
VAR Hyperparameter Determination Under

Misspecification

Oriol González-Casasús∗
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Abstract

Prior hyperparameters for Bayesian vector autoregressions (VARs) are often de-

termined by maximization of a marginal data density (MDD). However, if a VAR is

misspecified, it is not clear that a MDD based hyperparameter determination is de-

sirable. In this paper we use an asymptotically unbiased estimate of the multi-step

forecasting risk to determine the hyperparameters of shrinkage estimators in an envi-

ronment in which the VAR forecasting model is locally misspecified. We show that due

to misspecification the prediction results do not directly carry over to impulse response

function estimation and discuss the needed modifications to target impulse response

estimation risk. The resulting criterion can be used for hyperparameter determination

in local projection applications. The hyperparameter selection approach is illustrated

in a Monte Carlo study and an empirical application. (JEL C11, C32, C53)
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1 Introduction

Bayesian vector autoregressions (VARs) have been successfully used for macroeconomic fore-

casting since the early 1980s. They combine the VAR likelihood function with a prior dis-

tribution that shrinks the distance between maximum likelihood estimator (MLE) and prior

mean, thereby reducing the variability of the posterior mean estimator in settings where

the number of parameters is large relative to the number of available observations. One

or more hyperparameters control the precision of the prior distribution and hence the rel-

ative weight assigned to the prior mean in the construction of the posterior mean. For the

posterior mean to deliver accurate forecasts, a data-driven hyperparameter determination

is very important. Early work on forecasting with Bayesian VARs, e.g., Doan, Litterman,

and Sims (1984), Todd (1984), and Litterman (1986), calibrated the hyperparameters to

optimize forecast performance in a pseudo-out-of-sample setting. More recently, researchers

used the Bayesian marginal data density (MDD) to select, e.g., Del Negro and Schorfheide

(2004), or integrate out, e.g., Giannone, Lenza, and Primiceri (2015). In this paper, we will

consider hyperparameter selection based on an estimate of the prediction risk.

The MLE associated with a Gaussian likelihood function minimizes in-sample one-step-

ahead forecast errors. If the goal is h-step-ahead forecasting, then one could either iterate

the one-step-ahead MLE-based forecasts forward, or one could use a multi-step regression

that projects an n× 1 vector of variables yt on yt−h and additional lags. We will refer to the

resulting estimator as loss function estimator (LFE) where “loss” refers to the h-step-ahead

forecast error. The multi-step estimation objective function could be interpreted as a quasi-

likelihood function that ignores the serial correlation in the sequence of h-step-ahead forecast

error. This quasi-likelihood function can also be combined with a prior distribution to obtain

a quasi-posterior mean, that is a regularized version of the LFE. The contribution of this

paper is to develop a criterion that provides an estimate of the h-step ahead prediction risk

and can be used to choose the prior hyperparameter(s), select between an MLE and LFE

based shrinkage estimator, and determine the lag length of the VAR.

Starting point of our analysis is the local misspecification framework in Schorfheide

(2005), henceforth S2005. The paper assumes that yt is generated by a stationary infinite-

order vector moving average (VMA) process that drifts toward a VAR(p∗), where p∗ ≤ q at

rate T−1/2. Here T is the size of the estimation sample and the forecast origin. The fore-

caster uses a VAR(p) with p ≤ q lags to generate h-step-ahead forecasts. Two predictors are

considered in S2005: an MLE plug-in predictor that uses the MLE and iterates the VAR(p)
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forward for h-periods and an LFE plug-in predictor that directly projects yt onto yt−h and

additional lag. In the absence of misspecification, the MLE plug-in predictor is preferable

because it relies on a more efficient estimator. On the other hand, if the VAR(p) is misspec-

ified then the LFE plug-in predictor has the advantage that it converges to the parameter

values that are optimal to predict the infinite-order data generating process (DGP) with a

VAR of order p. The T−1/2 drift in the misspecification balances the bias-variance trade-off

among the two estimators.

S2005 proposed a prediction criterion PCT (ι, p) that provides an asymptotically unbiased

estimate of the h-step-ahead prediction risk and can be used to select between the predictor

ι ∈ {mle, lfe} and p the VAR lag length based on information available at the forecast

origin T . PC is a modification of Shibata (1980)’s final prediction error criterion. The

current paper extends the class of predictors by considering MLE or LFE posterior mean

(or shrinkage) estimators indexed by a hyperparameter λ that scales the precision of the

prior distribution from which the estimators are derived. PCT can be viewed as providing

an (asymptotically) unbiased risk estimate (URE) along the lines of Stein (1981) that can

be minimized with respect to the choice of the predictor type ι and the hyperparameter

λ. As a benchmark for the (ι, λ) selection we consider an oracle that can determine the

predictor and hyperparameter based on the knowledge of the conditional expectation of yT+h.

Unlike in compound decision problems, in our environment it is not feasible to implement

a selection that achieves the oracle risk. Instead, we provide simulation evidence on the

superior performance of the PC-based hyperparameter selection and compare it to a selection

based on a (quasi) MDD. Finally, the procedure is applied in an empirical illustration in

which we document its performance across a large set of VARs comprising different sets of

macroeconomic variables.

In the context of multi-step ahead forecasting LFEs are also called multi-step or direct

estimators and have been studied by, among others, Findley (1983), Weiss (1991), Bhansali

(1997), Clements and Hendry (1998), Ing (2003). Marcellino, Stock, and Watson (2006) un-

dertake a large-scale empirical comparison of MLE versus LFE plug-in predictors using data

on more than 150 monthly macroeconomic time series. They find that MLE plug-in predic-

tions tend to yield smaller forecast errors, in particular in high-order autoregressions and for

long forecast horizons. For series measuring wages, prices, and money, on the other hand,

LFE plug-in predictors improve upon MLE plug-in predictors in low-order autoregressions.

It is typically assumed in the literature on prediction with autoregressive models that the

DGP is fixed and the class of candidate forecasting models is increasing with sample size,
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e.g., Shibata (1980), Speed and Yu (1993), Bhansali (1996), Ing and Wei (2003). Thus, the

discrepancy between the best estimated forecasting model and the DGP vanishes asymp-

totically. We follow the opposite approach. We keep the class of forecasting models fixed

and let the degree of misspecification asymptotically vanish. In our setup the degree of

misspecification is “too small” to be consistently estimable. Hence, PC provides only an

asymptotically unbiased estimate of the final prediction risk but not a consistent estimate

as in Shibata (1980) framework.

While in empirical work the hyperparameter selection based on MDDs dominates, there

is theoretical work proposing objective functions that target the estimation risk of VAR co-

efficient estimators and transformations, e.g., impulse response functions, thereof. Examples

of such work include Hansen (2016) and Lohmeyer, Palm, Reuvers, and Urbain (2018). How-

ever, assumptions about model misspecification are different from our setting, which leads

to different risk estimates.

Multi-step estimators are also used to estimate impulse response functions (IRFs). Jorda

(2005) showed that a regression of yt on yt−h and additional lags as controls provides an

estimate of the h-order coefficient matrix of an VMA(∞) representation of yt, which mea-

sures the response of yt to a shock εt−h. The regression is called local projection (LP) and

provides a popular alternative to estimating IRFs by first fitting a VAR(p) using a one-

step-ahead (quasi) likelihood objective function and then iterating the VAR forward. The

likelihood-based estimation in the forecasting context corresponds to the VAR estimation in

IRF context, whereas the loss-function based estimation corresponds to the LP.

Plagborg-Moller and Wolf (2021) show that LPs and VARs estimate the same IRFs in

population if the number of lags is unrestricted. In finite samples, there is however a bias-

variance trade-off that is illustrated in a large-scale simulation study in Li, Plagborg-Moller,

and Wolf (2022). This trade-off is similar, but not identical, to the bias-variance trade-

off between the MLE and LFE shrinkage predictors. While in our local misspecification

framework, the LFE based predictor always has lower bias than the MLE based predictor,

it is not true that the standard LP IRF estimator always has lower bias than the VAR

estimator, while it remains the case that the LP estimator has larger variance than the VAR

estimator.

Montiel Olea and Plagborg-Moller (2021) propose a lag-augmented estimator to alleviate

inference problems caused by serial correlation in LPs. Montiel Olea, Plagborg-Moller, Qian,

and Wolf (2024) show that the lag augmentation also is essential for inference under mis-
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specification because it properly centers LP confidence intervals. We demonstrate that lag

augmentation is also useful for shrinkage estimation and modify PC to generate an asymp-

totically unbiased estimate of the IRF estimation risk that can be used for hyperparameter

selection.

The remainder of the paper is organized as follows: Section 2 describes the data gen-

erating process (DGP), the shrinkage estimators and predictors, and the prediction risk

associated with them. We initially focus on the case of using a potentially misspecified

VAR(1) to generate the forecasts. Section 3 discusses hyperparameter selection based on

an asymptotically unbiased risk estimate and a (quasi) marginal data density. Implications

for IRF inference based on local projections instead of VARs are discussed in Section 4.

Section 5 presents results from Monte Carlo experiments with a VAR(1). Section 6 has

an extension to the VAR(p) and the case of unknown lag length. An empirical forecasting

application is provided in Section 7. Finally, Section 8 concludes. Proofs, derivations, and

additional simulation results are relegated to the Online Appendix.

2 Multi-step Forecasting with a VAR(1)

An econometrician considers MLE and LFE shrinkage predictors to forecast an infinite-order

vector moving average process. The predictors are described in Section 2.1. The degree of

shrinkage is determined by a hyperparameter. Setting this hyperparameter to zero leads

to the estimators/predictors studied in S2005. The DGP is described in Section 2.2. It

takes the form of a VAR but the innovations are distorted by an infinite-dimensional linear

process that vanishes at rate T−1/2. In Section 2.3 we derive the limit distribution of the

predictors and the associated prediction risk. To keep the exposition relatively simple, we

first analyze forecasts from a locally misspecified VAR(1). The extension to multiple lags

and an unknown lag order p is provided in Section 6. The results presented in this section

generalize those from S2005 (Theorems 1 to 3) to shrinkage estimators.

2.1 MLE and LFE Shrinkage Predictors

To generate h-step-ahead forecasts, an econometrician considers a possibly misspecified

VAR(1) of the form

yt = Φyt−1 + ut, ut ∼ N(0,Σuu), (1)
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where yt is a n× 1 vector. The forecasts are evaluated under the quadratic prediction error

loss function

L(yT+h, ŷT+h) = tr
[
W (yT+h − ŷT+h)(yT+h − ŷT+h)

′]. (2)

W is a symmetric and positive-definite weight matrix.

If Φ were known then the optimal h-step-ahead point predictor at forecast origin T would

be ΦhyT . This raises the question of how to estimate Φh. We consider two alternatives: a

likelihood-based estimator of Φ that is plugged into the prediction function ΦhyT ; and a

direct estimate of Φh obtained by regressing yt on yt−h. We refer to the latter estimator

as loss-function based because the estimation objective function is the loss function under

which the forecasts are evaluated. Rather than using these two estimators directly, we

combine their estimation objective functions with a prior distribution to obtain a posterior

mean estimator that can be interpreted as a shrinkage estimator. The degree of shrinkage is

controlled by a hyperparameter that we determine in Section 3.

MLE Shrinkage Predictor. Define ST,kl =
∑T

t=1 yt−ky
′
t−l. The MLE can be expressed as

Φ̂T (mle) = ST,01S
−1
T,11. (3)

The likelihood-based shrinkage estimator of Φ is defined as the posterior mean obtained by

combining the likelihood function associated with (1) with the following prior:

Φ|Σuu ∼ N
(
ΦT , (λ̃PΦ)−1 ⊗ Σuu

)
. (4)

The prior are indexed by the hyperparameter λ̃ that controls the degree of shrinkage. The

mean of the prior distribution is indexed by the sample size T for a reason that will become

clear below. Using standard calculations, the posterior mean can be expressed as the matrix-

weighted average of the prior mean and the MLE:

Φ̄T (mle, λ̃) =
[
λ̃ΦTPΦ + Φ̂T (mle)ST,11

]
P̄−1

Φ (λ̃), P̄Φ(λ̃) = λ̃PΦ + ST,11. (5)

Note that for λ̃ = 0 we obtain that Φ̄T (mle, λ̃) = Φ̂T (mle). Moreover, Φ̄T (mle, λ̃) = ΦT if

λ̃ =∞. Let Ψ = Φh and we can define the likelihood-based (plug-in) shrinkage estimator of

Φh as1

Ψ̄T (mle, λ̃) = Φ̄h
T (mle, λ̃). (6)

1We are using a plug-in estimator Φ̄h rather than the posterior mean of Φh which would also depend

on higher-order moments of the posterior distribution. However, these moments would be negligible in our

asymptotic analysis.
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The MLE shrinkage predictor is then defined as

ŷT+h(mle, λ̃) = Ψ̄T (mle, λ̃)yT . (7)

LFE Shrinkage Predictor. The loss function-based predictor is based on the multi-step

regression

yt = Ψyt−h + vt, vt ∼ N(0,Σvv), (8)

ignoring the serial correlation in vt implied by the VAR(1) in (1). The rationale behind this

estimator is that it directly targets the h-step-ahead forecast error covariance matrix. Define

Ψ̂T (lfe) = ST,0hS
−1
T,hh. (9)

Using the prior

Ψ|Σvv ∼ N
(
ΨT , (λ̃PΨ)−1 ⊗ Σvv

)
, (10)

we obtain the quasi-posterior

Ψ̄T (lfe, λ̃) =
[
λ̃ΨTPΨ + Ψ̂T (lfe)ST,hh

]
P̄−1

Ψ (λ̃), P̄Ψ(λ̃) = λ̃PΨ + ST,hh. (11)

This leads to the LFE shrinkage predictor

ŷT+h(lfe, λ̃) = Ψ̄T (lfe, λ̃)yT . (12)

2.2 Drifting DGP and Prior

We assume that the sample has been generated from a covariance stationary data generating

process (DGP) with an infinite-dimensional VMA representation. While the sample size T

is fixed in practice, we would like to use T −→∞ asymptotics to approximate the prediction

risk. If the DGP and the lag length of the misspecified forecasting model are fixed then the

variance of the estimators of Φh will vanish at rate O(T−1) whereas the misspecification bias

does not disappear. Thus, eventually, the loss-function-based predictor will dominate along

this asymptote, even if the misspecification is small.

To generate asymptotics that better reflect the finite-sample trade-offs faced by the fore-

caster we have two choices: either increase the dimensionality of the forecasting model with

sample size or let the DGP drift toward the forecasting model. As in S2015, we pursue the
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latter approach and assume that the DGP takes the form of a drifting VMA process that is

local to the VAR in (1):

yt = Fyt−1 + εt +
α√
T

∞∑
j=1

Ajεt−j, εt ∼ (0,Σεε). (13)

This means that misspecification bias of the MLE of Φ in (1) relative to the “true” F in (13)

is of order O(T−1/2). The contribution of parameter estimation to prediction loss can be

represented as the sum of a squared bias and a variance term. The O(T−1/2) drift guarantees

that these two terms are asymptotically of the same order.

In addition to the DGP, we also assume that the prior means used to construct the

shrinkage estimators drift. They are located within a T−1/2 radius from F :

ΦT = F + T−1/2φ, ΨT = F h + T−1/2ψ. (14)

Moreover, we re-scale the hyperparameter as follows:

λ̃ = λT. (15)

In slight abuse of notation, we replace the λ̃ argument of the shrinkage estimators Ψ̄T (·)
by the re-scaled hyperparameter λ. Taken together, the drift and the re-scaling ensure that

the bias induced by placing non-zero weight on the prior mean is of the same order as the

misspecification bias of MLE and LFE and that prior precision and the information in the

likelihood function are of the same order asymptotically.

To understand the assumptions on the drift rates, consider the expressions in (5). Using

(15) we can write the posterior precision as

P̄Φ(λ) = T ·
(
λPΦ + ST,11/T

)
,

where ST,11/T is convergent. Thus, for any fixed λ the prior precision makes a non-trivial

contribution to the posterior precision. If the eigenvalues of F are less than one in absolute

value and that the Ajs satisfy a summability condition that will be stated more formally

below, the MLE behaves asymptotically as Φ̂T (mle) = F + T−1/2ξT +Op(T
−1), where ξT is

an Op(1) random variable. Thus,

Φ̄T (mle, λ) = F + T−1/2 ·
[
λφPΦ + ξT (ST,11/T )

](
λPΦ + ST,11/T

)−1
+Op(T

−1).

Our assumptions on the drifts ensure that we subsequently can focus on the Op(T
−1/2)

term in the prediction risk calculations. By construction the relative weights on MLE and

prior mean are no longer sample size dependent. This captures the fact that in practice prior

distributions play an important role in regularizing VAR parameter estimates to obtain good

forecasting performance.
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2.3 Prediction Risk

Risk and Optimal Prediction. As is common in the literature, to streamline the theo-

retical derivations we assume that there are two independent processes, {yt}, and {ỹt}, both

generated from the DGP in (13); see, for instance, Baillie (1979), Reinsel (1980), Shibata

(1980), and Lewis and Reinsel (1985, 1988). The former is used for parameter estimation

and the latter is the process to be forecast. This assumption removes the (asymptotically

negligible) correlation between the parameter estimates and the lagged value at the forecast

origin. The optimal predictor of a future observation ỹT+h generated from the DGP is the

conditional mean

ŷoptT+h = ET [ỹT+h], (16)

where the expectation is taken conditional on the (infinite) history of the process up to time

T and the parameters α, F and A(L). The expected loss of ŷoptT+h provides a lower bound

for the frequentist risk of any estimator. We normalize the prediction risk R(ŷT+h) of a

predictor ŷT+h as follows

R(ŷT+h) = E
[
‖ỹT+h − ŷT+h‖2

W

]
− E

[
‖ỹT+h − ŷoptT+h‖

2
W

]
= E

[
‖ŷT+h − ŷoptT+h‖

2
W

]
. (17)

Pseudo-optimal value. To characterize the pseudo-optimal value (pov) for Ψ in the

VAR(1)-based prediction function ΨỹT we define A0 = 0 and A(L) =
∑∞

j=0AjL
j. Moreover,

we let zt = A(L)εt and

Γyy,h = lim
T−→∞

E[yT+hy
′
T ] =

∞∑
j=0

F j+hΣεεF
j′

Γzy,h = lim
T−→∞

E[zT+hy
′
T ] =

∞∑
j=0

Aj+hΣεεF
j′ .

It was shown in S2005 that the pov takes the form

Ψ̃T (pov) = F h + αT−1/2µ(pov) + αO(T−1), µ(pov) =
h−1∑
j=0

F jΓzy,h−jΓ
−1
yy,0. (18)

Limit Distribution. As an intermediate step in the calculation of the prediction risk

the limit distributions for Ψ̄T (mle, λ) and Ψ̄T (lfe, λ) are derived. To do so, we state some

regularity conditions:

Assumption 1
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(i) The largest eigenvalue of F is less than one in absolute value.

(ii) The sequence of n×n matrices {Aj}∞j=0 satisfies the following summability condition:∑∞
j=0 j

2‖Aj‖ <∞.

(iii) {εt} is a sequence of independent, n-dimensional, mean zero random variates with

E[εtε
′
t] = Σεε.

(iv) The εt’s are uniformly Lipschitz over all directions, that is, there exist K > 0,

δ > 0, and ν > 0 such that for all 0 ≤ w − u ≤ δ,

sup
ν′ν=1

P{u < ν ′εt < w} ≤ K(w − u)ν .

(v) There exists an η > 0 such that

E
[
‖ε′tεt‖3h+η

]
<∞.

Assumptions 1(i) and (ii) guarantee that for any fixed T the DGP is stationary. As-

sumptions (iii) to (v) ensure that the finite sample moments of the two predictors eventually

exist. The following theorem characterizes the limit distribution of the likelihood and loss

function based shrinkage estimators for a fixed λ.

Theorem 1 Suppse that the DGP satisfies Assumption 1. Then, for ι ∈ {lfe,mle} and

λ ≥ 0:

Ψ̄T (ι, λ) = F h + T−1/2[δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ)] + op(T
−1/2), (19)

where

δ(lfe, λ) = λψPΨ(λPΨ + Γyy,0)−1

δ(mle, λ) = λ
h−1∑
j=0

F jφPΦ(λPΦ + Γyy,0)−1F h−1−j

µ(lfe, λ) =
h−1∑
j=0

F jΓzy,h−j(λPΨ + Γyy,0)−1

µ(mle, λ) =
h−1∑
j=0

F jΓzy,1(λPΦ + Γyy,0)−1F h−1−j.

Moreover, ζT (ι, λ) converges weakly to ζ(ι, λ), where
ζT (mle, λ)

ζT (lfe, λ)

ζT (mle, λ′)

ζT (lfe, λ′)

 =⇒


ζ(mle, λ)

ζ(lfe, λ)

ζ(mle, λ′)

ζ(lfe, λ′)

 ∼ N (0,V(λ, λ′))
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and

V(λ, λ′) =


V (mle, λ, λ)

V (mle, lfe, λ, λ) V (lfe, λ, λ)

V (mle, λ′, λ) V (mle, lfe, λ′, λ) V (mle, λ′, λ′)

V (mle, lfe, λ′, λ) V (lfe, λ′, λ) V (mle, lfe, λ′, λ′) V (lfe, λ′, λ′)

 .

Ψ̄T (ι, λ) ultimately converges to F h. The important terms for the subsequent prediction

risk calculation are those premultiplied by T−1/2. Consider the case λ = 0. Then the weight

on the prior mean is zero and δ(ι, λ) = 0. The bias term µ(ι, λ) arises from the covariance

between zt = A(L)εt and yt. Importantly, it can be shown that µ(lfe, 0) = µ(pov), i.e., in

the absence of shrinkage, the LFE is centered at the pov. For λ > 0 there is a second bias

term, δ(ι, λ), which captures the effect of the prior distribution. At λ =∞, δ(ι, λ) equals the

local prior mean and µ(ι, λ) = 0. Finally, ζ(ι, λ) is a mean-zero Normal random variable.

Formulas for the partitions of V(λ, λ′) are provided in the Online Appendix. The shrink-

age also affects variance terms V (ι, ι′, λ, λ′). The larger the precision hyperparameter λ, the

smaller the sampling variance of the shrinkage estimator. Moreover, holding λ fixed, the

variance of the likelihood based shrinkage estimator is smaller than the variance of the loss

function based shrinkage estimator:

V (mle, λ, λ) < V (lfe, λ, λ).

The latter is inefficient, as it ignores the serial correlation of the h-step-ahead forecast errors

in its estimation objective function.

Prediction Risk. The next theorem characterizes the asymptotic prediction risk

R̄(ŷT+h(ι, λ)) = lim
T−→∞

TR(ŷT+h(ι, λ)) (20)

of the MLE and LFE shrinkage predictors based on their limit distribution. Because of the

normalization in (17) the prediction risk is determined by the bias and variance of the Ψ

estimators. Assumptions 1 (iii) to (v) guarantee the finite-sample moments of the estimators

converge to the moments of the limit distribution.

Theorem 2 Suppose Assumption 1 is satisfied. Then, for ι ∈ {mle, lfe} and λ ≥ 0:

R̄(ŷT+h(ι, λ)) = ‖δ(ι, λ)− α(µ(pov)− µ(ι, λ))‖2
W⊗Γyy,0︸ ︷︷ ︸

=: R̄B(ι, λ)

+ tr

{
(W ⊗ Γyy,0)V (ι, λ, λ)

}
︸ ︷︷ ︸

=: R̄V (ι, λ)

+C,

(21)
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where

C = α2E

∥∥∥∥∥
h−1∑
j=0

F jET [zT+h−j]− µ(pov)ỹT

∥∥∥∥∥
2

W

 .
The prediction risk is decomposed in a bias term R̄B(ι, λ) and a variance term R̄V (ι, λ).

The constant C does not depend on the forecast ŷT+h(ι, λ). Consider the LFE which cor-

responds to ι = lfe. Recall that for λ = 0 the prior-induced bias δ(lfe, λ) = 0 and the

regression-induced bias term µ(lfe, λ) = µ(pov). Thus, R̄B(ι, λ) = 0, but the variance term

R̄V (ι, λ) is large. Raising λ generates some bias, but also reduces the variance contribu-

tion to the prediction risk. The same logic applies to the MLE shrinkage predictor, i.e.,

ι = mle, except that µ(pov) − µ(mle, 0) 6= 0. For λ > 0 the δ(ι, λ) term generated by

the prior could either increase or decrease the estimation bias component. The smaller the

misspecification α, the less important is the bias term, and the more important becomes

the variance component of the risk, R̄V (ι, λ), when choosing between the MLE and LFE

shrinkage predictors.

3 Hyperparameter Determination

We consider two different methods of determining the hyperparameter λ. The first method

relies on an asymptotically unbiased (prediction) risk estimate (URE). The URE objective

function is a generalization of the PC criterion proposed in S2005. The second method

uses a (quasi) marginal data density (MDD) to select λ. While the first criterion can also

be used to choose between the two estimators – LFE based shrinkage versus MLE based

shrinkage – the MDD cannot. The PC-based hyperparameter determination is discussed

in Section 3.1. As a benchmark we discuss an oracle-based hyperparameter selection in

Section 3.2 and contrast the PC objective function with the oracle objective function. At

last, we derive an MDD criterion for the hyperparameter selection in Section 3.3 which

has been used in practice and will be included in the Monte Carlo experiments of Section 5.

Bayesian procedures that are based on prior distributions indexed by hyperparameters which

have been estimated in a preliminary step from the data are called empirical Bayes (EB)

procedures; see Robbins (1955). Thus, in this paper we are contrasting PC-EB and MDD-EB

estimation and forecasting approaches.
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3.1 Asymptotically Unbiased Risk Estimation

We proceed by deriving an objective function for the hyperparameter λ and the choice

of estimator ι that relies on an asymptotically unbiased estimate of the prediction risk

of ŷT+h(ι, λ). We begin by characterizing the in-sample prediction loss associated with

Ψ̄T (ι, λ)yt−h.

In-sample Prediction Loss. The in-sample mean squared h-step ahead forecast error

matrix is given by

MSE(ι, λ) =
1

T

T∑
t=1

(yt − Ψ̄T (ι, λ)yt−h)(yt − Ψ̄T (ι, λ)yt−h)
′. (22)

We normalize the forecast error by the MSE of the unshrunk loss function predictor, which

gives the smallest in-sample MSE, and define the loss differential

∆L,T (ι, λ) = T (tr {W ·MSE(ι, λ)} − tr {W ·MSE(lfe, 0)}) ≥ 0. (23)

Using the asymptotic representation of Ψ̄(ι, λ) given in Theorem 1, and the facts that

δ(lfe, 0) = 0 and µ(lfe, 0) = µ(pov), we show in the Online Appendix that the asymp-

totic behavior of the risk differential can be characterized as follows:

Theorem 3 Suppose that Assumption 1 is satisfied. Then, for ι ∈ {mle, lfe} and λ ≥ 0:

(i) The in-sample forecast error loss differential has the following limit distribution

∆L,T (ι, λ) =⇒ ‖δ(ι, λ)‖2
W⊗Γyy,0

+ α2 ‖µ(pov)− µ(ι, λ)‖2
W⊗Γyy,0

+ ‖ζ(lfe, 0)− ζ(ι, λ)‖2
W⊗Γyy,0

+2αtr
{
W [µ(pov)− µ(ι, λ)] Γyy,0 [ζ(lfe, 0)− ζ(ι, λ)]′

}
−2αtr

{
Wδ(ι, λ)Γyy,0 [µ(pov)− µ(ι, λ)]′

}
−2tr

{
Wδ(ι, λ)Γyy,0 [ζ(lfe, 0)− ζ(ι, λ)]′

}
.

(ii) The expected in-sample forecast error differential converges to

E [∆L,T (ι, λ)] −→ R̄B(ι, λ) + R̄V (ι, λ)−
(
R̄B(lfe, 0) + R̄V (lfe, 0)

)
+2R̄V (lfe, 0)− 2tr {(W ⊗ Γyy,0)V (lfe, ι, 0, λ)} .

It is important to note that due to the drifting DGP, the normalization of the prediction

risk in (17), and the scaling by T , the loss differential ∆L,T (ι, λ) converges in distribution to

a random variable and not a constant.
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From In-Sample to Out-of-Sample Prediction Risk. The limit random variables ζ(ι, λ)

are defined in Theorem 1 and the asymptotic risk components R̄B(ι, λ) and R̄V (ι, λ) are given

in Theorem 2. Theorem 3 shows that the expected forecast error loss differential converges

to the sum of the risk differential, the risk of the LFE with λ = 0, and the covariance term

tr {(W ⊗ Γyy,0)E [(ζ(ι, λ)− ζ(lfe, 0))(ζ(ι, λ)− ζ(lfe, 0))′]}. Because R̄V (lfe, 0) is irrelevant

for comparisons across different (ι, λ), the formula suggests to correct the MSE by twice the

covariance component of the asymptotic risk to obtain an asymptotically unbiased estimate

of the (normalized) prediction risk R(ŷT+h(ι, λ)) that can be used as a selection criterion.

Definition 1 Define the PCT (ι, λ) criterion for the joint selection of prior shrinkage and

type of estimator as

PCT (ι, λ) = Ttr[W ·MSE(ι, λ)] + 2R̂V (lfe, ι, 0, λ),

where R̂V (lfe, ι, 0, λ) is a consistent estimate of tr {(W ⊗ Γyy,0)V (lfe, ι, 0, λ)}.

The term 2R̂V (lfe, ι, 0, λ) in the definition of the PC criterion can be viewed as a penalty

term that turns the in-sample fit measured by MSE(ι, λ) into a measure of out-of-sample

fit. R̂V (lfe, ι, 0, λ) can be consistently estimated, for instance, by replacing the matrices F

and Σεε that appear in the covariance expressions of Theorem 1 with a quasi MLE. More-

over, population autocovariance matrices Γyy,j can be replaced by their sample analogues.

PCT (ι, λ) can be used to choose between MLE and LFE based shrinkage and to select the

hyperparameter λ. After combining Definition 1 of the selection criterion with the MSE

differential formula in (23) and Theorem 3 we can deduce that

E
[
PCT (ι, λ)− PCT (ι′, λ′)

]
(24)

= E
[
∆L,T (ι, λ)−∆L,T (ι′, λ′)

]
+ 2E

[
R̂V (lfe, ι, 0, λ)− R̂V (lfe, ι′, 0, λ′)

]
−→ R̄(ŷT+h(ι, λ))− R̄(ŷT+h(ι

′, λ′)).

Thus, the PC differential provides an asymptotically unbiased estimate of the risk differential

for the predictors ŷT+h(ι, λ) and ŷT+h(ι
′, λ′).

Remark. Theorems 1 and 2 suggest that an alternative asymptotically unbiased estimate

of the prediction risk differential is

T
∥∥Ψ̄T (ι, λ)− Ψ̄T (lfe, 0)

∥∥2

W⊗Γyy,0
+ 2 tr {(W ⊗ Γyy,0)V (lfe, ι, 0, λ)} . (25)

In unreported simulations we find that both UREs perform equally. This alternative URE

is closely connected to the URE for the IRF risk proposed in Section 4.
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3.2 Comparison to Oracle Hyperparameter Selection

So far we have shown that our PC criterion in Definition 1 provides an unbiased estimate for

the asymptotic risk. In order to put the PC-based hyperparameter selection into context,

we now define an oracle objective. The oracle has an informational advantage relative to

the forecaster and is therefore potentially able to choose a more favorable hyperparameter.

In the literature on compound decisions, building on Stein (1981), a key result is that the

hyperparameter selection based on an unbiased risk estimate is asymptotically as good as the

oracle’s hyperparameter determination in the sense that the difference between the associated

prediction risks vanishes as the sample size tends to infinity. While we will show that this

is not the case in the forecasting setup considered in this paper, the oracle will nonetheless

provide an important benchmark.

Recall that we are distinguishing between two independent processes, {yt} and {ỹt}, that

have the same stochastic properties. The former is used for estimation and the latter for fore-

casting. The loss function L(ỹT+h, ŷT+h) is subject to three sources of randomness: (i) the

value of the process at the forecast origin, ỹT ; shocks that determine the target of the fore-

cast, ỹT+h; and the realization of the estimation sample {yt}Tt=1. By assumption Ψ̄T (ι, λ) is

independent of (ỹT , ỹT+h) and PCT (ι, λ) can never capture the variation in (ỹT , ỹT+h). Thus,

to construct an oracle objective function we define the (scaled) expected loss conditional on

{yt}Tt=1 denoted by

L
(
ỹT+h, ŷT+h

)
= E

[
L(ỹT+h, ŷT+h)

∣∣ {yt}Tt=1

]
. (26)

Exploiting the properties of the quadratic loss function and matching the structure of

the PCT (ι, λ) objective function in Definition 1, we define the oracle objective function

QT (ι, λ) = T
[
L
(
ET [ỹT+h], ŷT+h(ι, λ)

)
− L

(
ET [ỹT+h], ŷT+h(lfe, 0)

)]
+2
(
tr {WζT (lfe, 0)Γyy,0ζT (lfe, 0)′} − R̂V (lfe, 0)

)
.

Notice that the term in the second line does not depend on (ι, λ) and therefore does not affect

the shape of the objective function. It is simply a level correction so that QT (ι, λ) is aligned

with the PCT (ι, λ) differential. The informational advantage of the oracle over the forecaster

is that it knows ET [ỹT+h] in addition to the estimation sample {yt}Tt=1. Thus, it can choose

(ι, λ) to target the conditional expectation directly. We define the oracle estimator of (λ, ι)

as

(λ̇, ι̇) = argmin
λ≥0, ι∈{mle,lfe}

QT (ι, λ). (27)
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The following theorem characterizes the difference between the PCT (ι, λ) and the oracle

objective function.

Theorem 4 Suppose that Assumption 1 is satisfied. Then:

PCT (ι, λ)− PCT (lfe, 0) = QT (ι, λ) + op(1)

−2
(
tr {WζT (lfe, 0)Γyy,0ζT (ι, λ)′} − R̂V (lfe, ι, 0, λ)

)
−2tr

{
WζT (lfe, 0)Γyy,0 [δ(ι, λ) + α(µ(ι, λ)− µ(pov))]′

}
.

The terms in the second and third line on the right-hand side of Theorem 4 create a

wedge between the two objective functions that does not vanish asymptotically. While zero

on average, for any given sample {yt}Tt=1 they are non-zero. Thus, the PCT (ι, λ) selection

in our setting is not optimal in the usual sense of getting close to the oracle. The term

in the second line captures the difference between the weighted outer product of ζT (lfe, 0)

and ζT (ι, λ) and its expected value R̂V (lfe, ι, 0, λ), which is the MSE adjustment term in

Definition 1. The term in the third line arises from the expansion of the MSE terms in the

PCT (ι, λ) criterion and is not present in the the oracle objective function.2 In the Monte

Carlo experiments in Section 5 we will use the prediction associated with the oracle selection

of the hyperparameters as a benchmark.

The wedge between PC objective function and the oracle objective function in Theorem 4

should not be interpreted as a shortcoming of the PC criterion. It is a by-product of the

local misspecification framework that cannot be overcome in our time series setting, also by

other hyperparameter selection criteria.

3.3 MDD Based Hyperparameter Selection

In the VAR literature, hyperparameters are often selected using the marginal data density

(MDD). We will derive a quasi MDD for the multi-step regression (8), which can be written

in matrix form as

Y = XΨ′ + V. (28)

Here Y , X, and V are the T × n matrices with rows y′t and y′t−h, and v′t. The quasi MDD

derived subsequently ignores the VAR-implied autocorrelation in vt and mechanically uses

2This problem also arises if the prediction criterion is replaced by a direct estimate of the parameter

estimation risk.
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the formulas for a multivariate regression model. We combine the conditional prior for Ψ|Σvv

in (10) with a marginal distribution for Σvv:

Σvv ∼ IW (ν, S). (29)

Define

S̄ = S + (λT )ΨTPΨΨ′T + Y ′Y − Ψ̄T P̄ΨΨ̄′T , ν̄ = ν + T. (30)

It can be shown that the MDD takes the form

p(Y |ι, λ) =

∫ ∫
p(Y |Ψ,Σvv)p(Ψ,Σvv)dΨdΣvv = (2π)−nT/2

|λTPΨ|n/2

|P̄Ψ|n/2
CIW

C̄IW
, (31)

where
CIW

C̄IW
=
|S|ν/2

|S̄|ν̄/2
2nν̄/2

∏n
i=1 Γ((ν̄ + 1− i)/2)

2nν/2
∏n

i=1 Γ((ν + 1− i)/2)
.

We included (ι, λ) as a conditioning argument for the MDD. The hyperparameter enters the

formula directly and indirectly through S̄, Ψ̄T , and P̄Ψ. The estimator type ι ∈ {mle, lfe}
is controlled through the definition of X. If the matrix X stacks y′t−h, the formula yields the

quasi MDD for the multi-step regression in (8). On the other hand, if one redefines X as

the matrix with rows yt−1, one obtains the MDD associated with the VAR in (1).

It is convenient to take log MDD differentials. Because the log density is not defined for

λ = 0, we consider deviations from λ =∞. We also multiply the differential by −1, so that

the hyperparameter determination is based on the minimization of the differential, just as

in the case of PCT . Define

MDDT (ι, λ) = 2
[

ln p(Y |ι,∞)− ln p(Y |ι, λ)
]

(32)

= ν̄
{

ln |S̄T (ι, λ)| − ln |S̄T (ι,∞)|
}

+ n
{

ln |λPΨ +X ′X/T | − ln |λPΨ|
}
,

where

S̄T (ι,∞) = S + (Y −XΨ′T )′(Y −XΨ′T ).

The formula highlights dependence of S̄ on (ι, λ). The first term in the second line of (32) is

a goodness of in-sample fit differential which is scaled so that it can be shown to converge in

distribution to a stochastic process indexed by λ. The second term is a penalty differential

that is ∞ for λ = 0 and 0 for λ = ∞. For values of λ > 0 it converges to a non-stochastic

function of λ. Hyperparameter selection is based on the minimization of MDDT (ι, λ) with

respect to λ. Note that by construction the MDD cannot be used to choose among lfe and

mle.
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It is well known in the EB literature that the MDD-based hyperparameter selection is

less robust to general model misspecifications than the URE-based hyperparameter selection.

Recent illustrations of this point in panel settings can be found, for instance, in Kwon (2023)

and Cheng, Ho, and Schorfheide (2024). Under the MDD-EB approach hyperparameters are

tuned using specific distributional and dynamic assumptions of a hierarchical model and the

risk properties of the resulting procedures are inherently sensitive to these assumptions. In

our framework, these assumptions are violated for the MLE-based predictor as soon as the

VAR is dynamically misspecified and they are violated for the LFE-based predictor even if

the DGP is a VAR because the derivation of the MDD criterion ignores the serial correlation

of multi-step forecast errors. The PC-EB approach, on the other hand, only uses the VAR

model to define a class of estimators and predictors and then chooses the hyperparameter

by directly targeting an estimate of the risk function of interest. Thus, it is more robust.

4 Implications for IRF Estimation

The goal of many VAR applications is to estimate impulse functions (IRFs) for structural

shocks, instead of forecasting. IRF estimates can be obtained in two ways. First, one could

estimate a VAR using a likelihood-based (shrinkage) estimator and iterate the estimated

VAR forward to trace out the effect of a shock. Alternatively, one could conduct a so-called

local projection (LP) as proposed by Jorda (2005), which regresses yt on yt−h and possibly

higher-order lags as controls. In our notation, the VAR-based IRF estimate corresponds to

Ψ̄T (mle, λ), and Ψ̄(lfe, λ) is the local projection IRF estimate.

It was originally claimed, and is now widely accepted in the literature, that LPs are

inherently more robust to misspecification than VAR-based IRFs. However, theoretical

evidence in support of that statement is scarce. Plagborg-Moller and Wolf (2021) prove that

LPs and VARs estimate the same IRFs in population when controlling for the infinite past.

If only a fixed number p of lags are included, then the two IRF estimands approximately

agree out to horizon p, but not further. Li, Plagborg-Moller, and Wolf (2022) conduct a

large simulation experiment using several variations of these two estimands and conclude

that the preferred estimator largely depends on how much one trades off variance and bias.

These results provide limited practical guidance.

In this section, we show that LPs do not always dominate VAR-based IRF estimates

in an MSE sense. In particular, LPs are not always more robust to misspecification than
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VARs when the forecaster uses a quadratic loss function. We also demonstrate that the PC

criterion proposed in Definition 1 is not valid when interest lies in IRFs instead of forecasting.

We propose a valid URE for the IRF risk to determine the type of predictor and degree of

shrinkage.

4.1 Non-dominance of LPs Over VARs

Recall we can write the DGP in (13) as an MA(∞) process of the form

yt =
∞∑
s=0

F sεt−s +
α√
T

(
∞∑
s=0

F sLs

)(
∞∑
j=1

AjL
j

)
εt. (33)

Therefore, the true effect of a shock εt−h on yt is given by the MA coefficient matrix

∂yt
∂ε′t−h

= F h +
α√
T

h−1∑
j=0

F jAh−j = F h +
α√
T
µ(irf, h), h ≥ 1, (34)

and is the sum of the first-order term F h and a O(1/
√
T ) misspecification term.

IRFs typically aim to trace out the effect of a structural shock. Linearized dynamic

stochastic general equilibrium (DSGE) models imply that the one-step-ahead forecast errors

εt are a linear combination of orthonormal structural shocks ηt, e.g.,

εt = Σtr
εεΩηt, (35)

where Σtr
εε is the lower triangular Cholesky factor of the reduced-form covariance matrix Σεε

and Ω is an orthonormal matrix. For concreteness, suppose we are interested in the response

with respect to the ith shock ηi,t, for some i ∈ {1, . . . , n}, and let q be the ith column in Σtr
εεΩ.

We define the asymptotic estimation risk for the IRF with an impact vector q associated

with the estimator Ψ̄T (ι, λ) as

R̄irf

(
Ψ̄T (ι, λ);h, q

)
= lim

T−→∞
TE
[∥∥(F h + αT−1/2µ(irf, h)− Ψ̄T (ι, λ)

)
q
∥∥2

W

]
. (36)

Using the calculations underlying the proof of Theorem 2, one can show that

R̄irf

(
Ψ̄T (ι, λ);h, q

)
(37)

=
∥∥δ(ι, λ)− α(µ(irf, h)− µ(ι, λ))

∥∥2

W⊗qq′ + tr

{
(W ⊗ qq′)V (ι, λ, λ)

}
.



This Version: June 26, 2024 19

Let us focus for simplicity on the case of no shrinkage (λ = 0). In that case, the

asymptotic risk formula simplifies to

R̄irf

(
Ψ̄T (ι, 0);h, q

)
= α2

∥∥µ(irf, h)− µ(ι, 0)
∥∥2

W⊗qq′ + tr

{
(W ⊗ qq′)V (ι, 0, 0)

}
. (38)

In regard to a comparison of MLE and LFE, we know from our previous analysis that

V (mle, 0, 0) < V (lfe, 0, 0). Thus, a necessary condition for LPs to be preferable to VAR-

based IRFs is ∥∥µ(irf, h)− µ(lfe, 0)
∥∥2

W⊗qq′ <
∥∥µ(irf, h)− µ(mle, 0)

∥∥2

W⊗qq′ . (39)

It can be shown that this inequality does not hold in general—one can construct misspecifica-

tion MA polynomials A(L) such that µ(mle, 0) is closer to µ(irf, h) than µ(lfe, 0). For these

DGPs, the LP IRF estimates are inferior to VAR estimates for any scale of misspecification

α, in an MSE sense.

4.2 Valid URE for the IRF Risk

Given the non-dominance of LPs over VARs, it is natural to employ a method like the PC

criterion in Definition 1 to find the preferred IRF estimand, akin to what has been proposed

above for point prediction. Observe, however, that the bias term in the IRF risk in (37)

differs from the bias term in the forecasting risk in Theorem 2 in the centering. In particular,

as a consequence of the local misspecification, the former involves µ(irf), while the latter

involves µ(pov). Theorem 3 exploits the fact that the unshrunk LFE estimator is centered at

µ(pov) to propose a URE for the prediction risk. Since in general µ(pov) 6= µ(irf), the PC

criterion in Definition 1 cannot be a valid URE for the IRF risk. More generally, this warns

against using methods tailored for forecasting in IRF applications when there are concerns

of misspecification.

Limit Distribution of Lag-augmented Estimator. A natural analogue of the forecasting

URE proposed above requires finding an estimator centered at µ(irf). To achieve that,

we employ the lag-augmentation proposed by Montiel Olea and Plagborg-Moller (2021)

and used in Montiel Olea, Plagborg-Moller, Qian, and Wolf (2024). Recall that the LFE

predictor is based on the multi-step regression in (8). To construct a lag-augmented LFE,

let xt = (yt, yt−1)′ and define

(
Ψ̂T (lalfe) γ̂

)
=

(
T−h∑
t=1

yt+hx
′
t

)(
T−h∑
t=1

xtx
′
t

)−1

, (40)
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where Ψ̂T (lalfe) is an estimate of the impulse response coefficients of interest, and γ̂ is

a nuisance coefficient due to lag-augmentation. Using the same prior for the subvector of

interest as in (10), by the Frisch-Waugh-Lovell theorem we obtain the quasi-posterior

Ψ̄T (lalfe, λ̃) =
[
λ̃ΨTPΨ + Ψ̂T (lalfe)S̃T,hh

]
P̄−1

Ψ , P̄Ψ = λ̃PΨ + S̃T,hh, (41)

where

S̃T,hh =
T−h∑
t=1

ûtû
′
t, ût = yt − Φ̂T (mle)yt−1.

Analogous to Theorem 1, we obtain the following result:

Theorem 5 Under Assumption 1,

Ψ̄T (lalfe, λ) = F h + T−1/2[δ(lalfe, λ) + αµ(lalfe, λ) + ζT (lalfe, λ)] + op(T
−1/2) (42)

for any λ ≥ 0, where

δ(lalfe, λ) = λψPΨ (λPΨ + Σεε)
−1

µ(lalfe, λ) =

(
h−1∑
j=0

F jAh−jΣεε

)
(λPΨ + Σεε)

−1 .

Moreover, for ι ∈ {lfe,mle, lalfe}, λ ≥ 0, ζT (ι, λ) converges weakly to a centered Gaussian

process ζ(ι, λ) with covariance function V(ι, ι′, λ, λ′).

A formula for the asymptotic variance V(ι, ι′, λ, λ′) is provided in the Online Appendix.

A key takeaway from Theorem 5 is that in the absence of shrinkage (λ = 0) the limit

distribution is correctly centered at µ(irf).

Unbiased Risk Estimation. As in Section 3, we employ Theorem 5 to construct a URE

for the asymptotic IRF risk that serves as a criterion to determine the degree of shrinkage

and type of IRF estimand. According to Theorem 5, for ι ∈ {mle, lalfe}, λ ≥ 0,

√
T
(
Ψ̄T (ι, λ)− Ψ̄T (lalfe, 0)

)
(43)

=
√
T
(
Ψ̄T (ι, λ)− F h

)
−
√
T
(
Ψ̄T (lalfe, 0)− F h

)
=⇒ N(δ(ι, λ) + α(µ(ι, λ)− µ(irf)),V(ι, λ) + V(lalfe, 0)− 2V(ι, lalfe, λ, 0)).

We deduce that the asymptotic IRF estimation risk is given by

TE
[∥∥Ψ̄T (ι, λ)− Ψ̄T (lalfe, 0)

∥∥2
]

(44)

= ‖δ(ι, λ) + α(µ(ι, λ)− µ(irf))‖2 + tr
[
V(ι, λ) + V(lalfe, 0)− 2V(ι, lalfe, λ, 0)

]
+ o(1).
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The previous discussion, together with (37), suggests that the following criterion is URE for

the asymptotic IRF estimation risk (up to a term that does not depend on (ι, λ)).

Definition 2 Define the P̃CT (ι, λ) criterion for the joint selection of prior shrinkage and

type of IRF estimator as

P̃CT (ι, λ) = T
∥∥Ψ̄T (ι, λ)− Ψ̄T (lalfe, 0)

∥∥2

W⊗qq′ + 2R̂V(ι, lalfe, λ, 0),

where R̂V(ι, lalfe, λ, 0) is a consistent estimate of tr {(W ⊗ qq′)V(ι, lalfe, λ, 0)}.

To summarize, the key modification of the multi-step forecasting problem is the lag-

augmentation in the construction of the LFE. Without lag-augmentation, for λ = 0 the LFE

is centered at µ(pov), which due to the local misspecification is not the correct value for the

IRF. In contrast, the lag-augmented LFE is centered at µ(irf) for λ = 0, and hence allows

us to construct an unbiased criterion for hyperparameter determination.3

5 Monte Carlo Experiment

We now conduct a Monte Carlo experiment to assess the finite-sample performance of the

MLE and LFE shrinkage predictors. Importantly, we will compare PC-based hyperparame-

ter selection to MDD-based hyperparameter selection. The Monte Carlo design is described

in Section 5.1. In Section 5.2 we compare the finite sample risk differentials to the ex-

pected value of PCT . We examine prediction losses obtained with PC- versus MDD-based

hyperparameter selection in Section 5.3. Finally, we consider the joint PC-based selection of

estimator and hyperparameter in Section 5.4.

5.1 Monte Carlo Design

Data Generating Process. The DGP is given by (13). We consider an n = 6 variable

VAR. The coefficient matrix F and error variance matrix Σε are calibrated to an estimated

VAR(1) on the same variables as those used in Carriero, Clark, and Marcellino (2015). The

entries of the MA drift matrices {Aj}10
j=1 are drawn independently from a standard normal

3The lag-augmentation technique that is central in this point estimation exercise has proven to be crucial

for inference as well; see Montiel Olea and Plagborg-Moller (2021) and Montiel Olea, Plagborg-Moller, Qian,

and Wolf (2024).
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distribution. MA matrices of order j > 10 are set equal to zero. Most important for the

interpretation of the results is that we maintain the drifting structure of the DGP as we vary

the sample size T . The expected loss calculation will be frequentist: we keep the parameters

of the DGP fixed as we repeatedly generate data and evaluate the loss associated with various

prediction procedures.

Prior Distributions. For the interpretability of the results it is important that we align

the local prior means φ and ψ in (14) in regard to their implication about the h-step-ahead

prediction function. We start by setting the prior mean ψ of the local deviation from F h

equal to a multiple of the pov:

ψ = ϕµ(pov). (45)

If ϕ = 1 then the prior is centered at the pov. Using a first-order Taylor expansion of

Φh − F h, we obtain

Φh − F h ≈
h−1∑
j=0

F j(Φ− F )F h−1−j.

In turn, we choose the (local) prior mean for the MLE such that it satisfies

ψ =
h−1∑
j=0

F jφF h−1−j. (46)

Monte Carlo Designs. We consider two different Monte Carlo designs. Figure 1 depicts

the asymptotic risk differentials R̄(ŷT+h(ι, λ)) − R̄(ŷT+h(lfe, 0)) for ι ∈ {mle, lfe} as a

function of λ for the two designs. Under Design 1 there is no misspecification as α = 0. By

setting ϕ = 1 we ensure that the prior is not centered at the “true” value, which in this

case would correspond to ϕ = 0. The optimal value of λ that minimizes the asymptotic risk

R̄(ŷT+h(lfe, λ)) is approximately equal to 3 for h = 2. Because there is no misspecification,

the MLE dominates the LFE. As the horizon increases, the benefit of using the MLE increases

and the optimal λ is closer to 2. For λ = ∞, MLE and LFE are equal to the prior mean

values. Because of (46), the resulting predictors are equivalent up to first order and have

identical risks, which is clearly visible in Figure 1.

Under Design 2 the VAR is misspecified (α = 2) and we center the prior at ϕ = 0.5

to keep it away from the pov. In this design the LFE visibly dominates the MLE at all

horizons for values for values of λ less than 2. As the precision λ increases further the

parameter estimates are dominated by the prior and the risk differential vanishes.
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Figure 1: Asymptotic Risk Differentials for MC Designs
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Notes: The x-axis is the hyperparameter λ on a logarithmic scale with zero as the left endpoint. On the
y-axis we plot R̄(ŷT+h(ι, λ)) − R̄(ŷT+h(lfe, 0)). The dashed blue line is the LFE and solid orange is the
MLE.

5.2 Simulated Risk Differentials and Expected PC

Figure 2 depicts simulated risk differentials and the expected value of PC for Designs 2

(misspecification). The dotted green line is the asymptotic risk. The solid black line is

E[PCT (ι, λ)]. The dashed orange line is the MC risk and the dashed black lines are 90%

coverage intervals for the finite sample losses. The vertical line indicates the value of λ that

minimizes the asymptotic risk. As the sample size T increases the Monte Carlo risk and

E[PCT (ι, λ)] converge to the asymptotic risk as predicted by the large-sample result in (24).

This illustrates that in large samples PC provides an unbiased estimate of the asymptotic

risk.
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Figure 2: PC versus Finite Sample Risk, α = 2, Horizon h = 4
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Notes: The x-axis is the hyperparameter λ on a logarithmic scale with zero as the left endpoint. The dotted
green line is the asymptotic risk. The solid black line is E[PCT (ι, λ)]. The dashed orange line is the Monte
Carlo risk and the dashed black lines are 90% coverage intervals for the finite sample losses. The vertical
line indicates the value of λ that minimizes the asymptotic risk.

5.3 PC versus MDD-Based Hyperparameter Selection

We now examine the Monte Carlo risk of LFE and MLE predictors based on data-driven

hyperparameter choices. We consider three different hyperparameter choices: oracle, PC,

and MDD based.

Finite-Sample Risk Differentials. Finite sample risk differentials relative to the predictor

ŷT+h(lfe, 0) for Design 1 (no misspecification) are reported in Table 1. The entries in the

Table can be compared to the asymptotic values plotted in the first column of Figure 1.

Large negative numbers indicate substantial improvements over the benchmark predictor

ŷT+h(lfe, 0).

For the LFE the PC-based hyperparameter selection leads to lower risk than the MDD-

based hyperparameter selection for all sample sizes and forecast horizons considered. This is

to be expected because the (quasi) MDD criterion is derived under the incorrect assumption

that the multi-step forecast errors are uncorrelated. For the MLE, on the other hand, we find
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Table 1: Finite Sample Risk Differentials for ŷT+h(ι, λ̂), α = 0

LFE MLE

h Oracle PC MDD Oracle PC MDD

Sample Size T = 100

2 -34 -29 -25 -34 -29 -32

4 -91 -74 -61 -93 -76 -82

6 -146 -116 -99 -157 -126 -129

Sample Size T = 500

2 -17 -14 -11 -17 -14 -14

4 -51 -42 -29 -54 -45 -45

6 -88 -64 -51 -99 -78 -75

Sample Size T = 5, 000

2 -14 -12 -9 -15 -12 -12

4 -41 -32 -22 -44 -36 -36

6 -76 -52 -41 -84 -65 -63

Notes: The finite sample risk differentials are computed relative to ŷT+h(lfe, 0).

that the MDD-based hyperparameter determination gives the lower prediction risk. Again,

this is unsurprising because the forecasting model is correctly specified and the likelihood

function generates more efficient estimates. We also tabulate the oracle risk. The oracle risk

associated with the MLE is weakly smaller than the LFE. As we discussed before, there is

no sense in which the feasible procedures can asymptotically attain the oracle risk, which

is why PC and MDD based hyperselection always leads to a greater risk than the oracle

procedure.

Table 2 contains results for Design 2 in which the forecast model is misspecified. The

major difference relative to Table 1 is that under misspecification the PC-based hyperpa-

rameter selection also beats the MDD-based selection for the LFE-based predictor. The risk

differentials between PC and MDD λ selection are generally increasing with forecast horizon.

Inspecting the Hyperparameter Selection. We now take a closer look at the PC and

MDD objective functions that are used for the hyperparameter determination. In rows 1

and 2 of Figure 3 we plot hairlines of the PCT (ι, λ) and MDD(ι, λ) objective functions. We

normalize the objective functions such that they are equal to zero for λ =∞. Each hairline
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Table 2: Finite Sample Risk Differentials for ŷT+h(ι, λ̂), α = 2

LFE MLE

h Oracle PC MDD Oracle PC MDD

Sample Size T = 100

2 -68 -55 -45 -66 -54 -54

4 -153 -135 -73 -154 -127 -124

6 -297 -284 -114 -308 -256 -226

Sample Size T = 500

2 -15 -13 -10 -12 -10 -7

4 -38 -28 -25 -25 -17 -3

6 -66 -44 -43 -38 -19 24

Sample Size T = 5, 000

2 -8 -7 -6 -5 -4 -2

4 -26 -21 -19 -13 -8 -2

6 -42 -25 -33 11 25 45

Notes: The finite sample risk differentials are computed relative to ŷT+h(lfe, 0).

corresponds to a Monte Carlo repetition for misspecification α = 2 and horizon h = 4.

The line with the stars is the pointwise expected value of the objective function, obtained

by averaging across the Monte Carlo repetitions, and the dashed vertical line indicates the

asymptotically optimal value for λ.

For the interpretation of Figure 3 it is instructive to inspect the α = 2 (Design 2) and

h = 4 panel of Figure 1. The asymptotic risk differential curve of the LFE is decreasing

between λ = 0 and the minimum of 0.7, and then increases strongly as λ approaches 100. For

values of λ > 100 the curve is fairly flat. Returning to Figure 3, for T = 500 and T = 1, 000

most of the hairlines in row 1 attain their minimum between λ = 0.5 and λ = 10 and are

monotonically increasing to the right of the minimum. However, in particular for T = 100

there are hairlines that are monotonically decreasing over the entire domain of λ. Overall,

the hairline pattern is broadly consistent with the asymptotic risk differential function.

The hairlines in row 2 of Figure 3 depict the MDD selection criterion. There is less

variation across Monte Carlo repetitions in terms of the overall shape of the hairlines and

the minima are more concentrated in a fairly narrow interval ranging from 0.1 to 1. In
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Figure 3: PC versus MDD Objective Function, α = 2 and h = 4
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Notes: Rows 1, and 2: hairlines of PC and MDD criteria as a function of λ. Each hairline corresponds to
a Monte Carlo repetition. The line with the stars is the pointwise expected value of the objective function
and the dashed vertical line indicates the asymptotically optimal value for λ. Row 3: distribution of the
optimally selected hyperparameter λ across Monte Carlo repetitions. Histogram colors: yellow is oracle, blue
is PC, and orange is MDD.

general, the MDD minimum is to the left of the PC minimum, meaning that there is less

shrinkage toward the prior mean.

In the last row of Figure 3 we plot histograms of the λ̂ distribution across Monte Carlo

repetitions for the PC, MDD, and the oracle objective functions, respectively. For PC most

of the mass concentrates near the argmin of the asymptotic risk function, but the distribution

is skewed to the right with a small pointmass at λ =∞ which vanishes as the sample size T

increases. The flatness of the asymptotic risk function between λ = 0.5 to 5 translates into a

fairly diffuse distribution of λ̂ over this range. There is essentially no mass for intermediate

values of λ̂ and a small point mass at the maximum value of the λ grid. This point mass
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Figure 4: LFE Hyperparameter Selection, α = 2, Horizon h = 4
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Notes: We use log scales for the hyperparameter λ. The solid line is the 45 degree line. Each dot corresponds
to a Monte Carlo repetition. PC is always on the x-axis, and the predictor to be compared on the y-axis.

corresponds to Monte Carlo repetitions for which the objective function is monotonically

decreasing. The λ̂ histograms obtained from the oracle looks similar to that of the PC. For

the MDD criterion, on the other hand, there is a large mass near zero.

The panels of Figure 4 show scatter plots of λ̂ based on the three objective functions:

PC, MDD, and Oracle. Each dot corresponds to a Monte Carlo repetition. The first row

shows correlation between the PC and Oracle λ̂. Because the PC objective function remains

random in the limit and does not converge to the oracle objective function there is hardly

any correlation between the two estimates of λ, even though the marginal distributions of λ̂

are quite similar. The second row compares PC and MDD λ̂s. The key result here is that

the MDD criterion generates less shrinkage than the PC criterion.

5.4 Joint Selection of Estimator and Hyperparameter

One can also use PC to determine the estimator type and the shrinkage parameter simulta-

neously by minimizing PCT (ι, λ) jointly with respect to (ι, λ). The results are summarized
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Table 3: Finite Sample Risk Differentials for ŷT+h(ι, λ̂), Joint (ι, λ) Selection

α = 0 α = 2

h LFE MLE Joint LFE MLE Joint

Sample Size T = 100

2 -29 -29 -29 -55 -54 -54

4 -74 -76 -75 -135 -127 -127

6 -116 -126 -126 -284 -256 -255

Sample Size T = 500

2 -14 -14 -14 -13 -10 -11

4 -42 -45 -45 -28 -17 -20

6 -64 -78 -78 -44 -19 -28

Sample Size T = 5, 000

2 -12 -12 -12 -7 -4 -5

4 -32 -36 -36 -21 -8 -14

6 -52 -65 -65 -25 25 -9

Notes: The finite sample risk differentials are computed relative to ŷT+h(lfe, 0).

in Table 3. In the LFE and MLE columns we reproduce the numbers from Tables 1 and 2.

The columns labeled “Joint” contain the additional risk numbers obtained by using PC to

determine ι and λ jointly. For α = 0 the risk differentials between the LFE and MLE predic-

tors are fairly small, albeit increasing in forecast horizon h. Here the joint selection generally

attains the performance of the better among the two predictors, which tends to be the MLE

predictor in the absence of misspecification. For the α = 2 case and T = 100 or T = 5, 000

the performance of the joint selection is typically somewhere in between the performance of

the LFE and MLE predictor.

6 Multiple Lags and Lag Length Selection

Companion Form. So far, we considered a VAR in (1) with a single lag. It turns out, that

the formulas we derived also cover the case of multiple lags, because they can be interpreted
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as companion form notation. Consider a VAR with q lags:

yt = φ1yt−1 + . . .+ φqyt−q + ut, ut ∼ N(0,Σuu). (47)

Define

Yt︸︷︷︸
nq×1

=


yt

yt−1

...

yt−q+1

 , Φ︸︷︷︸
nq×nq

=


φ1 · · · φq−1 φq

In · · · 0n 0n
...

. . .
...

...

0n · · · In 0n

 , Ut︸︷︷︸
nq×1

=


ut

0n×1

...

0n×1

 , M︸︷︷︸
nq×n

=


In

0n
...

0n

 ,

where M is a selection matrix such that yt = M ′Yt. Thus we can express (47) in companion

form as

Yt = ΦYt−1 + Ut, ΣUU = MΣuuM
′, (48)

which looks identical to (1), except that we replaced lower case by upper case variables. In

addition, we define

φ︸︷︷︸
n×nq

= [φ1, . . . , φq], Υ︸︷︷︸
n(q−1)×nq

=


In · · · 0n 0n
...

. . .
...

...

0n · · · In 0n

 , MΥ︸︷︷︸
nq×(n−1)q

=


0n · · · 0n

In · · · 0n
...

. . .
...

0n · · · In

 (49)

Using this notation, the companion form matrix Φ has the following two properties

M ′Φ = φ, M ′
ΥΦ = Υ. (50)

We assume that the prior mean used to construct the shrinkage estimator shares the

companion form structure and can be written as

ΦT =

[
φ
T

Υ

]
(51)

such that by construction the properties in (50) are satisfied. Now define

S̄T,01 =
T∑
t=1

YtY
′
t−1 + λΦTP φ, S̄T,11 =

T∑
t=1

Yt−1Y
′
t−1 + λP φ (52)

such that the posterior mean in companion form can be expressed as

Φ̄T = S̄T,01S̄
−1
T,11, (53)
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which is identical to the formula provided in (5). Without companion form notation, a direct

calculation of the posterior mean of φ would yield

φ̄T =

(
T∑
t=1

ytY
′
t−1 + λφTP φ

)(
T∑
t=1

Yt−1Y
′
t−1 + λP φ

)−1

. (54)

It is straightforward to verify that M ′Φ̄T = φ̄T and M ′
ΥΦ̄T = ΥT . Thus, the companion form

posterior mean also satisfies (50). We conclude that the formulas derived in Sections 2 and

(3) also apply to the VAR(q).

Lag Length Selection. S2005 also considered the problem of lag length selection. To

develop a concise notation, the VAR is written in q-companion form, and estimated subject

to the restriction that only coefficients for lags 1 through p ≤ q are non-zero. The “true”

asymptotic lag order of the DGP is assumed to be p∗ ≤ q. While we refer the reader for

a detailed discussion of lag length selection to S2005, we briefly show how the shrinkage

estimator for a VAR(p) could be expressed in q companion form. Φ has the restricted form

Φ︸︷︷︸
nq×nq

=


φ1 · · · φp 0n · · · 0n 0n

In · · · 0n 0n · · · 0n 0n
...

...

0n · · · 0n 0n · · · In 0n

 . (55)

To impose the restriction that the coefficient matrices on lags p+ 1, . . . , q are equal to zero,

we define the selection matrices

Rp︸︷︷︸
nq×n(q−p)

=



0n · · · 0n
...

. . .
...

0n · · · 0n

In · · · 0n
...

. . .
...

0n · · · In


, Rp⊥︸︷︷︸

nq×np

=



In · · · 0n
...

. . .
...

0n · · · In

0n · · · 0n
...

. . .
...

0n · · · 0n


. (56)

This allows us to express the zero restriction on coefficients associated with lags greater than

p as M ′ΦRp = 0. We assume that the prior mean Φ̄T has the companion form structure in

(51) and satisfies the restriction:

M ′Φ̄TRp = 0. (57)

Using the definitions in (52), one can express

Φ̄T = S̄T,01S̄
−1
T,11

[
Inq −Rp(R

′
pS̄
−1
T,11Rp)

−1R′pS̄
−1
T,11

]
. (58)
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It is straightforward to verify that Φ̄TRp = 0, meaning that the last n(q − p) columns are

equal to zero. One can also show that

S̄−1
T,11

[
Inq −Rp(R

′
pS̄
−1
T,11Rp)

−1R′pS̄
−1
T,11

]
(59)

=

(∑T
t=1 R

′
p⊥Yt−1Y

′
t−1Rp⊥ + λR′p⊥P φRp⊥

)−1

0

0 0

 ,
where the selection matrix Rp⊥ eliminates lags p+1, . . . , q from the companion form regressor

vector Yt−1. Thus, the first np columns of M ′Φ̄T are equivalent to the posterior mean that

would be obtained using a p-companion form and the remaining columns are zero. Rows

n+ 1 to np of Φ̄T correspond to the first (n− 1)p rows of Υ and the remaining rows of the

matrix are irrelevant to our prediction problems. Following the arguments in S2005, one can

generalize the formulas derived in Sections 2, 3 and 4 to express predictors derived from

VARs of different lag orders in a companion form of fixed order q.

7 Empirical Application

We apply the proposed methodology to the FRED-QD database; see McCracken and Ng

(2020). We filter each series using the procedure proposed by Hamilton (2018) to induce

stationarity, and drop the series which contain missing values. Many users of the database

apply a transformation originally proposed in work by James Stock and Mark Watson,

which, for instance, would temporally difference a random walk series and turn it into a

serially uncorrelated time series. Thus, the autocorrelation drops from one to zero. The

Hamilton filter transforms a random walk into a stationary series, but preserves a lot of the

persistence. We prefer to use stationary yet persistent series in our subsequent application,

so that they are predictable over multiple horizons.

We follow Marcellino, Stock, and Watson (2006) in that we are creating a large number

of data sets by randomly selecting groups of time series from the FRED-QD database. We

do so by selecting uniformly at random 200 different six-tuples of series. For each of the data

sets we estimate a VAR(1) of dimension n = 6 and focus on the selection of the estimator

ι ∈ {mle, lfe} and the degree of shrinkage λ. Because the series are chosen at random, this

implies that for some data sets there is more, for others less misspecification.

We demean and standardize each series, and thus center our prior at zero. The estimation

sample size is set to T = 100, and we consider forecast horizons h = 2, 4, 6. The goal is to
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generate a mean square errors (MSE) analysis akin to the Monte Carlo section. We do so as

follows. Suppose we have raw data y1, . . . , yT∗ , where T∗ is the total number of observations

for the vector yt in the FRED-QD database. We use rolling samples, denoted by τ = 1, . . . , τ∗,

to keep the relative weight on prior and likelihood constant. The recursive samples are

yτ , . . . , y(τ−1)+T , . . . , y(τ−1)+T+h,

starting from τ = 1 and ending at τ = T∗ − T − h+ 1. Let

ŷ(τ−1+T )+h

be the forecast for the observation in period (τ − 1 + T ) + h given the information at the

forecast origin (τ − 1) + T . Recall that the MLE and LFE-based shrinkage predictors were

defined in (7) and (12), respectively. We compute

M̂SE(ŷ;T, h) =
1

T∗ − T − h+ 1

T∗−T−h+1∑
τ=1

L
(
y(τ−1+T )+h, ŷ(τ−1+T )+h

)
, (60)

where the quadratic loss L(·) was defined in (2). We set the weight matrix W in the

loss function equal to the identity matrix because the time series have been standardized.

Below we report percentage changes of M̂SE(ŷ;T, h) relative to the MSE associated with

the predictor that uses PC to jointly select the estimator ι and the degree of shrinkage λ

(baseline predictor).

Figure 5 reports the distribution of the relative MSEs (top) and optimally selected shrink-

age levels (bottom) across the randomly selected data sets. The plots in the left column are

based on the LFE-based shrinkage predictor and the panels in the right column are generated

from the MLE-based shrinkage predictor. According to the normalization of M̂SE(ŷ;T, h),

positive values indicate that the performance of the predictor under consideration is worse

than the baseline predictor.

The top left panel of the figure implies that always using the LFE-based shrinkage es-

timator and using PC to select λ, tends to lead to MSE improvements (negative values),

relative to the baseline predictor. If λ is selected by the MDD criterion, then much of the

mass in the histogram shifts to the left of zero, meaning MDD selection of λ leads to worse

performance than the baseline predictor.

For the MLE in the top right panel the situation is reversed. However, the mass to the

left of zero seems to be always concentrated close to zero, meaning that the joint selection is

very close to the best shrinkage selection when fixing the estimator. Regarding the optimal
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Figure 5: Distribution of Relative MSEs and Optimal PC Shrinkage

Figure 6: Scatter of MSEs for a fixed selection mechanism

shrinkage level, we see that in the LFE case the shrinkage level tends to be interior, while it

falls on the extremes for the MLE. All this is in line with the MC results.

Figure 6 depicts MSE scatter plots. The left panel is generated by selecting λ using PC

and the right panel contains results for MDD hyperparameter selection. Each dot in the
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Figure 7: Scatter of MSEs for a fixed estimator

scatter plot represents a data set and corresponds to a pair of MSEs, associated with the

MLE and the LFE-based shrinkage predictors. A dot falling into the Northeast quadrant

means that MLE and LFE with shrinkage chosen by the corresponding mechanism are worse

than joint PC selection. The Northwest quadrant contains data sets for which the MLE

is worse than joint PC selection, but LFE is better (hence LFE with PC is better than

MLE with PC). The Southwest quadrant means that both MLE and LFE are better than

joint PC selection. Finally, the 4th quadrant contains data sets for which the LFE is worse

than joint PC selection, but MLE is better. Overall, it is hard to see big patterns for the

PC by eyeballing, it seems evenly distributed around zero in all directions. For the MDD,

clearly the MLE has much less dispersion, although both distributions seem to be centered

around zero (maybe MLE slightly below). The 45 degree line helps to identify the relative

performance between LFE and MLE.

Figure 7 is similar to Figure 6 but now fixing the estimator instead of the selection

mechanism – hence we are basically comparing the performance of the selection mechanism

here. The Northeast quadrant means that PC and MDD selection mechanisms for the

corresponding estimator are worse than joint PC selection. The Northwest quadrant means

that MDD is worse than joint PC selection, but PC is better (hence PC is better than

MDD). The Southwest quadrant means that both PC and MDD are better than joint PC

selection. The Southeast quadrant means that PC is worse than joint PC selection, but

MDD is better. Again, same observation about the patterns as before. The 45 degree line

helps to identify the relative performance between PC and MDD. For the LFE, the majority
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of points is above the 45 degree line, meaning that PC hyperparameter selection leads to

more accurate predictions than MDD-based selection. For the MLE, the results seems to be

reversed.

8 Conclusion

We consider a framework in which a researcher uses a VAR that is dynamically misspecified.

However, the misspecification is assumed to be fairly small, to that it cannot be easily

detected. We capture this notion in an asymptotic framework in which the misspecification

vanishes at the same rate at which model parameters can be estimated. We consider two

applications for the VAR: multi-step forecasting and impulse response function estimation

and develop criteria that provided asymptotically unbiased, but inconsistent estimates of

the prediction risk or the impulse response estimation risk. We show how these criteria can

be used for the hyperparameter determination in a quasi Bayesian setting that shrinks the

a MLE or a LFE toward a prior mean.
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A Proofs and Derivations

A.1 Auxiliary Results

Theorem A-1 Under Assumption 1, the process supλ≥0 ‖ζt(ι, λ)‖2, ι ∈ {lfe,mle}, is uni-

formly integrable.

Proof of Theorem A-1. Throughout, we let 〈f〉l =
(
E[|f |l]

)1/l
. The proof consists of two

parts. We first bound the norms 〈supλ≥0 ‖ζT (ι, λ)‖〉2+δ for ι ∈ {lfe,mle}, with moments of

1√
T

∑
εt−jy

′
t−h,

(
1

T

∑
yt−hy

′
t−h

)−1

,
1

T

∑
zt−jy

′
t−h − Γzy,h−j (A.1)

Next, we apply Theorems 4 and 5 in S2005.

Loss-function-based Estimator. By definition

ζT (lfe, λ) =
h−1∑
j=0

F j

(
1√
T

∑
εt−jy

′
t−h

)(
λPΨ +

1

T

∑
yt−hy

′
t−h

)−1

+ α

[
h−1∑
j=0

F j

(
1

T

∑
zt−jy

′
t−h

)(
λPΨ +

1

T

∑
yt−hy

′
t−h

)−1

− µ(lfe, λ)

]
.

By Minkowski’s inequality,〈
sup
λ≥0
‖ζT (lfe, λ)‖

〉
2+δ

≤
h−1∑
j=0

‖F j‖

〈
sup
λ≥0

∥∥∥∥∥
(

1√
T

∑
εt−jy

′
t−h

)(
λPΨ +

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

2+δ

+ α
h−1∑
j=0

‖F j‖
〈

sup
λ≥0

∥∥∥∥( 1

T

∑
zt−jy

′
t−h

)(
λPΨ +

1

T

∑
yt−hy

′
t−h

)−1

− Γzy,h−j(λPΨ + Γyy,0)−1

∥∥∥∥〉
2+δ

,

Let us first bound the first term in the previous expression. It is easy to see that〈
sup
λ≥0

∥∥∥∥∥
(

1√
T

∑
εt−jy

′
t−h

)(
λPΨ +

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

2+δ

≤

〈∥∥∥∥∥
(

1√
T

∑
εt−jy

′
t−h

)(
1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

2+δ

≤

〈∥∥∥∥ 1√
T

∑
εt−jy

′
t−h

∥∥∥∥〉
q1(2+δ)

〈∥∥∥∥∥
(

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

q1(2+δ)
q1−1


q1−1
q1
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for q1 > 1, where the last inequality follows by Hölder’s inequality.

The second term can be bounded as follows:〈
sup
λ≥0

∥∥∥∥( 1

T

∑
zt−jy

′
t−h

)(
λPΨ +

1

T

∑
yt−hy

′
t−h

)−1

− Γzy,h−j(λPΨ + Γyy,0)−1

∥∥∥∥〉
2+δ

≤

〈
sup
λ≥0

∥∥∥∥∥
(

1

T

∑
zt−jy

′
t−h − Γzy,h−j

)(
λPΨ +

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

2+δ〈
sup
λ≥0

∥∥∥∥∥Γzy,h−j

[(
λPΨ +

1

T

∑
yt−hy

′
t−h

)−1

− (λPΨ + Γyy,0)−1

]∥∥∥∥∥
〉

2+δ

≤

〈∥∥∥∥∥
(

1

T

∑
zt−jy

′
t−h − Γzy,h−j

)(
1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

2+δ

‖Γzy,h−j‖

(〈∥∥∥∥∥
(

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

2+δ

+ ‖Γ−1
yy,0‖

)

≤

〈∥∥∥∥( 1

T

∑
zt−jy

′
t−h − Γzy,h−j

)∥∥∥∥〉
q2(2+δ)

〈∥∥∥∥∥
(

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

q2(2+δ)
q2−1


q2−1
q2

‖Γzy,h−j‖

(〈∥∥∥∥∥
(

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

2+δ

+ ‖Γ−1
yy,0‖

)
for some q2 > 1. Thus, altogether, a sufficient condition the uniform integrability of

supλ≥0 ‖ζT (lfe, λ)‖2 is

sup
t≥T ∗(h)

〈∥∥∥∥ 1√
T

∑
εt−jy

′
t−h

∥∥∥∥〉
q1(2+δ)

<∞

sup
t≥T ∗(h)

〈∥∥∥∥∥
(

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

(2+δ) min
{

q1
q1−1

,
q2
q2−1

} <∞

sup
t≥T ∗(h)

〈∥∥∥∥ 1

T

∑
zt−jy

′
t−h − Γzy,h−j

∥∥∥∥〉
q2(2+δ)

<∞

for some q1, q2 > 1 and T ∗(h).

Maximum Likelihood Estimator. By definition

ζT (mle, λ) =
h−1∑
j=0

F j

(
1√
T

∑
εty
′
t−1

)(
λPΨ +

1

T

∑
yt−1y

′
t−1

)−1

F h−1−j

+ α

[
h−1∑
j=0

F j

(
1

T

∑
zty
′
t−1

)(
λPΨ +

1

T

∑
yt−1y

′
t−1

)−1

F h−1−j − µ(lfe, λ)

]
+
√
TR(Φ̄T (mle, λ)− F ).
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By Minkowski’s inequality,〈
sup
λ≥0
‖ζT (mle, λ)‖

〉
2+δ

≤ (h− 1)‖F h−1‖

〈
sup
λ≥0

∥∥∥∥∥
(

1√
T

∑
εty
′
t−1

)(
λPΨ +

1

T

∑
yt−1y

′
t−1

)−1
∥∥∥∥∥
〉

2+δ

+ α(h− 1)‖F h−1‖
〈∥∥∥∥( 1

T

∑
zty
′
t−1

)(
λPΨ +

1

T

∑
yt−1y

′
t−1

)−1

− Γzy,1(λPΨ + Γyy,0)−1

∥∥∥∥〉
2+δ

+
√
T

〈
sup
λ≥0

∥∥R(Φ̄T (mle, λ)− F )
∥∥〉

2+δ

.

Since the first two terms are equivalent to the terms that arise in an h = 1-step ahead LFE

predictor, we now focus on the remainder term. From an h-order Taylor series expansion of

Φh around F , deduce

‖R(Φ− F )‖ ≤ Ch(F )
h∑
j=2

‖Φ− F‖j

for some constant Ch(F ) that depends on the forecast horizon h and the autoregressive

matrix F . Thus,

√
T

〈
sup
λ≥0

∥∥R(Φ̄T (mle, λ)− F )
∥∥〉

2+δ

≤ |Ch(F )|
h∑
j=2

T−(j+1)/2

〈
sup
λ≥0

∥∥∥√T (Φ̄T (mle, λ)− F )
∥∥∥〉

2+δ

Therefore, a sufficient condition for the uniform integrability of supλ≥0 ‖ζT (mle, λ)‖2 is

sup
t≥T ∗(h)

〈∥∥∥∥ 1√
T

∑
εt−jy

′
t−h

∥∥∥∥〉
q3h(2+δ)

<∞

sup
t≥T ∗(h)

〈∥∥∥∥∥
(

1

T

∑
yt−hy

′
t−h

)−1
∥∥∥∥∥
〉

(2+δ)hmin
{

q3
q3−1

,
q4
q4−1

} <∞

sup
t≥T ∗(h)

〈∥∥∥∥ 1

T

∑
zt−jy

′
t−h − Γzy,h−j

∥∥∥∥〉
q4h(2+δ)

<∞

for some q3, q4 > 1 and T ∗(h).

Finally, note that the sufficient conditions are the same as those derived in Theorem 6

in S2005, hence per the same arguments as in his proof we can invoke his Theorems 4 and

5 and the result follows. �
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A.2 Proofs for Section 2

Proof of Theorem 1. The asymptotic covariance matrix takes the form

V =


V (mle, λ, λ)

V (lfe,mle, λ, λ) V (lfe, λ, λ)

V (mle, λ′, λ) V (mle, lfe, λ′, λ) V (mle, λ′, λ′)

V (lfe,mle, λ′, λ) V (lfe, λ′, λ) V (lfe,mle, λ′, λ′) V (lfe, λ′, λ′)


with the elements defined as

V (lfe, λ, λ′) =
h−1∑
i=0

h−1∑
j=0

(F iΣεεF
j′)⊗ ((λP ′Ψ + Γyy,0)−1Γyy,j−i(λ

′PΨ + Γyy,0)−1)

V (mle, λ, λ′) =
h−1∑
i=0

h−1∑
j=0

(F iΣεεF
j′)⊗ (F h−1−i′(λP ′Φ + Γyy,0)−1Γyy,0(λ′PΦ + Γyy,0)−1F h−1−j)

V (mle, lfe, λ, λ′) =
h−1∑
i=0

h−1∑
j=0

(F iΣεεF
j′)⊗ (F h−1−i′(λP ′Φ + Γyy,0)−1Γyy,h−1−j(λ

′PΨ + Γyy,0)−1)

Because Γyy,h−1−j = F h−1−jΓyy,0, we obtain that

V (mle, lfe, 0, 0) =
h−1∑
i=0

h−1∑
j=0

(F iΣεεF
j′)⊗ (F h−1−i′Γ−1

yy,0F
h−1−j) = V (mle, 0, 0).

Analysis of LFE. First, note that

Ψ̄T (lfe, λ)− F h = (ΨT − F h)λ̃PΨP̄
−1
Ψ + (Ψ̂T (lfe)− F h)ST,hhP̄

−1
Ψ .

Moreover, the LFE can be written as

Ψ̂T (lfe) = F h + αT−1/2

(
h−1∑
j=0

T∑
t=1

F jzt−jy
′
t−h

)
S−1
T,hh +

(
h−1∑
j=0

T∑
t=1

F jεt−jy
′
t−h

)
S−1
T,hh.

Therefore,

Ψ̄T (lfe, λ)− F h = (ΨT − F h)λ̃PΨP̄
−1
Ψ

+αT−1/2

(
h−1∑
j=0

T∑
t=1

F jzt−jy
′
t−h

)
P̄−1

Ψ

+

(
h−1∑
j=0

T∑
t=1

F jεt−jy
′
t−h

)
P̄−1

Ψ
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By the same steps as in Schorfheide (2005) and equations (14) and (15),

T 1/2
(
Ψ̄T (lfe, λ)− F h

)
= δ(lfe, λ) + αµ(lfe) + ζT (lfe, λ),

where

δ(lfe, λ) = λψPΨ(λPΨ + Γyy,0)−1

µ(lfe, λ) =
h−1∑
j=0

F jΓzy,h−j(λPΨ + Γyy,0)−1

ζT (lfe, λ) =⇒ N(0, V (lfe, λ))

V (lfe, λ) =
h−1∑
i=0

h−1∑
j=0

(F iΣεεF
j′)⊗ ((λPΨ + Γyy,0)−1Γyy,j−i(λPΨ + Γyy,0)−1).

Analysis of MLE. By a first order Taylor expansion,

Φh − F h =
h−1∑
j=0

F j(Φ− F )F h−1−j +R(Φ− F ).

Note that

Φ̄T (mle, λ)− F = (ΦT − F )λ̃PΦP̄
−1
Φ + (Φ̂T (mle)− F )ST,11P̄

−1
Φ ,

so it follows that

Ψ̄(mle, λ)− F h = λ̃
h−1∑
j=0

F j(ΦT − F )PΦP̄
−1
Φ F h−1−j

+
h−1∑
j=0

F j(Φ̂T (mle)− F )ST,11P̄
−1
Φ F h−1−j

+R(Φ̄T (mle, λ)− F ).

By Schorfheide (2005) and equations (14) and (15),

T 1/2
(
Ψ̄(mle, λ)− F h

)
= δ(mle, λ) + αµ(mle, λ) + ζT (mle, λ)

where

δ(mle, λ) = λ
h−1∑
j=0

F jφPΦ(λPΦ + Γyy,0)−1
Φ F h−1−j

µ(mle, λ) =
h−1∑
j=0

F jΓzy,1(λPΦ + Γyy,0)−1F h−1−j

ζT (mle, λ) =⇒ N(0, V (mle, λ))

V (mle, λ) =
h−1∑
i=0

h−1∑
j=0

(F iΣεεF
j′)⊗ (F h−1−i′(λP ′Φ + Γyy,0)−1Γyy,0(λPΦ + Γyy,0)−1F h−1−j).
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The covariance follows from the same arguments as in Schorfheide (2005). �

Proof of Theorem 2. The difference between the conditional expectation of yT+h (omitting

the tilde) and the predictor ŷT+h(ι, λ) is given by

T 1/2(ET [yT+h]− ŷT+h(ι, λ)) = α

(
h−1∑
j=0

F jET [zT+h−j]− µ(pov)yT

)
+α[µ(pov)− µ(ι, λ)]yT − ζT (ι, λ)yT

−δ(ι, λ)yT .

The normalized prediction risk can then be expressed as follows:

TE
[
tr{W (ET [yT+h]− ŷT+h(ι, λ))(ET [M ′YT+h]− ŷT+h(ι, λ))′}

]
(A.2)

=(1) α2tr

{
W (µ(pov)− µ(ι, λ))ΓY Y,0(µ(pov)− µ(ι, λ))′

}
(2) +tr

{
WE

[
ζT (ι, λ)Γyy,0ζT (ι, λ)′

]}
(3) +α2tr

{
WE

[(
h−1∑
j=0

F jET [zT+h−j]− µ(pov)yT

)

×

(
h−1∑
j=0

F jET [zT+h−j]− µ(pov)yT

)′
(4) +tr {Wδ(ι, λ)Γyy,0δ(ι, λ)′}

(5) −2αtr

WE[ζT (ι, λ)]E

yT (h−1∑
j=0

F jET [zT+h−j]− µ(pov)yT

)′
(6) +2α2tr

{
WE

[
h−1∑
j=0

F jET [zT+h−j]y
′
T − µ(pov)yTy

′
T

]
(µ(pov)− µ(ι, λ))′

}
(7) −2αtr {WE[ζT (ι, λ)]Γyy,0(µ(pov)− µ(ι, λ))′}

(8) −2αtr

Wδ(ι, λ)E

yT (h−1∑
j=0

F jET [zT+h−j]− µ(pov)yT

)′
(9) −2αtr {W (µ(pov)− µ(ι, λ))Γyy,0δ(ι, λ)′}

(10) +2tr {WE[ζT (ι, λ)]Γyy,0δ(ι, λ)′} .

Since

tr[WABA′] = vecr(A)′(W ⊗B)vecr(A)
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and tr[AB] = tr[BA] we can rewrite term (2) in (A.2) as

tr

{
WE

[
ζT (ι, λ)Γyy,0ζT (ι, λ)′

]}
= tr

{
(W ⊗ Γyy,0)E [ζT (ι, λ)ζT (ι, λ)′]

}
with the understanding that on the right-hand side of the equation ζT (ι, λ) is vectorized.

Under the conditions in Schorfheide (2005), the sequence ‖ζT (ι, p)‖2 is uniformly integrable.

Hence, we can deduce that (see Theorem 3.5 of Billingsley (1968))

tr

{
(W ⊗ Γyy,0)E

[
ζT (ι, λ)ζT (ι, λ)′

]}
−→ tr

{
(W ⊗ Γyy,0)V (ι, λ, λ)

}
.

Moreover, uniform integrability of ‖ζT (ι, p)‖2 implies that E[ζT (ι, λ)] = o(1), and so terms

(5), (7), and (10) in (A.2) are o(1). Since

E

[
h−1∑
j=0

F jET [zT+h−j]y
′
T

]
=

h−1∑
j=0

F jΓzy,h−j = µ(pov)Γyy,0

terms (6) and (8) in (A.2) are o(1), too. The above simplifications allow us to rewrite the

normalized prediction risk as

TE
[
tr{W (ET [yT+h]− ŷT+h(ι, λ))(ET [yT+h]− ŷT+h(ι, λ))′}

]
=(1) α2tr

{
W (µ(pov)− µ(ι, λ))Γyy,0(µ(pov)− µ(ι, λ))′

}
(2) +tr

{
(W ⊗ Γyy,0)V (ι, λ)

}

(3) +α2tr

WE

(h−1∑
j=0

F jET [zT+h−j]− µ(pov)yT

)(
h−1∑
j=0

F jET [zT+h−j]− µ(pov)yT

)′
(4) +tr {Wδ(ι, λ)Γyy,0δ(ι, λ)′}

(9) − 2αtr
{
Wδ(ι, λ)Γyy,0 (µ(pov)− µ(ι, λ))′

}
+o(1).

Hence, the desired result follows. �
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A.3 Proofs for Section 3

Proof of Theorem 3. Using the asymptotic representation of Ψ̄(ι, λ) given in Theorem 1,

the in-sample loss can be decomposed as follows

T ·MSE(ι, λ)

=
T∑
t=1

(yt − F hyt−h)(yt − F hyt−h)
′

= −T−1/2

T∑
t=1

(yty
′
t−h − F hyt−hy

′
t−h)(δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ) + op(1))′

−T−1/2

T∑
t=1

(δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ) + op(1))(yty
′
t−h − F hyt−hy

′
t−h)

′

+(δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ) + op(1))

(
T−1

T∑
t=1

yt−hy
′
t−h

)
×(δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ) + op(1))′.

From the definition of ζT (lfe, λ), it follows that

T−1/2

T∑
t=1

(yty
′
t−h − F hyt−hy

′
t−h)

= α
h−1∑
j=0

(
T−1

T∑
t=1

F jzt−jy
′
t−h

)
+

h−1∑
j=0

(
F jT−1/2

T∑
t=1

εt−jy
′
t−h

)
= [ζT (lfe, λ) + αµ(lfe, λ) + op(1)] (T P̄−1

Ψ )−1

for any λ ≥ 0. Without loss of generality, take λ = 0, whence

T−1/2

T∑
t=1

(yty
′
t−h − F hyt−hy

′
t−h) = [ζT (lfe, 0) + αµ(pov)]T−1ST,hh.

Therefore,

T · tr {W ·MSE(ι, λ)}

= tr

{
W

T∑
t=1

(yt − F hyt−h)(yt − F hyt−h)
′

}
−2tr

{
W [ζT (lfe, 0) + αµ(pov)] (T−1ST,hh) [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ) + op(1)]′

}
+tr

{
W [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ) + op(1)]

(
T−1ST,hh

)
× [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ) + op(1)]′

}
.
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Observe that T−1ST,hh = Γyy,0 + op(1), hence

T

(
tr {W ·MSE(ι, λ)} − tr {W ·MSE(lfe, 0)}

)
= −2tr

{
W [ζT (lfe, 0) + αµ(pov)] Γyy,0 [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ)]′

}
+tr

{
W [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ)] Γyy,0 [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ)]′

}
+tr

{
W [ζT (lfe, 0) + αµ(pov)] Γyy,0 [αµ(pov) + ζT (lfe, 0)]′

}
+ op(1).

Statement (i) now follows from Theorem 1, the Continuous Mapping Theorem and a straight-

forward rearrangement of terms.

For statement (ii), from part (i) and uniform integrability of the in-sample loss differential

it is easy to see that

E [∆R,T (ι, λ)]

−→ E
[
‖δ(ι, λ) + αµ(ι, λ) + ζ(ι, λ)‖2

W⊗Γyy,0

]
+ E

[
‖αµ(pov) + ζ(lfe, 0)‖2

W⊗Γyy,0

]
−2E

[
tr
{
W [αµ(pov) + ζ(lfe, 0)] Γyy,0 [δ(ι, λ) + αµ(ι, λ) + ζ(ι, λ)]′

}]
.

Working out the expected values according to Theorem 1 yields

E [∆R,T (ι, λ)] −→ ‖δ(ι, λ) + αµ(ι, λ)‖2
W⊗Γyy,0

+ tr {(W ⊗ Γyy,0)V (ι, λ, λ)}

+α2 ‖µ(pov)‖2
W⊗Γyy,0

+ tr {(W ⊗ Γyy,0)V (lfe, 0, 0)}

−2αtr
{
Wµ(pov)Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
−2tr {(W ⊗ Γyy,0)V (lfe, ι, 0, λ)}

Using the definitions of R̄B(ι, λ) and R̄V (ι, λ) in Theorem 2 and recognizing that R̄B(lfe, 0) =

0 we can write the r.h.s. as

r.h.s = ‖δ(ι, λ) + αµ(ι, λ)‖2
W⊗Γyy,0

+ α2 ‖µ(pov)‖2
W⊗Γyy,0

−2αtr
{
Wµ(pov)Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
+R̄V (ι, λ) + R̄V (lfe, 0)− 2tr {(W ⊗ Γyy,0)V (lfe, ι, 0, λ)}

= R̄B(ι, λ) + R̄V (ι, λ)−
(
R̄B(lfe, 0) + R̄V (lfe, 0)

)
+2R̄V (lfe, 0)− 2tr {(W ⊗ Γyy,0)V (lfe, ι, 0, λ)} . �

Proof of Theorem 4. According to Theorem 1 we can use

Ψ̄T (ι, λ) = F h + T−1/2
[
δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ)

]
+ op(T

−1/2) (A.3)
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to replace ŷT+h(ι, λ) by Ψ̄T (ι, λ)ỹT . Using the expression of ET [ỹT+h] from the proof of

Theorem 2 we obtain

T 1/2(ET [ỹT+h]− ŷT+h(ι, λ))

= α

(
h−1∑
j=0

F jET [z̃T+h−j]− µ(pov)ỹT

)
+α[µ(pov)− µ(ι, λ)]ỹT − ζT (ι, λ)ỹT − δ(ι, λ)ỹT

= α

(
h−1∑
j=0

F jET [z̃T+h−j]− µ(pov)ỹT

)
−
[
δ(ι, λ) + α

(
µ(ι, λ)− µ(pov)

)]
ỹT − ζT (ι, λ)ỹT .

In turn

TL
(
ET [ỹT+h], ŷT+h(ι, λ)

)
=(1) α2tr

W
(
h−1∑
j=0

F jET [z̃T+h−j]− µ(pov)ỹT

)(
h−1∑
j=0

F jET [z̃T+h−j]− µ(pov)ỹT

)′
(2) +tr

{
W
[
δ(ι, λ) + α

(
µ(ι, λ)− µ(pov)

)]
Γyy,0

[
δ(ι, λ) + α

(
µ(ι, λ)− µ(pov)

)]′}
(3) +tr {WζT (ι, λ)Γyy,0ζT (ι, λ)′}

(4) −2αtr

{
W

(
h−1∑
j=0

F jE
[
ET [z̃T+h−j]ỹ

′
T − µ(pov)ỹT ỹ

′
T

∣∣ {yt}Tt=1

])

×
[
δ(ι, λ) + α

(
µ(ι, λ)− µ(pov)

)]′}
(5) −2αtr

{
W

(
h−1∑
j=0

F jE
[
ET [z̃T+h−j]ỹ

′
T − µ(pov)ỹT ỹ

′
T

∣∣ {yt}Tt=1

])
ζT (ι, λ)′

}
(6) +2tr

{
W
[
δ(ι, λ) + α

(
µ(ι, λ)− µ(pov)

)]
Γyy,0ζT (ι, λ)′

}
+ op(1).

Notice that (1) does not depend on (ι, λ) and drops out in the calculation of loss differ-

ences. Moreover,
h−1∑
j=0

F jE
[
ET [z̃T+h−j]ỹ

′
T

]
= µ(pov)Γyy,0,

which implies that terms (4) and (5) are equal to zero. Using that δ(ι, 0) = 0 and µ(lfe, 0) =
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µ(pov) we obtain that

QT (ι, λ) = tr
{
W
[
δ(ι, λ) + α

(
µ(ι, λ)− µ(pov)

)]
Γyy,0

[
δ(ι, λ) + α

(
µ(ι, λ)− µ(pov)

)]′}
+tr {WζT (ι, λ)Γyy,0ζT (ι, λ)′}

+2tr
{[
δ(ι, λ) + α

(
µ(ι, λ)− µ(pov)

)]
Γyy,0ζT (ι, λ)′

}
−tr {WζT (lfe, 0)Γyy,0ζT (lfe, 0)′}

+2
(
tr {WζT (lfe, 0)Γyy,0ζT (lfe, 0)′} − R̂V (lfe, 0)

)
+ op(1)

= tr
{
W
[
δ(ι, λ) + αµ(ι, λ)

]
Γyy,0

[
δ(ι, λ) + αµ(ι, λ)

]′}
+α2tr {Wµ(pov)Γyy,0µ(pov)′}

−2αtr
{
W
[
δ(ι, λ) + αµ(ι, λ)

]
Γyy,0µ(pov)′

}
+tr {WζT (ι, λ)Γyy,0ζT (ι, λ)′}

+2tr
{[
δ(ι, λ) + αµ(ι, λ)

]
Γyy,0ζT (ι, λ)′

}
−2αtr {µ(pov)Γyy,0ζT (ι, λ)′}

+tr {WζT (lfe, 0)Γyy,0ζT (lfe, 0)′} − 2R̂V (lfe, 0) + op(1).

Recall from the proof of Theorem 3 that the MSE differential that determines PCT (ι, λ)
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can be written as

T

(
tr {W ·MSE(ι, λ)} − tr {W ·MSE(lfe, 0)}

)
= −2tr

{
W [ζT (lfe, 0) + αµ(pov)] Γyy,0 [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ)]′

}
+tr

{
W [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ)] Γyy,0 [δ(ι, λ) + αµ(ι, λ) + ζT (ι, λ)]′

}
+tr

{
W [ζT (lfe, 0) + αµ(pov)] Γyy,0 [αµ(pov) + ζT (lfe, 0)]′

}
+ op(1)

= −2tr
{
WζT (lfe, 0)Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
− 2αtr

{
Wµ(pov)Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
−2tr {WζT (lfe, 0)Γyy,0ζT (ι, λ)′} − 2αtr {Wµ(pov)Γyy,0ζT (ι, λ)′}

+tr
{
W [δ(ι, λ) + αµ(ι, λ)] Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
+tr {WζT (ι, λ)Γyy,0ζ

′
T (ι, λ)}

+2tr {W [δ(ι, λ) + αµ(ι, λ)] Γyy,0ζT (ι, λ)′}

+tr {WζT (lfe, 0)Γyy,0ζT (lfe, 0)′}+ α2tr {Wµ(pov)Γyy,0µ(pov)′}

+2αtr {Wµ(pov)Γyy,0ζT (lfe, 0)′}+ op(1)

= tr
{
W [δ(ι, λ) + αµ(ι, λ)] Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
+α2tr {Wµ(pov)Γyy,0µ(pov)′}

−2αtr
{
Wµ(pov)Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
+tr {WζT (ι, λ)Γyy,0ζ

′
T (ι, λ)}

+2tr {W [δ(ι, λ) + αµ(ι, λ)] Γyy,0ζT (ι, λ)′}

−2αtr {Wµ(pov)Γyy,0ζT (ι, λ)′}

+tr {WζT (lfe, 0)Γyy,0ζT (lfe, 0)′}

−2tr
{
WζT (lfe, 0)Γyy,0 [δ(ι, λ) + α(µ(ι, λ)− µ(pov))]′

}
−2tr {WζT (lfe, 0)Γyy,0ζT (ι, λ)′}+ op(1).
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Therefore,

PCT (ι, λ)− PCT (lfe, 0)

= tr
{
W [δ(ι, λ) + αµ(ι, λ)] Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
+α2tr {Wµ(pov)Γyy,0µ(pov)′}

−2αtr
{
Wµ(pov)Γyy,0 [δ(ι, λ) + αµ(ι, λ)]′

}
+tr {WζT (ι, λ)Γyy,0ζ

′
T (ι, λ)}

+2tr {W [δ(ι, λ) + αµ(ι, λ)] Γyy,0ζT (ι, λ)′}

−2αtr {Wµ(pov)Γyy,0ζT (ι, λ)′}

+tr {WζT (lfe, 0)Γyy,0ζT (lfe, 0)′} − 2R̂V (lfe, 0)

−2
(
tr {WζT (lfe, 0)Γyy,0ζT (ι, λ)′} − R̂V (lfe, ι, 0, λ)

)
−2tr

{
WζT (lfe, 0)Γyy,0 [δ(ι, λ) + α(µ(ι, λ)− µ(pov))]′

}
+ op(1).

Thus, we obtain the statement of the theorem:

PCT (ι, λ)− PCT (lfe, 0)

= QT (ι, λ)− 2
(
tr {WζT (lfe, 0)Γyy,0ζT (ι, λ)′} − R̂V (lfe, ι, 0, λ)

)
−2tr

{
WζT (lfe, 0)Γyy,0 [δ(ι, λ) + α(µ(ι, λ)− µ(pov))]′

}
+ op(1). �

A.4 Proofs for Section 4

Proof of Theorem 5. First, note that

Ψ̄T (lalfe, λ)− F h = (ΨT − F h)λ̃PΨP̄
−1
Ψ + (Ψ̂T (lalfe)− F h)S̃T,hhP̄

−1
Ψ .

Moreover, letting ût = yt − Φ̂T (mle)yt−1, the Frisch-Waugh-Lovell theorem implies that the

lag-augmenged LFE can be written as

Ψ̂T (lalfe) =

(
T−h∑
t=1

yt+hû
′
t

)(
T−h∑
t=1

ûtû
′
t

)−1

.
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Recall that, letting ut = yt − Fyt−1,

yt+h = F hyt +
h−1∑
j=0

F jεt+h−j + αT−1/2

h−1∑
j=0

F jzt+h−j

= F h(yt − Fyt−1) + F h+1yt−1 +
h−1∑
j=0

F jεt+h−j + αT−1/2

h−1∑
j=0

F jzt+h−j

= F hut + F h+1yt−1 +
h−1∑
j=0

F jεt+h−j + αT−1/2

h−1∑
j=0

F jzt+h−j.

The lag-augmented LFE can then be rewritten as

Ψ̂T (lalfe) =

(
T−h∑
t=1

[
F hut + F h+1yt−1 +

h−1∑
j=0

F jεt+h−j + αT−1/2

h−1∑
j=0

F jzt+h−j

]
û′t

)(
T−h∑
t=1

ûtû
′
t

)−1

=

(
T−h∑
t=1

[
F hut +

h−1∑
j=0

F jεt+h−j + αT−1/2

h−1∑
j=0

F jzt+h−j

]
û′t

)(
T−h∑
t=1

ûtû
′
t

)−1

= F h +

(
T−h∑
t=1

[
F h(ut − ût) +

h−1∑
j=0

F jεt+h−j + αT−1/2

h−1∑
j=0

F jzt+h−j

]
û′t

)(
T−h∑
t=1

ûtû
′
t

)−1

= F h +

(
h−1∑
j=0

T−h∑
t=1

F jεt+h−jû
′
t

)(
T−h∑
t=1

ûtû
′
t

)−1

+ αT−1/2

(
h−1∑
j=0

T−h∑
t=1

F jzt+h−jû
′
t

)(
T−h∑
t=1

ûtû
′
t

)−1

.

The first line plugs in the expression for yt+h above. The second line uses the fact that∑T−h
t=1 yt−1û

′
t = 0 by construction. The third line adds and subtracts F hût. The last line

uses ut − ût = (F − Φ̂T (mle))yt−1, and again
∑T−h

t=1 yt−1û
′
t = 0 by definition of ût.

Therefore,

√
T (Ψ̄T (lfe, λ)− F h) =

√
T (ΨT − F h)λ̃PΨP̄

−1
Ψ + α

(
h−1∑
j=0

T−h∑
t=1

F jzt+h−jû
′
t

)
P̄−1

Ψ

+
√
T

(
h−1∑
j=0

T−h∑
t=1

F jεt+h−jû
′
t

)
P̄−1

Ψ .

(A.4)

For the first term on the RHS of (A.4), using the drifting sequence of priors we have

√
T (ΨT − F h)λ̃PΨP̄

−1
Ψ = ψλPΨ

(
λPΨ + T−1

T−h∑
t=1

ûtû
′
t

)−1

= ψλPΨ (λPΨ + Σεε)
−1 + op(1).
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In particular, in the last step we use Σuu = Σεε +O(1/T ).

For the second term on the RHS of (A.4), note that

1

T

h−1∑
j=0

T−h∑
t=1

F jzt+h−jû
′
t =

1

T

h−1∑
j=0

T−h∑
t=1

F jzt+h−ju
′
t +

1

T

h−1∑
j=0

T−h∑
t=1

F jzt+h−j(ût − ut)′.

The ergodic theorem implies that

1

T

h−1∑
j=0

T−h∑
t=1

F jzt+h−ju
′
t =

h−1∑
j=0

F jE[zt+h−ju
′
t] + op(1)

=
h−1∑
j=0

F jAh−jΣεε + op(1).

At the same time, consistency of Φ̂T (mle) implies that

1

T

h−1∑
j=0

T−h∑
t=1

F jzt+h−j(ût − ut)′ =
1

T

h−1∑
j=0

T−h∑
t=1

F jzt+h−jy
′
t−1(Φ̂T (mle)− F )′ = op(1).

The second term on the RHS of (A.4) is then

α

(
h−1∑
j=0

T−h∑
t=1

F jzt+h−jû
′
t

)
P̄−1

Ψ = α

(
h−1∑
j=0

F jAh−jΣεε

)
(λPΨ + Σεε)

−1 + op(1).

For the third term on the RHS of (A.4), the central limit theorem implies that

T−1/2

h−1∑
j=0

T−h∑
t=1

F jεt−jû
′
t = T−1/2

h−1∑
j=0

T−h∑
t=1

F jεt−ju
′
t + T−1/2

h−1∑
j=0

T−h∑
t=1

F jεt−j(ût − ut)′

= T−1/2

h−1∑
j=0

T−h∑
t=1

F jεt−ju
′
t + op(1)

= ν + op(1),

for a centered Gaussian vector vecr(ν).

The covariance matrix V follows from the same arguments as in Theorem 1. In particular,

vecr (ζT (lalfe, λ)) =
h−1∑
j=0

(
F j ⊗ (λPΨ + Σεε)

−1
)
vec

(
T−1/2

T−h∑
t=1

utε
′
t+h−j

)
,
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which implies that

V(lalfe, λ, λ′) =
h−1∑
i=0

h−1∑
j=0

(
F iΣεεF

j′
)
⊗
(
(λP ′Ψ + Σεε)

−1Σεε(λ
′PΨ + Σεε)

−1
)

V(mle, lalfe, λ, λ′) =
h−1∑
i=0

h−1∑
j=0

(
F iΣεεF

j′
)
⊗
(
F h−1−j′(λP ′Φ + Γyy,0)−1Σεε(λ

′PΨ + Σεε)
−1
)

V(lfe, lalfe, λ, λ′) =
h−1∑
i=0

h−1∑
j=0

(
F iΣεεF

j′
)
⊗
(
(λP ′Ψ + Γyy,0)−1Σεε(λ

′PΨ + Σεε)
−1
)
.

For ι ∈ {mle, lfe}, λ ≥ 0, V equals V in Theorem 1. �

B Further Details on the Monte Carlo Simulations

Parameterization of the DGP: The specific values of the F and Aj matrices are provided

in the replication code.

Parameterization of the Prior. We need to solve (46) for φ as a function of ψ. Note that

vec(ABC) = (C ′ ⊗ A)vec(B).

Thus,

vec(ψ) =
h−1∑
j=0

vec
(
F jφF h−1−j)

=

(
h−1∑
j=0

(
F h−1−j′ ⊗ F j

))
vec(φ)

In turn,

vec(φ) =

(
h−1∑
j=0

(
F h−1−j′ ⊗ F j

))−1

vec(ψ).
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Table A-1: Relative Risk, Horizon h = 2, Prior 2

λ = 0 λ = 5 λ = 15 λ = 50 λ = 200

T MLE LFE MLE LFE MLE LFE MLE LFE MLE LFE

Misspecification α = 0

100 Risk -3.1 0 -11.1 -9.5 -13.8 -11.5 -13.2 -10.1 -13.4 -10

E[PC] -1.8 0 -7.7 -6.6 -9.1 -7.2 -9.5 -6.8 -8.8 -5.5

σ[PC] 2.6 0 7.3 6 9.8 9.4 12.2 12.2 14.4 14.8

500 Risk -2.5 0 -7.8 -6.7 -9.4 -8.1 -8.5 -7 -7.5 -5.8

E[PC] -1.7 0 -7.2 -6.5 -8.2 -7.1 -8.1 -6.6 -7 -5.4

σ[PC] 2.6 0 6.8 5.6 9.3 8.7 11.8 11.7 14.3 14.4

5000 Risk -2.6 0 -7.6 -6.8 -7.9 -7.2 -8 -7.2 -5.3 -4.7

E[PC] -1.6 0 -6.8 -6.4 -7.9 -7.3 -6.9 -6.3 -6.3 -5.7

σ[PC] 2.7 0 7 5.7 9 8.4 12.1 11.8 14 14

∞ Risk -2.6 0 -6.9 -6.3 -7.6 -7.1 -6.9 -6.6 -5.4 -5.3

Misspecification α = 2

100 Risk 2.4 0 -4.2 -6 -6 -5.8 -5.9 -3.5 -4 0.2

E[PC] 3.7 0 -0.6 -3.4 -1.6 -1.8 -1.3 1.1 -0.5 3.7

σ[PC] 4.9 0 9.4 6.9 11.8 11 14.5 14.8 16.4 17.1

500 Risk 1.9 0 -1.7 -4.5 -2.3 -3.6 -1.6 -1.4 -1.1 0.4

E[PC] 3.6 0 0.4 -3.2 0.3 -1.5 1.2 1.3 2.7 4.3

σ[PC] 4.2 0 8.7 6.4 11.2 10.2 13.9 13.6 16 16.1

5000 Risk 1.2 0 -1.8 -4.9 -2.3 -4.5 -0.5 -1.5 1 1.2

E[PC] 3.1 0 1 -3 1.2 -1.6 2.3 1.1 4.6 4.7

σ[PC] 3.9 0 8.5 6.4 10.7 9.7 13.8 13.3 16.1 16

∞ Risk 2.1 0 0.9 -3 1.5 -1.5 3.1 1.4 5 4.4

Misspecification α = 5

100 Risk 29.3 0 18.3 0.4 15 6.8 13.4 14.4 13.8 20

E[PC] 27.3 0 20.4 0.6 18 8 17.7 17.2 18.6 24

σ[PC] 12.9 0 16.6 7.8 19.1 14.9 22.1 21.5 24.9 26

500 Risk 31.4 0 20.2 2.5 17.1 6.9 21.4 17.7 17.1 18.1

E[PC] 34.7 0 24 2.8 21.9 9.3 22.4 17.7 23.3 24

σ[PC] 10.1 0 14.4 8.6 16.8 14 19.2 18.2 21.9 21.9

5000 Risk 25.1 0 16.1 0.2 15.3 4.2 14.1 8.8 16.8 15.5

E[PC] 31 0 24.4 3.8 23.8 10 24.7 17.9 26.2 24.7

σ[PC] 8.4 0 12.4 8.1 14.4 12.1 17 16 19.6 19.3

∞ Risk 26.8 0 24 4.1 24.5 10.4 26 18.3 27.7 25.1

Notes: The table reports standardized prediction risk differentials T [R(ŷT+h(ι, λ))−R(ŷT+h(lfe, 0))]. Neg-
ative entries correspond to improvements (risk reductions) relative to the benchmark. E[PC] and σ[PC]
refer to expected value and standard deviation of the PC criterion.
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Table A-2: Relative Risk, Horizon h = 4, Prior 2

λ = 0 λ = 5 λ = 15 λ = 50 λ = 200

T MLE LFE MLE LFE MLE LFE MLE LFE MLE LFE

Misspecification α = 0

100 Risk -17.9 0 -31.9 -26.9 -37.7 -33.3 -36.4 -31.1 -39.3 -33.3

E[PC] -9.3 0 -21.7 -18.1 -27.5 -22.7 -31.2 -25.5 -31.5 -25.7

σ[PC] 13.5 0 19.8 13.7 24.8 22.4 31.9 32.4 37.2 38.9

500 Risk -14.3 0 -24.7 -21.4 -32.9 -29.1 -32.5 -28.9 -32.6 -28.9

E[PC] -9.6 0 -22 -18.8 -26.4 -23.3 -30.4 -26.7 -29.7 -26.1

σ[PC] 12.8 0 18.6 12.2 24.5 20.9 30.9 30.1 38.6 39

5000 Risk -12.2 0 -23.8 -19.9 -27.2 -24.4 -32.5 -30.2 -28.9 -27.2

E[PC] -9.5 0 -21.1 -18.7 -26.7 -24.4 -28.6 -26.5 -27.6 -26

σ[PC] 12.7 0 19.1 12.4 22.9 19.1 31.3 29.6 37.3 37

∞ Risk -12.9 0 -22.3 -18.9 -26.8 -24.5 -28.4 -27.1 -26.9 -26.4

Misspecification α = 2

100 Risk -17.8 0 -28.5 -22.9 -36.2 -30 -34 -26 -35.8 -26.3

E[PC] -5.3 0 -16.2 -14.2 -19.5 -14.8 -23.2 -16.1 -21.7 -13.2

σ[PC] 18.1 0 23.9 15.2 30.6 27 38.3 38.4 46.2 48.1

500 Risk -9.1 0 -20.7 -18.2 -24.3 -21.1 -23.9 -19.8 -20.7 -15.6

E[PC] -5.2 0 -15.9 -15.3 -19.3 -17.5 -19.9 -16.4 -19.5 -14.9

σ[PC] 16.8 0 23.4 14.7 28.9 24.2 37.3 35.9 44.3 44.9

5000 Risk -5.8 0 -14.5 -13.7 -17.3 -16.3 -18.1 -17 -16.1 -14.4

E[PC] -5 0 -14.9 -15.5 -18.5 -18.5 -18.6 -17.8 -16.8 -15.3

σ[PC] 15.8 0 23.4 14.6 27.2 22.2 35 32.6 44 43.5

∞ Risk -8.4 0 -16 -15.6 -18.8 -18.9 -18.5 -18.8 -16 -16.1

Misspecification α = 5

100 Risk -14.4 0 -24.3 -23.9 -25.6 -21.1 -23.2 -12.5 -17.7 -2

E[PC] 11.6 0 3.9 -5.7 1.2 0.8 4.2 13.4 6 20.3

σ[PC] 30 0 35.5 16.2 42.3 32.6 52.7 51.4 61.3 64

500 Risk 9.9 0 -0.6 -9 -5.6 -9.1 0.3 2.4 4.5 10.9

E[PC] 17.2 0 5.6 -6.9 3.3 -2.3 4.7 5.7 7.9 13.5

σ[PC] 28.8 0 34.6 18.8 40.5 32 48.7 45.9 56.1 56.3

5000 Risk 21.4 0 13.1 -2 8.2 -0.7 12.5 9.2 15.9 16.7

E[PC] 19.1 0 6.2 -8.2 4 -5.1 4.7 1 8 8.5

σ[PC] 27.6 0 31.7 18.2 36.3 29 43.6 39.9 53 52.1

∞ Risk 15.1 0 4.8 -8.7 2.9 -7 4.6 -1.1 7.9 5.8

Notes: The table reports standardized prediction risk differentials T [R(ŷT+h(ι, λ))−R(ŷT+h(lfe, 0))]. Neg-
ative entries correspond to improvements (risk reductions) relative to the benchmark. E[PC] and σ[PC]
refer to expected value and standard deviation of the PC criterion.
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Table A-3: Relative Risk, Horizon h = 6, Prior 2

λ = 0 λ = 5 λ = 15 λ = 50 λ = 200

T MLE LFE MLE LFE MLE LFE MLE LFE MLE LFE

Misspecification α = 0

100 Risk -31.2 0 -50 -41.6 -57.4 -50.7 -62.3 -53.9 -54.4 -45.8

E[PC] -19.9 0 -35.5 -27 -43.3 -34.7 -49.2 -40.5 -50 -41.5

σ[PC] 25.5 0 32 19.2 40 33.9 52.1 51.5 64.3 66.6

500 Risk -26.6 0 -39.5 -31.3 -49.7 -42.8 -51.2 -44.1 -51.7 -45

E[PC] -21.9 0 -35.9 -28.7 -44.4 -37.4 -49.1 -41.9 -48.4 -41.7

σ[PC] 23.5 0 32.2 18.1 38.4 30.6 51.3 49.3 62.8 63.8

5000 Risk -25.1 0 -38 -31.4 -45.7 -39.9 -50.5 -45.5 -46.8 -43.2

E[PC] -20.2 0 -35.3 -29.5 -43.5 -38.8 -46.7 -42.4 -46 -42.4

σ[PC] 25.7 0 31.8 17.1 38 28.7 51.4 46.9 62.6 62.1

∞ Risk -25.8 0 -36.5 -29.5 -44 -39.3 -46.4 -43.3 -43 -41.8

Misspecification α = 2

100 Risk -37 0 -58.3 -45.7 -62.7 -53.1 -57.7 -47.5 -56.3 -44.4

E[PC] -17.6 0 -30.2 -23.3 -35 -26.5 -37.3 -26.5 -37.6 -25.9

σ[PC] 32.6 0 40.5 21.8 49.1 39.4 64.1 61.6 76 78.7

500 Risk -27.1 0 -41 -30.5 -48.5 -41.2 -48.1 -40.8 -43.1 -34.9

E[PC] -17.3 0 -32 -26.4 -36.9 -30.7 -36.1 -28.7 -36.1 -27.5

σ[PC] 29.2 0 37 19.9 45.9 35.8 62.1 58.2 73.1 74.2

5000 Risk -22.1 0 -36.2 -29.2 -39 -34.3 -40.6 -36.8 -38.3 -34.4

E[PC] -16.8 0 -29 -25.6 -35.8 -32.5 -34.4 -30.9 -28.8 -24.9

σ[PC] 28 0 37.6 20.4 43.6 32.1 59.3 53.4 76.2 74.9

∞ Risk -21.5 0 -31.2 -26 -35 -32.4 -32.9 -31.9 -26.9 -26.6

Misspecification α = 5

100 Risk -43.7 0 -62.9 -46.1 -63.4 -52.2 -54.7 -39.5 -48.8 -29.9

E[PC] -7 0 -16.3 -15.9 -17.8 -11.4 -14.4 -0.5 -5.2 13.1

σ[PC] 44.8 0 50 20 63 44.3 83 75.9 103 104.6

500 Risk -25.3 0 -41.9 -35.5 -39.1 -35.9 -33.1 -26.4 -23.1 -12.6

E[PC] -2.6 0 -14.3 -18.6 -15.3 -16.1 -10.8 -4.9 -1.3 9.7

σ[PC] 41.4 0 50.1 23.5 61 42.7 78.3 70.6 98.4 98

5000 Risk -11.9 0 -24.8 -25.7 -25.4 -27.9 -22.4 -22.9 -17.1 -14.1

E[PC] 3.3 0 -10.7 -19.1 -10.5 -17 -5.3 -7.1 5.6 8.6

σ[PC] 41 0 46.4 23.3 56.5 40 74.3 64.8 92.7 90

∞ Risk 1 0 -9.3 -18.4 -8.7 -17.9 -1 -7.4 8.2 5.8

Notes: The table reports standardized prediction risk differentials T [R(ŷT+h(ι, λ))−R(ŷT+h(lfe, 0))]. Neg-
ative entries correspond to improvements (risk reductions) relative to the benchmark. E[PC] and σ[PC]
refer to expected value and standard deviation of the PC criterion.
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Figure A-1: PC versus Finite Sample Risk: Design 1

Notes: The dotted green line is the asymptotic risk. The starred black line is E[PC]. The solid blue line is
the MC risk and the dashed black lines are 90% coverage intervals for the finite sample losses. The vertical
line indicates the value of λ that minimizes the asymptotic risk.
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Figure A-2: PC versus Finite Sample Risk: Design 2

Notes: The dotted green line is the asymptotic risk. The starred black line is E[PC]. The solid blue line is
the MC risk and the dashed black lines are 90% coverage intervals for the finite sample losses. The vertical
line indicates the value of λ that minimizes the asymptotic risk.
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Figure A-3: PC versus Finite Sample Risk: Design 3

Notes: The dotted green line is the asymptotic risk. The starred black line is E[PC]. The solid blue line is
the MC risk and the dashed black lines are 90% coverage intervals for the finite sample losses. The vertical
line indicates the value of λ that minimizes the asymptotic risk.
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Figure A-4: PC versus MDD Objective Function
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Figure A-5: PC versus MDD Objective Function
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Figure A-6: PC versus MDD Objective Function
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Figure A-7: PC versus MDD Objective Function
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Figure A-8: Distribution of Optimal Shrinkage Hyperparameter without Misspecification
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Figure A-9: Distribution of Optimal Shrinkage Hyperparameter with Misspecification
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C Further Details on the Empirical Analysis


