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Abstract

Modern macroeconometrics often relies on time series models for which it is time-

consuming to evaluate the likelihood function. We demonstrate how Bayesian com-

putations for such models can be drastically accelerated by reweighting and mutating

posterior draws from an approximating model that allows for fast likelihood evalua-

tions, into posterior draws from the model of interest, using a sequential Monte Carlo

(SMC) algorithm. We apply the technique to the estimation of a vector autoregression

with stochastic volatility and two nonlinear dynamic stochastic general equilibrium

models. The runtime reductions we obtain range from 27% to 88%. (JEL C11, C32)
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1 Introduction

Modern macroeconometrics often relies on time series models for which it is time-consuming

to evaluate the likelihood function, either because it takes a long time to solve the underlying

structural model, or the likelihood evaluation requires to integrate out latent state variables.

In this paper we demonstrate how Bayesian computations for such models can be accelerated

by reweighting and mutating posterior draws from an approximating model that allows for

fast likelihood evaluations. We show that a sequential Monte Carlo (SMC) algorithm that

starts out with draws from the posterior distribution of an approximating model instead of

the prior distribution of the target model can drastically speed up the posterior computations.

SMC methods have been traditionally used to solve nonlinear filtering problems, an exam-

ple being the bootstrap particle filter of Gordon, Salmond, and Smith (1993). Subsequently,

Chopin (2002) showed how to adapt particle filtering techniques to conduct posterior infer-

ence for a static parameter vector. SMC methods are widely used in statistics; see Dai, Heng,

Jacob, and Whiteley (2022) for a recent review. They also have emerged in certain branches

of the econometrics literature. The first paper that applied SMC techniques to posterior

inference for the parameters of a (small-scale) DSGE model was Creal (2007). Subsequent

work by Herbst and Schorfheide (2014, 2015) fine-tuned the algorithm so that it could be

used for the estimation of medium- and large-scale models. Durham and Geweke (2014)

show how to parallelize a flexible and self-tuning SMC algorithm for the estimation of time

series models on graphical processing units (GPU).

In general, SMC algorithms approximate a target posterior distribution by creating in-

termediate approximations to a sequence of bridge distributions, indexed in this paper by n.

At each stage, the current bridge distribution is represented by a swarm of so-called particles.

Each particle is composed of a value and a weight. Weighted averages of the particle values

converge to expectations under the stage-n distribution. The transition from stage n− 1 to

n involves changing the particle weights and values (mutation) so that the swarm adapts to

the new distribution. Typically, these bridge distributions are constructed by either using

the full-sample likelihood (likelihood tempering, LT)—generated by raising this likelihood

function to the power of φn, where φn increases from zero to one—or by sequentially adding

observations to the likelihood function (data tempering, DT).

In this paper we propose a model tempering approach that takes a geometric average with

weights φn and 1− φn of the likelihood functions associated with the target model, denoted

by M1, and an approximating model M0. We document the achievable runtime reductions in
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various applications. In one of the applications M1 and M0 are vector autoregressions (VARs)

with and without stochastic volatility (SV). In another application we consider a nonlinear

and a linearized version of a DSGE model. In the econometrics literature Doppelt and O’Hara

(2020) used a version of model tempering to estimate a fractionally-integrated VAR based

on an approximate and an exact likelihood function. However, the paper does not study the

runtime and accuracy properties in detail and the initialization is based on Markov chain

Monte Carlo (MCMC) instead of SMC draws, which complicates the theoretical analysis

of the algorithm considerably. Cai, Del Negro, Herbst, Matlin, Sarfati, and Schorfheide

(2021) discuss potential benefits of model tempering without implementing it, and Acharya,

Chen, Del Negro, Dogra, Matlin, and Sarfati (2021) discuss model tempering as a strategy to

estimate a heterogeneous agent New Keynesian model, starting from a simpler representative

agent model.

In general, model tempering is an attractive computational strategy for applications in

which the likelihood evaluation for the target model is computationally costly and there is an

approximating model for which the likelihood evaluation is fast and generates a posterior that

is not too different from the posterior of the target model. We envision the approximating

model to be a simplified version of the target model for which posterior computations are

also implemented via SMC, in this case with likelihood tempering.1

We propose two important refinements to a general model tempering approach that may

improve the performance in practice and broaden its applicability. First, the M0 likelihood

tempering can be terminated before the weight on the likelihood function has reached the

value one. We denote the terminal weight on the M0 likelihood by ψ∗ ∈ (0, 1]. The early

termination will lead to a more diffuse M0 posterior, draws from which might be more easily

mutable into draws from the M1 posterior in the subsequent model tempering steps. This

feature introduces additional flexibility into the model tempering algorithm. A desirable

degree of M0 tempering can be assessed ex ante by examining the variance of importance

weights that are required to convert M0 draws into M1 draws. Second, our algorithm can

handle applications in which the parameter spaces for M0 and M1 are not exactly identical.

Building on earlier work in the statistics literature, e.g., Jasra, Stephens, Doucet, and

Tsagaris (2011), Del Moral, Doucet, and Jasra (2012), Schäfer and Chopin (2013), Geweke

and Frischknecht (2014), and Zhou, Johansen, and Aston (2015), and work in the DSGE

model literature, e.g., Herbst and Schorfheide (2019) and Cai et al. (2021), we choose the

1Even in the absence of a model tempering strategy, estimating approximating models is desirable as

part of the modeling and code debugging that ultimately leads to the target model.
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tempering schedule defined through the φn sequence adaptively. Our adaptive schedules

are calibrated by a single tuning parameter that controls the desired variance of the particle

weights. The smaller the discrepancy between the posterior distribution of the approximating

and the original model, the fewer bridge distributions are being used, and the faster the

posterior analysis.

We provide a formula for the runtime reduction achievable by model tempering that

depends on the number of stages as a function of ψ∗ used for the M0 and M1 SMC runs,

respectively, and the relative time it takes to evaluate the likelihood functions of the two

models, denoted by the ratio τ0/τ1. Note that the user can evaluate τ0/τ1 before running the

entire algorithm. We show that the runtime reduction profile is convergent as τ0/τ1 −→ 0. In

the limit, the runtime reduction is determined just by the number of M0 and M1 SMC stages,

which in turn depends on the alignment of the ψ∗-tempered M0 posterior and the target M1

posterior, relative to the alignment of the prior and the M1 posterior. To assess the potential

gains of model tempering ex ante, we recommend that the researcher computes the variance

of the importance sampling weights, that would be needed to reweight the draws from the

ψ∗-tempered M0 posterior to approximate the target M1 posterior, for various choices of ψ∗.

If there is a ψ∗ for which this variance is small relative to the number of SMC particles, then

the gains from model tempering are potentially large.

We consider several numerical illustrations of model tempering. In the first illustration,

both target and approximating densities are univariate Normal. We illustrate how the dis-

tance between the densities affects the number of stages (and computational time) required

to convert draws from the approximating density into draws from the target density. In the

second illustration we consider the estimation of a VAR with SV, using a homoskedastic

VAR as approximating model. In our illustration, model tempering is able to reduce the

computational time by 79%. At last we consider the estimation of two dynamic stochastic

general equilibrium (DSGE) models. We take M1 as a version of the model that is solved

with a second-order perturbation around the steady state and for which the likelihood func-

tion is evaluated with a bootstrap particle filter (BSPF). The approximating model is a

log-linearized version for which the likelihood function can be evaluated quickly using the

Kalman filter. In our application to the estimation of a real business cycle (RBC) model,

model tempering can reduce the runtime of our JULIA code from 655 to 80 minutes.

The idea of using an approximating model as part of a Monte Carlo strategy is, of course,

an old one. In fact, classic importance sampling as in Kloek and van Dijk (1978) is based on
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the notation that there is an alternative distribution available, possibly from an approximat-

ing model, from which one can sample directly and then reweight the draws. Unfortunately,

in many applications it is difficult to construct an approximating density that mimics the

target density which leads to inaccurate Monte Carlo approximations. SMC constructs the

approximating density sequentially using a tempering strategy. As an alternative, Hooger-

heide, Opschoor, and van Dijk (2012) proposed to approximate the target density by a

mixture of Student-t distribution. Here the challenge is to compute the appropriate mixture

weights.

Approximating models have also been used in Metropolis-Hastings algorithms to create

surrogate transitions or delayed acceptances. The basic idea is to first evaluate a sequence of

proposed draws under an approximating model that allows for a fast likelihood computation

to increase the probability that the final proposal, evaluated under the target posterior,

will be accepted; see, for instance, Liu (2001) and Christen and Fox (2005) for general

approaches, and Smith (2011) for an adaption to the estimation of DSGE models. Bon, Lee,

and Drovandi (2021) incorporate the delayed acceptance into the mutation step of an SMC

sampler. Finally, approximating models are also often used in particle filters to construct

proposal distributions that are adapted to next period’s observation, e.g., Kim, Shephard,

and Chib (1998) and, in the DSGE model context, the approximately conditionally optimal

proposals discussed in Herbst and Schorfheide (2015).

The remainder of this paper is organized as follows. Section 2 describes the proposed

model tempering SMC algorithm. Section 3 considers the simple example based on univariate

Gaussian posterior distributions. In Section 4 we use model tempering to estimate the VAR

with SV. In Section 5 we implement our algorithm to estimate two nonlinear DSGE model: an

RBC model and a New Keynesian DSGE model with asymmetric price and wage adjustment

costs. Section 6 concludes. An Online Appendix contains supplemental information on the

methodology and further details and results for the numerical illustrations.

2 Bayesian Inference, SMC, and Model Tempering

VARs, DSGE models, and other time series models are often estimated using Bayesian infer-

ence for several reasons. First, the Bayesian framework provides a powerful toolkit to handle

the presence of latent variables in state-space models. Second, uncertainty about parame-

ters, shocks, and unobserved state variables is treated identically which makes it conceptually
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straightforward to form predictive distributions that reflect all sources of uncertainty. Third,

prior distributions can be used to regularize the estimation of high-dimensional models (e.g.,

VARs) or to incorporate additional information not contained in the estimation sample

(DSGE model estimation).

Bayesian inference combines a prior distribution p(θ) with a likelihood function p(Y |θ)
to form a posterior distribution p(θ|Y ), which is given by

π(θ) ≡ p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

, p(Y ) =

∫
p(Y |θ)p(θ)dθ, (1)

where Y = Y1:T = {y1, y2, ..., yT} and the normalization constant p(Y ) is called the marginal

data density (MDD). In most applications, the posterior distribution p(θ|Y ) does not belong

to a family of distributions for which moments and percentiles can be easily calculated or

draws can be obtained by direct sampling. In this paper we use an SMC algorithm to sample

from the posterior distribution p(θ|Y ). The algorithm combines insights from importance

sampling and Markov chain Monte Carlo (MCMC) techniques. Two of its key advantages

are that it is able to provide accurate approximations of non-regular posterior distributions2

and that it can be easily parallelized, unlike MCMC algorithms. In Section 2.1 we describe

a generic SMC algorithm to sample from the posterior distribution of θ. The section draws

heavily from the more detailed exposition in Herbst and Schorfheide (2014, 2015). Model

tempering, which is the focus of our paper, is introduced in Section 2.2 and implementation

details are discussed in Section 2.3. In Section 2.4 we assess potential runtime reductions.

2.1 A Generic SMC Algorithm

In order to draw from π(θ), the SMC algorithm uses a sequence of bridge posterior distri-

butions {πn(θ)}Nφn=0, illustrated in Figure 1, where the last one in the sequence equals the

posterior distribution – πNφ(θ) = π(θ) – and where each πn−1(θ) is used as the proposal

density for πn(θ). The bridge posteriors are constructed from stage n likelihood functions

pn(Y |θ) and defined as

πn(θ) =
pn(Y |θ)p(θ)∫
pn(Y |θ)p(θ)dθ

. (2)

2Herbst and Schorfheide (2014) document empirically in the context of the Smets and Wouters (2007)

model with a diffuse prior, that the SMC algorithm is able to capture the multimodality of the posterior

distribution much better than a Metropolis-Hastings algorithm. Mathews and Schmidler (2022) show theo-

retically through finite-sample accuracy bounds that when target distributions are multimodal, global mixing

of the Markov kernel may be slow and SMC is preferable over MCMC.
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Figure 1: Evolution of Bridge Distributions

Notes: The sequence of bridge distributions for a scalar parameter θ is shown along the y-axis.

Each density πn(θ) is represented by a particle approximation {θin,W i
n}Ni=1. Thus, at stage

n the algorithm propagates the particles {θin−1,W i
n−1}Ni=1 so that they come to represent the

target density πn(θ). Formally, the algorithm proceeds in the following steps:

Algorithm 1 (Generic SMC Algorithm)

1. Initialization. (n = 0 and φ0 = 0.) Draw the initial particles from π0(θ): θi1 ∼ π0(θ)

and W i
1 = 1, i = 1, . . . , N .

2. Recursion. For n = 1, . . . , Nφ,

(a) Correction. Reweight the particles from stage n− 1 by defining the incremental

weights

w̃in =
pn(Y |θin−1)
pn−1(Y |θin−1)

(3)

and the normalized weights

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N. (4)
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(b) Selection (Optional). Resample the swarm of particles, {θin−1, W̃ i
n}Ni=1, and

denote resampled particles by {θ̂in,W i
n}Ni=1, where W i

n = 1 for all i.

(c) Mutation. Starting from θ̂in, propagate the particles {θ̂in,W i
n} via NMH steps

of a Metropolis-Hastings (MH) algorithm with transition density Kn(θ|θ̃; ζn) and

stationary distribution πn(θ). Note that the weights are unchanged, and denote

the mutated particles by {θin,W i
n}Ni=1.

An approximation of Eπn [h(θ)] is given by

h̄n,N =
1

N

N∑
i=1

h(θin)W i
n. (5)

3. For n = Nφ (φNφ = 1) the final importance sampling approximation of Eπ[h(θ)] is

given by:

h̄Nφ,N =
N∑
i=1

h(θiNφ)W i
Nφ
. (6)

The correction step is a classic importance sampling step, in which the particle weights

are updated to reflect the stage n distribution πn(θ). The selection step is optional. On the

one hand, resampling adds noise to the Monte Carlo approximation, which is undesirable. On

the other hand, it equalizes the particle weights, which increases the accuracy of subsequent

importance sampling approximations. The decision of whether or not to resample is typically

based on a threshold rule for the variance of the particle weights which can be transformed

into an effective particle sample size (ESS):

ÊSSn = N
/( 1

N

N∑
i=1

(W̃ i
n)2

)
. (7)

If the particles have equal weights, then ÊSSn = N . If one particle has weight N and

all other particles have weight 0, then ÊSSn = 1. These are the upper and lower bounds

for the effective sample size. To balance the trade-off between adding noise and equalizing

particle weights, we execute the resampling step if ÊSSn falls below N/2 using a systematic

resampling algorithm.

The mutation step changes the particle values. In the absence of the mutation step, the

particle values would be restricted to the set of values drawn in the initial stage from the

prior distribution. This would clearly be inefficient, because the prior distribution is typically

a poor proposal distribution for the posterior in an importance sampling algorithm. As the
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algorithm cycles through the Nφ stages, the particle values successively adapt to the shape

of the posterior distribution. This is the key difference between SMC and classic importance

sampling. The transition kernel Kn(θ|θ̃; ζn) is designed to have the following invariance

property:

πn(θn) =

∫
Kn(θn|θ̂n; ζn)πn(θ̂n)dθ̂n. (8)

Thus, if θ̂in is a draw from πn, then so is θin. The mutation step can be implemented by

using one or more steps of a MH algorithm. The probability of mutating the particles can

be increased by blocking the elements of the parameter vector θ or by iterating the MH

algorithm over multiple steps. The vector ζn summarizes the tuning parameters of the MH

algorithm.

2.2 Model Tempering

Up to now we imposed minimal conditions on the sequence of bridge posterior distributions.

To initialize the algorithm, we implicitly required required that it is possible to sample

from the initial distribution π0(θ), which is typically the prior p(θ) under likelihood or data

tempering, and we required that the stage Nφ posterior is equal to the target posterior

distribution: πNφ(θ) = π(θ). While previous applications of Algorithm 1 in econometrics

focused on either data or likelihood tempering, the contribution of our paper is to assess

the performance of the model tempering approach. Under model tempering the bridge

distributions are constructed as follows. Let M1 be the target model with likelihood function

p(Y |θ,M1) and let M0 be an approximating model with likelihood function p(Y |θ,M0). We

define the bridge likelihood functions that are used in Steps 2(a) and 2(c) of Algorithm 1 as:

pn(Y |θ) = p(Y |θ,M1)
φnp(Y |θ,M0)

1−φn , φ0 = 0, φNφ = 1, φn ↑ 1. (9)

It can be easily seen that πNφ(θ) = p(θ|Y,M1), as required, and that the algorithm is initial-

ized with draws from the M0 posterior π0(θ) = p(θ|Y,M0). The intermediate distributions

are obtained by shifting the weight gradually from the M0 posterior to the posterior of the

target model M1.

Model tempering distinguishes itself from the two most widely-used tempering schemes,

likelihood tempering and data tempering, neither of which involve an approximating model

M0. Under likelihood tempering (e.g., Herbst and Schorfheide (2014)) the stage n posterior

is constructed from a tempered version of the full-sample likelihood function:

pn(Y |θ) = p(Y |θ,M1)
φn .



This Version: November 14, 2022 9

Under data tempering (e.g., Durham and Geweke (2014)) the bridge distributions are ob-

tained from a fraction of the sample observations πn(θ) ∝ p(Y1:bφnT c|θ,M1)p(θ) or, as in Cai

et al. (2021), by gradually shifting the weight from a short-sample likelihood to a full-sample

likelihood:

pn(Y |θ) = p(Y1:T |θ,M1)
φnp(Y1:T0|θ,M1)

1−φn , T0 < T.

Model tempering is a computationally efficient alternative under two conditions. First,

the likelihood evaluation of the target model M1 is computationally costly, whereas the

likelihood evaluation of the approximating model M0 is, in relative terms, fast. Second, the

likelihood functions of the target and the approximating model have to be sufficiently close

such that only a modest number of intermediate stages are required to convert draws from

the M0 posterior into draws from the M1 posterior. We provide a more detailed discussion

in Section 2.4 below.

2.3 Implementation Details

Adaptive Tempering Schedule. Under the adaptive tempering schedule used in Cai et

al. (2021) φn is chosen to target a desired level of the ESS defined in (7). Emphasizing the

dependence of the incremental weights on the current tempering coefficient φ, write w̃in in

(3) as

w̃i(φ) =
p(Y |θin−1,M1)

φp(Y |θin−1,M0)
1−φ

p(Y |θin−1,M1)φn−1p(Y |θin−1,M0)1−φn−1

and define

f(φ) = ÊSSn(φ)− αÊSS
∗
n−1, 0 < α ≤ α < 1,

where ÊSS
∗
n−1 = ÊSSn−1 if the stage n − 1 selection step (resampling) was executed and

ÊSS
∗
n−1 = N otherwise. Let φ∗n satisfy f(φ∗n) = 0 and define φn = min{φ∗n, 1}.

The parameter α, to be specified by the user, is the targeted reduction in ESS. It can

be shown that for φ > φn−1 the ESS satisfies the inequality ÊSSn(φ) < ÊSS
∗
n−1. Moreover,

ÊSSn(φ) is a strictly decreasing function of φ such that f(φ) = 0 has a unique solution.

The adaptive algorithm chooses the tempering schedule to control the deterioration of the

ESS statistic. The smaller the slope of the function ÊSSn(φ), the larger the increments in

the tempering schedule. The number of stages Nφ is then endogenously determined and is

equal to the stage n at which φn = 1.

Model-Specific Parameters. It might be the case that not all of the parameters that

appear in M1 also affect M0, or vice versa. For instance, in one of our illustrations, M1
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is a VAR with SV, whereas M0 is a homoskedastic VAR. Thus, the M1 parameter vector

contains additional parameters that govern the dynamics of the SV processes. Partition

θ′ = [θ′c, θ
′
0, θ
′
1], where θc is the vector of common parameters and θj are parameters specific

to model Mj. The likelihood functions are given by

p(Y |θ,Mj) = p(Y |θc, θj,Mj), j = 0, 1

and

pn(Y |θ) = p(Y |θc, θ1,M1)
φnp(Y |θc, θ0,M0)

1−φn . (10)

Consider stage n = 0 with φ0 = 0. Because θ1 does not enter the M0 likelihood function,

its distribution does not get updated in view of the data Y and we can factorize the M0

posterior as follows.

π0(θ) = p(θ|Y,M0) = p(θc, θ0|Y,M0)p(θ1).

Thus, the model tempering SMC algorithm starts from posterior draws of (θc, θ0) and prior

draws from θ1. The use of prior draws for θ1 in the absence from any information through

M0 is both natural and desirable.

At stage n = Nφ the SMC algorithm approximates the M1 posterior which, on the

enlarged parameter space, is given by

πNφ(θ) = p(θ|Y,M1) = p(θc, θ1|Y,M1)p(θ0).

The ultimate object of interest is, in slight abuse of notation, the marginal posterior

p(θc, θ1|Y,M1) =

∫
πNφ(θc, θ0, θ1)dθ0.

While the SMC sampler generates draws from the joint posterior of (θc, θ0, θ1), draws from

the marginal posterior can be obtained by simply dropping the θ0 draws. A potential disad-

vantage of including θ0 into the definition of θ is that the SMC algorithm has to turn θ0 draws

from a potentially highly concentrated posterior p(θ0|Y,M0) into draws from a more diffuse

prior p(θ0), which may require an undesirably large number of steps. Thus, we recommend

to simply fix θ0 at a reasonable value, e.g., the posterior mean or mode from a preliminary

estimation of M0, and then drop it from the definition of θ.

Marginal Data Density Ratio. The SMC algorithm produces as a by-product an ap-

proximation of the marginal likelihood ratio p(Y |M1)/p(Y |M0). Note that

1

N

N∑
i=1

w̃inW̃
i
n−1 ≈

∫
pn(Y |θ)
pn−1(Y |θ)

[
pn−1(Y |θ)p(θ)∫
pn−1(Y |θ)p(θ)dθ

]
dθ =

∫
pn(Y |θ)p(θ)dθ∫
pn−1(Y |θ)p(θ)dθ

, (11)
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where ∫
p0(Y |θ)p(θ)dθ =

∫
p(Y |θ,M0)p(θ)dθ = p(Y |M0)∫

pNφ(Y |θ)p(θ)dθ =

∫
p(Y |θ,M1)p(θ)dθ = p(Y |M1).

In turn, it can be shown that

Nφ∏
n=1

(
1

N

N∑
i=1

w̃inW
i
n−1

)
a.s.−→ p(Y |M1)

p(Y |M0)
(12)

as the number of particles N −→∞; see, for instance, Herbst and Schorfheide (2014).

Tempered M0 Posterior. Rather than using the full-information posterior under M0 as the

proposal density, one can choose to incorporate only a fraction of the information embodied

in the posterior under model M0. Suppose that the draws from M0 are generated through

an SMC algorithm with likelihood tempering, which is what we are doing in the illustrations

in Sections 4 and 5. Then we can define

pn(Y |θ) = p(Y |θ,M1)
φn
[
p(Y |θ,M0)

ψ∗
]1−φn

, ψ∗ ∈ [0, 1) , (13)

which leads to the initialization

π0(θ;ψ∗) ∝ p(Y |θ,M0)
ψ∗p(θ) . (14)

The density π0(θ;ψ∗) represents the posterior obtained from the tempered M0 likelihood

function. Thus, the posterior sampling for the approximating model is terminated at φNφ =

ψ∗ < 1 instead of φNφ = 1. The advantage of this strategy is that for ψ∗ < 1 the density

π0(θ;ψ∗) is more diffuse than the full M0 posterior and may exhibit a greater overlap with

the target posterior in applications in which M0 and M1 posteriors differ substantially. Note

that for ψ∗ = 0 the model M1 would be estimated by standard likelihood tempering instead

of model tempering.

2.4 Computational Gains

To formalize the discussion of the computational advantage of model tempering we begin by

introducing some additional notation. Let Ñ0(ψ∗) = N0
φ(ψ∗) + 1 be the number of M0 SMC

stages to obtain a particle swarm that approximates π0(θ;ψ∗) in (14), including the initial

stage, which draws from the prior p(θ). For the subsequent M1 model tempering we write
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the number of stages as Ñ1(ψ∗) = N1
φ(ψ∗) + 1, again to emphasize the dependence on ψ∗.

We regard ψ∗ = 0 as M1 likelihood tempering and adopt the convention that Ñ0(0) = 0.

In the typical VAR and DSGE model applications for which the model tempering pro-

cedure is developed, the runtime of the SMC algorithm is predominantly determined by the

time it takes to evaluate the likelihood function of the underlying models. Let N∗ be the

number of likelihood evaluations per SMC stage. It is given by N∗ = N · NMH · Nblocks,

where N is the number of particles, NMH is the number of Metropolis-Hastings (MH) steps

during the mutation phase, and Nblocks is the number of parameter blocks used in each MH

step. Moreover, let τj be the time it takes to evaluate the likelihood function of model Mj,

j = 0, 1. Then the total runtime is given by

T (ψ∗, τ1, τ0) = N∗
(
Ñ1(ψ∗)τ1 + I{ψ∗ > 0}(Ñ1(ψ∗) + Ñ0(ψ∗))τ0

)
, (15)

where I{x > a} is the indicator function that is equal to one if x > a and equal to zero

otherwise. Under likelihood tempering, i.e., ψ∗ = 0, the likelihood function of M1 has to be

evaluated N∗Ñ1(0) times and there is no need to evaluate the M0 likelihood. Under model

tempering with ψ∗ > 0, the likelihood function of M1 has to be evaluated Ñ1(ψ∗) times and

the likelihood of M0 needs to be evaluated during the M0 SMC run and the M1 SMC run.

As mentioned in Section 2.2, we are concerned with the case in which the use of the

(tempered) M0 posterior reduces the number stages for the M1 SMC and the M1 likelihood

evaluation is substantially faster than the M0 evaluation:

Ñ1(ψ∗) < Ñ1(0) for ψ∗ > 0 and τ0 < τ1.

In the numerical illustrations in Sections 4 and 5 we report runtimes of model tempering

relative to likelihood tempering:3

R(ψ∗, τ0/τ1) =
T (ψ∗, τ1, τ0)

T (0, τ1, τ0)
=
Ñ1(ψ∗)

Ñ1(0)
+ I{ψ∗ > 0}Ñ1(ψ∗) + Ñ0(ψ∗)

Ñ1(0)

τ0
τ1
. (16)

The first ratio on the right-hand side of (16) captures the effect of reducing the number

of M1 SMC stages needed to reach the target posterior by starting from the tempered M0

posterior π0(θ;ψ∗) instead of the prior p(θ). It does not depend on the relative runtime of

the M1 and M0 likelihood evaluations. The second term captures the relative costs of having

to evaluate the M0 likelihood function. If Ñ1(ψ∗) + Ñ0(ψ∗) ≈ const as a function of ψ∗, then

3We found that this formula approximates the actual runtime reductions well.
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Figure 2: Example: Theoretical Runtime Reductions

SMC Stages R(ψ∗, τ0/τ1)

Notes: The left panel shows the functions Ñ0(ψ∗) and Ñ1(ψ∗), obtained from DGP 1 of Illustration 2 in
Section 4. The right panel depicts R(ψ∗, τ0/τ1) in (16).

the second term generates a level shift of R(ψ∗, τ0/τ1). As the likelihood evaluation of M0

becomes costless relative to the M1 likelihood evaluation,

lim
(τ0/τ1)−→0

R(ψ∗, τ0/τ1) =
Ñ1(ψ∗)

Ñ1(0)
. (17)

In the limit, the time it takes to estimate M0 becomes irrelevant and the reduction is purely

driven by the reduction in the number of SMC stages resulting from using an initial distri-

bution that is closer to the target posterior.

In Figure 2 we provide a numerical example for the runtime reduction. In the left

panel, we plot functions Ñ0(ψ∗) and Ñ1(ψ∗) which are obtained from DGP 1 of the VAR-SV

illustration in Section 4. The functions are evaluated at ψ∗ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. As

ψ∗ increases, the number of stages used in the M0 SMC, denoted by Ñ0(ψ∗), rises, whereas

the number stages in the M1, Ñ1(ψ∗), falls. The total number of stages required to reach

the target posterior stays approximately constant.

The right panel of Figure 2 depicts R(ψ∗, τ0/τ1) for various choices of τ0/τ1. In this

example the most runtime drastic reduction occurs by moving from likelihood tempering to

ψ∗ = 0.2. For ψ∗ ≥ 0.6 the function is essentially flat. In the VAR illustration τ0/τ1 =

1/9. We reduce the likelihood-evaluation ratio all the way to 0. The figure indicates that

the reduction in the ratio creates a modest downward shift of the level because the sum

Ñ1(ψ∗) + Ñ0(ψ∗) is fairly insensitive to ψ∗.

Thus far, we have provided an ex post evaluation of computational gains that relied
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on knowing how the number of SMC stages depends on ψ through the functions Ñ1(ψ∗)

and Ñ0(ψ∗). To conduct an ex ante assessment, we recommend the researcher first assesses

the times τj it takes to evaluate the likelihood function of the two models. Moreover, we

recommend for several values of ψ∗ to compute the variance (across i) of the importance

sampling weights

W̃ i(ψ∗) =
w̃i(ψ∗)

1
N

∑N
i=1 w̃

i(ψ∗)
, w̃i(ψ∗) =

p(Y |θi,M1)

p(Y |θi,M0)ψ∗
, (18)

where the θi’s are draws from π0(θ) ∝ p(Y |θ,M0)
ψ∗p(θ). If there is a ψ∗ > 0 for which

this variance is considerably smaller than for the ψ∗ = 0 (prior) weights, then there is

potential for a substantial runtime reduction. We further explore the relationship between

importance sample and runtime reductions in the context of the VAR and DSGE illustrations

in Sections 4.3 and 5.3.

3 Illustration 1: Univariate Normal Posteriors

In the first numerical illustration, we consider an environment in which we can directly

control the discrepancy between the approximate posterior and the target posterior. We

examine the performance of the model tempering approach as a function of the discrepancy

between the posteriors. Starting points are “posterior” densities p(θ|Y,M0) (approximate)

and p(θ|Y,M1) (target). We assume that θ is scalar and approximate and target density are

both Normal. In particular, we hold the target density fixed at p(θ|Y,M1) ∼ N(0, 1) and

consider a family of approximating densities p(θ|Y,M1) ∼ N(µ, σ2), where µ ranges from -3

to 0 in 0.5 increments and σ ranges from 0.2 to 2 in 0.2 increments.

Because in this example we do not construct the posterior density explicitly from a prior

distribution and a likelihood function, we let4

pn(θ|Y ) = p(θ|Y,M1)
φnp(θ|Y,M0)

1−φn

and define the incremental weight w̃in in (3) as

w̃in =
pn(θin−1|Y )

pn−1(θin−1|Y )
.

We run the SMC Algorithm 1 with N = 1, 000 particles, α = 0.95, and use NMH = 1 iteration

of a single-block random walk Metropolis-Hastings (RWMH) algorithm in the mutation step

4This is a slight abuse of notation because pn(θ|Y ) is not a properly normalized density of θ.
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Figure 3: From Approximate to Target Posterior: pn(θ|Y )

n = 0, φ0 = 0 n = 40, φ40 = 0.90 n = 71, φ71 = 1

Notes: Target density is N(0, 1) and approximate density is N(−3, 0.2).

with c0 = 0.5, targeting an acceptance probability of 0.25. The implementation of the

mutation step is described in more detail in the Online Appendix.

Figure 3 illustrates how the particle swarm moves from an approximate posterior to the

target posterior, despite very little overlap between the two densities. We overlay the target

posterior density, N(0, 1), an approximate density that is used in this example to initialize

the algorithm, N(−3, 0.2), and a histogram constructed from the stage n particle swarm.

For n = 0 (left panel) the particle swarm represents the approximate posterior p(θ|Y,M0),

and for n = Nφ = 71 (right panel) it represents the target posterior density p(θ|Y,M1). In

the center panel of the figure we consider the value of n = 40 for which the particle swarm

represents a weighted geometric mean of the two densities with φ40 = 0.9.

In Figure 4 we illustrate the performance of the SMC algorithm across Nrun = 100 runs

for the different choices of the approximate posterior. To graphically present the results,

we mapped (µ, σ) into a discrepancy measure. In principle one could use the variance of

the importance weights defined in (18). However, it turns out that we consider fairly large

discrepancies between M0 and M1 for which the population variance of the importance

weights is infinite. Thus, in this section we use an alternative discrepancy measure defined

as one minus the area under the minimum of the two densities:

D(M0,M1) = 1−
∫

min
{
p(θ|Y,M0), p(θ|Y,M1)

}
dθ.

By construction 0 ≤ D(M0,M1) ≤ 1.

Panel (1,1) shows the average number of stages, Nφ, as a function of D. In general, the

smaller the discrepancy D(M0,M1), the lower Nφ. Because multiple combinations of (µ, σ)

can lead to the same D(M0,M1), the graph associates multiple Nφ values with particular
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Figure 4: Performance of SMC Algorithm

(1,1) Average Number of Stages Nφ (1,2) Tempering Schedule, µ = −1

(2,1) Average Runtime [s] (2,2) Standard Deviation of Ê[θ|Y,M1]

Notes: Target density is N(0, 1) and approximate densities are N(µ, σ2) where µ ranges from -3 to 0 in 0.5
increments and σ ranges from 0.2 to 2 in 0.2 increments. The statistics panels (1,1) and (2,1) are averaged
across Nrun = 100 runs of the SMC algorithm. The standard deviation of the target posterior mean in (2,2)
is also computed across multiple runs of the SMC algorithm. In Panel (1,2) we plot the tempering schedules
for a single SMC run. Shades of blue indicate different σ values.

values of the discrepancy. For the same level of overlap, approximate densities with a larger

standard deviation require fewer stages. This observation provides a justification to start

the SMC algorithm from a tempered posterior of the approximating model rather than the

full posterior.5

In Panel (1,2) we depict the tempering schedules for µ = −1 and various values of σ.

Because the mean of the approximating density is different from the mean of the target

density, increasing the standard deviation σ from 0.2 to 2.0 increases the overlap of the two

densities, decreases D(M0,M1), and leads to a steeper tempering schedule. The runtime

5This observation is related to the well-known importance sampling result that the proposal density

should have fatter tails than the target density; see, e.g., Geweke (1989).
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pattern in Panel (2,1) mirrors the pattern of the average number of stages, because the

runtime increases linearly in the number of stages. Finally, we show the standard deviation

of the Monte Carlo approximation of E[θ|Y,M1] as a function of D(M0,M1) in Panel (2,2).

Here no clear relationship with the discrepancy between approximate and target posterior

emerges. Because the tempering schedule is chosen adaptively, the accuracy can be as good

for large mismatches as it can be for small discrepancies, but it takes more time in the former

case.

We deduce from this example that (i) the speed of the model tempering approach depends

on the discrepancy between the approximating and the target density. (ii) Except for the

additional runtime, the algorithm still works for fairly large discrepancies between the two

densities. (iii) It might be desirable to start from a tempered rather than the full posterior

of the approximating model.

4 Illustration 2: A VAR with Stochastic Volatility

This section demonstrates the benefits of model tempering in the context of a VAR with SV.

The illustration is based on the VAR analysis in Aruoba, Mlikota, Schorfheide, and Villalvazo

(2022), except that we do not include a censored endogenous variable. The VAR model that

is used as data generating process (DGP) and then estimated based on simulated data is

presented in Section 4.1. The parameterization of the VAR and the tuning of the SMC

algorithm are summarized in Section 4.2. The numerical results are discussed in Section 4.3.

4.1 VAR Specification

Model M1 is taken to be a bivariate VAR(1) with stochastic volatility:

yt = Φ1yt−1 + Φc + chol(Σ)εt, εt ∼ N(0, Dt), Dt = diag(dt), (19)

where Σ is a symmetric positive definite matrix and chol(·) is the lower-triangular Cholesky

factor. Let dt = [d1,t, d2,t]
′ and assume that its elements evolve according to

ln dit = ρi ln dit−1 + ξiη
i
t, ηit ∼ N(0, 1), i = 1, 2. (20)

The presence of stochastic volatility renders this model nonlinear. However, the conditional

linearity makes the likelihood evaluation relatively straightforward. We use a Bootstrap
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Particle Filter (BSPF) with Mbspf = 100 particles, as outlined in the Online Appendix, to

sequentially integrate out the latent volatility states. The BSPF likelihood evaluation can

be conveniently integrated into the SMC sampler described in Algorithm 1.6 Moreover, this

computational strategy is very similar to a Bayesian estimation approach widely-used for

the estimation of nonlinear DSGE models. We will use the BSPF also in Section 5.

The approximating modelM0 is identical toM1 except that it ignores stochastic volatility.

It is given by the homoskedastic VAR

yt = Φ1yt−1 + Φc + ut, ut ∼ N(0,Σ). (21)

In other words, M0 is obtained by setting ξi = 0 ∀ i. This restriction renders (ρi, ξi)

non-identified. One obtains the standard analytical expression for the likelihood of a VAR,

which as a result can be evaluated instantaneously. Thus, one important condition that

makes model tempering attractive is satisfied: the evaluation of the likelihood function for

the approximating model is considerably faster than the evaluation of the target model’s

likelihood.

We use a version of the Minnesota prior for (Φ1,Φc,Σ). The (marginal) prior for each ρi

is a Uniform distribution, while that for ξi is an inverse Gamma distribution. Further details

on the prior are provided in the Online Appendix. The prior specification is the same for all

DGP parameterizations.

4.2 Parameterization of DGP and Tuning of Algorithm

Estimation is conducted on T = 100 observations simulated from model M1. We use the

following parameterization for (Φ1,Φc,Σ):

Φ1 =

[
0.6 0.3

0.0 0.4

]
, Φc =

[
0.0

0.0

]
, Σ =

[
1.0 0.0

0.7 1.0

]
·

[
1.0 0.7

0.0 1.0

]
=

[
1.00 0.70

0.70 1.49

]
.

The closeness of the posteriors under the target model (VAR with SV) and the approximating

model (homoskedastic VAR) depends on the parameterization of the stochastic volatility

processes. We consider three different parameterizations which are summarized in Table 1.

Under DGP 1 (baseline) the standard deviations of the log volatility innovations are relatively

small. This implies that the ln dits only exhibit modest time variation and the homoskedastic

6The use of a particle filter to evaluate the likelihood in the SMC posterior sampler results in a SMC2

algorithm, as discussed in Chopin, Jacob, and Papaspiliopoulos (2013).
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Table 1: Parameterizations of the SV Processes

ρ1 ρ2 ξ1 ξ2

DGP 1 0.50 0.90 0.20 0.20

DGP 2 0.20 0.60 0.80 0.90

DGP 3 0.50 0.90 0.80 0.90

Figure 5: Stochastic Volatility Paths and M0 vs. M1 Posteriors

DGP 1 DGP 2 DGP 3

Notes: Top row: simulated volatility paths d1t and d2t. Bottom row: M0 (dashed black) versus M1 (solid
blue) posterior densities for Φ1,21. Dotted vertical line indicates true value.

specification provides a good approximation. Under DGP 2 the volatility innovations have

larger standard deviations but the log volatility processes are less persistent, implying large

yet short-lived swings in volatility. Finally, DGP 3 combines the baseline values for ρi with

the large values of ξi also considered under DGP 2, implying the largest distance between

the approximating model and the target model. This is confirmed in Figure 5. The panels

in the top row show the volatility paths, d1t and d2t, and the bottom row illustrates the

resulting discrepancy between the M0 and M1 posteriors, using the parameter Φ1,21 as an

example.

We use an adaptive tempering schedule with α = 0.95, as described in Section 2.3, to

ensure that the number of SMC stages and hence the computational time adjust endoge-
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Figure 6: Approximate Distributions for Φ1,21, DGP 2

Notes: The approximating posterior densities obtained from the tempered M0 likelihood function for ψ∗ ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger ψ∗ the darker) of gray. The M1 posterior is
depicted in blue.

nously to the distance between the proposal and the target density. We initialize the SMC

algorithm based on the following set of tempered M0 posteriors:

π0(θ) ∝ p(Y |θ,M0)
ψ∗p(θ), ψ∗ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0},

where ψ∗ = 0 corresponds to likelihood tempering, i.e., estimation of M1 without using

information from model M0. Higher values for ψ∗ increasingly tilt the proposal density away

from the prior distribution towards the posterior under the proxy model M0. For φ∗ = 1,

the proposal density coincides with the posterior under M0. This is illustrated in Figure 6

which shows along with the M1 target posterior the sequence of approximating posterior

distributions for Φ1,21 under DGP 2 obtained from the ψ∗-tempered M0 likelihood function.

The number of particles in the SMC sampler is set to N = 500. For each DGP and π0(θ)

we run the SMC algorithm Nrun = 200 times. We subsequently report averages across the

Nrun runs and assess the variance of the Monte Carlo approximations across runs.
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Figure 7: Log MDD and Precision

Mean (DGP 1, N = 500) Standard Deviation

Notes: The left panel depicts the mean and 90% credible bands based on Nrun = 200 runs for DGP 1
with N = 500 particles. The right panel shows the standard deviation of log MDD across the runs for all
considered setups.

4.3 Results

The left panel of Figure 7 plots average (across multiple SMC runs) Monte Carlo approx-

imates of the log MDD of model M1, ln p(Y |M1), under DGP 1 as a function of ψ∗, i.e.

as a function of the degree of model tempering used in the construction of π0(θ). The flat

line confirms that the Monte Carlo approximations are the same regardless of π0(θ), as we

are numerically approximating the same object regardless of ψ∗. The shaded area is a 95%

credible band for the log MDD. Figure A-4 in the Online Appendix confirms that the Monte

Carlo approximations for posterior mean, variance, 5th and 95th percentiles of the VAR

parameters are also invariant to ψ∗. Moreover, the result holds not just under DGP 1, but

also the other two DGPs (not shown in the figures).

The right panel of Figure 7 shows the standard deviation of the Monte Carlo approxi-

mation of the log MDD as a function of ψ∗ for the three different DGPs. For DGP 1 and

DGP 3 the standard deviations are weakly decreasing in ψ. The biggest drop occurs between

ψ∗ = 0 and ψ∗ = 0.2. For DGP 2 the profile is approximately flat, that is, based on the

discrepancy between approximating density and target density, the algorithm adjusts the

number of stages to keep the accuracy of the Monte Carlo approximation approximately

constant.

We now proceed by examining how ψ∗ affects the runtime of the SMC algorithm. The

main result is presented in Figure 8. The left panel compares the runtime profiles (normalized
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Figure 8: VAR-SV: Computational Times and Initial Variance of Particle Weights

Relative Runtime Importance Weight Variance

Notes: The left panel plots the computational time relative to LT (φNφ
(M0) = 0) for the three DGPs (all

with N = 500). The right panel depicts the variance of particle weights W̃ i(ψ∗) defined in (18). In both
panels we depict averages across the Nrun = 200 runs.

by the LT runtime) across the three DGPs. Incorporating information from model M0 in the

construction of the proposal density drastically reduces the runtime. The ratio of likelihood

evaluation times for M0 and M1 is τ0/τ1 = 9.14. For DGP 1 the runtime monotonically

decreases as the proposal is increasingly tilted towards the posterior of the approximate

model M0, with the largest reduction of close to 80% obtained for ψ∗ ∈ {0.6, 0.8, 1.0}. The

runtime reduction is largest for DGP 1, followed by DGP 2, while DGP 3 is associated with

the smallest reduction.

The steepest decrease in runtime occurs at ψ∗ = 0.2, which means that incorporating

just a bit of information from the approximate model M0 when constructing the proposal

density for the posterior of model M1 goes a long way in reducing the runtime. Adding

more information helps little at best and might be even counterproductive, as is the case

for DGP 3. In principle, for an even larger distance between the posteriors under the two

models, it is conceivable that there is no runtime reduction at all. In this case, the second

condition stated in Section 2.2 would be violated.

The runtime benefits of model tempering decrease with the distance between the poste-

riors under the target model M1 and the approximate model M0.
7 In our VAR application,

7The runtime for DGP 3 also exhibits the most variation across multiple runs; see Figure A-5 in the

Online Appendix. Depending on the run, there could be many or only very few particles in the small area

to which both posteriors assign some positive probability mass.
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this distance increases with the nonlinearities generated by the SV specification, which are

strongest for DGP 3. This distance is visualized in Figures A-1, A-2 and A-3 in the Online

Appendix. While for DGP 1 all marginal posteriors align very well for the two models,

for DGP 3 there are some parameters for which there is little overlap of probability mass

between the two distributions.

We discussed in Section 2.4 that this distance could be assessed ex ante, without having

completed the SMC run for M1, by computing the variance of the importance sampling

weights defined in (18). The variances as a function of ψ∗ for the three DGPs are depicted

in the right panel of Figure 8. The variance profiles look very similar to the runtime profiles

in the left panel. For ψ∗ = 0 the variance is approximately equal to the number of particles

minus one, N − 1, which means that one of the particles has weight N and the remaining

particles have weight zero. For ψ∗ = 0.2 the variance is considerably lower: it is 75 for

DGP 1 and 357 for DGP 3.

To summarize, in this VAR-SV application model tempering is able to reduce the relative

runtime by between 27% (DGP 3) and 79% (DGP 1) and increase the precision of Monte

Carlo approximations (DGP 1 and 3).

5 Illustration 3: Two Nonlinear DSGE Models

Finally, we consider the estimation of two nonlinear DSGE models, which are computa-

tionally demanding for two reasons: first, the model needs to be solved and, second, the

evaluation of the likelihood function requires a nonlinear filter. For the latter task, we will

use a particle filter similar to the one used to estimate the VAR with SV in Section 4. Most

of this section focuses on a small RBC model with asymmetric quadratic capital adjustment

costs. The adjustment cost parameters let us control the degree of nonlinearity. The model

economy is described in Section 5.1, the configuration of the simulation experiment is sum-

marized in Section 5.2, and the simulation results are presented in Section 5.3. In Section 5.4

we repeat the analysis with a larger New Keynesian DSGE model that features asymmetric

wage and price rigidities of Aruoba, Bocola, and Schorfheide (2017), henceforth ABS.

5.1 Model Specification

The model economy consists of a representative household and a representative firm. The

household consumes C, supplies labor in the amount of L, and owns the capital stock K. The
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firm hires labor and rents capital to produce a single good that can be used for consumption

and investment. The model dynamics can be described as the solution to the following social

planner problem:

V (K,S) = max
C,L,K′

C1−τ − 1

1− τ
−B L1+1/ν

1 + 1/ν
+ βES′|S[V (K ′, S ′)] (22)

s.t. C + I +KΦ(K ′/K) = Y,

Y = ZKαL1−α,

I = K ′ − (1− δ)K.

Households derive utility from consumption and disutility from labor. The parameter β is

the discount factor, τ determines the risk aversion, and ν is the Frisch labor supply elasticity.

The parameter α is the capital share parameter, and δ the depreciation rate. Total factor

productivity Z and the preference process B evolve exogenously according AR(1) laws of

motion:

Z = Z∗e
ẑ, ẑ′ = ρz ẑ + σzε

′
z, (23)

B = B∗e
b̂, b̂′ = ρbb̂+ σbε

′
b .

Thus, ε′z can be thought of as a supply and ε′x as a demand shock. Here we adopt the

convention that for a variable X, X∗ denotes the steady state and x̂ denote log deviations

from the steady state.

For the adjustment cost function we use a linex function which is asymmetric:

Φ(K ′/K) = φ1

(
exp(−φ2(K

′/K − 1)) + φ2(K
′/K − 1)− 1

φ2
2

)
. (24)

The parameter φ1 controls the overall level of adjustment costs and φ2 determines the asym-

metry. Notice that as φ2 −→ 0 the adjustment costs become quadratic around the replace-

ment investment level at which K ′/K = 1. If φ2 > 0, then it is more costly to reduce the

capital stock than it is to augment the capital stock.

Model M1 refers to a nonlinear solution of the RBC growth model, obtained using a

second-order perturbation around the steady state. The approximate model M0 is obtained

by conducting a first-order linearization. The models are estimated based on observations for

output, investment, and hours worked. We denote the observed variables by an o-superscript.

The measurement equations, now with t subscripts, take the form:

lnY o
t = lnYt + ηY,t, ηY,t ∼ N(0, σ2

Y ), (25)

ln Iot = ln It + ηI,t, ηI,t ∼ N(0, σ2
I ),

lnLot = lnLt + ηL,t, ηL,t ∼ N(0, σ2
L),
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where lnYt, ln It, and lnLt are the model-implied series and the ηts are measurement errors.

The measurement errors facilitate the use of a particle filter in combination with the nonlinear

DSGE model solution. Moreover, they help to overcome the singularity problem generated

by fitting a DSGE model with two shocks to three observables. We include the measurement

errors in both data generation and estimation and fix their standard deviations such that the

variance of the measurement error is approximately 5% of the variation of the series lnYt,

ln It, and lnLt, respectively.8

5.2 Model Parameterization and Tuning of Algorithm

To facilitate the estimation, we reparameterize the model as follows. First, we express the

discount factor β as a function of an annualized real interest rate (in percentages) r =

400(1/β − 1). Second, instead of parameterizing the model in terms of steady states of the

exogenous processes (Z∗, B∗), we use the steady states of output and labor, (Y∗, L∗), which

we set equal to one for both data generation and estimation. Because our observations lnY o
t ,

ln Iot , and lnLot do not contain direct information on the steady state interest rate and the

amount of investment necessary to replace depreciating capital stock, we fix r and δ at their

true values. We collect the parameters that are being estimated in the vector θ:

θ = [τ, ν, α, φ1, φ2, ρz, ρb, 100σz, 100σb]
′.

As in Section 4, the estimation is conducted using data simulated from model M1. The

parameterization of the DGP is summarized in Table 2. Most of the parameter values are

similar to values commonly found in the DSGE model literature, except that we scale up

the shock standard deviations and use fairly large asymmetric adjustment costs by setting

φ1 = 50 and φ2 = 200. We plot simulated sample paths in the Online Appendix. The length

of the estimation sample is T = 80. The remaining columns of Table 2 describe the prior

distribution for the Bayesian estimation.

In the SMC algorithm we use N = 1, 000 particles to represent the distribution of θ,

NMH = 2 Metropolis-Hastings steps in the mutation, and an adaptive tempering schedule

with α = 0.95. While the likelihood function associated with M0 can be evaluated with the

Kalman filter, a nonlinear filter is required to compute the likelihood function of M1. We

use the same BSPF that was used in Section 4 for the VAR estimation with Mbspf = 2, 000

particles.

8The values that we use are σY = .006, σI = .004, and σL = .004.
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Table 2: DGP and Prior

True Prior Distribution

Value Density P(1) P(2) HPD Low HPD High

r 3.00 fixed at 3.00

δ 0.08 fixed at 0.08

τ 2.00 G 1.00 1.00 .0005 2.27

ν 1.00 G 0.50 0.30 0.07 0.87

α 0.35 B 0.35 0.05 0.27 0.43

φ1 50.0 G 30.0 15.0 8.47 50.8

φ2 200 N 0 75.0 -123 116

ρz 0.95 B 0.6 0.15 0.35 0.80

ρb 0.90 B 0.6 0.15 0.38 0.82

100σz 2.00 IG 1.50 5.00 0.45 2.27

100σb 1.60 IG 1.50 5.00 0.53 2.35

Notes: We set Y∗ = L∗ = 1 and we define r = 400(1/β−1). G is Gamma distribution; B is Beta distribution;
IG is Inverse Gamma distribution; and N is Normal distribution, and U is Uniform distribution. P(1) and
P(2) are mean and standard deviations for B, G, and N distributions. The U distribution is parameterized
in terms of lower and upper bound. The IG distribution is parameterized as scaled inverse χ2 distribution
with density p(σ2|s2, ν) ∝ (σ2)−ν/2−1 exp[−νs2/(2σ2)], where P(1) is

√
s2 and P(2) is ν. The density of σ

is obtained by the change of variables σ =
√
σ2. HPD(Low,High) refers to the boundaries of 90% highest

prior density intervals.

5.3 Results

As before, we consider ψ∗ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where ψ∗ = 0 corresponds to M1

likelihood tempering. The relative time it takes to evaluate the M0 and M1 likelihood

functions is τ0/τ1 ≈ 1/109. This ratio depends on the number of particles Mbspf used in

the BSPF. Doubling Mbspf would approximately double τ1 and cut the ratio in half. The

numerical results from a single Nrun = 1 run of the model tempering SMC algorithm for the

various values of ψ∗ are presented in Figure 9. The top left (1,1) panel shows the log MDD

approximation, which is approximately constant as a function of ψ∗. This plot confirms

that regardless of ψ∗ the SMC algorithm delivers the same approximations of the posterior

distribution.

The tempering schedules are plotted in Panel (1,2). Starting from a (tempered) M0

posterior drastically reduces the number of stages needed to reach the target posterior. This

is consistent with the information provided by the importance weight variance in Panel (2,2).
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Figure 9: Results from the RBC Model

(1,1) Log MDD (1,2) Tempering Schedules

(2,1) Relative Runtime (2,2) Importance Weight Variance

Notes: Single run (Nrun = 1)

Reweighting draws from the prior p(θ) (ψ∗ = 0) to target the M1 posterior would lead to

a degenerate distribution of weights, whereby the weight of one draw is equal to one and

all other weights are equal to zero. Starting with draws from the ψ∗ = 0.2 tempered M0

posterior reduces the importance weight variance from N−1 = 999 to 37. Raising ψ∗ toward

one, lowers the variance further.

Panel (2,1) depicts the runtime of the model-tempered SMC relative to the M1 likelihood-

tempered SMC. The biggest drop, from 1.0 to 0.3 occurs by raising ψ∗ from 0.0 to 0.2.

Subsequent gains are smaller and the curve essentially turns flat from 0.8 onwards, converging

to 0.12. In terms of absolute runtimes, on a Windows workstation with Intel(R) Xeon(R)

CPU E5-2687 at 3.10GHz using 8 out of 10 cores model tempering with ψ∗ = 1 reduces

the runtime of our JULIA code from 655 to 80 minutes. In the Online Appendix we plot

the target and approximate (marginal) posterior densities for the DSGE model parameters.
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Despite the large φ1 and φ2 values, the nonlinearity generated by the DSGE model is not

particularly strong and M0 and M1 posterior distributions are quite similar. Thus, when

starting from ψ∗ = 0.8 or ψ∗ = 1 only minimal adjustments are required to turn the M0

posterior draws into M1 posterior draws which leads to substantial computational gains.

5.4 A New Keynesian DSGE Model

As a second DSGE model illustration we consider a New Keynesian DSGE model in which

asymmetric price and wage adjustment costs generate nonlinear dynamics. The model is

taken from ABS. It consists of final goods producing firms, a continuum of intermediate

goods producing firms, a representative household, and monetary and fiscal authorities. The

model replaces Rotemberg-style quadratic adjustment cost functions for wages and prices by

linex adjustment cost functions, which can capture downward (as well as upward) nominal

rigidities. The model abstracts from capital accumulation. We simulate a sample of length

T = 92 from the DSGE model using the posterior mean estimates for the period 1984:Q1-

2007:Q4 reported in Table 3 of ABS and conduct Bayesian estimation based on the prior

distribution summarized in the same Table.

As before, we use N = 1, 000 particles, set α = 0.95, and NMH = 2 (no blocking). The

likelihood function of the nonlinear version of the DSGE model is evaluated with the BSPF

using Mbspf = 25, 000. We increase the number of particles for the filter to ensure that the

likelihood approximation is sufficiently accurate to be usable for parameter estimation. We

start the model tempering from the full posterior, setting ψ∗ = 1. In this environment, the

relative time to evaluate the likelihood functions drops to τ0/τ1 ≈ .00004. This reflects the

increases number of particles in the BSPF as well as more costly BSPF runs due to a larger-

dimensional state space in this model. Conducting a single run of the algorithm we find

that model tempering instead of likelihood tempering reduces the runtime by approximately

80%, which is similar to the reduction in the RBC model application. Because τ0/τ1 is close

to zero, we deduce from (17) that the runtime reduction is driven by the reduction in the

number of stages achieved by model tempering relative to likelihood tempering, Ñ(1)/Ñ(0).

6 Conclusion

The implementation of posterior samplers for Bayesian inference often requires the explicit

evaluation of likelihood functions. Likelihood calculations for macroeconometric models can
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be computationally demanding, because it may take a long time to solve the underlying

structural model or it may be time-consuming to integrate out latent state variables. In

this paper we documented how an SMC algorithm with model tempering can speed up

posterior sampling for a VAR with stochastic volatility and a nonlinear DSGE model. The

method is suitable for applications in which the likelihood evaluation for the target model

is computationally costly and there is an approximating model for which the likelihood

evaluation is fast and that generates a posterior that is not too different from the posterior

of the target model.
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Online Appendix: Sequential Monte Carlo with Model Tempering

Marko Mlikota and Frank Schorfheide

This Appendix consists of the following sections:

A. Computational Details

B. Illustration 2: VAR with Stochastic Volatility

C. Illustration 3: A Nonlinear DSGE Model

A Computational Details

The presentations of the mutation algorithm in Section A.1 and the BSPF in in Section A.2

are based on Herbst and Schorfheide (2015).

A.1 SMC Particle Mutation

Algorithm 2 (Particle Mutation)

In Step 2(c) in iteration n of Algorithm 1:

1. Compute an importance sampling approximation Σ̃n of Vπn [θ] based on the particles

{θin−1, W̃ i
n}Ni=1.

2. Compute the average empirical rejection rate R̂n−1(ζ̂n−1), based on the Mutation step

in iteration n− 1. The average is computed across the Nblocks blocks.

3. Let ĉ1 = c∗ and for n > 2 adjust the scaling factor according to

ĉn = ĉn−1f
(
1− R̂n−1(ζ̂n−1)

)
,

where

f(x) = 0.95 + 0.10
e16(x−0.25)

1 + e16(x−0.25)
.

4. Define ζ̂n =
[
ĉn, vech(Σ̃n)′

]′
.

5. For each particle i, run NMH steps of a Random Walk Metropolis-Hastings Algorithm

using the proposal density

ϑi,mn |ζ̂n ∼ N

(
θi,m−1n , ĉ2nΣ̃n

)
. (A.1)
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A.2 (Particle) Filtering

We use a bootstrap particle filter (BSPF) to approximate the likelihood function in the

model with stochastic volatility. In the description of the filter we denote the latent state

by st.

Algorithm 3 (Bootstrap Particle Filter)

1. Initialization. Draw the initial particles from the distribution sj0
iid∼ p(s0|θ) and set

W j
0 = 1, j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw s̃jt from the state-transition density p(s̃t|sjt−1, θ).

(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , Y1:t−1, θ) (A.2)

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (A.3)

(c) Define the normalized weights

W̃ j
t = w̃jtW

j
t−1

/
1

M

M∑
j=1

w̃jtW
j
t−1. (A.4)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let

{sjt}Mj=1 denote M iid draws from a multinomial distribution characterized by sup-

port points and weights {s̃jt , W̃
j
t } and set W j

t = 1 for j =, 1 . . . ,M . An approxi-

mation of E[h(st)|Y1:t, θ] is given by h̄t,M = 1
M

∑M
j=1 h(sjt)W

j
t .

3. Likelihood Approximation. The approximation of the log-likelihood function is

given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

(
1

M

M∑
j=1

w̃jtW
j
t−1

)
. (A.5)
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B Illustration 2: A VAR with Stochastic Volatility

B.1 Prior Specification

Prior for (Φ1,Φ2,Σ). We use a Minnesota-type prior for the reduced-form VAR coeffi-

cients that appear in the homoskedastic version of the VAR in (21). The specification of the

Minnesota prior follows Del Negro and Schorfheide (2012). The prior is indexed by hyper-

parameters λ1, λ2, and λ3, and is implemented through dummy observations stacked into

(Y ∗, X∗). We use three sets of dummy observations, written as Y ∗j = X∗j Φ + Uj:[
λ1s1 0

0 λ1s2

]
=

[
λ1s1 0 0

0 λ1s2 0

]
Φ +

[
u11 u12

u21 u22

]
,

[
λ2y1 λ2y2

]
=

[
λ2y1 λ2y2 λ2

]
Φ +

[
u11 u12

u21 u22

]
,[

s1 0

0 s2

]
=

[
0 0 0

0 0 0

]
Φ +

[
u11 u12

u21 u22

]
,

where yi and si are the mean and standard deviation of yi. The first set of dummy observa-

tions implies that the VAR coefficients are centered at univariate unit-root representations.

The second set of dummy observations implies that if the lagged value yt−1 take the value

y, then the current value yt will be close to y. The third set of dummy observations induces

a prior for the covariance matrix of ut and is repeated λ3 times. The dummy observations

induce a conjugate MNIW prior for (Φ,Σ):

Σ ∼ IW (S, ν) , Φ|Σ ∼MN(µ,Σ⊗ P−1) ,

with

ν = T ∗ − k , S = S∗ , µ = Φ∗ , P = X∗′X∗ ,

where Φ∗ = (X∗′X∗)−1X∗′Y ∗ and S∗ = (Y ∗ −X∗Φ∗)′(Y ∗ −X∗Φ∗). We set λ1 = 1, λ2 = 1,

and λ3 = 3.

Prior for ρi. The prior for each ρi is Uniform on [0, 1].

Prior for ξi. The prior of ξi is specified as an inverse Gamma distribution. It is parameter-

ized as scaled inverse χ2 distribution with density p(ξ2|s2, ν) ∝ (ξ2)−ν/2−1 exp[−νs2/(2ξ2)],
where

√
s2 is 0.3 and ν is 2.0. The density of ξi is obtained by the change of variables

ξ =
√
ξ2.
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B.2 Further Results for the VAR-SV

Figure A-1: VAR-SV: Target and Approximate Posterior Densities for DGP 1

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the
tempered M0 likelihood function for ψ∗ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger ψ∗ the
darker) of gray. The M1 posterior is depicted in blue. The stochastic volatility parameters ρi, ξi, i = 1, 2
are not displayed because model M0 is uninformative for them.
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Figure A-2: VAR-SV: Target and Approximate Posterior Densities for DGP 2

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the
tempered M0 likelihood function for ψ∗ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger ψ∗ the
darker) of gray. The M1 posterior is depicted in blue. The stochastic volatility parameters ρi, ξi, i = 1, 2
are not displayed because model M0 is uninformative for them.
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Figure A-3: VAR-SV: Target and Approximate Posterior Densities for DGP 3

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the
tempered M0 likelihood function for ψ∗ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger ψ∗ the
darker) of gray. The M1 posterior is depicted in blue. The stochastic volatility parameters ρi, ξi, i = 1, 2
are not displayed because model M0 is uninformative for them.
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Figure A-4: VAR-SV: Monte Carlo Approximations of Posterior Statistics for DGP 1

Notes: Each panel shows the Monte Carlo approximation of the respective posterior statistic as a function
of the tempering parameter ψ∗ for the approximating model. Depicted are means across Nrun = 200 runs.
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Figure A-5: VAR-SV: Runtime and Tempering Schedule

Runtime Tempering Schedules

D
G

P
1

D
G

P
2

D
G

P
3

Notes: The left panel shows the mean runtime and 90% confidence interval across Nrun = 200 runs. The
right panel illustrates the evolution of the tempering schedule by plotting the median value of the tempering
parameter at each stage n.
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C Illustration 3: A Nonlinear DSGE Model

C.1 Equilibrium Conditions, Steady State, and Log-linearization

We write the social planner’s problem stated in the main text as

V (K,S) = max
C,L,K′

u(B,C, L) + βES′|S[V (K ′, S ′)]

s.t. C + I +KΦ(K ′/K) = Y, (A.6)

Y = f(Z,K,L), (A.7)

I = K ′ − (1− δ)K . (A.8)

We use the following functional forms:

u(B,C, L) =
C1−τ − 1

1− τ
−B L1+1/ν

1 + 1/ν
,

f(Z,K,L) = ZKαL1−α,

Φ(K ′/K) = φ1

(
exp(−φ2(K

′/K − 1)) + φ2(K
′/K − 1)− 1

φ2
2

)
.

The exogenous processes evolve according to:

Z = Z∗e
ẑ, ẑ′ = ρz ẑ + σzε

′
z,

B = B∗e
b̂, b̂′ = ρbb̂+ σbε

′
b .

Throughout this section we use fi(·) to denote the derivative of a function f(·) with respect

to its i’th argument.

C.1.1 First-Order Conditions (FOCs)

Substitute (A.7) and (A.8) into (A.6) and then take FOCs with respect to L and K ′. The

FOC for L takes the form

u2(B,C, L)f3(Z,K,L) + u3(B,C, L) = 0.

Using the functional forms, this leads to

(1− α)
Y

L
= BCτL1/ν . (A.9)

Now write

C = ZKαL1−α −K ′ + (1− δ)K −KΦ(K ′/K).
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The FOC for K ′ takes the form:

−u2(B,C, L)
[
1 + Φ1(K

′/K)
]

+ βE [V1(K
′, S ′)] = 0.

Plugging in the expressions for u2(·) and V1(·) we obtain

C−τ
[
1 + Φ1(K

′/K)
]

(A.10)

= βE
[
C ′−τ

(
α
Y ′

K ′
+ 1− δ − Φ(K ′′/K ′) + Φ1(K

′′/K ′)
K ′′

K ′

)]
,

where

Φ1(x) =
φ1

φ2

[1− exp{−φ2(x− 1)}] . (A.11)

C.1.2 Steady State

Rather than taking (Z∗, B∗) as given and solving for (Y∗, L∗) and the remaining steady states,

we proceed in the other direction and solve for (Z∗, B∗) as a function of (Y∗, L∗). Notice that

the adjustment costs are zero in steady state because Φ(1) = 0. Moreover, Φ1(1) = 0. We

deduce from (A.10) that
1

β
= α

Y∗
K∗

+ (1− δ),

which implies that

K∗ =
α

1/β − (1− δ)
Y∗. (A.12)

The capital accumulation equation implies that

I∗ = δK∗ =
αδ

1/β − (1− δ)
Y∗. (A.13)

The aggregate resource constraint implies that

C∗ = Y∗ − I∗ =

(
1− αδ

1/β − (1− δ)

)
Y∗. (A.14)

The production function can be solved for Z∗:

Z∗ =
Y∗

Kα
∗ L

1−α
∗

=

(
1/β − (1− δ)

α

)α(
Y∗
L∗

)1−α

. (A.15)

Finally, we solve (A.9) for B to obtain B∗:

B∗ = (1− α)
Y∗
L∗
C−τ∗ L−1/ν∗ .

In the numerical illustration we set Y∗ = L∗ = 1.
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C.1.3 Log-Linearization

Log-linearizing Equations (A.6), (A.7), (A.8), and (A.9) yields:

ŷ =
C∗
Y∗
ĉ+

I∗
Y∗
î (A.16)

ŷ = ẑ + αk̂ + (1− α)l̂ (A.17)

δî = k̂′ − (1− δ)k̂ (A.18)

(1 + 1/ν)l̂ = ŷ − b̂− τ ĉ. (A.19)

We proceed with the log-linearization of Φ1(x) in (A.11). Differentiating with respect to

the argument yields

Φ11(x) = φ1 exp{−φ2(x− 1)}.

Log-linearizing around x = exp(z) = 1 leads to the approximation:

Φ1

(
exp(z)

)
≈ Φ1(1) + Φ11(1) · 1 · (z − 0).

In turn, we can write

Φ1(K
′/K) ≈ φ1(k̂

′ − k̂),

which shows that the linex adjustment cost function is equivalent, up to second order, to a

quadratic adjustment cost function

Φ(K ′/K) ≈ φ1

2

(
K ′/K − 1

)2
.

We now turn to the log-linearization of (A.10) using the observation that Φ1(1) = 0:

−τC−τ∗ ĉ+ C−τ∗ φ1(k̂
′ − k̂)

= −τβC−τ∗ (αY∗/K∗ + 1− δ)E[ĉ′] + αβC−τ∗
Y∗
K∗

E[ŷ′ − k̂′] + φ1βC
−τ
∗ E[k̂′′ − k̂′].

Multiplying by Cτ
∗ , using (A.12), and noting that k̂′ is in the information for the conditional

expectation E[·] yields the simplified equation:

−τ ĉ+ φ1(k̂
′ − k̂) = −τE[ĉ′] +

(
1− β(1− δ)

)(
E[ŷ′]− k̂′

)
+ φ1β

(
E[k̂′′]− k̂′

)
. (A.20)

Equations (A.16) to (A.20) and the laws of motion for ẑ and b̂ form a linear rational expec-

tations system that determines the dynamics of the model.

After setting Y∗ = L∗ = 1, the measurement equations in (25) can be written as

lnY o = ŷ + ηY , ln Io = ln

(
αδ

1/β − (1− δ)

)
+ î+ ηI , lnLo = l̂ + ηl. (A.21)
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C.2 Model Solution, and Computational Details

While the approximate model M0 refers to a first-order linearization around the steady state

and is described in Section C.1 above, we obtain M1 as a second-order linearization around

the steady state, computed following Schmitt-Grohé and Uribe (2004). To implement it

in Julia, we use the package SolveDSGE, developed by Richard Dennis and available at

https://github.com/RJDennis.

C.3 Further Results for the RBC Model

Figure A-6: RBC Model: Simulated Data
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Figure A-7: RBC Model: Target and Approximate Posterior Densities

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the
tempered M0 likelihood function for ψ∗ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger ψ∗ the
darker) of gray. The M1 posterior is depicted in blue.

Figure A-8: RBC Model: Absolute Runtimes

Notes: Single run (Nrun = 1)


