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Designing Robust Air Transportation Networks via
Minimizing Total Effective Resistance

Changpeng Yang, Jianfeng Mao, Xiongwen Qian, Peng Wei

Abstract—Designing a robust air transportation network is an
ongoing research effort that seeks to improve the extent of a
network being connected against failures and attacks. The total
effective resistance can be a promising measure for network
robustness as demonstrated by case studies conducted in this
paper. To enhance the robustness of air transportation networks,
we consider to solve a flight route selection problem, in which a
set of routes are chosen from a candidate route set to minimize the
utility function defined by the total effective resistance. Since it is
an integer nonlinear programming problem, to balance the trade-
off between optimality performance and computational efficiency,
two methods that implement the total effective resistance are
developed to suit different network scales. For small/medium-
scale networks, we develop an interior-point method based
on convex relaxation and duality gap, which achieves a near
optimality performance within acceptable time. For large-scale
networks, we develop an accelerated greedy algorithm based
on proved monotone submodularity, which can substantially
reduce the computation time in deriving a good solution with
a guaranteed optimality gap. Their optimality performance and
computational efficiency are verified and compared through
numerical results. Moreover, three case studies from real world
examples are also performed to demonstrate the application of
the proposed methods for different network scales.

Index Terms—Air Transportation Network, Total Effective
Resistance, Route Selection, Convex Relaxation, Submodular.

I. INTRODUCTION

THE past decade has witnessed the rapid development of
emerging discipline of network science for applications

in air transportation networks [1], [2]. An air transportation
network can be viewed as a weighted graph G(V,E,W ),
where the node set V represents airports, the edge set E
represents flight routes between nodes and W denotes edge
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weights encoding edge information, such as flight cancellation
rates and numbers of flights [3]. As shown in the OpenFlights
Database 2012 [4], about 99.44% (36002/36203) flight routes
in the global air transport network are bidirectional and one-
way routes usually exist between small cities. Moreover, it is
more beneficial to improve the robustness of the network of
critical hubs, which are all connected by bidirectional routes.
Hence, we model air transportation networks as undirected
graphs.

The studies of air transportation networks mainly focus
on the analysis of the underlying structural characteristics,
the functional characteristics, and the network dynamics.
Nowadays, flight delays and cancellations are more and more
common. The US national on-time arrival performance during
2016 is 81.42%, 17.41% of flights are delayed for more than
15 minutes, and the rest 1.17% are canceled [5]. These delayed
or canceled flights are caused by various types of natural
and/or man-made disruptions on edges or nodes. The dis-
ruptions include severe weather, mechanical failures, demand
limiting, long airspace flow program, flight delay/cancellation
and other unforeseen events [5]. An important issue in air
transportation networks is to design a network to be robust
to disruptive incidents that greatly affect or interrupt aviation
activities [6]. Structural robustness, the basis of the error
tolerance of the complex systems, is one of the most funda-
mental characteristics representing how a network maintains
its function under disruptive events [7], [8]. More specifically,
an air transportation network with high robustness should be
capable of mitigating the impacts of possible failures of nodes
or edges.

In this paper, we concentrate on improving the structural
robustness of the air transportation network. Similar to the dif-
ficulties encountered in the integrated systems with large-scale
networks [9], it is critical to address how to fairly evaluate the
structural robustness of air transportation networks. To the best
of our knowledge, there is no standard answer to this question.
In the literature, many efforts have been made to measure
and evaluate the robustness of air transportation network in
terms of connectivity, betweenness centrality, degree centrality,
eigenvector centrality, and clustering coefficient [10], [11],
[12], [13]. Although these metrics are good to reveal some
local or global topology characteristics of air transportation
network robustness, they have some drawbacks in optimizing
network robustness. For example, since betweenness centrality
only takes into account the shortest paths between nodes
without considering alternative paths, it may not be able to
fully capture network structural robustness. And the mea-
sures of edge connectivity and vertex connectivity may be
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indistinguishable as a network degenerates. A more detailed
discussion of 12 important robustness measures can be further
found in [14].

The algebraic connectivity can be a fair measure to evaluate
the structural robustness of the air transportation network as
shown in [15], [16], i.e., the larger the algebraic connectivity
is, the more difficult the network can be separated when facing
random link failures. Although the algebraic connectivity is
a good measure for the global connectivity of the entire
network, it may fail to capture the change of the local network
characteristics after edge addition/deletion or edge weight
perturbation.

In this paper, we propose to measure the robustness of air
transportation network by the total effective resistance. The
effective resistance between a pair of nodes i and j, denoted
Ri,j , is the electrical resistance measured across these two
nodes when the network represents an electrical circuit with
each edge regarded as a resistor with an electrical conductance
of wi,j . In other words, Ri,j is the potential difference that
appears across terminals i and j when a unit current source
is applied between them. Ri,j is relatively smaller when the
nodes i and j are connected with more paths associated with
higher conductance edges. The total effective resistance Rtot

is the sum of Ri,j between all distinct pairs of nodes (i, j),
which can be reduced by adding more edges or increasing
edge conductance. More interpretations of effective resistance
are available in [17]. It has been shown in [18], [19] that the
total effective resistance can quantify a number of important
properties and performance metrics of a network, such as co-
herence, consensus rate, and robustness. The air transportation
network is an analogy to the electrical circuit network, where a
route with a failure rate of 1/wi,j can be regarded as a resistor
with a conductance of wi,j . Smaller Ri,j means that nodes i
and j are connected with more paths associated with routes
with lower failure rates, which implies the network robustness
for linking i and j. Since Rtot =

∑
i<j Ri,j , it can be used

to measure the robustness of the entire network. Moreover,
the total effective resistance can not only capture the global
property of the average or aggregate network characteristics
but also distinguish the changes of an individual node or edge,
as demonstrated in Section II below.

A. Related Work

The following two areas of studies are highly related to this
work: 1) structural robustness analysis and optimization of air
transportation networks, and 2) evaluation and optimization of
various types of networks using total effective resistance.

Since the small-world phenomenon [20] and the scale-free
characteristic [21] were discovered, an increasing number of
researchers explored the applications of network theory into air
transportation networks. Guimera and Amaral first presented
an exhaustive analysis of the worldwide airport network; they
discovered that the network is a small-world network with a
power-law decaying degree and betweenness distribution [1];
similar claims on the worldwide airport network were made
in [22]. Bonnefoy found that the air transportation network
is not scale-free and scalable due to capacity constraints at

major airports; however, the network become scale-free when
multiple airports are aggregated into single nodes [23]. He
also used the degree distribution of the existing light jet
network to understand the potential impacts of very light jets
[24]. DeLaurentis et al selected several statistical measures
to analyze the connectivity in air transportation networks and
then derived implications from both local and global topology
characteristics [10]. Kotegawa et al utilized different nodal
metrics including node degree, eigenvector centrality, and
clustering coefficient as predictor variables and then estimated
the airport topology by their machine learning method [25].
Azzam et al used degree distribution to study the worldwide
air transportation network and showed that it is non-stationary
and subject to densification and accelerated growth [26]. Sun et
al studied the temporal evolution of seven centrality measures
for air navigation route networks and airport networks, which
were beneficial to better understand the network dynamics
[27]. They also used the similarity scores computed by func-
tionally independent metrics to assess the structural similarity
of air navigation route networks [28]. A small group of
researchers has explored the structural optimization of air
transportation networks. Reggiani et al analyzed the con-
nectivity and concentration of Lufthansa’s network and then
proposed a multi-criteria analysis to strategically configure the
airline network patterns [29]. Wullner et al introduced two
network rewiring schemes, called “Diamond” and “Chain”,
that can boost resilience to different levels of perturbation
while preserving a total number of flight and gate requirements
[30]. Cai et al investigated the application of computational
intelligence to crossing waypoints location problem in the
context of real-world air route network design [31]. In [32],
Hong et al investigated the structural properties of the Chinese
air transportation multilayer network by using global network
efficiency, connectivity, assortativity, etc. Linkov et al pro-
vided a synopsis for understanding current shortcomings of
quantitative methods for addressing the complexities of large
integrated networks in [9]. Moreover, there are a body of
works focusing on using percolation approaches to study the
tolerance to errors and attacks in air transportation networks
[33], [34]. In [35], Schneider et al introduced a new robustness
measure based on the size of the largest component and used
it to devise an efficient and economical method to mitigate
the network risk and improve the robustness of existing
infrastrcutures. In [36], Latora et al introduced the measure of
network efficiency, an alternative to the average path length,
to perform a precise quantitative analysis for both weighted
and unweighted networks. It should be noted that although
network efficiency can be measured with a high computational
efficiency, since network efficiency is defined based on the
shortest path between node pairs, it doesn’t incorporate the
characteristics of alternative paths that may also be important
for evaluating network robustness.

The most relevant and closely related measure is the al-
gebraic connectivity, which has been intensively investigated
in air transportation community. Vargo et al explored the
effectiveness of a tabu search algorithm and semidefinite
programming relaxation to increase the algebraic connectivity
of air transportation networks [37]. Wei et al proposed three
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approaches to maximize the algebraic connectivity of air
transportation networks in [15]. Furthermore, they formulated
a new air transportation network optimization problem con-
sidering both edge addition and weight assignment and solved
the algebraic connectivity optimization problem for different
network scales [16].

There is a handful of literature on the application of effective
resistance in various types of networks. Ghosh et al studied
the problem of allocating edge weights on a given weighted
network to minimize the total effective resistance [17]. Van
Mieghem et al showed the qualitative relationship between
effective resistance and graph associativity, a correlation of
the similarities of nodes sharing a link [38]. Wang et al
derived the upper and lower bound of the total effective
resistance under scenarios of edge addition and deletion, then
they introduced four strategies for adding/deleting an edge that
minimizes/maximizes the total effective resistance [19]. Ellens
et al concerned the optimal addition of one edge for graphs
with given number of vertices and diameter to minimize the
total effective resistance [39].

In this paper, we measure and optimize the robustness of
air transportation networks by the total effective resistance.
The strategies to enhance the network can be divided into
four categories, i.e., edge rewiring [40], [41], edge addition
[15], [42], weights assignment [17], and the combination of
edge addition and weight assignment [16]. In this study, we
consider the edge addition strategy, in which a few routes
are selected to be added into the existing air transportation
network. Compared to the edge rewiring strategy that fixes
the total number of edges, the edge addition strategy allows k
extra edges to be added into the existing network when airlines
have a budget and are particularly interested in expanding their
networks.

B. Contribution

The main contributions of this work are summarized as
follows:

1) a comparative study is conducted to show that the
total effective resistance is a more promising robustness
measure than the algebraic connectivity;

2) this work for the first time adopts the total effective
resistance to measure and optimize the robustness of air
transportation networks;

3) to solve the corresponding flight route selection problem,
a difficult integer nonlinear programming problem, we
develop two methods for different network scales to
balance the trade-off between computation time and
optimality performance in terms of the total effective
resistance. An interior-point method based on convex re-
laxation and duality gap is developed for small/medium-
scale networks, which achieves a near optimality per-
formance within acceptable time. An accelerated greedy
algorithm based on proved monotone submodularity is
developed for large-scale networks, which can substan-
tially reduce the computation time in deriving a good
solution with a guaranteed optimality gap;

4) three case studies from real world examples are per-
formed to demonstrate the application of the proposed
methods.

The rest of this paper is organized as follows. In Section II,
two comparative studies of robustness measures are conducted.
In Section III, the flight route selection problem is formulated
based on the total effective resistance. In Sections IV and
V, two efficient methods are developed for different scale
networks respectively. In Section VI, numerical experiments
and three case studies are performed to verify the performance
of the two methods. Section VII concludes this paper.

II. COMPARISON OF ROBUSTNESS MEASURES

As mentioned before, since the algebraic connectivity is
the most close and relevant robustness measure to the total
effective resistance adopted in this paper, we mainly compare
these two measures in this section. A more comprehensive
comparative study for 12 robustness measures we recently
conducted can be found in [14].

Before proceeding to the comparison, we will first demon-
strate that these two measures can essentially capture network
structural robustness in the following subsection.

A. Network Structural Robustness

Like the total effective resistance (denoted by Rtot), the
algebraic connectivity (denoted by λ2) can also be fair to
measure how well a network is connected [16]. The algebraic
connectivity λ2, the second smallest eigenvalue of Laplacian
matrix, can determine the connectivity of a graph (network)
G by checking whether λ2 > 0.

Since the two measures Rtot and λ2 are still quite abstract,
we will introduce a straightforward and intuitive metric that
can capture network structural robustness and use it as a
reference to show both of them can also essentially measure
structural robustness.

The total number of acyclic paths between all node pairs
(denoted by Q) can be a good candidate to serve as the
reference. Clearly, the higher Q, the more alternative routes
between nodes, which implies a more robust network structure.

In the following, we will conduct Monte Carlo simulation
experiments on 500 randomly generated networks with 8 nodes
and 17 edges. For each randomly generated network, k edges
will be gradually and randomly removed one by one until
k = 7. The statistical results are recorded in Table I. It
can be observed that as more edges are removed from net-
works, Q monotonically decreases while Rtot monotonically
increases and λ2 monotonically decreases, which demonstrates
the strong correlation between Rtot, λ2 and Q. In other words,
the less the total number of acyclic paths between all node
pairs, the higher the total effective resistance and the lower
the algebraic connectivity. Therefore, the structural robustness
can be optimized by either maximizing Q or minimizing Rtot

or maximizing λ2.
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TABLE I
THE MONTE CARLO SIMULATION RESULTS OF Q, Rtot , AND λ

Removal edges Q (mean, var) Rtot(mean, var) λ (mean, var)
k = 1 (2849.49, 111.66) (15.65, 0.28) (2.00, 0.07)
k = 2 (2027.81, 314.04) (17.42, 1.28) (1.80, 0.11)
k = 3 (1511.41, 356.22) (19.21, 1.86) (1.61, 0.31)
k = 4 (1170.63, 325.90) (21.12, 2.46) (1.50, 0.28)
k = 5 (941.85, 334.47) (23.01, 2.93) (1.20, 0.37)
k = 6 (799.27, 278.04) (24.46, 3.28) (1.05, 0.35)
k = 7 (712.53, 269.55) (25.71, 3.69) (1.01, 0.39)

It should be noted that adopting Q as an objective function
is inefficient for optimizing structural robustness because Q
cannot be expressed in a closed form and computing Q
generally requires an exponential time complexity. In contrast,
Rtot can be evaluated in O(n3) and is more suitable for the
optimization considered in this paper.

B. Total Effective Resistance vs Algebraic Connectivity

Although the algebraic connectivity λ2 is shown to be a fair
measure of air transportation network [16], it is still a measure
for the global connectivity of the entire network and may not
be able to capture the local characteristics.

The total effective resistance Rtot can be connected to the
algebraic connectivity by the bounds shown in [39], n

λ2
<

Rtot ≤ n(n−1)
λ2

, which implies the possibility of using the total
effective resistance to substitute the algebraic connectivity.
Moreover, the total effective resistance is capable of reflecting
both the global and local characteristics in measuring the
network robustness. We conduct the comparative experiment
on the air transportation network of Tigerair Australia in Fig.
1, consisting of 14 airports (squares) and 21 routes (red lines).

Fig. 1. Air transportation network of Tigerair Australia in 2015
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Fig. 2. Rtot, λ2 in terms of random route addition for Tigerair Australia

The weights of all the edges in the network in Fig. 1 are
uniformly sampled from the following three values, wi,j =
{1, 2, 3}, which represent the link strengths. A larger weight
indicates that the route is more robust to disruptions. In each
iteration of the experiment, one candidate edge is randomly
selected and added it into the existing network. The compari-
son results are depicted in Fig. 2. It can be observed that both
the total effective resistance and the algebraic connectivity are
monotonic with the addition of edges. This similarity indicates
that the total effective resistance can be used to reflect the ro-
bustness of network like the algebraic connectivity. Moreover,
the total effective resistance can always distinguish the gradual
change when an edge is added. When increasing k from 21 to
45, the total effective resistance gradually decreases, whereas
the algebraic connectivity remains unchanged.

�� ��

(b)(a)

Fig. 3. Two small scale networks with four nodes

The two small scale networks in Fig. 3 can be more in-
sightful to interpret this effect. Let ∆Rtot and ∆λ2 denote the
changes of total effective resistance and algebraic connectivity
respectively after adding an edge. For the example in Fig. 3(a),
when the edge e1 with w1 = 1 is added, ∆Rtot/Rtot = 0.2
and ∆λ2/λ2 = 0. For the example in Fig. 3(b), when the edge
e2 with w2 = 3 is added, ∆Rtot/Rtot = 0.3 and ∆λ2/λ2 = 0.
Moreover, even when the edge weights are assigned as +∞
for both e1 and e2, ∆λ2 still remains zero. Nonetheless, the
network robustness has been actually improved after adding
e1 and e2 because air traffic can be more flexibly transferred
via the added edges. Therefore, since the total effective resis-
tance can capture the global and local characteristics of air
transportation networks, it is more promising to measure and
optimize the network robustness.

III. PROBLEM FORMULATION

A. Total Effective Resistance

The total effective resistance is adopted to measure the
robustness of an air transportation network, which is generally
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composed of a set of airports and flight routes connecting
them. Since the vast majority of flight routes between airports
are two-way routes as mentioned in the introduction, we model
an air transportation network as an undirected and connected
graph G = (V,E), where |V | = n and |E| = m. Suppose
edge e connects node i and j, we define he ∈ Rn as
(he)i = 1, (he)j = −1, and all the other entries are 0.
Let A ∈ Rn×m denote the incidence matrix of the graph G,
i.e., A = [h1, h2..., hm]. Then the Laplacian matrix L of the
weighted graph G can be expressed as L =

∑m
e=1 weheh

T
e =

ADiag(W )AT , where W is the nonnegative weight vector
whose components are associated with corresponding edges
and Diag(W ) ∈ Rm×m is the diagonal matrix constructed
from W .

The total effective resistance Rtot is defined as the following
summation, Rtot =

∑
i<j Ri,j , where Ri,j is the effective

resistance between a pair of nodes i and j. Since Ri,j = Rj,i,
the summation only applies to the node pairs with i < j.
Furthermore, as shown in [17], the total effective resistance
can be expressed as

Rtot = ntr(L+ 11T /n)−1 − n (1)

where tr(·) is the trace of a square matrix and 1 is the vector
with all entries one.

B. Flight Route Selection Problem
Now we can describe the flight route selection problem.

Since many airlines have already set up certain air trans-
portation networks to provide services in local or worldwide
regions, it is not necessary to create an entirely new air
transportation network from scratch. Most likely in practice,
we will face a flight route selection problem, in which a few
extra routes are selected from a set of potentially available and
viable routes and added into the existing network to improve
the robustness. We would like to develop an optimal and
efficient way in selecting edges.

Let (V,E0) represent the existing air transportation network
with the initial edge set E0 consisting of the existing routes
between the airports in V and let EP denote the set of extra
edges for improving robustness. The objective is to minimize
the total effective resistance Rtot of the new network with
k edges selected from the given edge set EP and added
into the existing network (V,E0). Assume |EP | = p ≥ k
and EP = {1, ..., p}. From (1), the total effective resistance
Rtot can be effectively computed through the weighted Lapla-
cian matrix. Then the corresponding augmented Laplacian
matrix of the new network can be expressed as follows,

L = L0 +
p∑
e=1

yeweheh
T
e , where L0 is the Laplacian matrix of

the existing network and ye is a Boolean variable to indicate
whether the edge e is selected from EP . Finally, the flight
route selection problem can be formulated as,

minimize
y1,...,yp

Rtot(L0 +
∑p

e=1
yeweheh

T
e )

subject to 1T y = k,

ye ∈ {0, 1}, e = 1, ..., p.

(2)

where y = [y1, ..., yp]
T and Rtot(·) is a function of a Laplacian

matrix. The problem (2) is a Boolean-convex problem [43]

because the objective function is convex in 0 ≤ y ≤ 1 as
shown in Theorem 1 in Section IV-A and the constraint is
linear.

IV. CONVEX RELAXATION

The flight route selection problem in (2) is an integer
nonlinear programming problem. Clearly, a brute force method
of enumerating all

(
p
k

)
route combinations is not practical

in solving the problem unless k and p are small. In this
section, we will develop an interior-point algorithm based on
the analysis of the duality gap of its convex relaxation.

A. Convex Relaxation of Flight Route Selection Problem

The original flight route selection problem (2) can be
relaxed by replacing the original binary variables with the
continuous variables ye ∈ [0, 1] for e = 1, ..., p as follows,

minimize
y1,...,yp

ntr(L0 +
∑p

e=1
yeweheh

T
e + 11T /n)−1 − n

subject to 1T y = k,

0 ≤ ye ≤ 1, e = 1, ..., p

(3)

This relaxed flight route selection problem (3) can be proved to
be convex through the following theorem. (For the continuity
of reading, all the proofs are placed in the Appendix in this
paper.)

Theorem 1. The total effective resistance function Rtot(y) =
ntr(L(y) + 11T /n)−1−n is convex in y, where L(y) = L0+∑
e yeweheh

T
e .

Based on Theorem 1, the objective function of the relaxed
problem (3) is convex. Combining it with the fact of the
linear constraints, we can show that the relaxed problem (3)
is a convex programming problem. The problem (3) can be
further equivalently converted to a semidefinite programming
problem (SDP) of minimizing a linear objective function,
whose feasible solutions are symmetric positive semidefinite
matrices, subject to additional linear constraints. Although it
provides an opportunity to solve the problem (3) using a well-
developed SDP solver such as SeDuMi [44], we can develop
an interior-point algorithm based on the duality gap of the
problem (3), which is much more efficient than solving it as
an SDP problem.

B. Dual Problem of Relaxed Flight Route Selection Problem

In this section, we formulate the dual problem of the
relaxed flight route addition problem for deriving the duality
gap.

Firstly, we introduce a new variable X = L0 + 11T /n +∑p
e=1 yeweheh

T
e and reformulate the problem (3) as the

following problem with the variables y ∈ Rp and X ∈ Sn

(the set of symmetric n× n matrices):

minimize
y

ntrX−1 − n

subject to X = L0 +
∑p

e=1
yeweheh

T
e + 11T /n,

1T y = k,

0 ≤ y ≤ 1.

(4)
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Secondly, we introduce the Lagrange multipliers λ for
y ≥ 0, µ for y ≤ 1, ν for 1T y = k, and Λ for X =
L0 +

∑p
e=1 yeweheh

T
e + 11T /n to form the Lagrangian of

the problem (4) as follows:

L(y,X,Λ, λ, µ, ν)

= tr(Λ(X − L0 −
∑p

e=1
yeweheh

T
e − 11T /n))

+ ntrX−1 − λT y + µT (1T y − k) + νT (y − 1)− n.

= (
∑p

e=1
ye(−weheΛhTe − λe + µe + νe))− (1/n)1Λ1T

+ tr(nX−1 +XΛ)− tr(ΛL0)− 1Tµ− νk − n.

where λ ∈ Rp , µ ∈ Rp are non-negative, ν ∈ R, and Λ ∈ Sn.
The Lagrange dual function g is given by

g(Λ, λ, µ, ν) = inf
y,X

L(y,X,Λ, λ, µ, ν).

Since the minimization of L is bounded only if

λe − µe − νe + weheΛh
T
e = 0,

the Lagrange dual function g holds that

g(Λ, λ, µ, ν) =


2tr(nΛ)1/2 − (1/n)1Λ1T − tr(ΛL0)
−1Tµ− νk − n,

if λe − µe = νe − weheΛhTe ,
∞, otherwise.

To justify the equality, we note that tr(nX−1 +XΛ) is
unbounded below, as a function of X , unless Λ � 0; when
Λ � 0, the unique X that minimizes it is X = (Λ/n)−1/2

and the corresponding minimal value is

tr(nX−1 +XΛ) = tr
(
n(Λ/n)1/2 + Λ(Λ/n)−1/2

)
= 2tr(nΛ)1/2.

Finally, the dual problem of the relaxed flight route selection
problem can be formulated as

maximize 2tr(nΛ)1/2 − (1/n)1Λ1T − trΛL0 − 1Tµ

− νk − n
subject to λe = µe + ν − weheΛhTe , e = 1, ..., p,

λe ≥ 0, µe ≥ 0, e = 1, ..., p.

(5)

After eliminating the variables λe, it can be further equiva-
lently reduced to the problem (6) below,

maximize
µ,v

2tr(nΛ)1/2 − (1/n)1Λ1T − tr(L0Λ)

− 1Tµ− kν − n
subject to weh

T
e Λhe ≤ v + µe, e = 1, ..., p,

µe ≥ 0, e = 1, ..., p.

(6)

where Λ ∈ Sn, µ ∈ Rp, and ν ∈ R.

C. Duality Gap

The dual problem (6) itself is a convex programming
problem with Λ ∈ Sn, µ ∈ Rp, and ν ∈ R. The Lagrange
multipliers can be eliminated because the optimal value is
obviously µe + ν = max

e
(weh

T
e Λhe). Since the dual prob-

lem (6) is a maximization problem, we have µ = 0 and
ν = max

e
(weh

T
e Λhe). Since the primal problem (4) has only

linear equality and inequality constraints, the convex Slater’s
condition can be satisfied when y = (k/p)1. Hence the

optimal gap between the primal and dual problem is zero.
If X∗ is the optimal solution of the primal problem (4), then
Λ∗ = n(X∗)−2, ν∗ = maxe(weh

T
e Λ∗he), µ = 0 are the op-

timal solution of the dual problem (6). Conversely, if Λ∗ is the
optimal solution of the dual problem, then X∗ = (Λ∗/n)−1/2

is the optimal solution of the primal problem (4).
From the analysis above, a duality gap δ can be derived by

Theorem 2 below, which is useful to measure the suboptimality
of any feasible solution y. An interior-point algorithm can be
accordingly developed based on the duality gap δ.

Theorem 2. Let L = L0+
∑p
e=1 yeweheh

T
e and S = (Λ, µ, ν)

denote a feasible solution of the dual problem (6), where Λ =
n(L+ 11T /n)−2, ν = max

e
(weh

T
e Λhe) and µ = 0. And y

is the edge vector associated with S. Then the duality gap δ
with respect to S is

δ = −max
e

(Rtot + kw−1
e
∂Rtot

∂ye
− ntr(L0(L+ 11T /n)

−2
)).

D. Interior-Point Algorithm

In this section, we develop an interior-point algorithm,
namely, a barrier method, with the help of the duality gap
δ in Theorem 2 to efficiently solve the relaxed flight route
selection problem (3).

We adopt logarithmic barrier functions to implicitly include
the inequality constraints in the problem (3) in the objective
function and approximately formulate the problem (3) as
follows:

minimize
y

ψ(y) = Rtot(y)− γ
p∑
e=1

(
log(ye) + log(1− ye)

)
subject to 1T y = k

(7)

where γ is a small positive scalar and called the barrier
parameter that controls the quality of approximation. Let ỹ
and y∗ denote the optimal solution of the problem (7) and (3)
respectively. As shown in the Section 11.2 of [45], ỹ is at most
2pγ suboptimal for the relaxed flight route selection problem
(4), that is,

Rtot(ỹ)−Rtot(y
∗) 6 2pγ. (8)

It provides an opportunity to achieve y∗ by solving a sequence
of decreasing values of γ until γ ≤ ε/2p which guarantees an
ε-optimal solution of the original problem (3). In the barrier
method, we can use the duality gap δ to construct the sequence
of decreasing values of γ by setting γ = βδ/2p, where β is
some constant within (0, 1]. Combining it with (8), it holds
that

Rtot(ỹ)−Rtot(y
∗) 6 2p ∗ βδ/2p 6 δ. (9)

We start with the initial solution as y = (k/p)1. In each
iteration, we apply the Newtons’ method to compute the search
direction ∆ynt as

∆ynt = −(∇2ψ)−1∇ψ +

(
1T (∇2ψ)

−1∇ψ
1T (∇2ψ)−11

)
(∇2ψ)−11.

in which the gradient of ψ is

(∇ψ)e = −ntr(L̄E(y))−1he,wh
T
e,wtr(L̄E(y))−1 +

γ

ye
− γ

(1− ye)
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for e = 1, ..., p and the Hessian of ψ is

∇2ψ = 2n(ATw(L̄E(y))
−2
Aw) ◦ (ATw(L̄E(y))

−1
Aw)

− γdiag
(

1

y21
+

1

(1− y1)2
, ...,

1

y2p
+

1

(1− yp)2

)
where ◦ denotes the Hadamard product, he,w = w

1
2
e he, Aw =

[h1,w · · ·hp,w], and L̄E(y) = L0 +
∑
e yeweheh

T
e + 11T /n.

We then compute the step size s ∈ (0, 1], and update y as
y + s∆ynt. The search process will be terminated when the
duality gap δ is reduced to an acceptable value.

Algorithm 1 Interior-Point Algorithm
Input: relative tolerance ϕ ∈ (0, 1), 0 < β < 1.

1: Initialize ỹ ← (k/p)1.
2: while δ>ϕRtot(y) do
3: Set γ ← βδ/p.
4: Compute Newton step δỹnt for ψ(ỹ) by solving
5: ∆ỹnt = −(∇2ψ)−1∇ψ + (1T (∇2ψ)

−1∇ψ
1T (∇2ψ)−11

)(∇2ψ)−11.
6: Find the step length s by backtracking line search.
7: ỹ ← ỹ + s∆ỹnt.
8: end while
9: return Rtot, ỹ.

The interior-point algorithm is summarized in Algorithm
1. The final solution ỹ obtained by Algorithm 1 satisfies
the termination condition δ 6 ϕRtot(ỹ) and the condition
in (9) ensuring that Rtot(ỹ) − Rtot(y

∗) 6 δ , which implies
Rtot(ỹ)−Rtot(y

∗)
Rtot(y∗)

6 ϕ
1−ϕ . Thus, Algorithm 1 can guarantee to

derive an edge vector for the relaxed flight route selection
problem (3) with a relative optimality gap less than ϕ/(1−ϕ).

Since the solutions of the relaxed problem ỹ obtained by
Algorithm 1 are not necessarily 0-1 integers, step by step
rounding methods can be employed here to construct a good
approximation of the optimum from ỹ. All the steps are
summed up in Algorithm 2. In each iteration, we select the
maximal element from ỹ and update the Laplacian by adding
this edge in the approximate flight route selection problem.
Then we resolve this problem and iterate till k edges are added.

Algorithm 2 Interior-point algorithm with step by step round-
ing technique
Input: weighted graph G(V,E0), we for each e ∈ EP .

1: Solve problem (7) with k.
2: for i = 1 to k do
3: j ← arg maxe{ye|ye ≤ 1}.
4: ŷj ← 1.
5: Solve problem (7) with k − i (Algorithm 1).
6: end for
7: return Rtot, ŷ

V. SUBMODULAR GREEDY ALGORITHM

The convex relaxation method developed above is still
subject to the curse of dimensionality, albeit having a near
optimality performance and an acceptable computational ef-
ficiency for small/medium-scale networks. The most time-
consuming step in Algorithm 2 is solving the problem (7),
whose computation time exponentially increases with the
growth of the number of nodes n as shown in the numerical

results below. To approach a large-scale problem that contains
more than hundred nodes, we will further develop a submod-
ular greedy algorithm which provides a promising optimality
performance within practical time limits.

A. Submodularity of Rtot

The flight route selection problem (2) can be regarded as a
set function problem (10) below if let f(S) = −Rtot(S).

maximize
S⊆E

f (S)

subject to |S| = k
(10)

where f : 2E → R is a set function that assigns a real
number to each subset of E. It can be proved that the set
function f(S) = −Rtot(S) is monotone submodular as shown
in Theorem 3 below.

Theorem 3. Given a graph G(V,E0). The set function
f(E) = −Rtot(E0 ∪ E) is monotone submodular for E ⊆ EP ,
that is, for any A ⊆ B ⊆ EP and e ∈ EP \B, f (A) ≤ f (B)
and f (A ∪ {e})− f (A) ≥ f (B ∪ {e})− f (B).

The submodularity is such a promising property of the
set functions with solid theoretical background [46] and
far-reaching applications [47], [48], [49]. In combinatorial
optimization, submodularity is the counterpart of convexity
(concavity) in continuous optimization.

The submodularity exhibits a natural characteristic of di-
minishing gains, i.e., adding an element e to a larger set
gives a smaller marginal benefit than adding one to a smaller
subset. It enables a greedy algorithm to efficiently obtain a
good solution with a guaranteed optimality gap as shown in
Theorem 4 below.

Theorem 4. Let ROPT
tot denote the function value of an optimal

solution to problem (2) and RG
tot denote the one of the solution

derived by the greedy algorithm (Algorithm 3 below). Then it
holds that

RG
tot ≤ (1 +

α− 1

e
)ROPT

tot

where α = Rtot(E0)
R∗

tot
and R∗tot is the minimal function value

achieved by adding all the candidate edges.

B. Submodular Greedy Algorithm

As shown in Theorem 4, the greedy algorithm (Algorithm 3)
can efficiently obtain a solution with a guaranteed optimality
gap, in which Line 1 initializes a solution, Line 3 selects the
edge from EP which makes the maximal decrease in terms of
Rtot, and Line 4 makes addition and deletion operations on
ES and EP respectively.

Algorithm 3 is only a basic greedy algorithm and it can be
still computationally intensive if the marginal function in Line
3 cannot be efficiently evaluated and optimized, especially
when facing a large-scale network with a huge |Ep|. With
the help of Theorem 5 below, instead of separately computing
Rtot for two different networks, the marginal function in Line
3 of Algorithm 3 can be more efficiently evaluated by (11),
which paves the way for the accelerated submodular greedy
algorithm in Algorithm 4.
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Algorithm 3 Basic submodular greedy algorithm
Input: weighted graph G(V,E0), we for e ∈ EP .

1: Initialize ES ← E0.
2: while |S| ≤ k do
3: e← arg max

e∈EP

[Rtot(ES)−Rtot(ES ∪ e)].

4: ES ← ES ∪ e, EP ← EP \e.
5: end while
6: return Rtot, S.

Theorem 5. Given any connected weighted network G(V,E)
with weighted Laplacian matrix LE , any edge e ∈ EP for
addition with weight we, and incidence matrix he, then

Rtot(E)−Rtot(E ∪ e) =
nwe
β
‖(LE + 11T /n)

−1
he‖2 (11)

where β = 1 + weh
T
e (LE + 11T /n)−1he.

Although (11) in Theorem 5 simplifies the evaluation of the
marginal function, it may still suffer from the computational
burden resulted from computing (LES

+ 11T /n)−1. Fortu-
nately, since only one edge e will be added into Es every iter-
ation, after calculating (LE0

+ 11T /n)−1 in the first iteration,
(LES

+ 11T /n)−1 can be efficiently derived by performing a
rank-1 update in the following iterations, which finally enables
the accelerated submodular greedy algorithm developed in
Algorithm 4. In Line 2, the inverse of LE0 + 11T /n can be
efficiently obtained by the conjugate gradient method [50] in
the complexity of O(κ

√
υ), where κ is the number of nonzero

entries in (LE0
+ 11T /n) and υ is its condition number. Line 4

uses (11) to evaluate each edge in EP and chooses the one with
the largest marginal decrease, in which (LES

+ 11T /n)−1

is commonly computed using the Sherman-Morrison formula
[51], [52], [53] to perform the rank-1 updates to the inverse
matrix derived in the previous iteration in the complexity of
O(n2). Line 5 and 6 just update Rtot(ES), ES and EP . The
total computational complexity of the accelerated submodular
greedy algorithm is about O(κ

√
υ + kn2).

Algorithm 4 Accelerated submodular greedy algorithm
Input: weighted graph G(V,E0), we for e ∈ EP .

1: Initialize ES ← E0.
2: Compute (LES + 11T /n)−1 with the conjugate gradient method

and then let Rtot(ES)← ntr(LES + 11T /n)−1 − n.
3: while |S| ≤ k do
4: e← arg max

e∈EP

nwe
β
‖
(
LES + 11T /n

)−1
he‖2.

5: Rtot(ES)← Rtot(ES)− nwe
β
‖(LES + 11T /n)−1he‖2.

6: ES ← ES ∪ e, Ep ← Ep\e.
7: end while
8: return Rtot, S .

VI. NUMERICAL RESULTS & CASE STUDIES

A. Convex Relaxation vs. Submodular Greedy Algorithm

We compare the performance of the submodular greedy
algorithm and the convex relaxation method with step by
step rounding technique. Both of them are programmed using
MATLAB R2016a on a desktop computer with 2.70GHz
Intel(R) Core(TM) i7 CPU and 8GB RAM in Windows 10
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Fig. 4. The comparison of performance and running time between step by
step rounding technique and submodular greedy algorithm

OS. The experiment begins with a relatively small scale-
free network with 20 nodes. Fig. 4 shows the results of
applying these two algorithms for different k. It is observed
that the convex relaxation method always provides a relatively
better optimality performance than the submodular greedy
algorithm, about 10% improvement in the case of k = 20.
Furthermore, compared to the convex relaxation method, the
greedy algorithm achieves a substantial reduction in compu-
tation time, about 95% decrease in the case of k = 20. Since
the computation time of the convex relaxation method is still
acceptable, about 15s in the case of k = 20, the convex
relaxation method is preferable to the submodular greedy
algorthm for relatively small scale netowrks.

However, the computation time of the convex relaxation
method grows exponentially as n increases as shown in Fig. 5.
It becomes computationally intractable on a regular worksta-
tion for n ≥ 70. Only the submodular greedy algorithm can be
applied for large-scale netowrks. For large-scale netowrks, we
compare the computation time between the basic submodular
greedy algorithm and the accelerated one. Both algorithms are
applied to a scale-free network with n nodes and select fixed
k edges in each case. Fig. 6 shows the computation time of
these two algorithms for various network sizes. It can be easily
observed that the accelerated submodular greedy algorithm
demonstrates a much more promising computational efficiency
than the basic one. For example, the accelerated algorithm
exhibits a factor of 20 speed-up in the case of n = 150, and
it’s able to optimize the networks with up to thousands nodes
in hours, with nearly millions of potential edges, which is far
beyond the capability of convex relaxation methods.
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Fig. 6. The comparison of running time between basic greedy algorithm and
accelerated greedy algorithm

B. Small-scale Case Study: Drone Cargo Network

A drone cargo network is studied to illustrate the application
of convex relaxation with step by step rounding technique.
The network changes constantly and its topology is crucial
to the successful cargo delivery. The case study is about a
drone cargo network of S.F. Express, one of the largest logistic
companies in China. Since the drone cargo network is still
under development, the network scale is relatively small so
far. There are a total of 50 drones in the fleet and about
32 sorties are made every two hours in the daytime in the
preliminary operation phase. The convex relaxation algorithm
can achieve a better optimality performance within acceptable
time. The diameter of the network is approximately 50 km
and the flight distance of current electric drone is limited by
30 km. It is necessary to set up transfer airports to provide
batteries for drone to extend its flight distance. Fig. 7 shows the
topology of the network. Besides the delivery function of each
airport, different functional characteristics are associated with
airports. The star is the warehouse that stores all the goods to
be delivered, the square denotes the transfer airport, and the
circle denotes the final delivery airport. Batteries are backed
up in the transfer airports to provide the power for drones.
Setting up routes between each airport pair is impossible due to
budget constraints. Besides getting the approval of flight routes

from the Aviation Bureau, the telecommunication, antennae,
and emergency area should also be built and associated with
each route.

Fig. 7. S.F. Express Drone Cargo Network.

Since the drone cargo network is still under test and route
failure rate data are not available, we cannot use the mech-
anism of mapping cancellation rates into different weights.
Instead, we define the edge weight based on node degree
commonly used to characterize the node centrality [54]. Gen-
erally speaking, the more routes the airport connects, the more
important the airport is. Since more advanced equipments are
usually equipped along the routes between critical hubs to
facilitate a high demand, the routes connecting critical hubs
with a higher node degree are less likely to fail, which implies
a larger route weight. Therefore, we define the weight of route
(i, j) as wi,j = f (deg(vi) + deg(vj)), where the function
f(·) maps the sum of degree connectivity into weights {1,2,3}
based on a piecewise linear approximation.

In this case study, the convex relaxation method is applied
to add k = 5 and k = 10 routes. For the case of k = 5,
the computation time is 5.2s and the total effective resistance
can be improved by 38%. The total number of acyclic paths
between all node pairs can be increased from 286 to 1726.
For the case of k = 10, the computation time is 13.6s and
the total effective resistance can be improved by 60%. The
total number of acyclic paths between all node pairs can
be increased from 286 to 5296. Table II shows the selected
routes and their associated weights in this two scenarios. It
is noted that the distance of candidate routes is less than 30
km which is the drone’s maximum flight duration. In a small
added route set, edges tend to connect the low-degree airport
and transfer airport. For example, the degree of the airports
NanJiang, ZiYang, and LongMu is 1. Namely, only one route
exists between each of these airports and others. If the route
fails, drone cannot fly to the transfer airport by any routes
or their combinations. With the increase of available route set,
edges with higher weights slowly begin to connect the airports
with high node degree.
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TABLE II
TOP 5 AND 10 ROUTES TO BE ADDED TO S.F. DRONE CARGO NETWORK

Top 5 <route, weight> Top 10 <route, weight>
<NanJiang-SiXia, 3> <NanJiang-SiXia, 3> <YouShi-PingShi, 2>
<SiXia-ZiYang,3> <SiXia-ZiYang, 3> <SiXia-SheXi, 3>
<SiXia-LongMu, 3 > <SiXia-LongMu, 3> <HeYuang-PingShi, 2>
<SiXia-SheXi, 3> <ShuangXi-PingShi, 2> <HeYuang-DaPing, 2>
<SiXia-ShiBaTang, 3> <AnHe-PingShi, 2> <SiXia-ShiBaTang, 3>

C. Medium-scale Case Study: S.F. Airline

Although S.F. Express owns the largest cargo airline in
China, its network is still in medium size [55]. There are a
total of 42 cargo aircraft in the fleet and about 126 operational
flights are made every day in the current operational practice.
The cargo network includes 40 airports and 114 bidirectional
routes as shown in Fig. 8. The existing edges are weighted
based on the failure rate computed from real operations.
According to the data, the flight cancellation rate ranges from
0% to 9.6%. The existing edges with cancellation rates in
[0, 3.2%) are assigned a weight of 3, the ones with cancellation
rates in [3.2%, 6.4%) are assigned a weight of 2, and the
ones with cancellation rates in [6.4%, 9.6%] are assigned a
weight of 1. The mechanism of mapping cancellation rates
into different weights is motivated by the practical operations
in the aviation industry. A flight route with a small weight
indicates that it is prone to failure under disruptive situations,
such as aircraft shortage or severe weather, and vice versa.

In this case study, the accelerated submodular greedy
method is applied to add k = 5 and k = 10 routes, which
is programmed using the same environment as described in
the previous subsection. The results are illustrated in Table
III with each edge name and its associated weight. For the
case of k = 5, the computation time is 1.2s and the total
effective resistance can be improved by 3.3%. For the case of
k = 10, the computation time is 2.6s and the total effective
resistance can be improved by 4.5%. Even though the network
size is medium, since computing the total number of acyclic
paths between all node pairs, Q, requires an exponential time
complexity, it is computationally intractable to derive the exact
values of Q and will be omitted for both of the medium
and large-scale networks. It is noted the selected edges with
weight 2 account for a large proportion, indicating those
edges with medium strength are influential for the robustness
improvement of overall robustness.

11/23/2017 Screenshot 2017-11-23 13.24.20.png (778×639)
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TABLE III
TOP 5 AND 10 ROUTES TO BE ADDED TO S.F. AIR CARGO NETWORK

Top 5 <route, weight> Top 10 <route, weight>
<LHW-CKG, 2> <WUH-CKG, 2> <CKG-CGO, 2>
<CKG-WUH,2> <LHW-CKG, 3> <URC-KWE, 2>
<URC-KWE, 2 > <URC-NKG, 2> <CKG-SZX, 2>
<CKG-SZX, 2> <CKG-PEK, 2> <YNT-FOC, 2>
<URC-PVG, 2> <CKG-DLC, 2> <URC-PVG, 2>

D. Large-scale Case Study: Worldwide Network

In this section, we study the application of the greedy
algorithm for the worldwide air transportation network. The
worldwide network supports the traffic of over three billion
passengers traveling between more than 4000 airports on
more than 50 million flights in a year. Since the majority
of the air transportation network is based on hub-and-spoke
network configuration, it is more beneficial and useful for the
air transportation industry to improve the robustness of the
network composed of critical hubs [56]. Based on the data
for 2012 travel year from OpenFlights Database that contains
36203 routes between 3425 airports [4], 300 critical airports
are selected in terms of node degree in the worldwide network
as shown in Fig. 9. There are 6736 routes existing in the
current network of these 300 critical airports. The accelerated
submodular greedy algorithm is used to choose k routes from
38114 candidate routes between these 300 airports. The result
is illustrated in Fig. 10, where the left y-axis is the relative
Rtot defined as Rtot(Es)/Rtot(E0). It can be observed that
the computational time linearly increases and the network
robustness measured by Rtot is continuously improved as
k grows. When it reaches k = 35, the computation time
is 2644s and the total effective resistance can be improved
by 8.6%. Compared to the accelerated submodular greedy
algorithm, another two heuristic methods, that is, random
addition strategy and smallest node degree addition strategy
that always greedily selects edges between node pair with
smallest node degree, can only improve the total effective
resistance by 0.61% and 1.55% respectively.
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Fig. 9. 300 Critical Airports of Worldwide Air Transportation Network
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VII. CONCLUSION

In this paper, we show that the total effective resistance
is a promising measure that can capture the global network
characteristics and distinguish the changes of an individual
node or edge. The flight route selection problem via the
minimization of the total effective resistance is formulated,
which is a difficult integer nonlinear programming problem.
Two methods are developed for different network scales to
balance the trade-off between optimality performance and
computational efficiency. For small/medium-scale networks
with less than 70 nodes, we develop an interior-point method
based on convex relaxation and duality gap, which can achieve
a near optimality within an acceptable computation time. For
large-scale networks with up to thousands of airports, we
develop an accelerated submodular greedy algorithm based
on proved monotone submodularity, which can obtain a good
solution with a guaranteed optimality gap in substantially
reduced computation time. Three case studies from real prac-
tice have been conducted to demonstrate the application and
performance of the proposed methods for the air transportation
networks with small, medium and large scales.

The developed methods are able to enhance the robust-
ness of air transportation networks for different levels of
organizations and provide quantitative results for the decision
makers. The network planners (route map planners) in airline
companies are able to optimize the network. The aviation
authorities, such as FAA in US and ATMB (Air Traffic
Management Bureau) in China, can also evaluate a regional
or national air transportation network, then restructure the
airway network and give their suggestions to airline com-
panies. The methods are also applicable for edge deletion
when the airlines intend to cut down their operating budgets
and try to sustain their robustness to the largest extent. The
developed methods may also be used to improve the design
of other networks, such as urban networks, supply chain
networks, communication networks and so on. For the future
work, we will pursue network optimization considering fuel
efficiency [57], vulnerability [58], and network reliability [59];
other optimization strategies including edge rewiring, weights
assignment, and the combination of edge addition and weight
assignment will also be considered. Moreover, under some

uncertain environments, even though an edge is selected, the
edge may not be successfully added into the existing network
and it will be more meaningful to consider the minimization
of the expected total effective resistance.

REFERENCES

[1] R. Guimera and L. A. N. Amaral, “Modeling the world-wide airport
network,” The European Physical Journal B-Condensed Matter and
Complex Systems, vol. 38, no. 2, pp. 381–385, 2004.

[2] G. Bagler, “Analysis of the airport network of india as a complex
weighted network,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 387, no. 12, pp. 2972–2980, 2008.

[3] K.-Q. Cai, J. Zhang, M.-M. Xiao, K. Tang, and W.-B. Du, “Simultaneous
optimization of airspace congestion and flight delay in air traffic network
flow management,” IEEE Transactions on Intelligent Transportation
Systems, 2017.

[4] [Online]. Available: http://openflights.org.
[5] [Online]. Available: https://www.transtats.bts.gov.
[6] M. T. Gudmundsson, R. Pedersen, K. Vogfjörd, B. Thorbjarnardóttir,
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VIII. APPENDIX

A. Proof of Theorem 1

Proof. The convexity property can be proved by verifying
that the Hessian matrix of Rtot is positive semidefinite. To
prove the property, we need to introduce the following identity
function(see [45], section A.4.1), ∂X−1

∂t = −X−1 ∂X∂t X
−1,

where invertible symmetric matrix X(t) is a differentiable
function of the parameter t ∈ R. Define L(y) = L(y)+11T /n
and he,w = w

1
2
e he, we can express the gradient as

∂Rtot

∂ye
= −ntr[L̄(y)−1 ∂L̄(y)

∂ye
L̄(y)−1]

= −ntr[L̄(y)−1 ∂(L̄0 +
∑
e yehe,wh

T
e,w)

∂ye
L̄(y)−1]

= −ntr[L̄(y)−1he,wh
T
e,wL̄(y)−1]

= −n‖(L̄(y))−1he,w‖2.

where ‖ ·‖ denotes the Frobenius norm, we have ∂Rtot/∂ye ≤
0, thus Rtot(L(y)) is a nonincreasing function of y, indicating
a larger value of y leads to a better network in terms of Rtot.

Let Aw = [h1,w · · ·hp,w], we can express the gradient as

∇Rtot = −ndiag(ATw(L̄E(y))
−2
Aw)

We now derive the Hessian matrix of Rtot(y) from the
derivative matrix,

∂2Rtot

∂ye∂yk
= −n ∂

∂yk
‖(L̄E(y))

−1
he,w‖2

= 2nhTe,w(L̄E(y))−2hk,wh
T
k,w(L̄E(y))−1he,w

Using the definition of Aw, we can express the Hessian of
Rtot(y) as

∇2Rtot = 2n(ATw(L̄E(y))
−2
Aw) ◦ (ATw(L̄E(y))

−1
Aw) � 0

where ◦ denotes the Hadamard product. The inequality above
can be established because both the first component and
second component of the product matrix are positive semidef-
inite.

B. Proof of Theorem 2

Proof. The solution S = (Λ, µ, ν) is evidently feasible for the
dual problem, so its dual objective value gives a lower bound
R on Rtot(y), R ≤ Rtot(y)

R = 2tr(nΛ)1/2 − (1/n)1Λ1T − νk − tr(ΛL0)− 1Tµ− n

= 2ntr(L+ 11T /n)−1 − ‖(L+ 11T /n)
−1

1‖2 − tr(ΛL0)

−max
e
nk‖(L+ 11T /n)

−1
he‖2 − n

= 2ntr(L+ 11T /n)−1 − ntr((L+ 11T /n)
−2
L0)− 2n

−max
e
nk‖(L+ 11T /n)

−1
he‖2.

In the second line, we use (L+ 11T /n)−11 = 1. Let
δ denote the difference between this lower bound R and
the value of Rtot achieved by the selected edge vector y.
There is a duality gap associated with y, using Rtot =
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ntr(L+ 11T /n)−1 − n, the gap δ between the lower bound
R and the value of Rtot can be expressed as,

δ = Rtot(y)−R

= −ntr(L+ 11T /n)−1 + max
e
nk‖(L+ 11T /n)

−1
he‖2

+ ntr(L0(L+ 11T /n)
−2

) + n

= −max
e

(kw−1
e
∂Rtot

∂ye
) + ntr(L0(L+ 11T /n)

−2
)−Rtot

= −max
e

(Rtot − ntr(L0(L+ 11T /n)
−2

)+kw−1
e
∂Rtot

∂ye
)

C. Proof of Theorem 3

Proof. Taking any A ⊆ B ⊆ EP and e ∈ EP \B, we have

f (A ∪ {e})− f (A) = −Rtot(LA∪E0 + Le) +Rtot(LA∪E0)

= −ntr(LA∪E0 + Le + 11T /n)−1 + ntr(LA∪E0 + 11T /n)−1

= −ntr[(LA∪E0 + Le + 11T /n)−1 − (LA∪E0 + 11T /n)−1]

= ntr

[
Le

(LA∪E0 + 11T /n)(LA∪E0 + Le + 11T /n)

]
≥ ntr

[
Le

(LB∪E0 + 11T /n)(LB∪E0 + Le + 11T /n)

]
= −ntr[(LB∪E0 + Le + 11T /n)−1 − (LB∪E0 + 11T /n)−1]

= f (B ∪ {e})− f (B)

where the inequality satisfies since LA∪E0
� LB∪E0

and thus (LA∪E0
+ 11T /n)−1 � (LB∪E0

+ 11T /n)−1,
(LA∪E0

+ Le + 11T /n)−1 � (LB∪E0
+ Le + 11T /n)−1.

Therefore, we have

f (A ∪ {e})− f (A) ≥ f (B ∪ {e})− f (B) (12)

which implies that the set function f(E) is submodular. It
can be easily shown that f(E) is also monotone increasing.
Hence, f(E) is a monotone submodular function.

D. Proof of Theorem 4

Proof. Let fOPT be the value of an optimal solution to problem
(10) and fG be the value of a particular solution to (10).
There exists a greedy algorithm which begins with empty set,
S ← ∅ and computes the loss ∆(e|Si) = f(e|Si) − f(Si)
for all elements e ∈ E till the kth iteration. In each step, the
algorithm selects the element with the highest loss

Si+1 ← Si ∪ {arg max
e

∆(e|Si)|e ∈ E}.

As shown in [60], if f is a monotone increasing and sub-
modular function, then the greedy algorithm always produces
a solution satisfying

fOPT − fG

fOPT − f(∅)
≤ (

k − 1

k
)k ≤ 1

e

Combining it with Theorem 3, the greedy algorithm in Algo-
rithm 3 results in

−ROPT
tot +RG

tot

−ROPT
tot +Rtot(E0)

≤ 1

e
(13)

where E0 is the existing edges of the initial network. Rear-
ranging the inequality (13), we have

RG
tot ≤

1

e
Rtot(E0) + (1− 1

e
)ROPT

tot

= (
Rtot(E0)

eROPT
tot

+ 1− 1

e
)ROPT

tot

≤ (
Rtot(E0)

eR∗tot
+ 1− 1

e
)ROPT

tot

= (1 +
α− 1

e
)ROPT

tot

The second inequality is satisfied because R∗tot ≤ ROPT
tot and

R∗tot is the optimal value obtained by adding all the candidate
edges with given weights.

E. Proof of Theorem 5

Proof. Define LE = LE + 11T /n and he,w = w
1
2
e he, it holds

that
Rtot(E ∪ e) = ntr(LE∪e + 11T /n)−1 − n

= ntr(LE + 11T /n+ weheh
T
e )−1 − n

= ntr(L̄E + he,wh
T
e,w)−1 − n

(14)

Since the rank of LE + 11T /n is n and invertible, β = 1 +
weh

T
e (LE + 11T /n)−1he > 0. From the Sherman-Morrison

formula [51], we have(
LE + he,wh

T
e,w

)−1

= L
−1
E −

1

β
L
−1
E he,wh

T
e,wL

−1
E

Using the equality above, we can reformulate equation (14) as

Rtot(E ∪ e) = ntr(L̄E + he,wh
T
e,w)−1 − n

= ntr(L
−1
E −

1

β
L
−1
E he,wh

T
e,wL

−1
E )− n

= ntr(L
−1
E )− n− n

β
tr(L

−1
E he,wh

T
e,wL

−1
E )

= Rtot(E)− n

β
‖L−1

E he,w‖2

= Rtot(E)− nwe
β
‖(LE + 11T /n)

−1
he‖2

(15)

which implies (11).
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