximation p
(K)
KF (Xt|αt)

the filter iterations in (9) become

p
(K)
KF (Yt, αt|Y1:t−1, X1:t−1, θ) =

∫
p

(K)
G (Yt, αt|Yt−1, αt−1, θ)p

(K)
KF (αt−1|Y1:t−1, X1:t−1, θ)dαt−1

p
(K)
KF (Yt, Xt|Y1:t−1, X1:t−1, θ) = p(K)

pen (Xt|α̂t)
∫
p

(K)
G (α̂t|αt)p(K)

KF (Yt, αt|Y1:t−1, X1:t−1, θ)dαt

= p(K)
pen (Xt|α̂t)p(K)

KF (Yt, α̂t|Y1:t−1, X1:t−1, θ)

p
(K)
KF (αt|Y1:t, X1:t, θ) ∝ p

(K)
G (α̂t|αt)p(K)

KF (Yt, αt|Y1:t−1, X1:t−1, θ). (14)

Because the state-transition density p
(K)
G (Yt, αt|Yt−1, αt−1, θ) is Normal under the assumption

that the shock vector ut is normally distributed, all the densities in (14) are Gaussian – we

initialize the filter with a Gaussian density for α0 – and the Kalman filter (KF) recursions

can be used to track means and covariance matrices. It can be verified by induction that

X1:t−1 affects the densities only through α̂1:t−1. Thus, we can replace X1:t−1 by α̂1:t−1 in the

conditioning sets in (14).

To summarize, our approximation of the filtering problem leads to a convenient two-step

procedure. In the first step, the researcher computes the sequence of MLEs α̂t from the

cross-sectional observations Xt, separately for each period t = 1, . . . , T . In the second step,

the researcher estimates a linear state-space model in which the α̂ts are interpreted as noisy

measures of the latent αts.

2.4 Bayesian Model Selection Criterion

In empirical work the likelihood function is combined with a prior distribution p(K)(θ|λ)

which depends on a vector λ of hyperparameters that control the variance of the prior. We

use the Bayesian marginal data density (MDD) to determine λ, the sieve order K, and the

6This is not a statement about the asymptotic sampling distribution of the MLE α̂t.
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number of lags in the state-transition equation (2).7 The MDD is defined as

p(K)(Y1:T , X1:T |λ) =

∫ ( T∏
t=1

p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ)

)
p(K)(θ|λ)dθ. (15)

This expression is very difficult to compute. As we discussed in Section 2.3 the computation

of p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ) requires a nonlinear filter. Moreover, the high-dimensional

parameter vector θ needs to be integrated out numerically.

We simplify the problem in two steps. First, we replace the conditional density of (Yt, Xt)

by the KF approximation and define

p
(K)
KF (Y1:T , X1:T |λ) =

(
T∏
t=1

p(K)
pen (Xt|α̂t)

)∫ ( T∏
t=1

p
(K)
KF (Yt, α̂t|Y1:t−1, α̂1:t−1, θ)

)
p(K)(θ|λ)dθ.(16)

Second, we set the measurement error variance in (13) to zero which will allow us to re-

place the KF density p
(K)
KF (Yt, α̂t|Y1:t−1, α̂1:t−1, θ) by the Gaussian state transition density

p
(K)
G (Yt, αt = α̂t|Yt−1, αt−1 = α̂t−1, θ) such that we obtain the following MDD approximation:

p(K)
∗ (Y1:T , X1:T |λ) (17)

=

(
T∏
t=1

p(K)
pen (Xt|α̂t)

)∫ ( T∏
t=1

p
(K)
G (Yt, αt = α̂t|Yt−1, αt−1 = α̂t−1, θ)

)
p(K)(θ|λ)dθ.

The integral on the right-hand side of the equation is the MDD associated with the VAR

in (6) where the latent αts are replaced by the MLEs α̂t. There exists a large literature on

how to evaluate VAR MDDs and we will choose a conjugate prior distribution p(K)(θ|λ) that

allows us to compute p
(K)
∗ (Y1:T , X1:T |λ) analytically.

3 Approximation Error Bounds and Model Selection

In this section we formally characterize the accuracy of the KF approximation and the

MDD approximation. We begin in Section 3.1 by defining some notation and stating a

basic assumption and a lemma. We present an approximation error bound for the KF state

distribution and likelihood increment in Section 3.2 and provide a bound for the MDD

approximation in Section 3.3. Model selection is discussed in Section 3.4.

7MDD based hyperparameter selection or averaging has been widely used in the VAR literature; see, for
instance, Del Negro and Schorfheide (2004) and Giannone, Lenza, and Primiceri (2015).
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3.1 Preliminaries

Cross-sectional Densities. The derivatives of L(K)(β|X) with respect to β of order two

and higher only depend on derivatives of ϕ(β); see (8). Let L(K)(2)(β) be the matrix of

second derivatives and L(K)(4)
hklm (β) be the fourth derivatives, where the subscript indicates the

elements of β with respect to which we are differentiating.

Assumption 1 The fourth derivatives L(K)(4)
hklm (β) are uniformly bounded by a constant M

for β ∈ A ⊆ RK, where A = {β ∈ RK : ϕ(β) ≤ C <∞}. The constant does not depend on

K. Moreover, the matrix [−L(K)(2)(β)] is positive definite at argmaxβ∈A L(K)(β|Xt).

In our application we use cubic splines and assume that x ∈ [x, x]. Thus, Assumption 1 is

satisfied. We will subsequently write f(N,K) � 1±aK,N to denote the bound |f(N,K)−1| ≤
aK,N for N > N0. To state the following lemma we add a (K) superscript to the remainder

R(·) and the densities p(Xt|·), and a 1:N subscript to Xt to highlight the dependence of

these objects on (K,N).

Lemma 1 Suppose Assumption 1 is satisfied. Then, there is a finite positive constant C

and an No(C) such that uniformly for all αt ∈ int(A), for all t = 1, ..., T , and N ≥ N0 > K3

exp
{
NR(K)(αt)

}
� 1± C

√
K3

N
,

p(K)(X1:N,t|αt)
p

(K)
KF (X1:N,t|αt)

� 1± C
√
K3

N
.

3.2 Kalman Filter Approximation Error

Our first set of approximation results is about the relationship between the density of the

latent state αt given time t information under the exact filter in (9) and the KF in (14), and

the likelihood increments under the two filters. Throughout the remainder of this section we

will assume that K3/N = o(1).

Theorem 1 Suppose Assumption 1 is satisfied. Then, there exists a constant C and an

No(C) that do not depend on αt or θ such that for all N ≥ N0 ≥ K3 and t = 1, . . . , T

p(K)(αt|Y1:t, X1:N,1:t, θ)

p
(K)
KF (αt|Y1:t, X1:N,1:t, θ)

� 1± C
√
K3

N
.

and
p(K)(Yt, X1:N,t|Y1:t−1, X1:N,1:t−1, θ)

p
(K)
KF (Yt, X1:N,t|Y1:t−1, X1:N,1:t−1, θ)

� 1± C
√
K3

N
.
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Figure 1: Kalman Filter Log Likelihood Approximation Errors

N = 1, 250, ln p(K)(·) = −0.3459 N = 10, 000, ln p(K)(·) = −0.3418
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Notes: Log likelihood values ln p(K)(Y1:T , X1:N,1:T |θ∗)/(N+2) in deviations from the “exact” value. Vertical
lines correspond to KF approximations and densities represent distribution of PF log likelihood values across
multiple runs for M = 5, 000 particles.

A proof of the theorem is provided in the Online Appendix. To provide a numerical

illustration, we generate a data set (Y1:T , X1:N,1:T ) from the calibrated heterogeneous agent

model of Section 5 and evaluate the likelihood function at the posterior mean estimate θ∗

of the functional model. The exact likelihood increments p(K)(Yt, X1:N,t|Y1:t−1, X1:N,1:t−1, θ)

are computed with a particle filter (PF), which was first developed by Gordon and Salmond

(1993). A PF approximates the distribution of αt|(Y1:t, X1:N,1:t, θ) through a swarm of parti-

cles {αjt ,W
j
t }Mj=1. The approximation is stochastic and its accuracy depends crucially on the

mutation of the particle values between periods t− 1 and t. We use the linearized measure-

ment equation (13) to derive an approximately conditionally optimal proposal density for the

αjt−1 particle values. The general implementation of the PF follows Herbst and Schorfheide

(2015) and details are provided in the Online Appendix. Conditional on θ∗ we compute PF

approximations of

ln p(K)(Y1:T , X1:N,1:T |θ∗) =
T∑
t=1

ln p(K)(Yt, X1:N,t|Y1:t−1, X1:N,1:t−1, θ∗)

for K = 8 and T = 25 and two choices of N . We use M = 5, 000 particles. We run the

stochastic filter nsim = 100 and plot kernel density estimates for the nsim log likelihood

values.

Results are plotted in Figure 1. Because the PF likelihood approximations are unbiased,
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we first calculate the mean of the likelihood values across the nsim runs of the filter and

regard the log of the mean as the “exact” log-likelihood value. To make results comparable

for N = 1, 250 and N = 10, 000 we compute ln p(K)(Y1:T , X1:N,1:T |θ∗)/(N+2) where ny = 2 is

the number of aggregate series. The log likelihood values shown in the figure are in deviations

of the “exact” values, which are −0.3467 for N = 1, 250 and −0.3418 for N = 10, 000. The

KF log likelihood is represented by a vertical line and the distribution of PF log likelihood

approximations by a density. Deviations of the KF value from zero can be interpreted as

approximation errors of the linear filter. A comparison between the left and the right panel

indicates that the approximation error vanishes as N increases, as Theorem 1 predicts.8

3.3 MDD Approximation Error

We propose to use the MDD approximation p
(K)
∗ (Y1:T , X1:N,1:T |λ) in (17) to select the number

of lags p ≤ p̄, the sieve dimension K ∈ KN , and the prior hyperparameters λ ∈ Λ. We provide

a bound for the discrepancy between the p
(K)
∗ (·) and the p(K)(·) MDD based on the nonlinear

measurement equation, defined in (15). Because the MDD-based lag length selection under

the assumption that the upper bound p̄ does not depend on the sample size is standard,

we focus on the (K,λ) selection in the remainder of this section. We assume that the set

KN from which K is selected does not grow too fast. Let K̄N = max {K | K ∈ KN} and

K̄N = o(N−1/3).

Theorem 2 Suppose Assumption 1 is satisfied and TK̄N/N = o(1). Then,

max
(K,λ)∈KN×Λ

∣∣∣∣ ln p(K)(Y1:T , X1:N,1:T |λ)− ln p(K)
∗ (Y1:T , X1:N,1:T |λ)

∣∣∣∣ .
√K

3

N

N
+

T

2N
KN

 .

A proof of the theorem is provided in the Online Appendix. The rate

√
K

3

N/N reflects

the discrepancy between ln p(K)(·) and ln p
(K)
KF (·). The second rate, TKN/N , comes from

replacing ln p
(K)
KF (·) by ln p

(K)
∗ (·).9

8The dispersion of PF log likelihood values is larger for N = 1, 250 than for N = 10, 000 because θ∗ is
the posterior mean based on the N = 10, 000 sample and the precision of the PF is sensitive to the fit of the
model/parameter values; e.g., see Herbst and Schorfheide (2015).

9In the empirical application in Section 6 N varies with t. The minimum value is 12,411. The time
series length is T = 110. Most of the calculations are based on K = 10, which leads to K3/N = 0.08,
TK/(2N) = 0.06. For MDD comparisons we consider K̄ = 22 which leads to K̄3/N = 0.86 and TK̄/(2N) =
0.10. Because the law of motion for αt induces a prior for the spline coefficient, we allowed K̄ to be slightly
larger than the rate restriction suggests.
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3.4 Model Selection

Let (K̂, λ̂) and (K∗, λ∗) be the maximizers of ln p(K)(·|λ) and ln p
(K)
∗ (·|λ), respectively. We

can deduce the following corollary from Theorem 2:

Corollary 1 Suppose Assumption 1 is satisfied and TK̄N/N = o(1). Then

ln p(K̂)(Y1:T , X1:N,1:T |λ̂)− ln p(K∗)(Y1:T , X1:N,1:T |λ∗) . 2

√K
3

N

N
+

T

2N
KN


ln p(K∗)

∗ (Y1:T , X1:N,1:T |λ∗)− ln p(K̂)
∗ (Y1:T , X1:N,1:T |λ̂) . 2

√K
3

N

N
+

T

2N
KN

 .

The corollary establishes a weak form of equivalence between model selection based on

the exact MDD ln p(K)(·|λ) and the approximation ln p
(K)
∗ (·|λ): the argmax of ln p

(K)
∗ (·|λ),

(K∗, λ∗), almost maximizes the exact MDD, and vice versa.10 We show in the Online Ap-

pendix that, under the prior in (18) below, the hyperparameter estimates based on the exact

and approximate MDD are within ε distance for each K ∈ KN as (N, T ) −→ ∞. A strong

equivalence statement regarding the K selection requires assumptions on a DGP PoN,T (·) and

the notion of a pseudo-optimal dimension KoN ∈ KN . A proof is left for future research.

To understand the trade-offs in choosing λ and K, we now decompose ln p
(K)
∗ (·) into

goodness-of-fit and penalty terms. For ease of exposition we assume that the log likeli-

hood function and prior density are both quadratic in θ. In our model this assumption is

exactly satisfied for the regression coefficients Φ, and holds asymptotically for large T for

the parameters in Σ. This assumption avoids having to keep track of standard remainder

terms. To keep the hyperparameter selection asymptotically non-trivial we balance the in-

formational contents of the prior distribution and the likelihood function by rescaling the

hyperparameter. We assume that

θ|(K,ω) ∼ N
(
θ,
ω

T
V
)
. (18)

The local hyperparameter ω ∈ Ω = [0,∞) is related to the precision hyperparameter λ

through λ = T/ω.

10In the context of selecting the dimension of a linear model Shao (1997) refers to the weak notion as
loss efficiency. He compares the behavior of various model selection procedures under finite-dimensional and
infinite-dimensional DGPs.
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Rather than conducting a Laplace approximation around the MLE θ̂∗, we first compute

the posterior mean/mode and variance to capture the effect of the prior distribution in the

MDD formula. In fact, under the assumption of a log-quadratic likelihood and prior density

the following formulas are exact. The posterior of θ is Gaussian with mean and variance

(scaled by T )

θ̄∗ = V̄∗
(
V̂−1
∗ θ̂∗ +

1

ω
V−1θ

)
, V̄∗ =

(
V̂−1
∗ +

1

ω
V−1

)−1

,

where V̂∗ is the negative inverse Hessian associated with ln p
(K)
G (Yt, αt = α̂t|·, θ), evaluated

at the MLE θ̂∗. This leads to

1

NT
ln p(K)

∗ (Y1:T , X1:N,1:T |ω) (19)

=
1

T

T∑
t=1

L(K)(α̂t|X1:N,t)−
K

2N
ln(N)

− 1

2N

(
θ̂′∗V̂−1

∗ θ̂∗ +
1

ω
θ′V−1θ − θ̄′∗V̄−1

∗ θ̄∗

)
− 1

2NT
ln
∣∣∣ωVV̂−1

∗ + Id

∣∣∣
+

1

NT

T∑
t=1

ln p
(K)
G (Yt, αt = α̂t|Yt−1, αt−1 = α̂t−1, θ̂∗) +

K

2N
ln(2π) +

1

2

1

NT

T∑
t=1

ln |V̂t|

= (A1 − A2) + (−A3 − A4) + (A5 + A6 + A7),

say. Note that the dimension of θ and is O(K2).

The Op(1) term A1 = 1
T

∑T
t=1 L(K)(α̂t|X1:N,t) captures the goodness-of-fit of the cross-

sectional density estimates and is non-decreasing in K. It is penalized by the Schwarz

criterion (BIC) penalty A2 = K/(2N) lnN , meaning that every additional sieve term is

penalized by 1/(2N) lnN .11 The selection of ω conditional on K depends on A3 and A4.12

For finite values of ω the term A3 is greater than zero and can be interpreted as an in-sample

goodness-of-fit adjustment to the maximized VAR likelihood in A5, due to the use of a prior.

As ω −→ ∞, meaning the prior becomes “flat,” the difference between posterior mean and

MLE vanishes and A3 converges to zero. A4 penalizes the choice of the hyperparameter ω.

The penalty diverges as ω −→∞. A4 is minimized for ω = 0 when θ is forced to be equal to

the prior mean θ. The remaining terms, A5, A6, and A7, are of the smaller order Op(K/N).

To summarize, dimensionality and hyperparameter selection based on the approximate

11In fact, Kooperberg and Stone (1992) recommend for log-spline density models K selection by BIC.
12A4 is Op(K2/NT ). A3 is also of order Op(K2/NT ) if two conditions hold. First, K2/T = o(1) which

delivers a
√
T consistent MLE. Second, the “true” θ parameter is sampled from the drifting prior (18), which

implies that the MLE behaves asymptotically as θ̂∗ = θ + ϑ̂∗/
√
T , where ϑ̂∗ = Op(1).
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MDD p
(K)
∗ (Y1:T , X1:N,1:T |λ) trades off goodness-of-fit and model complexity captured by the

penalty terms A2 and A4. By maximizing the approximate MDD the user can speed up

computations considerably, because it simplifies a high-dimensional integration problem. In

our application we have an analytical formula for the p
(K)
∗ (·|λ) MDD. The p(K)(·|λ) MDD

value attained by this computational strategy is almost as high, in the sense of Corollary 1

as that obtained by maximizing the exact MDD p
(K)
∗ (Y1:T , X1:N,1:T |λ).

4 Implementation Details

Basis Functions. A convenient basis for the log density is a spline which is a piecewise

polynomial function with knots xk, k = 1, . . . , K − 1; see Kooperberg and Stone (1990). A

typical choice is to consider a cubic spline that is restricted to be linear and upward sloping

on the interval (−∞, x1) and linear and downward sloping on the interval [xK−1,∞). Thus,

the estimated density has the tails of a Laplace density, which are a bit thicker than Gaussian

tails.13 In our two applications we restrict x to the interval [0, x̄]. For the estimation based

on simulated data in Section 5 we also use a cubic function for the last segment of the spline:

ζ1(x) = x (20)

ζk(x) =
[

max{x− xk−1, 0}
]3
, k = 2, . . . , K.

We exclude the constant function ζ0(x) = 1 because it is redundant in light of the normaliza-

tion imposed in the definition of LK(αt|Xt) in (8). For the empirical application in Section 6

we construct the spline from x = x̄ to x = 0, rather than from x = 0 to x = x̄, using a linear

element for the right tail

ζK(x) = max {x̄− x, 0} (21)

ζk(x) =
[

max {xk−1 − x, 0}
]3
, k = K − 1, . . . , 1.

For the simulated data (20) is preferred because the right tail of the simulated asset

distributions is very thin. For the actual data it is desirable that the right-most segment of

the spline is linear because under the cubic specification the density was increasing between

the top coded value (see below) and the upper bound x̄ in some periods. Near zero, on

13In general, the methods developed in this paper are not restricted to cubic splines. Other basis functions
such as polynomials (including trigonometric, Hermite, Laguerre) or wavelets could be used.
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the other hand, the cubic segment was more successful approximating the density than the

linear segment. As a diagnostic, we recommend to visually examine the fit of the estimated

cross-sectional densities, as in Figures 4 and 8. In addition, the MDD p
(K)
∗ (Y1:T , X1:T |λ) can

also be used to select among basis functions, which is what we did to choose between (20)

and (21) in the simulation experiment of Section 5 and the empirical analysis in Section 6.

Sieve Coefficients. The first step in the estimation of the functional model is the compu-

tation of the MLEs α̂t for t = 1, . . . , T . The Online Appendix discusses three adjustment

that may be required to implement the empirical analysis. (i) If the data are top-coded, the

likelihood needs to be adjusted. We assume that the censoring point as well as the number

of censored observations are observed. pt(x) is assumed to describe the uncensored density.

(ii) Even though K basis functions may be necessary to approximate the cross-sectional den-

sities, the time variation might be concentrated in a lower-dimensional space, because, for

instance, only the means of the cross-sectional distributions are varying over time. If there

are perfect collinearities in α̂t, we remove them. Even if there are none, we normalize the α̂ts.

(iii) The cross-sectional observations may exhibit seasonality that leads to seasonal variation

in the α̂ts. In our application in Section 6 the aggregate data are seasonally adjusted. Thus,

we remove deterministic seasonalities from the α̂ts before combining them with the aggregate

variables in a VAR.

Priors and Posteriors. The estimation of the state-space model is done conditional on

the sequence V̂t, t = 1, . . . , T . In our implementation we also condition on estimates of the

deterministic components, Ŷ∗ and α̂∗. Recall that the measurement equation is given by

(13) and that we assume that Yt − Y∗ is observed without error. Define the nw × 1 vector

Wt = [(Yt − Y∗)′, (αt − α∗)′]′ and write the state transition (6) more compactly as

Wt =

p∑
j=1

Φ(j)Wt−j + ut, ut ∼ N (0,Σ). (22)

We now also allow for multiple lags. Define Φ = [Φ(1), . . . ,Φ(p)]′ and note that (Φ,Σ) do not

enter the measurement equation.

Following Carter and Kohn (1994), posterior inference for the state-space model is based

on a Gibbs sampler that iterates over the following two conditional posterior distributions:

α1:T |(Y1:T , X1:T ,Φ,Σ), (Φ,Σ)|(Y1:T , X1:T , α1:T ).

Because we are using the linearized measurement equation (A.65) the latent states a1:T can
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be sampled using a Kalman filter / simulation smoother. We adjust the standard algorithm

to account for the aggregate variables Yt being directly observed and multiple lags, i.e.,

p > 1. Details are provided in the Online Appendix. Conditional on α1:T , the derivation

of the posterior distribution of (Φ,Σ) follows the Bayesian analysis of a VAR. Because the

vector αt can be potentially large, we use the VAR parameterization and prior proposed

by Chan (2022). His specification is suitable for high-dimensional settings because it leads

to equation-by-equation estimation while allowing for some asymmetry of the prior across

equation.

Starting point for the specification of the prior is the assumption that the elements of Φ

are an Inverse-Gamma scale mixtures of Normals with mean zero. The overall prior precision

is controlled by the hyperparameter λ1. The hyperparameter λ2 controls the relative precision

of coefficients that capture the effect of lagged αts on current Yts. As λ2 −→ ∞, the cross-

sectional density does not Granger-cause the aggregate variables and the system becomes

block-triangular. Because Chan’s (2022) prior is conjugate, the posterior distribution has

a convenient Inverse-Gamma Normal form and draws can be generated by direct sampling.

Moreover, the MDD in (17) can be evaluated analytically. Further details on the prior

distribution, the derivation of the posterior, and the MDD formula are provided in the

Online Appendix.

Recovering Cross-Sectional Densities. Based on the estimated state-transition equation

(22) we can generate forecasts and impulse response functions for the compressed coefficients

at. However, the dynamics of these coefficients in itself are not particularly interesting. Thus,

we have to convert them back into densities using

p(K)(x|αt) =
exp

{
ζ ′(x)αt

}∫
exp

{
ζ ′(x̃)αt

}
dx̃
.

Mixed-Frequency Considerations. In some applications, the cross-sectional observations

xit might be observed at a lower frequency, say, annually instead of quarterly, than the

aggregate time series. Suppose that xit corresponds to household earnings and the length

of the period t is one quarter. It is important to distinguish two cases. Suppose at the end

of every year the household is asked: “how much did you earn in the fourth quarter of the

current year?” In this case, we observe draws xit from pt(x) in periods t = 4, 8, 12, . . . and
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we can write (A.65) as

ât =

{
at +N−1/2ηt for t = 4, 8, 12, . . .

∅ in other periods

The estimation can be easily handled within the current state-space setup using the approach

in Schorfheide and Song (2015). Alternatively, suppose that at the end of every year the

household is asked: “how much did you earn in the current year?” Thus, the survey generates

observations of the form x̄it = xit + xit−1 + xit−2 + xit−3 where now i refers to the same

household in the four periods. Our model does not have enough structure to recover the

distribution of x̄it from the sequence pt(x), pt−1(x), pt−2(x), pt−3(x). Additional assumptions

would be required and we leave a careful treatment of this case for future research.

5 A Simulation Experiment

To examine our functional state-space model’s ability to capture the joint dynamics of ag-

gregate variables and a cross-sectional distribution, we estimate it based on artificial data

simulated from a Krusell and Smith (1998) economy. We show that in the perfect aggregation

environment of the KS model, estimated responses of aggregate variables to an aggregate

shock from the functional model are identical to those from a VAR in aggregate variables

only. The MDD hyperparameter selection shrinks the estimates of the parameter block that

captures the effect of the lagged distribution onto current aggregates to zero. If the DGP

is modified to break the perfect aggregation structure, some discrepancies between the two

IRF estimates emerge, but considerable overlap between the credible bands remain. We also

document that the estimated functional model can reproduce the distributional responses of

the DGP.

5.1 Model Economy and Data Generating Process

The model economy consists of a continuum of households j ∈ [0, 1]. Household j chooses

consumption and asset holdings to maximize

E0

[
∞∑
t=0

βt
c1−σ
jt − 1

1− σ

]
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subject to the budget constraint

xjt+1 + cjt = (1− τ)Wtεjt + bWt(1− εjt) + xjt(1 +Rt), xjt+1 ≥ x. (23)

Here εjt ∈ {0, 1} is an exogenous two-state Markov process that determines the efficiency

units of labor supplied by the household j in period t. Households with εjt = 1 receive

after-tax labor income (1− τ)Wt and households with εjt = 0 receive unemployment benefits

bWt. The total labor supply L =
∫
εjtdj is fixed over time. The government is assumed to

balance its budget in each period by setting τ = b(1 − L)/L. The asset xjt is a claim on

the aggregate capital stock and generates a risky return Rt. Households face the borrowing

constraint xjt+1 ≥ x. Finally, a representative firm produces output Yt according to

Yt = exp{zt}Kα
t L

1−α, zt = ρzzt−1 + σzωt, ωt ∼ N (0, 1), (24)

where zt is an exogenous aggregate productivity shock that follows an AR(1) law of motion,

and Kt is the aggregate capital stock. In equilibrium Kt =
∫
xjtdj.

The aggregate state of the economy is St = (zt, µt), where µt is the distribution of house-

holds over (εjt, xjt) pairs. It is convenient to use µt,ε to denote the conditional distribution

of assets given the employment status εt. To solve the model, we use the approach by Win-

berry (2018). Details are provided in the Online Appendix. The solution represents µt,ε as

a mixture of a discrete and continuous part:

qt,ε(x) = m̂t,ε∆x(x) + (1− m̂t,ε)pt,ε(x). (25)

Here, m̂t,ε is the mass of individuals for whom the borrowing constraint x is binding and

∆x(x) is the Dirac function.14 The continuous part of the asset distribution is parameterized

in terms of the time-varying centralized moments mt,ε,k and represented as

pt,ε(x) = exp

{
γt,ε,0 + γt,ε,1(x−mt,ε,1) +

3∑
k=2

γt,ε,k
[
(x−mt,ε,1)k −mt,ε,k

]}
. (26)

The coefficients γt,ε,ks are determined such that the density integrates to one and is consistent

with the moments mt,ε,k.

We calibrate the KS economy to loosely match features of annual U.S. data. The pa-

rameterization is summarized in Table 1. The Winberry (2018) solution generates a vector

14The Dirac function has the property that ∆x(x) = 0 for x 6= x and
∫

∆x(x)dx = 1.
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Table 1: Calibration of Krusell-Smith Economy

Parameter Value Parameter Value
β Discount factor .93 b Unempl. benefits .15
σ Utility curvature 1 π(ε0 → ε1) Unempl. to Empl. .5
x Borrowing constraint 0 π(ε1 → ε0) Empl. to Unempl. .038
α Capital share .36 ρz TFP Persistence .859
δ Capital depreciation .10 σz TFP Innovation StdDev .028

Figure 2: Features of Simulated Data (Baseline)

Capital Stock K Asset/K Distribution Asset/K Distribution
Time Series t = 115 t = 155
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Notes: Aggregate capital attains its minimum in period t = 115 and its maximum in period t = 155. Each
density is normalized so that it integrates to one. Distribution of unemployed is red dashed, distribution of
employed is blue solid, and aggregated distribution is solid black.

autoregressive law of motion for technology zt, capital Kt, the mass m̂t,ε of employed and

unemployed households at the borrowing constraint, and the moments mt,ε,k. We simulate

this law of motion for 160 periods and draw iid cross-sectional observations from (25), where

pt,ε(x) is defined in (26). The left panel of Figure 2 depicts the time series of the aggregate

capital stock from t = 1 to t = 160. The capital stock reaches a trough in period t = 115

and peaks in period t = 155.

We standardize household-level asset holdings by the aggregate capital stock and focus

on the cross-sectional distributions of a/K. The densities for the unemployed, the employed

households, and the two types combined are plotted in the center panel and the right panel

of Figure 2. Because the unemployment rate is only 7%, the overall asset distribution is

very similar to the distribution of employed households. We condition on x > x = 0 and

plot pt,ε(x) given in (26). The densities illustrate that employed households hold more assets

than unemployed households and that in a boom period (high capital stock due to favorable
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Figure 3: Capital Stock Response to TFP Shock
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Notes: Capital responses to a TFP shock: heterogeneous agent model solution (blue), population approxi-
mation in terms of aggregate variables (red). Left panel: baseline KS model with perfect aggregation. Right
panel: modified KS solution.

technology shocks) the mode of the asset/capital distribution shifts to the right. Due to the

normalization, the mean is equal to one in both periods.

Our version of the KS model features perfect aggregation, meaning that the law of motion

of the aggregate variables (zt, Kt) does not depend on the dynamics of the cross-sectional

distribution. In the left panel of Figure 3 we compare the response of capital in the baseline

KS model to a TFP shock with responses generated from an aggregate model.15 Under

the baseline KS model the two IRFs are identical, meaning that aggregate capital perfectly

summarizes the feature of the cross-sectional asset distribution that is relevant for aggregate

dynamics. In the right panel of Figure 3 we consider a case in which aggregation is imperfect.

Rather than specifying an alternative heterogeneous agent model, we simply modify the

baseline KS solution by letting the lagged second moment of the asset distribution affect

capital.16 Under this modification the response of the (modified) heterogeneous agent model

now differs from the response computed from the aggregate VAR.

5.2 Functional Model Estimation

We now estimate the functional model based on the simulated time series for (zt, Kt) and

cross-sectional data.17 Unless otherwise noted, results are generated from the baseline KS

15Rather than explicitly solving a representative agent model, we simply derive a VAR law of motion for
(zt,Kt) from the VAR solution of the KS model using population OLS.

16Kaplan and Violante (2022) survey a variety of structural mechanisms that break the perfect aggregation
in the KS model.

17Due to precautionary savings behavior the mass of employed individuals with zero assets is essentially
zero and does not vary over time. Hence, we exclude it from the list of aggregate variables.
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Table 2: Knot Placement

Percentiles
K 0.01 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
4 X X X
6 X X X X X
8 X X X X X X X
10 X X X X X X X X X
14 X X X X X X X X X X X X X
22 X X X X X X X X X X X X X X X X X X X X X

Notes: Percentiles refer to distribution of pooled observations (across i = 1, . . . , N and t = 1, . . . , T ) for
N=10,000 and T=160.

model that features perfect aggregation. The econometrician observes zt, Kt, and iid draws

from the cross-sectional distribution xit ∼ pt,ε=1(x), where pt,ε=1(x) was defined in (26). The

empirical model differs from the data generating process (DGP) in the following important

dimension: the representation of the densities in the DGP is based on the moments mt,ε,k

whereas the empirical model is based on a VAR that includes the spline coefficient vector αt.

For a sufficiently large K, we expect the empirical model to deliver a good approximation

to the DGP, but for any given K it does not nest the DGP. We document below that the

estimated functional model is successful in capturing the joint dynamics of the cross-sectional

asset distribution and the technology shock for data generated from the KS model.

Model Selection. The first step in the analysis is the determination of the approxima-

tion order K, the lag length p, and the hyperparameter λ based on the MDD approxi-

mation p
(K)
∗ (Y1:T , X1:T |λ) in (17). We use the spline basis in (20) and place the knots at

pre-determined percentiles of the empirical distribution of the simulated xits, pooled across

a large simulation with Nsim = 10, 000 and Tsim = 160. Table 2 summarizes the knot lo-

cations as a function of K. For K = 4, we use the 25th, 50th, and 75th percentiles. As K

increases, we add lower and upper percentiles. Moving from K = 8 to K = 10, we only add

percentiles in the left tail of the distribution, because this part of the distribution is most

affected by business cycle variations. For the subsequent estimation we consider two choices

for T , namely T = 90 and T = 150 and three choices of N : 1,000, 5,000, and 10,000. Condi-

tional on N we evaluate the approximate marginal data density p
(K)
∗ (Y1:T , X1:T |λ, p) in (17)

over a grid of lag lengths p, sieve dimensions K, and λ values. For λ1 and λ2, respectively,

we consider 31 equally-spaced values of lnλj between -10 and 20.

In Table 3 we report p̂, K̂, λ̂1, and λ̂2 for data from the baseline specification (perfect

aggregation) and the modified specification (imperfect aggregation). In eleven out of twelve
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Table 3: Model Selection

T=90 T=150

N p̂ K̂ λ̂1 λ̂2 p̂ K̂ λ̂1 λ̂2

Baseline Specification: Perfect Aggregation
1,000 1 6 7.39 148 1 6 2.72 5E8
5,000 1 8 7.39 5E8 1 8 7.39 5E8

10,000 1 8 7.39 5E8 1 8 7.39 5E8
Alternative Specification: Imperfect Aggregation
1,000 1 6 20.08 7.39 2 6 1.00 1096
5,000 1 8 20.08 2.27 1 8 20.08 2.72

10,000 1 8 20.08 2.72 1 8 7.39 2.72

cases the selected lag length is p̂ = 1, which is consistent with the first-order autoregressive

structure of the DGP. For N = 1, 000 the estimated spline order is K̂ = 6, whereas it is

K̂ = 8 for N = 5, 000 and N = 10, 000. Thus, as the cross-sectional dimension of the

sample increases, the goodness-of-fit gain in the MDD criterion through additional sieve

terms outweighs the penalty. Because for any fixed K the log-spline density specification

does not nest the true cross-sectional density, there is no “true” K in this simulation design.

A comparison between the baseline specification and the modified specification indicates

that λ̂2, the estimated degree of relative shrinkage (to zero) for the VAR coefficients that

control the effect of at−1 on Yt, Φyα in (6), is much higher under perfect aggregation than

under imperfect aggregation. This is consistent with the perfect aggregation specification

being block triangular, i.e., Φyα = 0. The hyperparameter λ̂1 is in eleven out of twelve cases

weakly smaller for T = 150 than for T = 90. The larger the time dimension, the smaller the

need to add prior information to reduce the posterior variance.

Cross-sectional Fit. In Figure 4 we compare the fit of the estimated cross-sectional den-

sities (various K) for N = 10, 000

p(K)(x|α̂t) = exp

{
ζ ′(x)α̂t − ln

∫
exp

{
ζ ′(x̃)α̂t

}
dx̃

}
(27)

to the “true” cross-sectional density and a histogram of the cross-sectional observations. The

three panels correspond to different time periods. Recall from Figure 2 that the capital stock

reaches a trough in period t = 115 and peaks in period t = 155. The estimated densities for

K = 8 and K = 10 are virtually indistinguishable and provide a smooth approximation of

the histograms constructed from the observations. Because there is no improvement in fit,



26

Figure 4: Cross-sectional Fit (N = 10, 000, T = 150, K = 8 Selected)
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Notes: Each panel overlays: a histogram of the empirical asset distribution of the employed, the log-spline
density estimates for various K, and the true density from which the asset values were sampled.

Figure 5: Capital Response from Functional Model and Aggregate VAR

Baseline Imperf. Agg. Imperf. Agg.
Perfect Agg. Agg. VAR p = 1 Agg. VAR p = p̂ = 2
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Notes: 10th, 50th, and 90th percentiles of the posterior distribution of IRFs. Blue lines correspond to
functional VAR IRFs and red lines to IRFs from the aggregate VAR. Left panel: estimation based on
data from baseline specification. Center and right panels: estimation based on data from the alternative
specification with imperfect aggregation.

the MDD criterion selects K = 8. The K = 4 density shows noticeable differences from the

histograms in all periods. In period t = 45 the density estimate for the selected K̂ = 8 almost

perfectly matches the true cross-sectional density, whereas there are some small discrepancies

in the modal area for the other two periods. Overall, the density estimation works well in

this simulation.

Aggregate IRFs. We proceed by estimating the state-space representation of the functional

model based on the (N = 10, 000, T = 150) sample for the model specification reported

in (3).18 In addition to the functional model, we also estimate a VAR in the aggregate

variables (zt, Kt) only, using the same prior as for the functional model. Figure 5 shows the

18We generate 11,000 draws from the posterior and drop the first 1,000.
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impulse response of capital to a 3-standard deviation technology shock. We compute “true”

responses from the solution of the KS economy and estimated responses (10th, 50th, and

90th percentiles of the posterior distribution) from the functional model and the aggregate

VAR. Because zt is exogenous in the KS economy, its innovation can be easily identified

using a Cholesky factorization of Σ.

The left panel of Figure 5 is based on data from the baseline perfect aggregation spec-

ification. Here functional and aggregate IRFs line up almost perfectly. This is expected in

view of the perfect match of the population responses in the left panel in Figure 3. The IRFs

in the center and right panels of Figure 5 are obtained from estimates based on imperfect

aggregation data. In the center panel we are forcing p = 1 and observe a divergence of the

IRFs from functional and aggregate model. The divergence is in line with the discrepancies

in the right panel of Figure 3. In the right panel we generate the IRFs from the aggregate

model based on the number of lags p̂ = 2, estimated by the MDD. In this case functional and

aggregate responses line up well. An additional lag of the aggregate variables substitutes for

the missing cross-sectional information.

To summarize, a match of aggregate IRFs estimated from a functional model and an ag-

gregate model does not imply that the data stem from a perfect aggregation world.19 It means

that cross-sectional information is not needed to predict aggregate outcomes. Additional lags

in the aggregate model may substitute for missing cross-sectional information. Whatever

discrepancies exist between heterogeneous agent and representative agent responses in an

imperfect aggregation setting, they may be small relative to the precision with which im-

pulse responses can be estimated from actual data. To assess heterogeneous agent models,

one can compare the discrepancy between functional and aggregate IRFs based on model

generated and actual data. If the two discrepancies differ, then the aggregation implications

of the heterogeneous agent model are inconsistent with the data.

Density IRFs. For each posterior draw (Φ,Σ) we generate an impulse response function

for αt by iterating (22) forward and then reconstruct the density pK(x|αt+h). Figure 6 shows

the difference between the shocked and the steady state densities at horizons h = 5, h = 15,

and h = 25.20 We refer to this difference as the response of the density. The true responses

from the KS model are plotted in black. At all horizons the posterior median response aligns

19In the Online Appendix, we report results from a second simulation experiment, based on a stylized
HANK model due to Auclert and Rognlie (2020). This model can generate imperfect aggregation based on
countercyclical income risk. Based on data generated from this model, we find that the estimated IRFs from
the functional model and the aggregate VAR are essentially the same.

20Timing convention: the system is in steady state in period h = 1 and the shock occurs at h = 2.
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Figure 6: Density Differential Response
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Notes: Impulse responses are generated from the estimated VAR. Results are based on T = 150, N = 10, 000,

K = 8, and λ̂(K) (see Table 3). “True” response from the KS model appears in black, responses from the
estimated functional state-space model are in blue (pointwise median is solid, 5th and 95th percentiles are
dotted)

Figure 7: Percentile Response from Functional VAR and Percentile VAR
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Notes: 10th, 50th, and 90th percentiles of the posterior distribution of IRFs. Blue lines correspond to the
functional VAR IRFs and red lines to IRFs from the alternative VAR that includes percentiles of the asset
distribution.

well with the true response, indicating that the estimated functional model can reproduce

the cross-sectional dynamics of the KS model. According to the responses probability mass

shifts from a/K < 1 to a/K > 1 while at the same time the mass for a/K > 1.5 decreases,

keeping the mean of the cross-sectional distribution at one.

Percentile IRFs. Once we have obtained the IRFs for the cross-sectional densities, we can

compute IRFs for statistics derived from these densities. Here we consider percentiles of the

cross-sectional distribution. We compare the percentile IRFs derived from the functional

model to those obtained by estimating a VAR that combines the aggregate data with sample

percentiles computed from the cross-sectional observations. Results are plotted in Figure 7.

Two observations stand out. First, the estimated percentile responses from the functional
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model line up well with the true responses. Second, the bands from the percentile VAR are

much wider than the bands from the functional VAR. While we do not have a formal proof,

our intuition for this finding is the following. We are extracting information from repeated

cross-sections X1:N,t. The functional model uses a likelihood function for the cross-sectional

observations. According to the likelihood function, the observations can be compressed

into a K-dimensional vector of sufficient statistics ζ̄(X1:N,t). Optimal inference procedures

should depend on the cross-sectional data only through the vector of sufficient statistics.

The inequality VAR clearly violates this condition and does not optimally exploit the cross-

sectional information. This may leads to inference that is less sharp and in the application

in Section 6 also to some biases; see comparisons in Figure 12.

6 Empirical Analysis

The empirical analysis focuses on the joint dynamics on total factor productivity, real per-

capita GDP, and employment at the aggregate level, and the cross-sectional distribution of

earnings. Estimation results for the functional state-space model are presented in Section 6.1.

In Section 6.2 we report impulse responses of aggregate variables, the cross-sectional distri-

bution, and inequality measures derived from the cross-sectional distribution to aggregate

shocks. Section 6.3 compares IRFs from the functional model to IRFs from VARs that in-

clude inequality statistics directly. Finally, in Section 6.4 we report responses to shocks that

explain the largest share of the variance of particular variables or statistics.

6.1 Data and Model Estimation

Data. We use three macroeconomic aggregates in our empirical analysis: total factor pro-

ductivity (TFP), real per-capita GDP, and the employment rate. In addition, we use cross-

sectional data on earnings. Real per-capita GDP (A939RX0Q048SBEA) is provided by the

Federal Reserve Bank of St. Louis’ FRED database and the TFP series (dtfp) is obtained

from Fernald (2012). Weekly earnings (PRERNWA) are obtained from the monthly Current

Population Survey (CPS) through the website of the National Bureau of Economic Research

(NBER). Weekly earnings are scaled to annual earnings by multiplying with 52. Based

on the CPS variable PREXPLF “Experienced Labor Force Employment” we construct an

employment indicator which is one if the individual is employed and zero otherwise. This

indicator is used to compute the aggregate employment rate.
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Figure 8: Fitted Densities and Percentiles of Earnings/GDP Distribution

2010:Q1, Transformed Data K = 10, Original Data K = 22, Original Data
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Notes: Left panel: fitted cross-sectional densities and histograms. Center and right panels: sample percentiles
(10%, 20%, 50%, 80%, and 90%) are blue, percentiles from estimated densities are red.

In the remainder of this paper we standardize individual-level earnings by 2/3 of nominal

per-capita GDP to remove (most of) the common trend from the cross-sectional data. The

factor 2/3 is a rule-of-thumb number for the labor share. After this standardization an

individual earning “1” receives the labor share of GDP per capita. Rather than taking a

logarithmic transformation of the standardized earnings data, we apply an inverse hyperbolic

sign transformation x = g(z), where x corresponds to the transformed data for which we fit

the log-spline densities and z to the original earnings/GDP data. For small values of z the

function is approximately equal to z and for large values of z it is equal to ln(z) + ln(2).

Further details are provided in the Online Appendix.

Density Estimation. We take the time period t to be a quarter. For each t we estimate

a cross-sectional density for the transformed earnings-to-GDP ratio. As in the simulation

study in Section 5, we consider different approximation orders K. We use the spline basis

in (21) and place the knots at pre-determined percentiles of the empirical distribution of the

xits pooled across i and t; see Table 2.

In the left panel of Figure 8 we show three types of density estimates for the transformed

earnings in 2010:Q1: log spline estimates for K = 10 and K = 22, and histograms. While the

K = 10 density estimates are smooth, the K = 22 estimates capture the jaggedness of the

histograms. The log-spline density estimates are constructed to extrapolate the top-coded

income values (spike in the right tail of the histogram). In the center and right panels of the

figure we overlay the sample percentiles of the earnings/GDP distribution and percentiles

computed from the log spline density estimates p(K)(x|α̂t) for K = 10 and K = 22. The

earnings/GDP distribution has a pointmass at zero, representing the unemployed individuals,
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and a continuous part, representing individuals with non-zero earnings. We normalize the

estimated density p(K)(x|α̂t) so that it integrates to the fraction of employed individuals in

the sample and apply the change-of-variable formula to convert the density for transformed

earnings x = g(z) into actual earnings z.

Overall, the estimated cross-sectional densities are able to reproduce the time path of

the empirical percentiles well, except for some small inaccuracies in the 90th percentile

toward the end of the sample. The estimated percentiles for the two specifications are

virtually indistinguishable, despite the difference in the density plot in the left panel. Median

earnings (relative to the approximate labor share of per-capita GDP) fall steadily from above

one in 1990 to below one in 2017. A similar pattern is observed for the 80% percentile.

During the Great Recession, there is a noticeable drop of earnings at the 10% and 20%

percentile, followed by a slow and steady rise from 2010 to 2017. Earnings at the 80% and

90% percentiles rise during the Great Recession relative to their 2005 levels.

Functional State-Space Model Estimation. The log-spline density estimation yields

a sequence of coefficient vectors {α̂(K)
t }. The vector Yt of aggregate variables is composed

of TFP growth, real per-capita GDP growth, and the (un)employment rate from the CPS

data. We set Y∗ and α∗ equal to the mean of these series. After computing growth rates for

TFP and GDP our sample ranges from 1989:Q2 to 2017:Q3. We consider 1990:Q2 as period

t = 1 and use the earlier observations to initialize lags in the VAR law of motion.

Hyperparameter Selection and Granger Causality. We proceed by evaluating the

(approximate) log MDD as a function of the model dimension K ∈ {4, 6, 8, 10, 14, 18, 22},
the lag length p ∈ {1, 2, 3, 4}, and the hyperparameters λ1 and λ2. For each lnλj we consider

31 equally-spaced values on the interval [−10, 20]. Results are summarized in Table 4. For

each value of K we report the optimal λ̂1 and λ̂2 (columns 2-3), the number of lags (column

4), and the log MDD differentials for K(λ̂) relative to K = 4 (column 5). With respect to K,

the log MDD is maximized for the largest value considered, K = 22. That is consistent with

the visual impression from Figure 8. The additional knots are used to capture the jagged

pattern of the histograms and the improvement in fit still outweighs the dimensionality

penalty induced by the MDD.

The overall degree of selected shrinkage captured by λ̂1(K) is weakly increasing in the

dimensionality K. The only exception is the transition from K = 8 to K = 10 when the lags

drop from 4 to 1. Recall that λ2 controls the relative precision of the prior for the submatrices

Φ
(j)
ya that capture spillovers from the lagged distributions to the current aggregate variables.



32

Table 4: Hyperparameter Estimates and Log MDD Differentials

Optimal λ2 = 1

K λ̂1 λ̂2 p̂ MDD λ̂1 p̂ MDD
4 54.6 1 4 0 54.6 4 0
6 54.6 2.7 4 8,483 54.6 4 8,481
8 148.4 1 4 9,302 148.4 4 9,302
10 54.6 1096.6 1 9,347 148.4 1 9,330
14 148.4 4.9E8 1 9,668 148.4 1 9,650
18 403.4 20.1 1 9,711 403.4 1 9,704
22 403.4 7.4 1 12,740 403.4 1 12,730

Notes: The log MDD differentials are computed with respect to K = 4, λ1 = λ̂1, λ2 = λ̂2, p = p̂. For each K

we maximized the MDD with respect to λ and p to obtain λ̂j(K) and p̂(K).

The optimal values λ̂2(K) show additional shrinkage of the Φya blocks to zero. The degree of

relative shrinkage is quite sensitive to K, and, except for the K = 14 case, not as strong as in

the KS simulation in Section 5.2. The last column of the table reports log MDD differentials

obtained by setting λ2 = 1. In this case the degree of shrinkage for the off-diagonal block

Φya is same as for the other coefficients. The MDDs deteriorate, except for K = 4 and

K = 8 when λ̂2 = 1, but the change in MDD is smaller than for changes in K, because λ2

affects primarily the fit in the time series dimension, instead of the cross-sectional dimension.

Overall, we conclude that the Granger-causal relationship from the cross-sectional income

distribution to the aggregate variables is weak, albeit not fully absent.21

The mechanical application of the MDD criterion suggests to proceed with K = 22.

However, we are concerned that the jagged pattern of the histograms that the K = 22

(and higher) specification is approximating – see Figure 8 – is more an artifact of the data

collection (e.g., survey respondents rounding their earnings) than a genuine feature of the

earnings distribution. Moreover, because the earnings are standardized by the continuously

evolving GDP per capita, in terms of x-coordinates, the spikes shift from period to period,

inducing spurious dynamics. Thus, in the remainder of this section we first present results for

K = 10, which delivers smooth estimates of the cross-sectional densities. Results for K = 22

are presented in the Online Appendix. While the impulse responses of the cross-sectional

densities computed based on K = 22 inherit the saw-tooth pattern visible in the density

estimates, the responses for percentiles and inequality statistics derived from the density

responses are indeed very similar for K = 10 and K = 22.

21If we restrict the lag lengths to p = 1 for K = 4, 6, 8 the relative shrinkage on the off-diagonal blocks
increases to 148.4, 54.6, and 20.1, respectively.
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6.2 Effects of Aggregate Shocks

Identification. In the vector Yt we order TFP growth first, GDP growth second, and

the employment rate third. Let Σtr be the lower-triangular Cholesky factor of Σ such that

Σ = ΣtrΣ
′
tr and let Ω be an orthonormal matrix. The relationship between the reduced-form

innovations ut and the structural innovations εt is given by:

ut = ΣtrΩεt. (28)

It is well known that Ω is not identifiable from the data. Denote the jth column of Ω by Ω·j.

We label the first structural shock as technology shock and assume that it is the only shock

that affects TFP contemporaneously. Thus, Ω·1 = ι1, where ιj is an ny × 1 vector whose

jth element is one and all other elements are zero. Moreover, we let Ω·j = ιj for j = 2, 3.

We refer to shocks ε1,t, ε2,t, and ε3,t as aggregate shocks because they do not affect the

cross-sectional distribution contemporaneously. The shocks ε2,t and ε3,t do not have a strict

economic interpretation. We refer to them as shocks to GDP growth and the employment

rate. Much of the subsequent discussion will focus on the propagation of technology shocks.

Response of Aggregate Variables. Percentiles (10th, 50th, 90th) of the posterior distri-

bution of IRFs are plotted in Figure 9. Because the distributional responses are generally

small, we scale the IRFs by a factor of three and consider three-standard-deviation shocks

throughout this section. We compare responses based on the functional model against re-

sponses obtained by estimating a VAR in the three aggregate variables only, henceforth

aggregate VAR. We employ the same MDD-based hyperparameter and lag length selection

for the aggregate VAR as we did for the functional model. Qualitatively, the responses from

the functional model and the aggregate follow the same pattern. First, the TFP growth

shock raises the level of TFP permanently. GDP also rises permanently and employment

shows a positive response (real business cycle instead of New Keynesian dynamics). Second,

the GDP growth shock raises GDP permanently, creates a temporary employment boom and

a drop in measured total factor productivity in the long run. Finally, the third shock leads

to a drop in the employment rate and it raises TFP and GDP with a one-period delay.

Quantitatively, the response from the two models are also very similar, but they are

not identical. The credible bands of the aggregate VAR responses are wider for the TFP

and GDP shock, but narrower for the employment shock. The GDP response to a TFP

shock exhibits a more pronounced overshooting under the aggregate VAR than under the

functional model. Moreover the employment response is stronger. For the GDP shock the
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Figure 9: Responses of Aggregate Variables to Aggregate Shocks
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Notes: 10th, 50th, and 90th percentiles of the posterior distribution of IRFs for three-standard deviation
aggregate shocks (orthogonalized via Cholesky factorization; see (28)). Panels depict responses of the log
level of TFP and GDP, scaled by 100, and responses of the employment rate in percent. Solid blue responses

are based on functional VAR(1) with K = 10, λ̂1 = 54.6, λ̂2 = 1096.6; dashed red responses are based on

aggregate VAR(4) with λ̂1 = 20.1.

TFP and employment responses are fairly similar across the two specifications, whereas

the long-run level of the GDP response is somewhat lower under the aggregate VAR than

under the functional model. The IRF discrepancies are most pronounced for the employment

shock. Here the effect on employment is more long-lasting under the functional model and

the feedback into measured TFP is stronger.

Overall, the degree of IRF overlap is not as strong as in the left panel of Figure 5, which

was obtained from the baseline specification of the KS model. It is comparable to the center

and right panels, which were generated by modifying the KS solutions to mimic a departure

from perfect aggregation. It is important not to misinterpret the results in Figure 9 as a

formal test of a perfect aggregation hypothesis. It is a comparison for IRFs from a model
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Figure 10: Earnings Density Differential (Transformed Data) Response to a TFP Shock
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Notes: Responses to a 3-standard-deviations shock to TFP for K = 10. The system is in steady state at
h = −1 and the shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed)
percentiles of the posterior distribution. We depict differences between the shocked and the steady state
cross-sectional density at various horizons.

that includes the cross-sectional distribution of earnings to one that only includes aggregate

variables. The IRFs are not identical, but the credible intervals show strong overlap, meaning

that the use of the aggregate VAR does not lead to a large distortion of inference and it is

not necessary to track the distribution of labor earnings. Our empirical result is consistent

with Bayer, Born, and Luetticke (2020) who find that including or excluding the inequality

data does not change the estimates and variance decompositions of their HANK model. In

addition, the aggregation results in Werning (2015) and Berger, Bocola, and Dovis (2019)

are compatible with the strong overlap we find.

Distributional Responses. Figure 10 illustrates the response of the density of transformed

earnings to a three-standard deviation TFP innovation. As in Figure 6, we show the differ-

entials between the shocked density and the steady state density. Because the employment

rate rises in response to a technology shock, the area under the density differential function

is positive. According to the median response the mass of individuals earning less than the

labor share of GDP per capita increases substantially and initially there is a slight drop in

the mass of individuals earning between 1.3 and 2. On impact the 80% bands are wide and

include both positive and negative responses. For horizons h = 4 and 12 and earnings below

GDP per capita, the density differential bands include mostly positive values.

Most of the probability mass is added between 0.5 and 1.0. This mass comes from two

directions: first, unemployed individuals who find jobs and receive strictly positive instead of

zero labor earnings, and, second, individuals whose earnings do not rise as strongly as GDP

per capita. The first effect is consistent with a model in which individuals are heterogeneous
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with respect to their idiosyncratic productivity and only individuals whose productivity

exceeds a state-dependent threshold work; see, for instance, Chang and Kim (2006) and

Chang, Kim, Kwon, and Rogerson (2019). In response to an expansionary TFP shock

previously unemployed low productivity individuals are hired. If wages per efficiency unit

are constant, these individuals are likely to earn less than GDP per capita. The second effect

requires adjustments on the intensive margin or some heterogeneity in wages per efficiency

unit. A strong wealth effect that leads wealthy individuals to reduce their hours or a relative

fall of efficiency unit-specific wages for some individuals is required to shift their earnings

from above 1.0 to below 1.0.

Inequality Measures. A key advantage of the functional modeling approach is that in

any period t the cross-sectional earnings density fully summarizes the earnings distribution.

Based on the impulse response of the cross-sectional density, we can now compute impulse

response functions of various summary statistics. Figure 11 shows responses for the fraction

of individuals with an earnings-to-per-capita-GDP ratio less than one, the Gini coefficient,

and the 10th, 50th, and 90th percentiles of the distribution. The impulse responses are

computed relative to an average level of these statistics, indicated by a solid black line. The

upper left panel reproduces the employment responses. The statistics in the top two rows

are computed after assigning zero earnings to the unemployed individuals. The statics in the

bottom row are computed from the continuous part of the cross-sectional distribution only.

We first consider the “Pointmass at 0” case. According to the posterior median of the

IRF, overall the fraction of individuals earning less than per-capita GDP increases from

43.5% to 44%. While the density differential response for h = 0 depicted in Figure 10 looked

“insignificant,” converted into the fraction earning less than per-capita GDP, the response is

positive with a probability of almost 90% even on impact. As individuals move from being

unemployed (zero earnings) to being employed (positive earnings) the Gini coefficient falls

from 0.4256 to 0.4225. Earnings at the 10th percentile of the cross-sectional distribution also

increase from 0.224 to 0.233, at the median they fall slightly from 1.005 to 0.999, with a band

that ranges upon impact from approximately 0.99 to 1.01. Earnings at the 90th percentile fall

very slightly, from 2.496 to 2.477. This compression of the earnings distribution is consistent

with the decrease in the Gini coefficient.

A comparison between the percentile reponses in the second and third row shows the

roles played by the extensive margin, that is individuals moving into and out of unemploy-

ment. Ignoring the pointmass at zero raises the baseline level of the percentiles. If the

pointmass at zero is included, the 10th percentile rises (posterior median) from its baseline
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Figure 11: Inequality Measure (Original Data) Responses to a TFP Shock
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Notes: Responses to a 3-standard-deviations shock to TFP for K = 10. The system is in steady state at
h = −1 and the shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed)
percentiles of the posterior distribution.

level 0.225 to 0.237. If we condition on employment then the posterior median of the 10th

percentile response falls slightly below the baseline level. This is consistent with individuals

transitioning into employment after a positive TFP shock, are generally low productivity

individuals. The responses of the 50th and 90th percentile are not sensitive to the extensive

margin. As a consequence, not accounting for a pointmass at zero dampens the responses of

the Gini coefficient and the fraction of units earning less than GDP per capita (not shown

in the figure).
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6.3 Comparison to VARs with Inequality Statistics

The advantage of the functional approach is that once the dynamics of the cross-sectional

densities have been estimated, it is straightforward to compute the dynamics of any statistic

associated with the densities. As a robustness check, we estimate two VARs that combine

the three aggregate variables with inequality statistics. We refer to these VARs as inequality

VARs. Specification 1 combines the aggregate variables with the fraction of individuals

earning less than GDP per capita and the Gini coefficient series directly computed from

the cross-sectional observations. Specification 2 augments the aggregate variables with the

10th, 20th, 50th, 80th and 90th percentiles. The inequality VARs also take the form of

(22), where Wt is redefined to replace αt by the relevant distributional statistics. The VARs

are estimated with the same prior as the functional model. The MDD criterion selects a

lag length of p̂ = 4 and a relative shrinkage hyperparameter λ̂2 = 4.9E8, meaning that the

estimated system is block-triangular and the inequality statistics do not Granger-cause the

aggregate variables. In fact the λ̂ pattern is similar to the one obtained from the functional

VAR applied to data simulated from the KS economy. In a similar vein, Berger, Bocola,

and Dovis (2019) construct preference shocks that summarize all the information from the

cross-section relevant for aggregate dynamics. These shocks’ feedback to aggregate variables

is found to be quantitatively small.

Figure 12 overlays impulse responses to a three standard deviation technology shock for

TFP from the functional model and the inequality VAR. The top row contains results for

Specification 1, and the remaining two rows results for Specification 2. The TFP responses

between the functional model and the inequality VARs are well aligned, albeit at the posterior

median, the long-run response under the former is slightly lower than under the latter. All

other responses match in shape, but at the posterior mean the inequality VAR responses

are of larger magnitude than the responses computed from the functional model. Most

notably, the credible bands for the inequality VARs are much wider than those for the

functional model, in particular in the long run. Thus, the functional approach allows for a

much sharper inference, despite a higher but still parsimonious parameter count (ten series

instead of two or five series to represent the dynamics of the cross section), and is therefore

preferable. The empirical findings in regard to the width of the credible bands are consistent

with the results from the simulation experiment reported in Figure 7.
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Figure 12: Functional Model vs. Inequality VAR
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6.4 Maximum-Share-of-Variance Shocks

We now consider four shocks that explain the largest share of the variance of a particular

variable or statistic. This approach dates back to Faust (1998) and Uhlig (2003) and has been

recently used, for instance, to study the anatomy of business cycles in Angeletos, Collard,
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and Dellas (2020). Recall the relationship between one-step-ahead forecast errors ut and

structural shocks εt in (28). Denote the first column of Ω by q. Then, Σtrq is the impact of a

one-standard deviation shock ε1,t. For the first two shocks considered, we choose the value q∗

such that the shock ε1,t explains the largest share of the variance of a targeted element of Wt,

denoted by M ′Wt, where M ′ is a row vector that either picks output growth or employment.

Let ΣW (q; Φ,Σ) denote the unconditional covariance matrix of Wt explained by ε1,t. Then

q∗(M) = argmax‖q‖=1 M
′ΣW (q; Φ,Σ)M. (29)

The third shock, henceforth “distribution” shock, targets the variation in the cross-

sectional distribution. The unnormalized log density of the cross-sectional observations is

given by `
(K)
t (x) = ζ ′(x)αt. We denote the covariance kernel of this function by Ω`(x, x̃) =

ζ ′(x)Σα(q)ζ(x̃), where Σα(q) is defined in the same way as M ′ΣW (q)M above. Now M ′ is

a matrix that selects the αt elements from Wt. We discretize the domain of x and then

maximize the sum of the eigenvalues of the covariance matrix for the discretized x.22 The

fourth shock, henceforth “Gini” shock, is constructed as distributional shock that conditional

on (Φ,Σ) maximizes the variation in the Gini coefficient without affecting the aggregate

variables upon impact. We restrict the candidate values of q to q = [0′, q′α]′, where the

partition of q conforms with the partition of u′t = [u′y,t, u
′
α,t] and qα is a K-dimensional

unit-length vector.

We plot the IRFs for the four maximum-share-of-variance shocks in Figure 13. The

responses to the shocks that target GDP and employment variance look qualitatively and

quantitatively very similar. They mimic the responses to a TFP shock in Figure 9. Thus,

at the aggregate level most of the fluctuations in GDP and employment are driven by a

TFP-like shock that generates positive comovements between GDP and employment. This

shock spills over into the cross-sectional distribution of earnings as more individuals become

employed and transition from zero to positive earnings. Earnings relative to GDP rise at

the 10th percentile and fall at the 90th percentile and overall inequality as measured by the

Gini coefficient falls.

The IRFs for the shocks that target the share of variance of features of the cross-sectional

distribution have similar effects on the cross-sectional distribution as the aggregate target

shocks: the Gini coefficient falls and income at the 10th percentile rise. In response to the

distribution shock employment rises, but not as strongly as in response to the GDP and

22Maximizing the trace of Ω`(x, x̃) produced similar IRFs.
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Figure 13: Business Cycle Anatomy
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employment target shocks. The response of output at the posterior median is positive, but

the credible bands are wide and the sign of the response is ambiguous. Finally, the fourth

shock is a pure distributional shock that has no effect on aggregate GDP and employment.

A distributional shock could reflect, for instance, an unanticipated revenue neutral change

in fiscal policy that triggers a redistribution of earnings, or a change in the underlying
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idiosyncratic earnings processes such as an increase in earnings risk. The aggregate effect

depends on the nature of the distributional shock. To the extent that the marginal propensity

to consume is negatively correlated with income, higher inequality may lower aggregate

consumption. If inequality comes from a rise in idiosyncratic volatility, then it could raise

precautionary savings. Auclert and Rognlie (2020) show that in general equilibrium a falling

interest rate may weaken the negative relationship between inequality and aggregate output,

and that the net effect is sensitive to monetary and fiscal policy. The absence of an aggregate

response to the Gini shock is consistent with the response to a distributional shock that

Auclert and Rognlie (2020) find for standard neoclassical models. The quantitatively small

effect of a distributional shock to aggregate variables is also consistent with the results of

Berger, Bocola, and Dovis (2019) and Bilbiie, Primiceri, and Tambalotti (2022).

7 Conclusion

We developed a functional state-space model that stacks macroeconomic aggregates and

cross-sectional distributions to provide semi-structural evidence about the interaction of ag-

gregate and distributional dynamics. We documented that the model estimated on simulated

data is able to reproduce the aggregate and distributional impulse response dynamics of the

underlying KS model economy. In our empirical analysis we found that adding the earnings

distribution to a VAR in TFP growth, GDP growth, and employment hardly affects the

estimated propagation of aggregate variables to aggregate shocks, which is consistent with

model-based findings reported in Krusell and Smith (1998). We find that an expansionary

TFP shock decreases earnings inequality in our sample because it raises earnings at the bot-

tom of the earnings distribution. Finally, we show that the responses of aggregate output

to distributional shocks are not significant. We expect the techniques developed in this pa-

per to be widely applicable to study the interaction between macroeconomic aggregates and

cross-sectional distributions and useful for the evaluation of the most recent vintage of HA

models. Extensions left for future work include the introduction of time-varying volatility

and allowing for a more general mixed-frequency structure.
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The Online Appendix consists of the following parts:

A. Proofs and Derivations for Section 3

B. Implementation Details

C. Solution of the KS Model

D. A Second Simulation Experiment

E. More About the Empirical Analysis

A Proofs and Derivations for Section 3

A.1 Relationship Between Infinite- and Finite-Dimensional Model

Suppose we start from the infinite-dimensional model of Section 2.1 in the main paper. For

each time t = 1, ..., T, let the data Xt = [x1t, ..., xNt]
′ be an i.i.d. draw from the true unknown

density pot (·) of xit ∈ [x, x]. Let p (xit|αt, K) is the best KL projection of true unknown density

pot (·) of xit onto the K-dimensional closed linear subspace (of L2(pot )) generated by the spline

sieve basis
{
ζ(·)′β : β ∈ RK

}
:

αt = arg min
β∈RK

{∫
z∈[x,x]

pot (z) ln

(
pot (z)

p (z|β,K)

)
dz

}
, (A.1)

where for any candidate parameter β ∈ RK ,

p (z|β,K) =
exp {ζ ′(z)β}∫

z∈[x,x]
exp {ζ ′(z)β} dz

= exp

{
ζ ′(z)β − ln

(∫
z∈[x,x]

exp {ζ ′(z)β} dz
)}

.

Write the K’th order representation of the density of Xt = [x1t, ..., xNt]
′:

p(K) (Xt|αt) ≡
N∏
i=1

p (xit|αt, K) = exp
{
NL(K)(αt|Xt)

}
, (A.2)

L(K)(αt|Xt) = ζ̄ ′(Xt)αt − ϕ(αt), ϕ(αt) = ln

∫
[x,x]

exp {ζ ′(z)αt} dz.
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Then,

αt = argmaxβ∈A Eo[L(K)(β|Xt)] = argmaxβ∈A Eo[ζ̄ ′(Xt)β − ϕ(β)] (A.3)

and satisfies the population first-order condition

Eo[ζ(xit)]− ϕ(1)(αt) = 0. (A.4)

Let α̂t be the maximum likelihood estimator (MLE) using K dimensional sieve basis:

α̂t = argmaxβ∈A L(K)(β|Xt), (A.5)

which is the unique solution to the score equation

ζ̄(Xt)− ϕ(1)(α̂t) = 0. (A.6)

Suppose that ln pot (·) belongs to a Sobolev or a Hölder ball with smoothness s > 1/2. Then

we have for an r-th order spline basis with r > s:∫
pot (x) ln

(
pot (x)

p(K) (x|αt)

)
dx . K−2s,

∫
pot (x) ln

(
p(K) (x|αt)
p(K) (x|α̂t)

)
dx = Op

(
K

N

)
. (A.7)

see, e.g., Stone (1990), Barron and Sheu (1991), and Chen (2007). For B-splines and wavelet

sieves we obtain the following bounds on the “bias” (or approximation error) and the stan-

dard deviation (discrepancy between α̂t and αt) uniformly in t,∥∥ln[pot (·)]− ln[p(K) (·|αt)]
∥∥
L∞([x,x])

. K−s, (A.8)∥∥ln[p(K) (·|α̂t)]− ln[p(K) (·|αt)]
∥∥
L∞([x,x])

= Op

(√
K lnK

N

)
.

Suppose s > 1, then we can define the set KN such that the bias is of strictly smaller

order than the standard derivation part, say

KN ≡
{
K ∈ N : K ≤ K ≤ K, K = c× [N lnN ]

1
1+2s , K = c× N1/3

(lnN)2
, 0 < c, c <∞

}
.
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Then, uniformly over t and K ∈ KN ,

∥∥ln[pot (·)]− ln[p(K) (·|α̂t)]
∥∥
L2([x,x])

= Op

(√
K

N

)
= op(N

− 1
3 );

∥∥ln[pot (·)]− ln[p(K) (·|α̂t)]
∥∥
L∞([x,x])

= Op

(√
K lnK

N

)
= op(N

− 1
3 );∫

pot (x) ln

(
pot (x)

p(K) (x|α̂t)

)
dx = Op

(
K

N

)
= op(N

− 2
3 ) = op(N

− 1
2 ).

In the main text, for any K ∈ KN , we ignore the sieve approximation error and treat

p(K) (x|αt) as the density generates the data xit. We note that the density p(K)(Xt|αt)
defined in (A.2) does not depend on θ.

Having defined the K-dimensional process αt in (A.1) based on pot (·) from the infinite-

dimensional model comprising (1), (2), and (3) in the main text, one can define pseudo-

optimal values for Y∗, α∗, Φyy, Φyα, Φαy, Φαα, and Σ in (6) of the main text by population

regression. Using the definition of Cα =
∫
ξ(x̃)ζ ′(x̃)dx̃ we can define Byl = ΦyαC

−1
α and

Bll = ΦααC
−1
α . This generates finite-dimensional pseudo-optimal kernels in (5) in the main

text. In this paper we do not track the resulting approximation errors formally. Instead,

we assume that (6) and (7) hold exactly. However, we conjecture that K ∈ KN grows

fast enough such that the transition kernel approximation errors are smaller than the sieve

variance terms. In this regard it is also formally justified to regard the sequence of models

as if they were exact.

A.2 Derivatives of the Log Likelihood of Xt

An important object in the analysis is the Hessian matrix of the log-likelihood function for

the cross-sectional observations. Let ζk(·), k = 1, . . . , K be the sequence of basis functions.

To simplify the notation, we will subsequently drop the (K) superscript. Recall that Xt =

{x1t, . . . , xNt} and ζ̄k(Xt) = 1
N

∑N
i=1 ζk(xit). The log likelihood function L(β|Xt) of Xt

evaluated at any candidate parameter value β = (β1, ..., βK)′ has the form

L(β|Xt) =
K∑
k=1

βkζ̄k(Xt)− ϕ(β), with ϕ(β) ≡ ln

∫
exp

{
K∑
k=1

βkζk(z)

}
dz.
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The first-order derivatives of L(β|Xt) with respect to βk for k = 1, . . . , K are given by

L(1)
k (β|Xt) = ζ̄k(Xt)− ϕ(1)

k (β),

ϕ
(1)
k (β) =

∫
ζk(z) exp

{∑K
k=1 βkζk(z)

}
dz∫

exp
{∑K

k=1 βkζk(z)
}
dz

≡
∫
ζk(z)p(z|β,K)dz,

where

p(z|β,K) ≡
exp

{∑K
k=1 βkζk(z)

}
∫

exp
{∑K

k=1 βkζk(z)
}
dz
≡ exp

{
K∑
k=1

βkζk(z)− ϕ(β)

}
,

and
∂ ln p(z|β,K)

∂βk
= ζk(z)− ϕ(1)

k (β).

The sieve MLE α̂t is unique and satisfies

ζ̄k(Xt)− ϕ(1)
k (α̂t) = 0, k = 1, . . . , K.

The second-order derivatives of L(β|Xt) with respect to (βk, βl) are given by

L(2)
kl (β|Xt) ≡ Hkl(β) = −ϕ(2)

kl (β)

= −
∫
ζk(z)

∂ ln p(z|β,K)

∂βl
p(z|β,K)dz

= −
∫
ζk(z)

[
ζl(z)− ϕ(1)

l (β)
]
p(z|β,K)dz

= −
∫ [

ζk(z)− ϕ(1)
k (β)

] [
ζl(z)− ϕ(1)

l (β)
]
p(z|β,K)dz.

The third-order derivatives of L(β|Xt) with respect to (βk, βl, βm) take the form

L(3)
klm(β|Xt) = −ϕ(3)

klm(β)

= −
∫
ζk(z)

([
ζl(z)− ϕ(1)

l (β)
] [
ζm(z)− ϕ(1)

m (β)
]
− ϕ(2)

lm(β)
)
p(z|β,K)dz

= −
∫ [

ζk(z)− ϕ(1)
k (β)

] [
ζl(z)− ϕ(1)

l (β)
] [
ζm(z)− ϕ(1)

m (β)
]
p(z|β,K)dz.
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The 4th-order derivatives of L(β|Xt) with respect to (βk, βl, βm, βj) take the form

L(4)
klmj(β|Xt)

= −ϕ(4)
klmj(β)

= −
∫
ζk(z)

([
ζl(z)− ϕ(1)

l (β)
] [
ζm(z)− ϕ(1)

m (β)
]
− ϕ(2)

lm(β)
) [
ζj(z)− ϕ(1)

j (β)
]
p(z|β,K)dz

−
∫
ζk(z)

(
−ϕ(2)

lj (β)
[
ζm(z)− ϕ(1)

m (β)
]
−
[
ζl(z)− ϕ(1)

l (β)
]
ϕ

(2)
mj(β)− ϕ(3)

lmj(β)
)
p(z|β,K)dz

= −
∫ [

ζk(z)− ϕ(1)
k (β)

] [
ζl(z)− ϕ(1)

l (β)
] [
ζm(z)− ϕ(1)

m (β)
] [
ζj(z)− ϕ(1)

j (β)
]
p(z|β,K)dz

+ϕ
(2)
kj (β)ϕ

(2)
lm(β) + ϕ

(2)
lj (β)ϕ

(2)
km(β) + ϕ

(2)
mj(β)ϕ

(2)
kl (β).

The derivatives L(2)
kl (α̂t|Xt) ≡ Hkl(α̂t), L(3)

klm(α̂t|Xt), L(4)
klmj(α̂t|Xt) depend on data Xt only

through the sieve MLE α̂t.

A.3 Proof of Lemma 1

Recall that R(αt) is the remainder term from the second-order Taylor series approximation

in (11), which is

R(αt) =
1

6

K∑
k=1

K∑
l=1

K∑
m=1

L(K)(3)
klm (βklm,t)(αkt − α̂kt)(αlt − α̂lt)(αmt − α̂mt),

where βklm,t lies in between αt and α̂t elementwise. A formula for L(K)(3)
klm (β) is provided in

Section A.2. We can deduce from Assumption 1:∣∣ exp {NR(αt)} − 1
∣∣ ≤ CN ‖αt − α̂t‖3 .

We note that

‖αt − α̂t‖ �
√
K

N
.

Thus, the first statement of the Lemma follows. The second part of the Lemma follows from

p(Xt|αt)
pKF (Xt|αt)

= exp{NR(αt)}. �

A.4 Proof of Theorem 1

The theorem is proved recursively. We start with a recursive assumption for period t−1 and

will verify that it remains satisfied after one iteration of the filters. Let D1:t = (Y1:t, X1:t).



Online Appendix – This Version: October 13, 2022 A.6

Recursive Assumption. We start from the assumption that

p(αt−1|D1:t−1, θ)

pKF (αt−1|D1:t−1, θ)
�

(
1± C

√
K3

N

)
. (A.9)

Initialization. We initialize both the KF and the exact filter in period 0 with p(α0|Y0, α̂0, θ),

which is assumed to be Gaussian:

α0|(Y0, α̂0, θ) ∼ N
(
α̂0, P0|0(αα)

)
, P0|0(αα) = V̂0/N.

To simplify the notation, we will subsequently drop (Y0, α̂0) from the conditioning set. Be-

cause we use the same initialization for KF and exact filter, the recursive assumption is

trivially satisfied for t = 1.

For each time period, the filtering consists of a forecasting and updating step. We will

provide expressions for these steps using the approximate KF, and the exact filter. Recall

that the state-transition equation for the KF and the exact filter are identical.

Time t Forecasting. We begin by forecasting (Yt, αt) with the KF and the exact filter:

pKF (Yt, αt|D1:t−1, θ) =

∫
pG(Yt, αt|Yt−1, αt−1, θ)pKF (αt−1|D1:t−1, θ)dαt−1

p(Yt, αt|D1:t−1, θ) =

∫
pG(Yt, αt|Yt−1, αt−1, θ)p(αt−1|D1:t−1, θ)dαt−1.

Then,∣∣∣p(Yt, αt|D1:t−1, θ)− pKF (Yt, αt|D1:t−1, θ)
∣∣∣

≤
∫
pG(Yt, αt|Yt−1, αt−1, θ)

∣∣∣p(αt−1|D1:t−1, θ)− pKF (αt−1|D1:t−1, θ)
∣∣∣dαt−1

=

∫
pG(Yt, αt|Yt−1, αt−1, θ)pKF (αt−1|D1:t−1, θ)

∣∣∣∣ p(αt−1|D1:t−1, θ)

pKF (αt−1|D1:t−1, θ)
− 1

∣∣∣∣ dαt−1

≤ C

√
K3

N
pKF (Yt, αt|D1:t−1, θ).

In turn, we can write

p(Yt, αt|D1:t−1, θ)

pKF (Yt, αt|D1:t−1, θ)
�

(
1± C

√
K3

N

)
. (A.10)

We now turn to forecasting (Yt, Xt) conditional on (D1:t−1). The predictive densities for
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KF and exact filter are given by

pKF (Dt|D1:t−1, θ) = ppen(Xt|α̂t)
∫
pG(α̂t|αt)pKF (Yt, αt|D1:t−1, θ)dαt

p(Dt|D1:t−1, θ) = ppen(Xt|α̂t)
∫
pG(α̂t|αt) exp{NR(αt)}p(Yt, αt|D1:t−1, θ)dαt

We can now use Lemma 1(i) to deduce that∣∣∣p(Dt|D1:t−1, θ)− pKF (Dt|D1:t−1, θ)
∣∣∣

= ppen(Xt|α̂t)
∫
pG(α̂t|αt)

∣∣∣∣ exp{NR(αt)}p(Yt, αt|D1:t−1, θ)

− pKF (Yt, αt|D1:t−1, θ)

∣∣∣∣dαt
= ppen(Xt|α̂t)

∫
pG(α̂t|αt)pKF (Yt, αt|D1:t−1, θ)

×
∣∣∣∣exp{NR(αt)}

p(Yt, αt|D1:t−1, θ)

pKF (Yt, αt|D1:t−1, θ)
− 1

∣∣∣∣ dαt.
It follows that

p(Dt|D1:t−1, θ)

pKF (Dt|D1:t−1, θ)
�

(
1± C

√
K3

N

)
. (A.11)

Note that we can also exchange numerator and denominator in (A.11):

pKF (Dt|D1:t−1, θ)

p(Dt|D1:t−1, θ)
�

(
1± C

√
K3

N

)
. (A.12)

Time t Updating. The updating is based on Bayes Theorem. For the KF and the exact

filter, respectively, it takes the form

pKF (αt|D1:t, θ) =
ppen(Xt|α̂t)pG(α̂t|αt)pKF (Yt, αt|D1:t−1, θ)

pKF (Yt, Xt|D1:t−1, θ)

p(αt|D1:t, θ) =
ppen(Xt|α̂t)pG(α̂t|αt) exp{NR(αt)}p(Yt, αt|D1:t−1, θ)

p(Yt, Xt|D1:t−1, θ)
.
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Thus,

p(αt|D1:t, θ)

pKF (αt|D1:t, θ)
= exp{NR(αt)}

pKF (Yt, Xt|D1:t−1, θ)

p(Yt, Xt|D1:t−1, θ)

p(Yt, αt|D1:t−1, θ)

pKF (Yt, αt|D1:t−1, θ)

�

(
1± C

√
K3

N

)(
1± C

√
K3

N

)(
1± C

√
K3

N

)
(A.13)

�

(
1± C

√
K3

N

)

and the recursive assumption for t+ 1 is satisfied. �

A.5 Particle Filter to Compute “Exact” Likelihood Function

The exposition follows Herbst and Schorfheide (2015) and we focus on the case of p = 1. We

abstract from the compression/standardization step discussed in Section 4, use αt for the

basis function coefficients, and ignore the deterministic components α∗ and Y∗.

A particle filter represents the density p(αt|Y1:t, X1:t) through a swarm of particles {αjt ,W
j
t }Mj=1.

We use h(·) to denote a function of αt for which expectations are supposed to be evaluated.

We start with the recursive assumption that

1

M

M∑
j=1

h(αjt−1)W j
t−1 ≈ E[h(αt−1)|Y1:t−1, X1:t−1] (A.14)

and rewrite p(yt, Xt|Y1:t−1, X1:t−1) as follows:

p(yt, Xt|Y1:t−1, X1:t−1) (A.15)

=

∫
αt

p(Xt|αt)p(Yt, αt|y1:t−1, X1:t−1)dαt

=

∫
αt

p(Xt|αt)
[∫

αt−1

p(yt, αt|Yt−1, αt−1)p(αt−1|Y1:t−1, X1:t−1)dαt−1

]
dαt

=

∫
αt−1

[∫
αt

p(Xt|αt)p(αt|yt, Yt−1, αt−1)dαt

]
p(yt|Yt−1, αt−1)p(αt−1|Y1:t−1, X1:t−1)dαt−1.

Each iteration of the filter will start with particles from p(αt−1|Y1:t−1, X1:t−1) and draw

new particles from p(αt|yt, Yt−1, αt−1). The particle filter can be implemented using the

following algorithm:
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Algorithm 1 (Generic Particle Filter)

1. Initialization. Draw the initial particles from the distribution αj0
iid∼ p(α0) and set

W j
0 = 1, j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting αt. Draw α̃jt from density gt(α̃t|αjt−1) and define the importance
weights

ωjt =
p(α̃jt |yt, Yt−1, α

j
t−1)

gt(α̃
j
t |α

j
t−1)

. (A.16)

(b) Forecasting yt. Define the incremental weights

w̃jt = p(Xt|α̃jt )p(yt|Yt−1, α
j
t−1)ωjt . (A.17)

The predictive density p(yt, Xt|Y1:t−1, X1:t−1, θ) can be approximated by

p̂(yt, Xt|Y1:t−1, X1:t−1) =
1

M

M∑
j=1

w̃jtW
j
t−1. (A.18)

(c) Define the normalized weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (A.19)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let
{αjt}Mj=1 denote M iid draws from a multinomial distribution characterized by sup-

port points and weights {α̃jt , W̃
j
t } and set W j

t = 1 for j =, 1 . . . ,M . An approxi-
mation of E[h(αt)|Y1:t] is given by h̄t,M = 1

M

∑M
j=1 h(αjt )W

j
t .

3. Likelihood Approximation. The approximation of the log-likelihood function is
given by

ln p̂(Y1:T , X1:T |θ) =
T∑
t=1

ln

(
1

M

M∑
j=1

w̃jtW
j
t−1

)
. (A.20)

In order to evaluate the incremental weights ω̃jt , one has to compute the densities p(Xt|α̃jt )
and p(yt|Yt−1, α

j
t−1). The conditional log density of the cross-sectional observations is given

by

ln p(Xt|α̃jt ) = NL(α̃jt |Xt). (A.21)

For the density of the aggregate observations define

yjt|t−1 = Φyyyt−1 + Φyαα
j
t−1
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such that

ln p(yt|Yt−1, α
j
t−1) = −ny

2
ln(2π)− 1

2
ln |Σyy| −

1

2
(yt − yjt|t−1)′Σ−1

yy (yt − y′t|t−1j).

Approximately Conditionally Optimal Proposal. The most important choice in the

configuration of the algorithm is the proposal density gt(α̃t|αjt−1). The conditional optimal

choice is the conditional posterior

g∗t (α̃t|α
j
t−1) = p(α̃t|Xt, Yt, α

j
t−1, Yt−1) ∝ p(Xt|α̃t)p(α̃t|Yt, Yt−1, α

j
t−1). (A.22)

Because of the form in which α̃t enters the density p(Xt|α̃t) it is not possible to directly

sample from posterior. Instead, we will construct a proposal density based on the linearized

measurement equation

α̂t(Xt) = αt + ηt, ηt ∼ N (0, V̂t).

Using a partitioned version of the state-transition equation, we define

Y j
t|t−1 = ΦyyYt−1 + Φyαα

j
t−1

αjt|t−1 = ΦαyYt−1 + Φααα
j
t−1.

Because conditional on sjt−1 there is no uncertainty about the lagged state, uncertainty about

the time t state is solely due to the innovation vector ut. We denote the partitions of the

innovation covariance matrix Σ that conform with the partitions Yt and αt by Σab. We

factor the joint distribution of (Yt, αt) into a marginal distribution of yt and a conditional

distribution of αt|yt:

Yt|(Y1:t−1, α
j
t−1) ∼ N

(
Y j
t|t−1,Σyy

)
(A.23)

αt|(Yt, Y1:t−1, α
j
t−1) ∼ N

(
αjt|y,t−1, P

∗
t|y,t−1(αα)

)
,

where

αjt|y,t−1 = αjt|t−1 + ΣαyΣyy(Yt − Y j
t|t−1)

P ∗t|y,t−1(αα) = Σαα − ΣαyΣ
−1
yy Σyα.

The distribution of α̂t conditional on Yt and sjt−1 information is

α̂t|(Yt, Y1:t−1, α̂1:t−1) ∼ N(α̂jt|y,t−1, F
∗
t|y,t−1), (A.24)
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where

α̂jt|y,t−1 = αjt|y,t−1

F ∗t|y,t−1 = P ∗t|y,t−1(αα) + Vt.

We can use the standard Kalman filter updating formulas, substituting in the means and

variances that are conditional on yt:

αjt|t = αjt|y,t−1 + P ∗t|y,t−1(αα)
[
F ∗t|y,t−1

]−1
(α̂t − α̂jt|y,t−1)

P ∗t|t(αα) = P ∗t|y,t−1(αα)− P ∗t|y,t−1(αα)
[
F ∗t|y,t−1

]−1
P ∗t|y,t−1(αα).

In sum, for each particle j, we sample

α̃jt ∼ N
(
αjt|t, P

∗
t|t(αα)

)
. (A.25)

This leaves us with the computation of the importance weights ωjt in (A.16):

ln p(α̃jt |Yt, Yt−1, α
j
t−1) = −K

2
ln(2π)− 1

2
ln |P ∗t|y,t−1(αα)| (A.26)

−1

2
(α̃jt − α

j
t|y,t−1)′

[
P ∗t|y,t−1(αα)

]−1
(α̃jt − α

j
t|y,t−1)

ln gt(α̃
j
t |α

j
t−1) = −K

2
ln(2π)− 1

2
ln |P ∗t|t(αα)| (A.27)

−1

2
(α̃jt − α

j
t|t)
′[P ∗t|t(αα)

]−1
(α̃jt − α

j
t|t).

A.6 Proof of Theorem 2

We subsequently use a notation that is slightly different from the main text. In particular,

we will denote the observations by DN
1:T = (Y1:T , X1:N,1:T ) and instead of using the superscript

(K) we will add K to the conditioning set of the various densities. Moreover, let

L∗(D
N
1:T |θ,K) =

T∏
t=1

pG(Yt, αt = α̂t|Yt−1, αt−1 = α̂t−1, θ,K);

m∗(D
N
1:T |K,λ) =

∫
L∗(D

N
1:T |θ,K)fT (θ|λ)dθ.
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Likewise define

LKF (DN
1:T |θ,K) =

T∏
t=1

∫
pG(α̂t|αt)pKF (Yt, αt|DN

1:t−1, θ,K)dαt;

mKF (DN
1:T |K,λ) =

∫
LKF (DN

1:T |θ,K)fT (θ|λ)dθ.

Then

ln p∗(D
N
1:T |K,λ) = ln

(
T∏
t=1

ppen(Xt|α̂t, K)

)
+ ln

(
m∗(D

N
1:T |K,λ)

)
;

ln pKF (DN
1:T |K,λ) = ln

(
T∏
t=1

ppen(Xt|α̂t, K)

)
+ ln

(
mKF (DN

1:T |K,λ)
)
.

We bound the difference between ln p(DN
1:T |K,λ) and ln p∗(D

N
1:T |K,λ) as follows:∣∣∣∣ ln p(DN

1:T |K,λ)− ln p∗(D
N
1:T |K,λ)

∣∣∣∣ (A.28)

≤
∣∣∣∣ ln p(DN

1:T |K,λ)− ln pKF (DN
1:T |K,λ)

∣∣∣∣+

∣∣∣∣ ln pKF (DN
1:T |K,λ)− ln p∗(D

N
1:T |K,λ)

∣∣∣∣
= B1(K,λ) +B2(K,λ).

In the subsequent steps we will bound B1(K,λ) and B2(K,λ).

Step 1. We construct a bound for B1(K,λ), starting from:∣∣∣∣p(DN
1:T |K,λ)− pKF (DN

1:T |K,λ)

∣∣∣∣
≤

∫ ∣∣∣∣ T∏
t=1

p(DN
t |DN

1:t−1, θ)−
T∏
t=1

pKF (DN
t |DN

1:t−1, θ)

∣∣∣∣p(θ|K,λ)dθ

=

∫ ∣∣∣∣ T∏
t=1

p(DN
t |DN

1:t−1, θ)

pKF (DN
t |DN

1:t−1, θ)
− 1

∣∣∣∣× T∏
t=1

pKF (DN
t |DN

1:t−1, θ)p(θ|K,λ)dθ

≤ max
θ

∣∣∣∣ T∏
t=1

p(DN
t |DN

1:t−1, θ)

pKF (DN
t |DN

1:t−1, θ)
− 1

∣∣∣∣× ∫ T∏
t=1

pKF (DN
t |DN

1:t−1, θ)p(θ|K,λ)dθ

= max
θ

∣∣∣∣ T∏
t=1

p(DN
t |DN

1:t−1, θ)

pKF (DN
t |DN

1:t−1, θ)
− 1

∣∣∣∣× pKF (DN
1:T |K,λ)

≤ C

√
K

3

N
pKF (DN

1:T |K,λ),
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where the last inequality follows from Theorem 1. Thus, we obtain uniformly over (K,λ),

∣∣∣∣ p(DN
1:T |K,λ)

pKF (DN
1:T |K,λ)

− 1

∣∣∣∣ ≤ C

√
K

3

N

N
.

We deduce that

max
K,λ

B1(K,λ) .

√
K

3

N

N
= o(1). (A.29)

Step 2. Before bounding B2(K,λ) we conduct some intermediate calculations. Recall that

the KF likelihood is constructed from Gaussian densities of the form N (µKFt (θ),ΣKF
t (θ)).

Write the KF log likelihood as

lnLKF (DN
1:T |θ,K) (A.30)

= −T (ny +K)

2
ln(2π)− 1

2

T∑
t=1

ln
∣∣ΣKF

t (θ)
∣∣

−1

2

T∑
t=1

(DN
t − µKFt (θ))′(ΣKF

t (θ))−1(DN
t − µKFt (θ))

= −T (ny +K)

2
ln(2π)− 1

2

T∑
t=1

ln |Σ∗(θ) +N−1∆Σ
t (θ)|

−1

2

T∑
t=1

(
DN
t − µ∗t (θ)−N−1∆µ

t (θ)
)′(

Σ∗(θ) +N−1∆Σ
t (θ)

)−1(
DN
t − µ∗t (θ)−N−1∆µ

t (θ)
)

= lnL∗(D
N
1:T |θ,K) +

T∑
t=1

Ft(θ)

2N
,

with Ft(θ)/N defined as

Ft(θ)

N
=

(
ln |Σ∗(θ)| − ln |Σ∗(θ) +N−1∆Σ

t (θ)|
)

+

((
DN
t − µ∗t (θ)

)′(
Σ∗(θ)

)−1(
DN
t − µ∗t (θ)

)
−
(
DN
t − µ∗t (θ)−N−1∆µ

t (θ)
)′(

Σ∗(θ) +N−1∆Σ
t (θ)

)−1(
DN
t − µ∗t (θ)−N−1∆µ

t (θ)
))

Notice that Ft(θ) is the sum of log determinants of (ny + k) × (ny + k) matrices and the

inner products of a (ny + k) vectors. Applying Lemma 2 (see below), we have uniformly in

K ≤ K = o(N1/3),

sup
θ∈Θ(K),t

∣∣∣∣Ft(θ)N

∣∣∣∣ = O

(
K

N

)
. (A.31)
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Step 3. Now consider

mKF (DN
1:T |K,λ) =

∫
LKF (DN

1:T |θ,K)fT (θ|λ)dθ (A.32)

=

∫
exp

{
lnL∗(D

N
1:T |θ,K) +

T∑
t=1

Ft(θ)

2N

}
fT (θ|λ)dθ

=

∫
L∗(D

N
1:T |θ,K)fT (θ|λ)

f(θ|DN
1:T , λ)

exp

{
T∑
t=1

Ft(θ)

2N

}
f(θ|DN

1:T , λ)dθ

=

∫
m∗(D

N
1:T |K,λ) exp

{
T∑
t=1

Ft(θ)

2N

}
f(θ|DN

1:T , λ)dθ.

Taking logs, we obtain

ln(mKF (DN
1:T |K,λ)) (A.33)

= ln(m∗(D
N
1:T |K,λ)) + ln

[ ∫
exp

{
T∑
t=1

Ft(θ)

2N

}
f(θ|DN

1:T , λ)dθ

]
Thus,

B2(K,λ) =

∣∣∣∣ ln pKF (DN
1:T |K,λ)− ln p∗(D

N
1:T |K,λ)

∣∣∣∣
=

∣∣∣∣ ln [ ∫ exp

{
T∑
t=1

Ft(θ)

2N

}
f(θ|DN

1:T , K, λ)dθ

]∣∣∣∣
=

∣∣∣∣∣ln
(
Eθ∗

[
exp

{
T∑
t=1

Ft(θ)

2N

} ∣∣∣∣ DN
1:T , K, λ

])∣∣∣∣∣
where Eθ∗[·|DN

1:T , K, λ] is the expectation associated with the posterior density θ|DN
1:T ∼

f(θ|DN
1:T , K, λ).

We proceed by expanding the exponential function of the L∗(D|θ,K) likelihood around

zero (assuming that TKN/N = o(1)):

exp(x) = 1 + x+
1

2
x2 +

1

6
x3 + . . . .

Thus,

exp

{
T

2N

1

T

T∑
t=1

Ft(θ)

}
= 1 +

T

2N

1

T

T∑
t=1

Ft(θ) +
1

2

(
T

2N

1

T

T∑
t=1

Ft(θ)

)2

+ . . . .
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In turn,

Eθ∗

[
exp

{
T∑
t=1

Ft(θ)

2N

} ∣∣∣∣ DN
1:T , K, λ

]
= 1 +

T

2N

1

T

T∑
t=1

Eθ∗
[
Ft(θ)|DN

1:T , K, λ
]

+ . . . , ;

ln

(
Eθ∗

[
exp

{
T∑
t=1

Ft(θ)

2N

} ∣∣∣∣ DN
1:T , λ

])
=

T

2N

1

T

T∑
t=1

Eθ∗
[
Ft(θ)|DN

1:T , K, λ
]

+ . . .

Using (A.31) and the rate Assumption in the theorem, we deduce that

max
(K,λ)

B2(K,λ) = max
(K,λ)∈KN×Ω

∣∣∣∣∣ T2N 1

T

T∑
t=1

Eθ∗
[
Ft(θ)|DN

1:T , λ
]

+ . . .

∣∣∣∣∣ (A.34)

.
T

2N
KN = o(1).

Step 4. We can now combine (A.29) and (A.34) which leads to the final bound on the MDD

discrepancy:

max
(K,λ)∈KN×Ω

∣∣∣∣ ln p(DN
1:T |K,λ)− ln p∗(D

N
1:T |K,λ)

NT

∣∣∣∣ (A.35)

≤ max
(K,λ)∈KN×Ω

1

NT
B1(K,λ) + max

(K,λ)∈KN×Ω

1

NT
B2(K,λ)

.
1

NT

√K
3

N

N
+

T

2N
KN

 . �

Lemma 2 The likelihood increments for the Kalman filter and the VAR approximation take

the following form

L∗(D
N
1:T |θ,K) : DN

t |(DN
1:t−1, θ,K) ∼ N

(
µ∗t (θ),Σ

∗(θ)
)

(A.36)

LKF (DN
1:T |θ,K) : DN

t |(DN
1:t−1, θ,K) ∼ N

(
µKFt (θ),ΣKF

t (θ)
)
,

where

µKFt (θ) = µ∗t (θ) +
1

N
∆µ
t (θ), ΣKF

t (θ) = Σ∗(θ) +
1

N
∆Σ
t (θ).

Hence

sup
θ∈Θ(K),t

|Ft(θ)| = O(K).

Proof of Lemma 2. For the KF likelihood int can be verified that uniformly over time t,

Pt−1|t−1(αα) = O(1/N), αt−1|t−1 − α̂t−1 = O(1/N).
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Define P̄t−1|t−1 = NPt−1|t−1(αα) to make the dependence on the cross-sectional sample size

clear. Let[
Yt

αt

] ∣∣∣∣(Y1:t−1, X1:t−1) ∼ N

([
Yt|t−1

αt|t−1

]
,

[
Pt|t−1(yy) Pt|t−1(yα)

Pt|t−1(αy) Pt|t−1(αα)

])
, (A.37)

where

Yt|t−1 = ΦyyYt−1 + Φyαα̂t−1 +
1

N
ΦyαN(αt−1|t−1 − α̂t−1)

αt|t−1 = ΦαyYt−1 + Φααα̂t−1 +
1

N
ΦααN(αt−1|t−1 − α̂t−1)

Pt|t−1(yy) = Σyy +
1

N
ΦyαP̄t−1|t−1(αα)Φ′yα

Pt|t−1(αy) = Σαy +
1

N
ΦααP̄t−1|t−1(αα)Φ′yα

Pt|t−1(αα) = Σαα +
1

N
ΦααP̄t−1|t−1(αα)Φ′αα.

We can now factorize the joint distribution of (Yt, αt) into a marginal distribution of Yt and

a conditional distribution of αt|Yt:

Yt|(Y1:t−1, X1:t−1) ∼ N
(
Yt|t−1, Pt|t−1(yy)

)
(A.38)

αt|(Y1:t, X1:t−1) ∼ N
(
αt|y,t−1, Pt|y,t−1(αα)

)
, (A.39)

where

αt|y,t−1 = αt|t−1 + Pt|t−1(αy)[Pt|t−1(yy)]−1(Yt − Yt|t−1)

Pt|y,t−1(αα) = Pt|t−1(αα)− Pt|t−1(αy)[Pt|t−1(yy)]−1Pt|t−1(yα).

Finally, the distribution of α̂t conditional on Yt and t− 1 information is

α̂t|(Y1:t, X1:t−1) ∼ N (α̂t|y,t−1, Ft|y,t−1), (A.40)

where

α̂t|y,t−1 = αt|y,t−1

Ft|y,t−1 = Pt|y,t−1(αα) +
1

N
V̂t.

Thus, the time-t increment of the KF likelihood LKF (DN
1:T |θ,K) is given by

Yt|(Y1:t−1, X1:t−1) ∼ N
(
Yt|t−1, Pt|t−1(yy)

)
, α̂t|(Y1:t, X1:t−1) ∼ N (α̂t|y,t−1, Ft|y,t−1). (A.41)
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We now turn to L∗(D
N
1:T |θ,K) which ignores the uncertainty about the latent state αt

and equates it with α̂t, setting Pt|t(αα) = 0. Denoting the resulting moments with a ∗
superscript, we can define

Y ∗t|t−1 = ΦyyYt−1 + Φyαα̂t−1

α∗t|t−1 = ΦαyYt−1 + Φααα̂t−1

P ∗t|t−1(yy) = Σyy

P ∗t|t−1(αy) = Σαy

P ∗t|t−1(αα) = Σαα

α∗t|y,t−1 = α∗t|t−1 + ΣαyΣ
−1
yy (Yt − Y ∗t|t−1)

P ∗t|y,t−1(αα) = Σαα − ΣαyΣ
−1
yy Σyα

α̂∗t|y,t−1 = ΦαyYt−1 + Φααα̂t−1 + ΣαyΣ
−1
yy

(
Yt − [ΦyyYt−1 + Φyαα̂t−1]

)
F ∗t|y,t−1 = Σαα − ΣαyΣ

−1
yy Σyα.

It can be shown that the ∗ moments differ from the KF moments by a term that is O(1/N)

uniformly in t, i.e.,

Yt|t−1 = Y ∗t|t−1 +O(1/N)

Pt|t−1(yy) = P ∗t|t−1(yy) +O(1/N)

α̂t|y,t−1 = α̂∗t|y,t−1 +O(1/N)

Ft|y,t−1 = F ∗t|y,t−1 +O(1/N).

By the definition of Ft(θ) in the main text and the results above, we obtain uniformly over

θ, t,K

Ft(θ) = tr
(
[Σ∗(θ)]−1∆Σ

t (θ)
)

+ 2
(
DN
t − µ∗t (θ)

)′(
Σ∗(θ)

)−1
∆µ
t (θ) (A.42)

+
(
DN
t − µ∗t (θ)

)′
δΣ
t (θ)

(
DN
t − µ∗t (θ)

)
+ o(1)

with

δΣ
t (θ) = −[Σ∗(θ)]−1∆Σ

t (θ)[Σ∗(θ)]−1.

Thus supθ∈Θ(K),t |Ft(θ)| = O(K). �



Online Appendix – This Version: October 13, 2022 A.18

A.7 Hyperparameter Determination

Recall that the cross functional true log-density is assumed to belong to Hölder ball of

smoothness s > 1, and that we let

KN ≡
{
K ∈ N : K ≤ K ≤ K, K = c× [N lnN ]

1
1+2s , K = c× N1/3

(lnN)2
, 0 < c, c <∞

}
be the set of integers for the cross-sectional sieve dimension and Ω a grid for the localized

hyperparameter ω. Define

(K∗, ω∗) = argmax(K,ω)∈KN×Ω ln p∗(D
N
1:T |K,ω),

(K̂, ω̂) = argmax(K,ω)∈KN×Ω ln p(DN
1:T |K,ω).

We also define for all K ∈ KN ,

ωo∗(K) = argmaxω∈Ω ln p∗(D
N
1:T |K,ω),

ω̂o(K) = argmaxω∈Ω ln p(DN
1:T |K,ω),

The following results are based on the prior

θ|K,ω ∼ N
(
θ,
ω

T
V
)

(A.43)

with probability density function

fT (θ|ω) = (2π)−
d
2

∣∣∣ω
T
V
∣∣∣− 1

2
exp

{
−T

2
(θ − θ)′[ωV ]−1(θ − θ)

}
.

Theorem 3 Let KN = c × N1/3

(lnN)2
be an integer. Let TKN/N = o(1) and KN/T = o(1).

Then, for any ε > 0, for all K ∈ KN ,

P0
{
|ωo∗(K)− ω̂o(K)| < ε

}
−→ 1

as (T,N) −→∞.

Proof of Theorem 3. We first introduce extra notation. Let

L∗(D
N
1:T |θ,K) =

T∏
t=1

pG(Yt, αt = α̂t|Yt−1, αt−1 = α̂t−1, θ,K);

m∗(D
N
1:T |K,ω) =

∫
L∗(D

N
1:T |θ,K)fT (θ|ω)dθ.
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Then

ln p∗(D
N
1:T |K,ω) = ln

(
T∏
t=1

ppen(Xt|α̂t, K)

)
+ ln

(
m∗(D

N
1:T |K,ω)

)
.

Step 1. We begin by analyzing ln p∗(D
N
1:T |K,ω). Note that

ln p∗(D
N
1:T |K,ω) =

T∑
t=1

ln (ppen(Xt|α̂t, K)) + ln
(
m∗(D

N
1:T |K,ω)

)
.

The first term
∑T

t=1 ln (ppen(Xt|α̂t, K)) depends on K only and does not depend on ω at

all. The second term ln
(
m∗(D

N
1:T |K,ω)

)
depnds on ω explicitly and depends on K only

indirectly through the data DN
t dimension (ny + K), and through the dimension of the θ

parameter d ≡ dim(θ) = O(K2). For any fixed K, we compute

ωo∗(K) = argmaxω∈Ω ln
(
p∗(D

N
1:T |K,ω)

)
= argmaxω∈Ω ln

(
m∗(D

N
1:T |K,ω)

)
.

Step 1.1. We first consider the second term m∗(D
N
1:T |K,ω), which has two components:

the likelihood function L∗(D
N
1:T |θ,K), and the Gaussian priors fT (θ|ω). Because we are

using a drifting sequence of priors both components will concentrate as T goes to infinity:

the likelihood function L∗(D
N
1:T |θ,K) will concentrate around its MLE θ̂∗ and the prior will

concentrate around the prior mode θ. We assume that the log-likelihood function is quadratic

in θ:

lnL∗(D
N
1:T |θ,K) = lnL∗(D

N
1:T |θ̂∗, K)− T

2
(θ − θ̂∗)′V̂−1

∗ (θ − θ̂∗)

where

V̂−1
∗ = − 1

T

∂2 lnL∗(D
N
1:T |θ̂∗, K)

∂θ2
.

It is easy to see that the posterior density for θ given data DN
1:T is still Gaussian:

f(θ|DN
1:T , ω) = (2π)−d/2

∣∣∣∣ V̄∗T
∣∣∣∣−1/2

exp

{
−T

2
(θ − θ̄∗)′[V̄∗]−1(θ − θ̄∗)

}
, (A.44)

where the posterior mean and the posterior variance (scaled by T ) for θ are given by:

θ̄∗ = V̄∗
(
V̂−1
∗ θ̂∗ +

1

ω
V−1θ

)
, V̄∗ =

(
V̂−1
∗ +

1

ω
V−1

)−1

, (A.45)

or equivalently as

θ̄∗ =
(
ωV̂−1
∗ + V−1

)−1 (
ωV̂−1
∗ θ̂∗ + V−1θ

)
, V̄∗ = ω

(
ωV̂−1
∗ + V−1

)−1

. (A.46)
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We now examine the dependence of the posterior mean and variance on the hyperparam-

eter ω. Expression (A.45) implies that for any ω > 0,

∂

∂ω
θ̄∗ = V̄∗

1

ω2
V−1[θ̄∗ − θ],

∂

∂ω
V̄∗ = V̄∗

1

ω2
V−1V̄∗ =

(
ωV̂−1
∗ + V−1

)−1

V−1
(
ωV̂−1
∗ + V−1

)−1

,

and that

lim
ω−→∞

(
θ̄∗, V̄∗

)
=
(
θ̂∗, V̂∗

)
, lim

ω−→∞

(
∂

∂ω
θ̄∗,

∂

∂ω
V̄∗
)

= (0, 0) ; (A.47)

while the equivalent expression (A.46) implies that for any ω <∞,

∂

∂ω
θ̄∗ =

(
ωV̂−1
∗ + V−1

)−1

V̂−1
∗ [θ̂∗ − θ̄∗],

∂

∂ω
V̄∗ =

(
ωV̂−1
∗ + V−1

)−1 [
Id − V̂−1

∗ V̄∗
]

lim
ω−→0

(
θ̄∗, V̄∗

)
= (θ, 0) , lim

ω−→0

(
∂

∂ω
θ̄∗,

∂

∂ω
V̄∗
)

=
(
VV̂−1
∗ (θ̂∗ − θ), V

)
. (A.48)

We now return to the analysis of the marginal data density. Rewriting Bayes Theorem,

we obtain

m∗(D
N
1:T |K,ω) (A.49)

=

∫
L∗(D

N
1:T |θ,K)fT (θ|ω)dθ =

L∗(D
N
1:T |θ,K)fT (θ|ω)

f(θ|DN
1:T , ω)

= L∗(D
N
1:T |θ̂∗, K)

∣∣∣∣ωVT
∣∣∣∣−1/2 ∣∣∣∣ V̄∗T

∣∣∣∣1/2 exp

{
−T

2

(
θ̂′∗V̂−1

∗ θ̂∗ +
1

ω
θ′V−1θ − θ̄′∗V̄−1

∗ θ̄∗

)}
.

Taking logs, we obtain

ln
(
m∗(D

N
1:T |K,ω)

)
(A.50)

= lnL∗(D
N
1:T |θ̂∗, K)− T

2

(
θ̂′∗V̂−1

∗ θ̂∗ +
1

ω
θ′V−1θ − θ̄′∗V̄−1

∗ θ̄∗

)
− 1

2
ln
∣∣ωVV̄−1

∗
∣∣ .

We now examine the three summands. First, the likelihood L∗(D
N
1:T |θ,K) is constructed

from time product of Gaussian densities of the form N (µ∗t (θ),Σ
∗(θ)). We have:

lnL∗(D
N
1:T |θ̂∗, K)

= −T (ny +K)

2
ln(2π)− T

2
ln |Σ∗(θ̂∗)| −

1

2

T∑
t=1

(DN
t − µ∗t (θ̂∗))′(Σ∗(θ̂∗))−1(DN

t − µ∗t (θ̂∗)).
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Second, the term

II(K,ω) = T

[
θ̂′∗V̂−1

∗ θ̂∗ +
1

ω
θ′V−1θ − θ̄′∗V̄−1

∗ θ̄∗

]
(A.51)

could be interpreted as a goodness-of-fit adjustment to the maximized log-likelihood function

lnL∗(D
N
1:T |θ̂∗, K). Expressions (A.51) and (A.46) imply that for any ω <∞,

II(K,ω) (A.52)

= T
ωθ̂′∗V̂−1

∗ θ̂∗ + θ′V−1θ −
(
ωV̂−1
∗ θ̂∗ + V−1θ

)′ (
ωV̂−1
∗ + V−1

)−1 (
ωV̂−1
∗ θ̂∗ + V−1θ

)
ω

Using L’Hospital’s rule and expression (A.52) we obtain

lim
ω−→0

II(K,ω) = T (θ̂∗ − θ)′V̂−1
∗ (θ̂∗ − θ) > 0.

Also it is easy to see from Expression (A.45) or (A.47) that

lim
ω−→∞

II(K,ω) = T
[
θ̂′∗V̂−1

∗ θ̂∗ − θ̂′∗V̂−1
∗ θ̂∗

]
= 0.

It is easy to check that for any ω ∈ (0,∞) we have:

∂

∂ω
II(K,ω) = − T

ω2
(θ̄∗ − θ)′V−1(θ̄∗ − θ) < 0,

∂2

∂ω2
II(K,ω) = T

2(θ̄∗ − θ)′V−1

ω3

[
θ̄∗ − θ − ω

∂

∂ω
θ̄∗

]
= T

2

ω2
(θ̄∗ − θ)′[ωV ]−1(Id − V̄∗[ωV ]−1)(θ̄∗ − θ)

= T
2

ω2
(θ̄∗ − θ)′[ωV ]−1V̄∗V̂−1

∗ (θ̄∗ − θ) > 0.

Using L’Hospital’s rule twice and expression (A.48) we obtain

lim
ω−→0

(
∂

∂ω
II(K,ω)

)
= −T (θ̂∗ − θ)′V̂−1

∗ VV̂−1
∗ (θ̂∗ − θ) < 0,

while it is very easy to see that

lim
ω−→∞

(
∂

∂ω
II(K,ω)

)
= 0.
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Third, by definition we have V̄−1
∗ = V̂−1

∗ + 1
ω
V−1, thus we can rewrite the term

III(K,ω) = ln
∣∣ωVV̄−1

∗
∣∣ = ln

∣∣∣ωVV̂−1
∗ + Id

∣∣∣ , (A.53)

which can be interpreted as a penalty for model complexity. If the parameters are restricted

to the prior mean, i.e., ω = 0, then the penalty III(K, 0) = 0. As ω diverges and more

weight is placed on the likelihood function, the penalty limω−→∞ III(K,ω) =∞ grows at a

logarithmic rate. We also have for all ω ∈ (0,∞),

∂

∂ω
[III(K,ω)]

= tr
(

(ωVV̂−1
∗ + Id)

−1VV̂−1
∗

)
= tr

(
(ωId + V̂∗V−1)−1

)
= tr

(
1

ω
V̄∗V̂−1

∗

)
> 0,

∂2

∂ω2
[III(K,ω)]

= −tr
(

(ωId + V̂∗V−1)−2
)

= −tr

([
1

ω
V̄∗V̂−1

∗

]2
)
< 0,

and

lim
ω−→0

(
∂

∂ω
[III(K,ω)]

)
= tr

(
VV̂−1
∗

)
> 0, lim

ω−→∞

(
∂

∂ω
[III(K,ω)]

)
= 0.

Define

dω ≡ tr
(
V̄∗V̂−1

∗

)
= tr

(
Id − V̄∗[ωV ]−1

)
= d− 1

ω
tr
(
V̄∗V−1

)
< d

for all ω ∈ (0,∞), where d ≡ dim(θ) = O(K2), where dω could be viewed as the “effective

dimension”. Therefore

ln
(
m∗(D

N
1:T |K,ω)

)
= lnL∗(D

N
1:T |θ̂∗, K)− 1

2
× [II(K,ω) + III(K,ω)] ,

and

ωo∗ ≡ ωo∗(K) = argmaxω∈Ω ln
(
p∗(D

N
1:T |K,ω)

)
= argmaxω∈Ω ln

(
m∗(D

N
1:T |K,ω)

)
= arg min

ω∈[0,∞)
[II(K,ω) + III(K,ω)] ,

where II(K,ω) > 0 is strictly decreasing and convex in ω ∈ [0,∞), and III(K,ω) ≥ 0 is

strictly increasing and concave function in ω ∈ [0,∞), and they cross each other exactly

once at an interial point in (0,∞). Therefore, minω∈[0,∞) [II(K,ω) + III(K,ω)] has at most

two solutions: ωo∗ = 0 (corner) or ωo∗ ∈ (0, ω) (interior), where ω ∈ (0,∞) solves

II(K, 0) + III(K, 0) = T (θ̂∗ − θ)′V̂−1
∗ (θ̂∗ − θ) = ln

∣∣∣ωVV̂−1
∗ + Id

∣∣∣ .
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We have for all ω ∈ (0,∞),

∂

∂ω

[
ln
(
m∗(D

N
1:T |K,ω)

)]
=

T

2ω2
(θ̄∗ − θ)′V−1(θ̄∗ − θ)−

1

2ω
tr
(
V̄∗V̂−1

∗

)
.

And

∂2
[
ln
(
m∗(D

N
1:T |K,ω)

)]
∂ω2

= − T
ω3

(θ̄∗ − θ)′V−1V̄∗V̂−1
∗ (θ̄∗ − θ) +

1

2ω2
tr

([
V̄∗V̂−1

∗

]2
)
.

We note that

lim
ω−→0

(
∂

∂ω

[
ln
(
m∗(D

N
1:T |K,ω)

)])
=
T

2
(θ̂∗ − θ)′V̂−1

∗ VV̂−1
∗ (θ̂∗ − θ)−

1

2
tr
(
VV̂−1
∗

)
Then for each fixed K,

ωo∗ ≡ ωo∗(K) = argmaxω∈[0,ω] ln
(
m∗(D

N
1:T |K,ω)

)
satisfies the following first order condition for any interior solution in (0, ω):

d

dω

[
ln
(
m∗(D

N
1:T |K,ω)

)]
=

T

2ω2
(θ̄∗ − θ)′V−1(θ̄∗ − θ)−

1

2
tr

(
1

ω
V̄∗V̂−1

∗

)
= 0

Let V̄o∗ and θ̄o∗ denote the corresponding values at ω = ωo∗ ∈ (0, ω). Then ωo∗ is defined by

the implicit function

ωo∗ =
T (θ̄o∗ − θ)′V−1(θ̄o∗ − θ)

tr
(
V̄o∗ V̂−1

∗

) . (A.54)

We note that

∂2
[
ln
(
m∗(D

N
1:T |K,ω)

)]
∂ω2

∣∣∣∣
ω=ωo∗

=

−T (θ̄o∗ − θ)′[ωo∗V ]−1V̄o∗ V̂−1
∗ (θ̄o∗ − θ) + 1

2
tr

([
V̄o∗ V̂−1

∗

]2
)

[ωo∗]
2

<
−T (θ̄o∗ − θ)′[ωo∗V ]−1V̄o∗ V̂−1

∗ (θ̄o∗ − θ) + 1
2
λmax(V̄o∗ V̂−1

∗ )× T (θ̄o∗ − θ)′[ωo∗V ]−1(θ̄o∗ − θ)
[ωo∗]

2

=
−T (θ̄o∗ − θ)′[ωo∗V ]−1

[
V̄o∗ V̂−1

∗ − 1
2
λmax(V̄o∗ V̂−1

∗ )× Id
]

(θ̄o∗ − θ)

[ωo∗]
2

,
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where the inequality is due to the fact that V̄o∗ V̂−1
∗ < Id and λmax(V̄o∗ V̂−1

∗ ) < 1 and

tr

([
V̄o∗ V̂−1

∗

]2
)
< λmax(V̄o∗ V̂−1

∗ )× tr
(
V̄o∗ V̂−1

∗

)
= λmax(V̄o∗ V̂−1

∗ )×
[
T (θ̄o∗ − θ)′[ωo∗V ]−1(θ̄o∗ − θ)

]
.

Therefore the condition
1

2
λmax(V̄o∗ V̂−1

∗ )× Id ≤ V̄o∗ V̂−1
∗ (A.55)

is a sufficient condition for
d2[ln(m∗(DN1:T |K,ω))]

dω2 |ω=ωo∗ < 0.

Step 2. Recall that

max
(K,ω)∈K×Ω

∣∣ln p(DN
1:T |K,ω)− ln p∗(D

N
1:T |K,ω)

∣∣ (A.56)

.

√K
3

N

N
+

T

2N
KN

 ≡ ηNT = o(1).

Now we want to show that uniformly over K ∈ KN , for any ε > 0,

P0
{
|ωo∗(K)− ω̂o(K)| < ε

}
−→ 1.

Note that

P0 (|ωo∗(K)− ω̂o(K)| ≥ ε, ∀K ∈ KN)

= P0
(
0 < ln p(DN

1:T |K, ω̂o(K))− ln p(DN
1:T |K,ωo∗(K)), ∀K ∈ KN

)
≤ P0

(
0 < ln p∗(D

N
1:T |K, ω̂o(K))− ln p∗(D

N
1:T |K,ωo∗(K))

+2 max
ω∈Ω

∣∣ln p(DN
1:T |K,ω)− ln p∗(D

N
1:T |K,ω)

∣∣ , ∀K ∈ KN)
= P0

(
ln p∗(D

N
1:T |K,ωo∗(K))− ln p∗(D

N
1:T |K, ω̂o(K))

< 2 max
ω∈Ω

∣∣ln p(DN
1:T |K,ω)− ln p∗(D

N
1:T |K,ω)

∣∣ , ∀K ∈ KN)
≤ P0

(
0 < ln p∗(D

N
1:T |K,ωo∗(K))− max

ω∈Ω,|ωo(K)−ω|≥ε
ln p∗(D

N
1:T |K,ω) . ηNT , ∀K ∈ KN

)
.
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We note that

0 < g1(N, T, ε) ≡ ln p∗(D
N
1:T |K,ωo∗(K))− max

ω∈Ω,|ωo∗(K)−ω|≥ε
ln p∗(D

N
1:T |K,ω)

= lnm∗(D
N
1:T |K,ωo∗(K))− max

ω∈Ω,|ωo∗(K)−ω|≥ε
lnm∗(D

N
1:T |K,ω)

= min
ω∈[0,ω(K)],|ωo∗(K)−ω|≥ε

 −1
2
II(K,ωo∗(K))− 1

2
ln
∣∣∣ωo∗(K)VV̂−1

∗ + Id(K)

∣∣∣
+
(

1
2
II(K,ω) + 1

2
ln
∣∣∣ωVV̂−1

∗ + Id(K)

∣∣∣)
 .

Note that
1

2
II(K,ω) +

1

2
ln
∣∣∣ωVV̂−1

∗ + Id(K)

∣∣∣
is continuous on the compact set {ω ∈ [0, ω], |ωo∗(K)− ω| ≥ ε}, we have

g1(N, T, ε) = Op(1) and
ηNT

g1(N, T, ε)
= op(1),

hence

P0 (|ωo∗(K)− ω̂o(K)| ≥ ε) −→ 0. �
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B Implementation Details

B.1 Top Coding

Likelihood Function with Censoring. We define the censoring point ct as

ct = max
i=1,...,N

xit

Moreover, we let

Nt,max =
N∑
i=1

I{xit = ct}.

If Nt,max = 1, we assume that the observed sample is not constrained by the top-coding

and use the standard likelihood function described in the main text. If Nt,max > 1 we use a

likelihood function that assumes that any earnings value exceeding ct is coded as ct.

Recall that in the main text we ignored the dependence of the cross-sectional sample size

N on t in the notation and defined p(K)(Xt|αt) = exp
{
NL(K)(αt|Xt)

}
, where

L(K)(αt|Xt) = ζ̄ ′(Xt)αt − ln

∫ ∞
0

exp
{
ζ ′(x)αt

}
dx, ζ̄(Xt) =

1

N

Nt∑
i=1

ζ(xit).

We introduce the unknown parameter πt = P{xit ≥ ct}. We drop the top-coded obser-

vations from the definition of ζ̄(Xt) und make the time dependence explicit in the notation.

Let

ζ̄t(Xt) =
1

Nt

Nt∑
i=1

ζ(xit)I{xit < ct}. (A.57)

The log likelihood function is obtained as follows: the sample contains Nt,max top-coded

observations where the probability of sampling a top-coded observation is πt. The probability

of samping an observation that is not top-coded is (1 − πt). Conditional on not being top-

coded, the observation xit < ct is sampled from a continuous density with a domain that is

truncated at ct. Thus, dividing the log-likelihood by the sample size Nt, we obtain

L(K)(αt, πt|Xt) =
Nt,max

Nt

lnπ +
Nt −Nt,max

Nt

ln(1− πt) (A.58)

+ζ̄ ′t(Xt)αt −
Nt −Nt,max

Nt

ln

∫ ct

0

exp
{
ζ ′(x)αt

}
dx.
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Notice that regardless of the value of αt, the MLE of πt is

π̂t = argmaxπ∈[0,1] L(K)(αt, πt|Xt) = Nt,max/Nt. (A.59)

Moreover, regardless of the value of πt, the MLE of αt is given by

α̂t = argmaxαt L
(K)(αt, πt|Xt) (A.60)

= argmaxαt ζ̄
′
t(Xt)αt −

Nt −Nt,max

Nt

ln

∫ ct

0

exp
{
ζ ′(x)αt

}
dx.

The objective function for αt is almost identical to what we had without top coding, except

for a definition of ζ̄t(Xt) that drops the top-coded observations in the summation and the

factor of (Nt −Nt,max)/Nt in front of the normalization constant of the density.

Recovering the Density for Uncensored Observations. To reconstruct the full density

we can use

p(x|αt) =
exp

{∑K
k=1 αk,tζk(x)

}
∫∞

0
exp

{∑K
k=1 αk,tζk(x)

}
dx
. (A.61)

Note that here we dropped the censoring indicator function and the integration is now from

0 to∞. Once the αt’s have been estimated based on the censored observations, we work with

the full density in the functional state-space model and its K-dimensional approximation.

Modification of Hessian Matrix. We now re-compute the score and the Hessian. Drop-

ping the (K) superscript we obtain the following first derivatives with respect to αk for

k = 1, . . . , K:

L(1)
k (αt|πt, Xt) = ζ̄t,k(Xt)−

(
Nt −Nt,max

Nt

)∫ ct

0

ζk(x)p̄(x|αt)dx,

where

p̄(x|αt) =
exp

{∑K
k=1 αk,tζk(x)

}
∫ ct

0
exp

{∑K
k=1 αk,tζk(x)

}
dx

I{x < ct}.

We can now deduce from our previous calculations that

L(2)
kl (αt|πt, Xt) (A.62)

= −
(
Nt −Nt,max

Nt

)∫ ct

0

(
ζk(x)−

∫ ct

0

ζk(x)p̄(x|αt)dx
)

×
(
ζl(x)−

∫ ct

0

ζl(x)p̄(x|αt)dx
)
p̄(x|αt)dx.
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Thus, compared to the standard case in Section A.2, the limits of integration change and

there is an additional factor (Nt −Nt,max)/Nt.

B.2 Transformations of the α̂ts

Compression/Standardization. The vector ˆ̃αt = α̂t − α∗ may exhibit collinearity. Even

though K basis functions may be necessary to approximate the cross-sectional densities, the

time variation might be concentrated in a lower-dimensional space, because, for instance,

only the means of the cross-sectional distributions are varying over time. This feature can

be captured by assuming that the time-variation is captured by a K̃ < K dimensional factor

at:

(αt − α∗)′ = a′tΛ, (A.63)

where Λ is a K̃ × K matrix. As is well known from the factor model literature, Λ and at

are only identified up to a K̃ × K̃ dimensional invertible matrix. In principle, the matrix Λ

and the sequence of vectors at, t = 1, . . . , T have to be estimated simultaneously under this

factor structure,

To avoid the simultaneous estimation of the cross-sectional densities, we take the following

short cut. First, we compute the α̂ts period-by-period without imposing any restrictions.

Second, conditional on α∗ we compute the demeaned (and potentially seasonally adjusted)

MLEs ˆ̃αt = α̂t−α∗ and arrange them in a T×K matrix ˆ̃α with rows ˆ̃α′t. Third, we conduct a

principal components analysis which is based on the eigenvalue decomposition of the sample

covariance matrix ˆ̃α′ ˆ̃α/T . Let M̂ be K × K̃ matrix of eigenvectors associated with the K̃

non-zero eigenvalues (in practice greater than 10−10). Then, let

â = ˆ̃αM̂, Λ̂ = (â′â)−1â′ ˆ̃α, (A.64)

where â is the T × K̃ matrix with rows â′t. Even if K̃ = K this operation standardizes the

basis function coefficients αt.

We can now replace (11) by23

p(K)(Xt|at, α∗, Λ̂) = exp

{
NL(K)(α∗ + Λ̂′ât|Xt)−

N

2
(at − ât)′Λ̂V̂ −1

t Λ̂′(at − ât) +NR
}
.

To evaluate the MDD formulas such as (19), we replace K by K̃, L(K)(α̂t|Xt) by L(K̃)(α∗ +

Λ̂′ât|Xt), and we change the term
∑T

t=1 ln |V̂t|1/2 to
∑T

t=1 ln |(Λ̂V̂ −1
t Λ̂′)−1|1/2.The measure-

23Because our goal is to eliminate perfect collinearities, we choose an eigenvalue cut-off that yields α∗ +
Λ̂′ât = α̂t in Sections 5 and 6.
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ment equation (13) is replaced by

ât = at +N−1/2ηt, ηt ∼ N
(
0, (Λ̂V̂ −1

t Λ̂′)−1
)
. (A.65)

Seasonal Adjustments. In our empirical application xit is based on quarterly earnings

data from the Current Population Survey (CPS). Unlike the macroeconomic variables stacked

in Yt, the quarterly earnings data are not seasonally adjusted. Deterministic seasonal ad-

justments of the cross-sectional densities can be incorporated in the model by replacing the

vector of constants α∗ = αt − α̃t by a time-varying process. In our application the time

period t is a quarter. We let α∗,t =
∑4

q=1 αq,tsq(t), where sq(t) = 1 if period t is associated

with quarter q and sq(t) = 0 otherwise.

B.3 Recovering Cross-Sectional Densities

Based on the estimated state-transition equation we can generate forecasts and impulse

response functions for the compressed coefficients at. However, the dynamics of these coef-

ficients in itself are not particularly interesting. Thus, we have to convert them back into

densities using the following steps (which can be executed for each prior/posterior draw of at

from the relevant posterior distribution). First, use (A.63) with Λ = Λ̂ to transform at into

αt. If the estimation is based on a seasonal adjustment, α∗ can be replaced by α∗,t, or, if the

goal is to compute impulse responses, one could use the average of the seasonal dummies as

intercept. Second, compute

p(K)(x|αt) =
exp

{
ζ ′(x)αt

}∫
exp

{
ζ ′(x̃)αt

}
dx̃
.

B.4 Construction of Prior Distribution

The prior specification follows Chan (2022). We assume that the parameters are a priori

independent across equations, i.e.,

p(β,D) =
n∏
i=1

p(βi|Di)p(Di). (A.66)

For each pair (βi, Di) we use a Normal-Inverse Gamma (NIG) distribution of the form

βi|Di ∼ N
(
β
i
, DiV

β
i

)
, Di ∼ IG

(
νi, Si

)
. (A.67)
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The prior density takes the form

p(βi, Di) = (2π)−ki/2|V β
i |−1/2 S

νi
i

Γ(νi)
D
−(νi+1+ki/2)
i

× exp

{
− 1

Di

[
Si +

1

2
(βi − βi)

′(V β
i )−1(βi − βi)

]}
.

In the remainder of this subsection we discuss the construction of β
i
, V β

i , νi, and Si.

The prior is obtained by transforming a prior for the reduced-form parameters (Φ,Σ) into a

prior for the quasi-structural parameters (β1, . . . , βnw , D).

Prior for Di and the αi component of βi. We start from a prior for Σ = A−1′DA−1:

Σ ∼ IW
(
ν, S

)
, S = diag(s2

1, . . . , s
2
n). (A.68)

Chan (2021) shows that this prior implies

Di ∼ IG

(
ν + i− n

2
,
s2
i

2

)
, i = 1, . . . , n. (A.69)

Thus, a comparison with (A.67) indicates that we are setting

νi =
ν + i− n

2
, Si =

s2
i

2
. (A.70)

Moreover, (A.68) implies that

Aij|Di ∼ N
(

0,
Di

s2
j

)
, 1 ≤ j < i, i = 2, . . . , n, (A.71)

which determines the prior for the αi component of βi.

Prior for the B·i component of βi. The prior will take the form

B·i ∼ N
(
B·i, V

B
i

)
, (A.72)

where V B
i is assumed to be diagonal.

We start with a prior for the Φ·i elements and then convert this prior into a prior for B·i.

To simplify the notation a bit, let φi = Φ·i and assume that

φi ∼ N
(
φ
i
, DiV

φ
i

)
. (A.73)
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We center the prior at φ
i

= 0. The prior covariance matrix V φ
i is assumed to be diagonal

with elements

[V φ
i ]ll =

1

λ1


1

s2i h
λ4

for coeff. on the h-th lag if vars (i, j) belong to same block
1

λ2s2i h
λ4

for coeff. on the h-th lag if var i belongs to Y and j belongs to a
1

λ3s2i h
λ4

for coeff. on the h-th lag if var i belongs to a and j belongs to Y

The structural-form coefficients (B) are related to the reduced form coefficients via

[Bh]ij = [Φh]ij +
i−1∑
l=1

Ail[Φh]lj. (A.74)

An example of this relationship is given below. Taking expectation of (A.74) and using

E[Aij] = 0, we deduce that

E
[
[Bh]ij

]
= E

[
[Φh]ij

]
,

which leads to

B·i = 0. (A.75)

Next, we consider the prior covariance matrix V B
i . While this matrix in principle has

non-zero off-diagonal elements, we focus on the diagonal. We first express the variance of a

generic element [Bh]ij in terms of the variances of Aij and [Bh]ij:

V
[
[Bh]ij

]
= E

[
V
(
[Bh]ij

)
|A
]

+ V
[
E
(
[Bh]ij

)
|A
]

= E

[
V
(
[Φh]ij

)
+

i−1∑
l=1

A2
ilV
(
[Φh]lj

)]
+ V

[
E([Φh]ij) +

i−1∑
l=1

AilE([Φh]lj)

]

= V
(
[Φh]ij

)
+

i−1∑
l=1

V(Ail)V
(
[Φh]lj

)
+

i−1∑
l=1

V(Ail)
(
E([Φh]lj)

)2
.

We use the index function

f(j, h) = (h− 1)n+ j (A.76)

to arrange the V
[
[Bh]ij

]
terms on the diagonal of the k× k matrix V B

i . Using the definition

of the index function, the expressions for V[Ail] and
(
E([Φh]lj) from (A.71), the expression

for V
(
[Φh]lj from (A.73), we can write

V
[
[Bh]ij

]
= Di[V

φ
i ]f(j,h) +

i−1∑
l=1

Di

s2
l

[
Dl[V

φ
l ]f(j,h) + [φ

l
]2f(j,h)

]
.



Online Appendix – This Version: October 13, 2022 A.32

Table A-1: Hyperparameters for VAR Prior

Parameter Description
ν = 2 Degrees of freedom for IG distribution
si = StDev(Wi) Shape para for IG; use sample standard dev.
λ1 Overall precision of prior
λ2 Relative precision for a to Y transmission
λ3 = 1 Relative precision for Y to a transmission
λ4 = 2 Decay rate for prior variance on lags

We now replace the variance parameter Dl by the hyperparameter s2
l to ease the implemen-

tation of the prior. Using V
[
[Bh]ij

]
= Di[V

B
i ]f(j,h) we obtain

[V B
i ]f(j,h) = [V φ

i ]f(j,h) +
i−1∑
l=1

(
[V φ

l ]f(j,h) +
1

s2
l

[φ
l
]2f(j,h)

)
. (A.77)

Summary. The overall prior takes the from (A.67). The prior for Di is given by (A.69).

The prior for βi is obtained by combining (A.71) with (A.72), where mean and variance are

given in (A.75) and (A.77), respectively. The hyperparameters for the prior are summarized

in Table A-1. We set si equal to the sample standard deviation of Wi.

B.5 Posterior Sampling and MDD

Model and prior are set up so that the coefficients can be estimated equation by equation:

p(W,β,D) =
N∏
i=1

(
(2πDi)

−1/2 exp

{
− 1

2Di

(Wi − Ziβi)′(Wi − Ziβi)
}
p(βi|Di)p(Di).

)
(A.78)

Because the prior is conjugate, the posterior stays in the NIG family. It takes the form

βi|(Di,Wi) ∼ N
(
β̄i, DiV̄

β
i

)
, Di ∼ IG

(
ν̄i, S̄i

)
, (A.79)

Instead of working with covariance matrices, it is more efficient to work with precision

matrices. Define:

P β
i =

(
V β
i

)−1
, P̄ β

i =
(
V̄ β
i

)−1
.
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The updating equations for the posterior take the form

P̄ β
i = P β

i + Z ′iZi

β̄i =
(
P̄ β
i

)−1(
P β
i βi + Z ′iWi)

ν̄i = νi + T/2

S̄i = Si +
1

2

(
W ′
iWi + β′

i
P β
i βi − β̄

′
iP̄

β
i β̄i
)
.

The MDD can be computed analytically as follows:

ln p(W ) = −Tn
2

ln(2π) +
n∑
i=1

[
1

2

(
ln |P β

i | − ln |P̄ β
i |
)

(A.80)

+ν ln |Si| − ν̄ ln |S̄i| − ln Γ(νi) + ln Γ(ν̄i)

]
.

B.6 Filtering and Simulation Smoothing with Multiple Lags

In this subsection we show how the standard Kalman filter / simulation smoother can be

extended to multiple lags. We abstract from the compression/standardization step discussed

in Section B.2, use αt for the basis function coefficients, and ignore the deterministic com-

ponents α∗ and Y∗.

B.6.1 Companion Form

To derive the updating equations for the filter and simulation smoother we express the state-

transition equation in companion form. We illustrate the companion form notation for p = 2.

The generalization is straightforward. We define

W ′
t = [Y ′t , Y

′
t−1, α

′
t, α
′
t−1] (A.81)

and partition W ′
t into

W ′
t = [Z ′t, s

′
t], Z ′t = [Y ′t , Y

′
t−1], st = [αt, αt−1]′.

The companion-form law of motion for wt can be written as
Yt

Yt−1

αt

αt−1

 =


Φ1,yy Φ2,yy Φ1,yα Φ2,yα

Iy 0 0 0

Φ1,αy Φ2,αy Φ1,αα Φ2,αα

0 0 Iα 0



Yt−1

Yt−2

αt−1

αt−2

+


Iy 0

0 0

0 Iα

0 0


[
uy,t

uα,t

]
, (A.82)
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or, more compactly, as

Wt = ΨWt−1 +Mut. (A.83)

We further partition the selection matrix M into

M =
[
My Mα

]
such that

M ′
yWt = Yt, M ′

αWt = αt.

In some instances, we need to extract the subvectors Zt and st from Wt, which is done by

the selection matrices

Ξ′z =
[
Iz 0

]
, Zt = Ξ′zWt, Ξ′s =

[
0 Is
]
, st = Ξ′sWt.

For the forward iterations of the Kalman filter, it is useful to separate st and Zt. To that

end, define

Ψss = Ξ′sΨΞs =

[
Φ1,αα Φ2,αα

Iα 0

]
, Ψsz = Ξ′sΨΞz =

[
Φ1,αy Φ2,αy

0 0

]
.

Moreover, we define

Msα = Ξ′sMα =

[
Iα

0

]
, Φyz =

[
Φ1,yy Φ2,yy

]
, Φys =

[
Φ1,yα Φ2,yα

]
.

Using this notation, the measurement equation can be written as

α̂t = M ′
sαst + ηt, ηt ∼ N(0, Vt). (A.84)

B.6.2 Forward Filtering

The forward filtering iterations are obtained from a modified Kalman filter that recognizes

that yt is directly observable. Thus, only st is a latent state variable.

Recursive Assumption. We start from the assumption that

st−1|(Y1:t−1, α̂1:t−1) ∼ N
(
st−1|t−1, Pt−1|t−1(ss)

)
. (A.85)

We use the notation Pt−1|t−1(ss) to indicate that one can define a larger matrix, conforming
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with wt, which is partitioned as follows:

Pt−1|t−1 =

[
Pt−1|t−1(zz) Pt−1|t−1(zs)

Pt−1|t−1(zs) Pt−1|t−1(ss)

]
,

with the understanding that

Pt−1|t−1(zz) = 0, Pt−1|t−1(zs) = 0, Pt−1|t−1(sz) = 0.

Initialization. Just in a regular VAR analysis, we will condition the likelihood function on

observations to initialize the lags associated with the determination of (Z1, s1). Note that

the initial lags of Yt are directly observed under suitable definition of the sample period and

hence we know Z0. To initialize the latent state we set

s0|0 =

 α̂0

...

α̂−p+1

 , P0|0(ss) = diag
[
V0, · · · , V−p+1

]
.

Thus, we assume that

s0|(Y−p+1:0, α̂−p+1:0) ∼ N
(
s0|0, P0|0

)
.

For the smoother below, it will become important to properly account for the initialization

because we will also need draws of s0 = α−p+1:0 to set up the Gibbs sampler.

Forecasting. We begin by forecasting (Yt, st) jointly, using (A.82). Let[
Yt

st

] ∣∣∣∣(Y−p+1:t−1, α̂−p+1:t−1) ∼ N

([
yt|t−1

st|t−1

]
,

[
Pt|t−1(yy) Pt|t−1(ys)

Pt|t−1(sy) Pt|t−1(ss)

])
, (A.86)

where

Yt|t−1 = ΦyzZt−1 + Φysst−1|t−1

st|t−1 = ΨszZt−1 + Ψssst−1|t−1

Pt|t−1(yy) = ΦysPt−1|t−1(ss)Φ′ys + Σyy

Pt|t−1(sy) = ΨssPt−1|t−1(ss)Φ′ys +MsαΣαy

Pt|t−1(ss) = ΨssPt−1|t−1(ss)Ψ′ss +MsαΣααM
′
sα.

We can now factorize the joint distribution of (Yt, st) into a marginal distribution of Yt and
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a conditional distribution of st|Yt:

Yt|(Y−p+1:t−1, α̂−p+1:t−1) ∼ N
(
Yt|t−1, Pt|t−1(yy)

)
(A.87)

st|(Yt, Y−p+1:t−1, α̂−p+1:t−1) ∼ N
(
st|y,t−1, Pt|y,t−1(ss)

)
,

where

st|y,t−1 = st|t−1 + Pt|t−1(sy)[Pt|t−1(yy)]−1(Yt − Yt|t−1)

Pt|y,t−1(ss) = Pt|t−1(ss)− Pt|t−1(sy)[Pt|t−1(yy)]−1Pt|t−1(ys).

Finally, the distribution of α̂t conditional on yt and t− 1 information is

α̂t|(Yt, Y−p+1:t−1, α̂−p+1:t−1) ∼ N(α̂t|y,t−1, Ft|y,t−1), (A.88)

where

α̂t|y,t−1 = M ′
sαst|y,t−1

Ft|y,t−1 = M ′
sαPt|y,t−1(ss)Msα + Vt.

Updating. The updating step in the Kalman filter is done conditional on Yt. Generically,

p(st|α̂t, Yt, Y−p+1:t−1, α̂−p+1:t−1) (A.89)

∝ p(α̂t|st, Yt, Y−p+1:t−1, α̂−p+1:t−1)p(st|yt, Y−p+1:t−1, α̂−p+1:t−1).

We can use the standard updating formulas, substituting in the means and variances that

are conditional on Yt:

st|t = st|y,t−1 + Pt|y,t−1(ss)MsαF
−1
t|y,t−1(α̂t − α̂t|y,t−1) (A.90)

Pt|t(ss) = Pt|y,t−1(ss)− Pt|y,t−1(ss)MsαF
−1
t|y,t−1M

′
sαPt|y,t−1(ss).

B.6.3 Simulation Smoothing

The goal is to generate draws from the distribution of α−p+1:T given (Y−p+1:T , α̂−p+1:T ).

Note that the filter in its final step generates the distribution sT |(Y−p+1:T , α̂−p+1:T ). Be-

cause of the companion form, a draw siT determines αiT , . . . , α
i
T−p+1. Thus, the distribution

sT−1|(sT , Y−p+1:T , α̂−p+1:T ) is degenerate. In the implementation of the smoother, we will
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draw blocks as follows:

sT , sT−p|sT , sT−2p|(sT−p, sT ), sT−3p|(sT−2p, sT−p, sT ), . . . .

Because sT−jp = [α′T−jp, . . . , α
′
T−(j+1)p+1]′, this approach generates the entire sequence α−p+1:T .

However, special care needs to be given to α−p+1:0 and the fact that T may not be divisible

by p.

Preliminaries. Assuming for now that T is a multiple of p and that T = bp, where b is the

number of blocks, the simulation smoother relies on the factorization

p(Y−p+1:T , α−p+1:T |Y−p+1:0, α−p+1:0) =
b∏

j=1

p(Y(j−1)p+1:jp, α(j−1)p+1:jp|Y−p+1:(j−1)p, α−p+1:(j−1)p),

where, because of the VAR(p) structure of the state-transition equation,

p(Y(j−1)p+1:jp, α(j−1)p+1:jp|Y−p+1:(j−1)p, α−p+1:(j−1)p)

= p(Y(j−1)p+1:jp, α(j−1)p+1:jp|Y(j−2)p+1:(j−1)p, α(j−2)p+1:(j−1)p).

The conditional distribution on the right-hand side, can be obtained by iterating the com-

panion form (A.83) p periods forward:

Wt+p = ΨpWt +M

p−1∑
h=0

Ψhut+p−h.

Thus,

Wt+p|Wt ∼ N

(
ΨpWt,

p−1∑
h=0

ΨhMΣM ′Ψh′
)
. (A.91)

Now, set t = (j − 1)p and note that

W(j−1)p = [Y(j−1)p, α(j−1)p, . . . , Y(j−2)p+1, α(j−2)p+1],

as required.

Generic Smoother. We first modify the generic derivation of the smoother to account for

the presence of both Y−p+1:T and α̂−p+1:T in the conditioning set and the block sampling. As

before, it is convenient for now to assume that T = bp and the time index t shifts in steps



Online Appendix – This Version: October 13, 2022 A.38

of p periods, that is, t = (j − 1)p, where j = 0, . . . , b. Consider the following factorization

p(αt−p+1:t, αt+1:T , Y−p+1:T , α̂−p+1:T )

=

∫
p(α−p+1:T , Y−p+1:T , α̂−p+1:T )dα−p+1:t−p

=

∫
p(α−p+1:t, Y−p+1:t, α̂−p+1:t)

×

(
T∏

τ=t+1

p(Yτ |Yτ−p:τ−1, ατ−p:τ−1)p(ατ |Yτ , Yτ−p:τ−1, ατ−p:τ−1)p(α̂τ |ατ )

)
dα−p+1:t−p

= p(αt−p+1:t, Y−p+1:t, α̂−p+1:t)

×
t+p∏

τ=t+1

p(Yτ |Yτ−p:τ−1, ατ−p:τ−1)p(ατ |Yτ , Yτ−p:τ−1, ατ−p:τ−1)p(α̂τ |ατ )

×terms without αt−p+1:t.

Maintaining the assumption that T = bp and t = (j − 1)p, we can deduce

p(st|st+p, st+2p, . . . , sT , Y−p+1:T , α̂−p+1:T ) (A.92)

= p(αt−p+1:t|αt+1:T , Y−p+1:T , α̂−p+1:T )

∝ p(αt−p+1:t, αt+1:T , Y−p+1:T , α̂−p+1:T )

∝ p(αt−p+1:t, Y−p+1:t, α̂−p+1:t)p(Yt+1:t+p, αt+1:t+p|Yt−p+1:t, αt−p+1:t)

= p(st, Y−p+1:t, α̂−p+1:t)p(Zt+p, st+p|Zt, st).

The first proportionality follows from Bayes Theorem. The second proportionality follows

from dropping the factor p(Yt+p+1:T , αt+p+1:T |Yt+1:t+p, αt+1:t+p) because it does not depend

on αt−p+1:t. The last equality uses st = [α′t−p+1, . . . , α
′
t]
′ and Zt = [Y ′t−p+1, . . . , Y

′
t ]
′. Because

p(st, Y−p+1:t, α̂−p+1:t) = p(st|Y−p+1:t, α̂−p+1:t)p(Y−p+1:t, α̂−p+1:t),

it follows that

p(st|st+p, st+2p, . . . , sT , Y−p+1:T , α̂−p+1:T ) ∝ p(st|Y−p+1:t, α̂−p+1:t)p(Zt+p, st+p|Zt, st). (A.93)

Smoothing Formulas for the Linear Gaussian Model. We previously established that

st|(Y1:t, α̂1:t) ∼ N
(
st|t, Pt|t(ss)

)
.
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As previously shown in (A.91), iterating the companion form forward for p periods yields

(Zt+p, st+p)|(Zt, st) ∼ N

(
ΨpWt,

p−1∑
h=0

ΨhMΣM ′Ψh′
)
. (A.94)

Let

Wt|t = [Z ′t, s
′
t|t]
′

and define

Pt+p|t(ww) = ΨpΞsPt|t(ss)Ξ
′
sΨ

p +

p−1∑
h=0

ΨhMΣM ′Ψh′. (A.95)

The joint distribution of (st,Wt+p) is given by[
st

Wt+p

] ∣∣∣∣(·) ∼ N
([

st|t

ΨpWt|t

]
,

[
Pt|t(ss) Pt|t(ss)Ξ

′
sΨ

p′

ΨpΞsPt|t(ss) Pt+p|t(ww)

])
. (A.96)

Then, we sample st from

st ∼ N
(
sit|t+p, Pt|t+p(ss)

)
, (A.97)

where

st|t+p = st|t + Pt|t(ss)Ξ
′
sΨ

p′P−1
t+p|t(ww)

([
Zt+p

st+p

]
−ΨpWt|t

)
(A.98)

Pt|t+p(ss) = Pt|t(ss)− Pt|t(ss)Ξ′sΨp′P−1
t+p|t(ww)ΨpΞsPt|t(ss). (A.99)

T is not a multiple of p. Consider the following example. Suppose that T = 10 and p = 3.

In this case we can use the formulas to generate

p(s10|Y−2:10, α̂−2:10), p(s7|s10, Y−2:10, α̂−2:10),

p(s4|s7, s10, Y−2:10, α̂−2:10), p(s1|s4, s7, s10, Y−2:10, α̂−2:10).

The last step gives us

p(α−1:1|α2:10, Y−2:10, α̂−2:10),

but we still lack

p(α−2|α−1:10, Y−2:10, α̂−2:10).

In order to generate the draws needed to initialize the vector autoregressive law of motion of

the state transition equation, we take the following short-cut: (i) discard α−1:0, (ii) redraw

s0 from (A.97) by evaluating the formulas st|t+p and Pt|t+p(ss) for t = 0.
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C Solution of the KS Model

The aggregate state of the economy is s = (z, µ), where µ is the distribution of households

over (ε, x) pairs. We write µε to denote the conditional distribution of the assets given the

employment status ε. Expectations of test functions h(x) under this measure are denoted

by Eµε [h(x)] =
∫
h(x)dµε. Note that z is an exogenous state variable and µ an endogenous

state variable. A recursive competitive equilibrium is a list of functions

x′(ε, x; s), R(s), W (s), µ′(s). (A.100)

We will subsequently construct approximations to these functions.

C.1 Evolution of Asset Holdings

We begin with the evolution of asset holdings conditional on the exogenous two-state ε

process. The distribution of asset holdings at the beginning of the next period can be

determined as follows. For all measurable sets A,∫
I{x ∈ A}dµ′ε =

∑
ε̃

π(ε̃|ε)
∫

I{x′(ε̃, x; s) ∈ A}dµε̃. (A.101)

There is always a mass of individuals m̂ε at the borrowing constraint x. The evolution

of this mass can be characterized as follows:

m̂′ε =
∑
ε̃

π(ε̃|ε)
(∫

x>x

I{x′(ε̃, x; s) = x}dµε̃ + I{x′(ε̃, x; s) = x}m̂ε̃

)
. (A.102)

We write the density associated with µε as

qε(x) = m̂ε∆x(x) + (1− m̂ε)pε(x).

The discrete part corresponds to a point mass of m̂ε at x. Using ∆x(x) to denote the Dirac

function with the property that ∆x(x) = 0 for x 6= 0 and
∫

∆x(x)dx = 1. The continuous

part is represented by the (proper) density pε(x).

Next period’s point masses are given by

m̂′ε =
∑
ε̃

π(ε̃|ε)
[
(1− m̂ε̃)

∫ (∫
I{ηi ≤ x− x′(ε̃, x; s)}pη(η)dη

)
pε̃(x)dx (A.103)

+m̂ε̃

∫
I{ηi ≤ x− x′(ε̃, x; s)}pη(η)dη

]
,
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where, according to Bayes Theorem, π(ε̃|ε) = π(ε̃)π(ε|ε̃)/π(ε). Note that the updating

formula for the point mass has two parts. The first part captures households that were

unconstrained at the beginning of the period, but are constrained at the end of the period.

The second part captures households that remain at the borrowing constraint. η is an

idiosyncratic deviation from the decision rule x′(·) that ensures the distribution of x|(x > x).

The continuous part of next period’s asset distribution is given by

p′ε(x) =
∑
ε̃

π(ε̃|ε)
[
(1− m̂ε̃)

∫
pη(x− x′(ε̃, x̃; s))I{x > x}pε̃(x̃)dx̃∫ ∫
pη(x− x′(ε̃, x̃; s))I{x > x}pε̃(x̃)dx̃dx

(A.104)

+m̂ε̃
pη(x− x′(ε̃, x; s))I{x > x}∫
pη(x− x′(ε̃, x; s))I{x > x}dx

]
,

with the understanding that the decision rule x′(·) is through s also a function of m̂ε and

pε(x). Equations (A.103) and (A.104) define a law of motion for the cross-sectional density

qε(x).

C.2 Firms and Households

Based on the asset distribution approximation, we can re-define the aggregate state as s =(
z, m̂e, pe, m̂u, pu

)
. Technology evolves according to

z′ = ρzz + σzω
′. (A.105)

The capital stock has to equal the net asset holdings:

K(s) =
∑
ε

π(ε)

[
(1− m̂ε)

∫
xpε(x)dx+ m̂εx

]
. (A.106)

Profit maximization of the representative firm implies

R(s) = αezKα−1(s)L1−α − δ (A.107)

W (s) = (1− α)ezKα(s)L−α .

We now turn to the optimization problem of the households. They take R(·), W (·), and

µ(·) as given. Define the conditional expectation

ψ(ε, x; z, m̂ε, pε) = βE
[(

1 +R(z′, m̂′ε, p
′
ε)
)
c
(
ε′, x′; z′, m̂′ε, p

′
ε

)−σ∣∣∣∣ε, x; z, m̂ε, pε

]
. (A.108)
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The desired asset holdings in the next period can be obtained by substituting the consump-

tion that satisfies the Euler equation into the budget constraint:

x′∗(ε, x; s) = W (s)
(
(1− τ)ε+ b(1− ε)

)
+
(
1 +R(s)

)
x− ψ−1/σ(ε, x; s). (A.109)

The actual asset holdings have to take into account the borrowing constraint:

x′(ε, x; s) = max
{
x, x′∗(ε, x; s)

}
. (A.110)

Once the asset holdings are determined, consumption is given by

c(ε, x; s) = W (s)
(
(1− τ)ε+ b(1− ε)

)
+
(
1 +R(s)

)
x− x′(ε, x; s). (A.111)

C.3 Finite-dimensional Approximation

Going forward, we will transition to using time subscripts for all aggregate states. We

approximate the density pt,ε(x) using the following finite-dimensional – denoted by (K)

superscript – representation:

p
(K)
t,ε (x) = exp

{
γt,ε,0 + γt,ε,1(x−mt,ε,1) +

K∑
k=2

γt,ε,k
[
(x−mt,ε,1)k −mt,ε,k

]}
. (A.112)

Here mt,ε,k are centralized moments of the distribution. As it will become apparent below,

we will essentially discretize the approximate density. The moments mt,ε,k are then used to

summarize the discretized distribution and reduce the dimensionality of the state space.

The parameters γt,ε,k and the moments mt,ε,k must be consistent with each other:

mt,ε,1 =

∫
xp

(K)
t,ε (x)dx (A.113)

mt,ε,k =

∫
(x−mt,ε,1)kp

(K)
t,ε (x)dx.

We also require that the approximate density integrates to one:

γt,ε,0 = − ln

∫
exp

{
γt,ε,1(x−mt,ε,1) +

K∑
k=2

γt,ε,k
[
(x−mt,ε,1)k −mt,ε,k

]}
dx. (A.114)

Conditional on the moments mt,ε,k, we can use (A.113) and (A.114) to recover the γ′t,ε,ks.

We now approximate the law of motion for the probability masses m̂t,ε and the moments
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mt,ε,k. First,

m̂t+1,ε =
∑
ε̃

π(ε̃|ε)
(∫

I{x′t(ε̃, x) = x}(1− m̂t,ε̃)p
(K)
t,ε̃ (x)dx (A.115)

+I{x′t(ε̃, x = x) = x}m̂t,ε̃

)
The mass of households at the borrowing constraint in period t+1 consists of the households

that were unconstrained in period t and then hit the constraint in period t + 1 and those

who were constrained in period t and remained constrained. One also has to account for the

employment transitions: π(ε̃|ε) is the probability of having been in employment status ε̃ in

period t given that the period t+ 1 employment status is ε.

Second, the moments of the continuous part of the asset distribution have to satisfy

mt+1,ε,1 =
∑
ε̃

π(ε̃|ε)
(∫

I{x′t(ε̃, x) > x}x′t(ε̃, x)(1− m̂t,ε̃)p
(K)
t,ε̃ (x)dx (A.116)

+I{x′t(ε̃, x) > x}x′t(ε̃, x)m̂t,ε̃

)
mt+1,ε,k =

∑
ε̃

π(ε̃|ε)
(∫

I{x′t(ε̃, x) > x}[x′t(ε̃, x)−mt+1,ε,1]k(1− m̂t,ε̃)p
(K)
t,ε̃ (x)dx

+I{x′t(ε̃, x) > x}[x′t(ε̃, x)−mt+1,ε,1]km̂t,ε̃

)
.

Conditional on the decision rule x′t(ε, x) and the initial density approximation p
(K)
t,ε̃ (x), Equa-

tions (A.115) and (A.116) define a law of motion for mt,ε,k and m̂k
t,ε. Combined with (A.112)

and (A.113) one obtains a transition equation for p
(K)
t,ε̃ (x).

The characterization of the law of motion for m̂t,ε and mt,ε,k involves integrals of the form∫
h(x)p

(K)
t,ε (x)dx.

These integrals are approximated using Gauss-Legendre quadrature. Let {xj, ωj}Jj=1 be a

collection of quadrature nodes and weights, then

∫
h(x)p

(K)
t,ε (x)dx ≈

J∑
j=1

h(xj)ωjp
(K)
t,ε (xj).
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Thus, for instance, we can define the quadrature approximation

mQ
t+1,ε,1 =

∑
ε̃

π(ε̃|ε)
( J∑

j=1

I{x′t(ε̃, xj) > x}x′t(ε̃, xj)(1− m̂t,ε̃)ωjp
(K)
t,ε̃ (xj) (A.117)

+I{x′t(ε̃, x) > x}x′t(ε̃, x)m̂t,ε̃

)
.

In order to implement the integration, we are effectively discretizing the cross-sectional

density of assets. However, rather than treating the p
(K)
t,ε (xj) directly as state variables

and eliminating the moments, we treat the lower dimensional vector of moments as state

variables. This imposes some parsimony on the characterization of the law of motion of the

cross-sectional densities by reducing the state space from J to K (in the numerical illustration

J = 25 and K = 3) and through (A.112) we can easily interpolate the density in-between

the grid points xj. We will subsequently work with the quadrature approximation and drop

the Q superscript.

Recall that in our notation pKt,ε(x) is a properly normalized density. The aggregate capital

stock can be obtained from the moments of the asset distribution:

Kt =
∑
ε

π(ε) [(1− m̂t,ε)mt,ε,1 + m̂t,εx] . (A.118)

In turn, the factor prices can be written as

Rt = αeztKα−1
t L1−α − δ (A.119)

Wt = (1− α)eztKα
t L
−α. (A.120)

Aggregate total factor productivity evolves according to

zt = ρzzt−1 + σzωt. (A.121)

We approximate the conditional expectation in the Euler equation using Chebychev polyno-

mials:

ψ
(L)
t (ε, x) = exp

{
L∑
l=1

θt,ε,lTl(ξ(x))

}
, (A.122)

where Tl(·) is the l’th order Chebychev polynomial and ξ(x) = 2(x−x)/(x̄−x)−1 transforms

the interval [x, x̄] into the interval [−1, 1]. Using the ψ(·) we write that asset and consumption
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choices as

x′∗,t(ε, x) = Wt

(
(1− τ)ε+ b(1− ε)

)
+
(
1 +Rt

)
x−

[
ψ

(L)
t (ε, x)

]−1/σ
(A.123)

x′t(ε, x) = max
{
x, x′∗,t(ε, x)

}
ct(ε, x) = Wt

(
(1− τ)ε+ b(1− ε)

)
+
(
1 +Rt

)
x− x′t(ε, x).

The coefficients for the Chebychev polynomial are determined by collocation. Define a

grid {xl}Ll=1, then {θt,ε,l}Ll=1 are obtained by solving the system of equations:

exp

{
L∑
i=1

θt,ε,iTi(ξ(xl))

}
= β

∑
ε̃

π(ε̃|ε)Et
[
(1 +Rt+1)c−σt+1

(
ε̃, x′t(ε̃, xl)

)]
, l = 1, . . . , L.

(A.124)

C.4 A Nonlinear Rational Expectations System

We now collect the equations that characterize the equilibrium approximation. For simplicity,

we assume that x = 0 which allows us to drop some indicator functions. Using (A.112), define

pt,ε,j = p
(K)
t,ε (xj)

so that we can write

pt,ε,j = fp
(
xj;mt,ε,1, . . . ,mt,ε,K , γt,ε,1, . . . , γt,ε,K), j = 1, . . . , J, (A.125)

where the function fp(·) is given by (A.112). Using the quadrature approximations, we can

express the consistency conditions between the γt,ε,ks and the mt,ε,ks as

mt,ε,1 =
J∑
j=1

xjωjfp
(
xj;mt,ε,1, . . . ,mt,ε,K , γt,ε,1, . . . , γt,ε,K) (A.126)

mt,ε,k =
J∑
j=1

(xj −mt,ε,1)kωjfp
(
xj;mt,ε,1, . . . ,mt,ε,K , γt,ε,1, . . . , γt,ε,K), k = 2, . . . , K.

This set of equations is used to determine the γt,ε,ks as a function of the mt,ε,ks.

Now define

x′t,ε,j = x′(ε, xj; st), j = 1, . . . , J.
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Moreover, assume that the first value of the x grid corresponds to the lower bound on asset

holdings: x1 = 0. Then we can write

mt+1,ε,1 =
∑
ε̃

π(ε̃|ε)
( J∑

j=1

x′t,ε̃,j(1− m̂t,ε̃)ωjpt,ε̃,j + x′t,ε̃,1m̂t,ε̃

)
(A.127)

mt+1,ε,k =
∑
ε̃

π(ε̃|ε)
( J∑

j=1

[x′t,ε̃,j −mt+1,ε,1]k(1− m̂t,ε̃)ωjpt,ε̃,j + [x′t,ε̃,1 −mt+1,ε,1]km̂t,ε̃

)
,

k = 2, . . . , K

m̂t+1,ε =
∑
ε̃

π(ε̃|ε)
( J∑

j=1

(1− m̂t,ε̃)ωjpt,ε̃,j + I{x′t,ε̃,1 = 0}m̂t,ε̃

)
.

The capital stock, the factor prices, and TFP are given by

Kt =
∑
ε

π(ε)(1− m̂t,ε)mt,ε,1 (A.128)

Rt = αeztKα−1
t L1−α − δ

Wt = (1− α)eztKα
t L
−α

zt = ρzzt−1 + σzεz,t.

We now turn to the households’ asset holding and consumption decision. With a slight

change in notation write

ψ
(L)
t (ε, x; θt,ε,1, . . . , θt,ε,L) = exp

{
L∑
l=1

θt,ε,lTl(ξ(x))

}
.

The desired asset holdings, actual asset holdings, and consumption can be summarized with

the following functions:

x′∗,t(ε, x) = fx′∗(ε, x;Wt, rt, θt,ε,1, . . . , θt,ε,L) (A.129)

= Wt

(
(1− τ)ε+ b(1− ε)

)
+
(
1 +Rt

)
x−

[
ψ

(L)
t (ε, x; θt,ε,1, . . . , θt,ε,L)

]−1/σ

x′t(ε, x) = fx′(ε, x;Wt, Rt, θt,ε,1, . . . , θt,ε,L)

= max
{

0, fx′∗(ε, x;Wt, Rt, θt,ε,1, . . . , θt,ε,L)
}

ct(ε, x) = fc(ε, x;Wt, Rt, θt,ε,1, . . . , θt,ε,L)

= Wt

(
(1− τ)ε+ b(1− ε)

)
+
(
1 +Rt

)
x− fx′(ε, x;Wt, Rt, θt,ε,1, . . . , θt,ε,L).

Thus,

x′t,ε,j = fx′(ε, xj;Wt, Rt, θt,ε,1, . . . , θt,ε,L), j = 1, . . . , J. (A.130)
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Finally, we can use the definition of ψ
(L)
t (ε, x):

ψ
(L)
t (ε, xl; θt,ε,1, . . . , θt,ε,L) (A.131)

= β
∑
ε̃

π(ε̃|ε)Et
[
(1 +Rt+1)f−σc (ε̃, xl;Wt+1, Rt+1, θt+1,ε,1, . . . , θt+1,ε,L)

]
, l = 1, . . . , L.

Overall, we obtain a rational expectations system in the following variables:

{pt,ε,j}︸ ︷︷ ︸
2J

, {γt,ε,k}︸ ︷︷ ︸
2K

, {mt,ε,k}, {m̂t,ε}︸ ︷︷ ︸
2(K + 1)

, Kt, Rt, Wt, zt︸ ︷︷ ︸
4

, {x′t,ε,j}︸ ︷︷ ︸
2J

, {θt,ε,l}︸ ︷︷ ︸
2L

.

Note that (A.125) delivers 2J equations that determine {pt,ε,j}; (A.126) delivers 2K equations

that implicitly determine {γt,ε,k}; (A.127) generates 2(K + 1) equations that determine the

evolution of {mt,ε,k} and {m̂t,ε}; (A.128) comprises 4 equations that determine the aggregate

variables Kt, Rt, Wt, and zt; (A.130) delivers 2J equations that determine {x′t,ε,j}; and,

finally, (A.131) generates 2L equations that determine {θt,ε,l}. Thus, the system contains as

many equations as variables.

C.5 Steady State and Local Dynamics

The model can now be solved by finding the steady state of the system defined by Equations

(A.125) to (A.131), which amounts to solve the model without aggregate shocks using a

projection approach. The system can then be log-linearized around the steady state and the

first-order dynamics can be obtained with a standard algorithm that solves linear rational

expectations models, as provided by DYNARE. Winberry’s MATLAB code treats {mt,ε,k},
{m̂t,ε} and z as state (pre-determined) variables and includes W , R, {pt,ε,j}, and {θt,ε,l} as

non-predetermined variables. The variables {γt,ε,k} and {x′t,ε,j} are substituted out.
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D A Second Simulation Experiment

In a second simulation experiment we generate data from a stylized heterogeneous agent

New Keynesian (HANK) model which is based on Auclert and Rognlie (2020).

Model. Households choose consumption cit to maximize

max
cit

E0

[
∞∑
t=0

βt(u(cit)− v(Nt))

]
(A.132)

subject to the budget constraint Budget constraint

cit + ait ≤ (1 + rt)ait−1 + yit, ait ≥ a,

where ait are asset holdings and yit is an idiosyncratic income process. The interest rate rt

is exogenous and evolves according to

rt = ρrrt−1 + εr,t, εr,t ∼ N(0, σ2
r). (A.133)

The interest rate innovations are interpreted as monetary policy shocks. It is assumed that

there is price stickiness in the background that allows the central bank to control the real

interest rate.

Household-level income evolves according to

yit = Yt ·
e

1+ζ log(Yt)
it

E
[
e

1+ζ log(Yt)
it

] (A.134)

where eit is idiosyncratic state that follows an AR(1) process

ln eit = ρe log eit−1 + uit, uit ∼ N(0, σ2
e). (A.135)

Note that sd(ln yit) = (1+ζ lnYt)sd(log sit). The cyclical properties of inequality and income

risk depend on the parameter ζ. When ζ > 0 income risk is procyclical, it is countercyclical

if ζ < 0, and acyclical when ζ = 0. Market clearing requires

Ct =

∫
citdi = Yt = Nt, At =

∫
aitdi = 0. (A.136)

The calibration of the model economy is summarized in Table A-2. We consider two

parameterizations. Under the “Perfect Aggregation” calibration income risk is acyclical and
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Table A-2: Calibration of HANK Model

Parameter Perfect Imperfect
Aggregation Aggregation

ρe Persistence of idiosyncratic shock 0.92
σe Stdev. of idiosyncratic shock 0.7
ρr Persistence of r 0.7
σr Stdev. of r 0.01
ζ Cyclical income risk 0.0 -0.5
a Minimum asset level −0.000001 -1.0

Notes: Under “Perfect Aggregation” the IRFs to an expansionary monetary policy shock from the HANK
model coincide with the IRFs from the representative agent (RA) model. Under “Imperfect Aggregation”
the IRFs from the HANK model and the RA model are different.

the borrowing constraint a is close to zero. Conditional on an exogeneous interest rate

sequence rt, aggregate output Yt is identical to the output in a representative agent New

Keynesian (RANK) economy, obtained by setting σε = 0, that faces the identical interest

rate series. Under the “Imperfect Aggregation” calibration, income risk is countercyclical

and aggregate outputs in the HANK and RANK economies differ.

We solve the stylized HANK model (rt, Yt, {yit}Ni=1) using the codes on the sequence-

space Jacobian method provided by the authors.24 Unlike the Winberry (2018) solution,

the sequence-space Jacobian method does not deliver a VAR representation. Instead, it

generates a moving average representation (impulse response function).

In Figure A-1 we show model-implied impulse responses of aggregate output to a mone-

tary policy (rt) shock. The figure compares responses obtained from the HANK model with

responses from a RANK model. Under the “Perfect Aggregation” calibration the HANK

and RA IRFs are identical. Under “Imperfect Aggregation” the countercyclical income risk

leads to an amplification and output responds more strongly in the HANK model.

Model Estimation and IRFs. To simulate aggregate observations from the HANK model,

we generate an innovation sequence {εr,t}Tt=−T∗ and multiply it by the moving average coef-

ficients depicted in Figure A-1 to construct the aggregate variables rt and Yt. Conditional

on Yt, cross-sectional observations can be generated by simulating the idiosyncratic income

process in (A.134) and (A.135). In the KS model simulations our cross-sectional observa-

tions were repeated cross-sections. For the HANK model we generate a panel data set by

simulating N time series ln eit, t = 1, . . . , T and then converting them into yits using (A.134).

24The code is from https://github.com/shade-econ/sequence-jacobian, and https://github.com/shade-

econ/nber-workshop-2022. The code simulates rt = rex ante
t−1 and we have to shift the simulated interest rate

by one period before we can estimate our vector autoregressive models.
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Figure A-1: Y’s IRFs to an Expansionary Monetary Policy Shock (RA vs. HANK)
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Notes: Solid blue: HANK IRF. Solid red: RANK IRF. Because rt is exogenous, the rt responses for HANK
and RANK model are identical.

We generate a sample of size N = 3, 000 and T = 150 and estimate the functional model and

an aggregate VAR.25 Even though our likelihood function was derived under the repeated

cross-section assumption, in the HANK simulation the estimation of the functional model

also works well based on panel data.

The panels in the first and second row of Figure A-2 show the simulated paths of rt

and Yt under perfect and imperfect aggregation. We use identical paths for the exogeneous

interest rate rt under the two calibrations. The most notable difference in the simulated

time series is that under imperfect aggregation output Yt is more volatile than under perfect

aggregation. This is consistent with the impulse responses plotted in Figure A-1. The panels

in the last row of Figure A-2 show histograms of the household-level income data for period

t = 50. For K = 6 the estimated density fits the cross-sectional data well.

Estimated IRFs obtained from our functional model and an aggregate VAR in (rt, Yt) are

plotted in Figure A-3. In both cases we have used the MDD to select the model specification.

25Under perfect aggregation the series rt and Yt are perfectly correlated. To facilitate the estimation, we
add a small amount of noise to the rt series which breaks the perfect correlation without distorting the VAR
estimates.
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Figure A-2: Simulated Data
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We find that both sets of estimated IRFs are very similar, regardless of whether the data

were generated under perfect and imperfect aggregation. Under imperfect aggregation there

is a more pronounced discrepancy between the true IRF and the estimated IRFs, due to

the moving average representation of the DGP being less well approximated by a VAR. We

conclude that a match between IRFs from the functional and the aggregate model should

not be interpreted as evidence in favor of perfect aggregation. It just implies that it is

not necessary to include cross-sectional data in a VAR to capture the correct IRFs of the

aggregate variables.
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Figure A-3: IRFs Comparison
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Notes: Functional model IRFs: blue. Aggregate Model IRFs: red. Model specifications are selected to
maximize MDD.
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E More About the Empirical Analysis

E.1 Data Construction

The observations on real per capita GDP, GDP deflator, and the unemployment rate are

downloaded from the Federal Reserve Bank of St. Louis’ FRED database:

https://fred.stlouisfed.org/.

The TFP series is available from the Federal Reserve Bank of San Francisco:

https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/.

The labor share series is available from the Bureau of Labor Statistics, labor productivity

and cost measures: https://www.bls.gov/lpc/.

The CPS raw data are downloaded from

http://www.nber.org/data/cps basic.html.

The raw data files are converted into STATA using the do-files available at:

http://www.nber.org/data/cps basic progs.html.

We use the series PREXPLF (“Experienced Labor Force Employment”), which is the same

as in the raw data, and the series PRERNWA (“Weekly Earnings”), which is constructed

as PEHRUSL1 (“Hours Per Week at One’s Main Job”) times PRHERNAL (“Hourly Earn-

ings”) for hourly workers, and given by PRWERNAL for weekly workers. STATA dictionary

files are available at:

http://www.nber.org/data/progs/cps-basic/

We pre-process the cross-sectional data as follows. We drop individuals if (i) the em-

ployment indicator is not available; and (ii) if they are coded as “employed” but the weekly

earnings are missing. In addition, we re-code individuals with non-zero earnings as employed

and set earnings to zero for individuals that are coded as not employed. A CPS-based un-

employment rate is computed as the fraction of individuals that are coded as not employed.

By construction this is one minus the fraction of individuals with non-zero weekly earnings,

which is used to normalize the cross-sectional density of earnings. It turns out that the

CPS-based unemployment rate tracks the aggregate unemployment rate (UNRATE from

FRED) very closely; see the Figure A-4. The levels of the two series are very similar, but

the CPS unemployment rate exhibits additional high-frequency fluctuations, possibly due to

seasonals that have been removed from the aggregate unemployment rate.

In the left panel of Figure A-5 we plot average log nominal earnings computed from the

cross-sectional data and log nominal per-capita GDP. We scale per-capita GDP by a factor
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Figure A-4: CPS Unemployment

Notes: CPS unemployment rate (blue, solid) and aggregate unemployment rate (red, dashed).

Figure A-5: Earnings and GDP

Log Earnings and GDP Log Earnings/GDP

Notes: Left panel: average log earnings (blue, solid) and log per capita GDP (red, dashed). Right panel:
average log earnings-to-GDP ratio (blue, solid) and demeaned log labor share (red, dashed) of the nonfarm
business sector. In both panels per-capita GDP is scaled by 2/3 to account for the labor share.
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of 2/3 to account for the labor share.26 After this re-scaling the mean of log earnings and log

per-capita GDP have approximately the same level. However, the mean log earnings grow

more slowly than per-capita GDP. In the right panel of the Figure we plot the average log

earnings-to-GDP ratio (here per-capita GDP is again scaled by 2/3) and the demeaned log

labor share of the nonfarm business sector (obtained from the Bureau of Labor Statistics).

The drop in the log earnings-to-GDP ratio is of the same order of magnitude as the fall in

the labor share over the sample period. In the remainder of this paper we simply standardize

individual-level earnings by (2/3) of nominal per-capita GDP.

E.2 Data Transformations

We transform the raw earnings-GDP ratio, denoted by z below, using the inverse hyperbolic

sine transformation, which is given by

x = g(z|θ) =
ln(θz + (θ2z2 + 1)1/2)

θ
=

sinh−1(θz)

θ
. (A.137)

The transformation is plotted in the center panel Figure A-6 for θ = 1. Note that g(0|θ) = 0

and g(1)(0|θ) = 1, that is, for small values of z the transformation is approximately linear.

For large values of z the transformation is logarithmic:

g(z|θ) ≈ 1

θ
ln(2θz) =

1

θ
ln(2θ) +

1

θ
ln(z).

The inverse of the transformation takes the form

z = g−1(x|θ) =
1

θ
sinh(θx) =

1

2θ
(eθx − e−θx).

Most of the calculations in the paper are based on px(x). But in some instances, it is

desirable to report for pz(z). From a change of variables (omitting the θ), we get

pz(z) = px(g(z))|g′(z)|,

where

g′(z) =
1 + θz

(θ2z2+1)1/2

θz + (θ2z2 + 1)1/2
=

1

(θ2z2 + 1)1/2
.

26Nominal per-capita GDP is obtained by multiplying real per-capita GDP by the GDP deflator
(GDPDEF from FRED). The factor 2/3 is a rule-of-thumb number that happens to align the levels in
the left panel. The average labor share of the nonfarm business sector over the sample period is 0.6.
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Figure A-6: Estimated Log Earnings Distributions
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Notes: Center panel: inverse hyperbolic sine transformation (blue, solid) for θ = 1, logarithmic transforma-
tion (red, dashed), and 45-degree line (magenta, dotted). Left and right panels: each hairline corresponds
to the estimated density of earnings for a particular quarter t, where t ranges from 1989:Q1 to 2017:Q3.

Whenever we do convert the estimated densities back from z to x, we recycle the density

evaluations at xj. Thus, we evaluate pz(z) for grid points zj = g−1(xj), which leads to

pz(zj) = px(xj)
∣∣g′(g−1(xj))

∣∣,
where∣∣g′(g−1(xj))

∣∣ =
1(

1
4
(eθxj − e−θxj)2 + 1

)1/2
=

2

(e2θxj + e−2θxj + 2e2θxje−2θxj)
1/2

=
2

eθxj + e−θxj
.

In the left and right panels of Figure A-6 we overlay the log-spline estimates of the cross-

sectional densities. The left panel shows the density of the original earnings whereas the

right panel shows the densities of transformed earnings-to-GDP ratio which is obtained by

the change-of-variables.
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Figure A-7: Estimated âk,t versus Smoothed ak,t
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Notes: The red solid lines correspond to the smoothed ak,t series, whereas the blue dashed lines represent
the estimated series âk,t.

E.3 Estimated versus Smoothed Coefficients

Figure A-7 overlays the estimated âk,t versus the smoothed ak,t’s generated as output of the

Gibbs sampler. Recall that as part of the transformation from α̂t into ât we demean and

orthogonalize the series. The discrepancy is the measurement error ηk,t, which is generally
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small. All of the series show low frequency movements around zero in combination with

some high frequency fluctuations. By construction, the smoothed series are smoother than

the actual series.

E.4 Shock Identification

Here we provide additional details on how to identify a shock that maximizes the contribution

to the variance of variable i at horizons h = 1, . . . , h̄. Define the matrix M =
[
0ny×nαc , Iny

]
and the vector ei that has a one in position i and zeros elsewhere such that we can write

wi,t+h − E[wi,t+h] = . . .+ e′i

h−1∑
j=0

Φj
1ΣtrMqα + . . . .

We can now define q∗α as the impact effect of the shock that maximizes the forecast error

variance over horizons h = 1, . . . , h̄:

q∗α = argmax e′i

[
h̄∑
h=1

h−1∑
j=0

Φj
1ΣtrMqαq

′
αM

′Σ′tr(Φ
j
1)′

]
ei. (A.138)

Using the facts that x′A′x = tr[xx′A] and tr[AB] = tr[BA], we can rewrite the objective

function as

e′i

[
h̄∑
h=1

h−1∑
j=0

Φj
1ΣtrMqαq

′
αM

′Σ′trΦ
j′

1

]
ei (A.139)

=
h̄∑
h=1

h−1∑
j=0

tr

[
(eie

′
i)(Φ

j
1ΣtrM)(qαq

′
α)(M ′Σ′trΦ

j′

1 )

]

=
h̄∑
h=1

h−1∑
j=0

tr

[
(qαq

′
α)(M ′Σ′trΦ

j′

1 )(eie
′
i)(Φ

j
1ΣtrM)

]

= q′α

[
h̄∑
h=1

h−1∑
j=0

(M ′Σ′trΦ
j′

1 )(eie
′
i)(Φ

j
1ΣtrM)

]
qα

= q′αSqα.

The optimization problem can therefore be expressed as Lagrangian

L = q′αSqα − λ(q′αqα − 1), (A.140)
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which leads to the first-order condition

Sqα = λqα. (A.141)

At the first-order condition, we obtain that L = λ. Thus, the solution is obtained by finding

the eigenvector associated with the largest eigenvalue of the matrix S.

E.5 Impulse Responses: K = 10 versus K = 22

In Figure A-8 we compare bands for the impulse responses of aggregate variables to aggregate

shocks for K = 10 and K = 22.

In Figures A-9 and A-10 we compare bands for the impulse responses of the cross-sectional

density and inequality measures to aggregate shocks for K = 10 and K = 22. While the

density responses look different, the responses of the inequality measures and percentiles

derived from these densities are very similar.
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Figure A-8: Responses of Aggregate Variables to Aggregate Shocks: K = 10 vs. K = 22
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Notes: IRFs for three-standard deviation aggregate shocks (orthogonalized via Cholesky factorization; see
(28)). Panels depict responses of the log level of TFP and GDP, scaled by 100, and responses of the
employment rate in percent. The bands correspond to pointwise 10th and 90th percentiles of the posterior
distribution for K = 10. Solid blue responses are based on K = 10 (same as main text); dashed red responses
are based on K = 22.
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Figure A-9: Earnings Density (Transformed Data) Response to a TFP Shock: K = 10 vs.
K = 22

K = 10 (Main Text) K = 22 (Alternate)
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Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and the
shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed) percentiles of the
posterior distribution. As distributional responses we depict differences between the shocked and the steady
state cross-sectional density at various horizons.
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Figure A-10: Inequality Measure (Original Data) Responses to a TFP Shock: K = 10 vs.
K = 22

K = 10 (Main Text) K = 22 (Alternate)
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Notes: Responses to a 3-standard-deviations shock to TFP. The system is in steady state at h = −1 and
the shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed) percentiles of
the posterior distribution.
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E.6 Business Cycle Anatomy

Figure A-11: Business Cycle Anatomy – TFP
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Notes: 10th, 50th, and 90th percentiles of posterior distributions of IRFs. Sign normalizations: positive
response upon impact of “GDP,” “Employment,” and 10th Percentile.


