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Abstract—In recent years, we have witnessed a surge of interest in enabling communications over meshed wireless networks.
Particularly, supporting peer-to-peer communications over a multi-hop wireless network has great potential in enabling ubiquitous
computing. However, many wireless nodes have limited capabilities, for example, sensor nodes or small handheld devices. Also,
the end-to-end capacity and delay degrade significantly as the path length increases with the number of network nodes. In these
scenarios, the deployment of a backbone network could potentially facilitate higher performance network communications. In this
paper, we study the novel Reinforced Backbone Network (RBN) deployment problem considering the practical limitation in the number
of available backbone nodes and enforcing backbone network connectivity. We propose an iterative and adaptive (ITA) algorithm for
efficient backbone network deployment. In addition, in order to provide the performance bound, we redefine and solve the problem by
implementing the Genetic Algorithm. Finally, we present our simulation results under various settings and compare the performance of
the proposed ITA algorithm and the genetic algorithm. Our study indicates that the proposed ITA algorithm is promising for deploying a
connected RBN with a limited number of available backbone nodes.
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1 INTRODUCTION

Supporting peer-to-peer communications over a meshed
wireless network has shown a great potential in enabling
ubiquitous computing. However, when the nodes have
lower capabilities or limited resources, such as small
sensor nodes or handheld wireless devices, the network
may be unreliable or have a very low capacity. In addi-
tion, a flat homogeneous ad hoc network has been shown
to have poor scalability. As the number of network nodes
and therefore the average number of hops per path
increases, there is a rapid reduction of path throughput
[1] and an increase of the end-to-end delay [2]. The
placement of a backbone network with more capable
nodes can potentially bring in a lot of benefits in these
scenarios, including higher quality links, more reliable
transmissions, lower delay and higher throughput to
remote destination nodes.

The backbone network deployment problems have
been recently studied in [3]–[5]. The works in [3] [4]
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assume there is an unlimited number of backbone nodes,
and the goal is to minimize the total number of backbone
nodes in the deployment. In many practical scenarios,
however, there is only a fixed number of backbone
nodes that can be deployed, and the deployment can
be only performed under the constraint of the available
backbone resources. Although the authors in [5] also
perceived the issues and attempted to deploy a limited
number of backbone nodes, they failed to consider an
important constraint, i.e., backbone network connection.
In addition, the paper implicitly assumes that a regular
node can reach any backbone nodes directly, which is
not very practical.

The aim of this work is to optimally deploy a Re-
inforced Backbone Network to enhance the performance
and robustness of an underlying wireless network that
consists of nodes with lower capabilities and to facilitate
high capacity and long-range network communications.
We consider two types of wireless nodes in a network.
The first type of nodes are called regular nodes (RNs),
which normally have limited capacities and transmit at
a shorter range. The second type of nodes are called
backbone nodes (BNs), which generally have much
higher communication and computation capacities and
can transmit at a longer range. As the cost metric, we
consider the factors that impact the delay for an RN to
access the backbone network, including the number of
hops from an RN to its associated BN and the competi-
tion delay due to a large number of RNs trying to access
the backbone network through the same BN.

The objective of our backbone deployment is to min-
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imize the average backbone access delay from all the
regular nodes while satisfying the backbone connection
constraint. To our best knowledge, this is the first work
that studies the optimal deployment of backbone net-
work with use of a limited number of backbone nodes
and ensuring backbone connectivity. The backbone de-
ployment problem is made much more challenging with
the practical consideration of the limitation of available
backbone nodes and the enforcement of backbone net-
work connectivity. We formulate the problem with a
practical objective function and propose an iterative and
adaptive algorithm to solve the problem. In addition, in
order to find the performance bound, we re-define the
problem and solve the problem using genetic algorithm.

The rest of the paper is organized as follows. In
Section 2, we formulate the problem and discuss its
complexity. In Section 3, we present the iterative and
adaptive backbone deployment algorithm. We re-define
the problem and solve the problem through genetic
algorithm in Section 4. In Section 5 we evaluate the per-
formance of our algorithm via simulations, and compare
the performance of our iterative and adaptive algorithm
and genetic algorithm. Section 6 provides an overview
of the related work and Section 7 concludes this paper.

2 PROBLEM FORMULATION

In this section, we introduce the concepts and present
the formulation of our problem.

Before formulating the problem, we first introduce
our link and network connection models. For a sending
node i and a receiving node j, the receiving signal to
interference and noise ratio (SINR) at j is defined as:

SINRi,j =
Gi,j · pt(i) · d−β

i,j

N + Ij
, (1)

As the backbone deployment is at a larger time scale,
we only consider the large scale path loss factor in our
link model. In Eq. (1), Gi,j is the channel gain between
nodes i and j, pt(i) is the transmitting power of i, di,j is
the distance between i and j, β is the path loss exponent
typically ranging between 2 and 4, N is the ambiance
noise power and Ij is the interference power at the
receiving node j.

Definition 1 (Link): Given a threshold γj depending on
the decoding capability of node j, a node i can reach
node j if SINRi,j is larger than γj . There is a link
between i and j if i can reach j and j can reach i.

Definition 2 (Path): There is a path Pi,j between two
nodes i and j if i and j can reach each other directly
through one link or over multiple links with relay nodes.

Definition 3 (Connected): A network is connected if ∀
node pair i and j in the network, there is a path Pi,j

between i and j.
Suppose that there are n wireless Regular Nodes (RN)

in a 2D plane, which form a connected ad hoc network
GR = (NR, ER). The set NR contains all the Regular
Nodes, and |NR| = n is the size of the RN network.

We name the RNs as a set {1, 2, ..., n}. The link between
any RN pair i and j is denoted as eij , and the set ER

contains all the links in the RN network.
There are k backbone nodes (BN) to be deployed to

form a Reinforced Backbone Network (RBN) to enable
RNs to communicate more efficiently over a long dis-
tance. The fixed number of BNs is inspired by the prac-
tical case that the budget for BNs is limited. Each BN has
two communication interfaces, one is used to communi-
cate with RNs, and the other is used to communicate
with other BNs. The two radio interfaces are tuned to
different radio channels so concurrent communications
can be carried in the RN network and the backbone
network, and the long-range backbone communications
does not interfere with the short-range communications
in RN network. After the deployment, the backbone
network can be denoted as GB = (NB , EB), where NB

is the set of BNs with |NB | = k, and EB is the set of
backbone links. We denote the BNs as a set {b1, b2, ..., bk}.

2.1 Objective Function

It is important to optimally deploy the backbone net-
work to achieve a desired objective. Based on [2] and
[6], one of the major delay factors in a random access
based wireless network is the hop-number from the
transmitting node to the receiving node. When an RN
needs to communicate with another node that is farther
away through a path over only RNs, there could be a
large number of hops between the source and the desti-
nation, which not only incurs a high transmission delay
but also leads to a low end-to-end throughput. There-
fore, it is necessary to introduce a Reinforced Backbone
Network to provide efficient long-range communication.
As shown in Fig. 1, RNt can take advantage of the
backbone network to speed up the communication with
RNr. The communication has three parts: RNt to BNa,
BNa to BNb inside the backbone network and BNb to
RNr. During the backbone network construction time,
the actual transmission needs are not known yet. Also,
a BN has a much higher transmission bandwidth and
longer transmission range than an RN, thus the delay
between two BNs is much smaller than that between
two RNs with equal distance. Therefore, to facilitate the
long-range communication of regular nodes, it is critical
to reduce the delay for an RN to access the backbone
network.

For each RN i, there is an assigned BN b(i) for it to
efficiently access the backbone network. As the transmis-
sion delay is directly impacted by the number of hops
in a path, we consider the number of hops h(i) between
the RN i and b(i) as hop delay between the RN and the
backbone network. Besides the transmission delay, if too
many RNs want to route their packets into the backbone
network through the same BN, the BN would become
the hot spot, leading to a large competition delay. Therefore,
for each RN, we consider a delay cost factor as a function
of both hop delay and competition delay.
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Fig. 1. An end to end long range RN transmission.

Recall that the regular nodes are denoted by the set
NR = {1, 2, ..., n} and the backbone nodes are denoted
by the set NB = {b1, b2, ..., bk}. For the regular node i,
b(i) = bk represents that the regular node i is assigned to
the k-th backbone node. Let h(i, bJ) be the hop number
from the regular node i to the backbone node bJ , and
h(i) be the hop number from RN i to its assigned BN
b(i).

For a backbone node bI , the RNs assigned to the BN
form a cluster, and |(bI)| represents the number of RNs
associated with bI . For k BNs, there are k groups of RNs,
and each RN group is associated with one of the k BNs.
In this work, every RN is assigned to exactly one BN,
thus

∑k
I=1 |bI | = n. An RN can be assigned to a different

BN if its associated BN becomes unavailable, and could
also route around the assigned BN over a path of RNs
if the BN is not directly reachable .

Before the deployment of backbone nodes, the signal
strength cannot be measured, we use the reference trans-
mission ranges R for BNs and r for RNs to guide the
backbone node deployment. Generally, we just need to
know R > r, and our algorithm is not constrained by the
disk model. The connection between two neighboring
nodes needs to be calculated based on the receiving
SINR defined in Eq. (1) with a safety threshold γ to
ensure the connectivity under some fading conditions.

When multiple RNs are associated with one BN, there
exists channel competition in accessing the BN. If each
node has an equal probability of accessing the BN, the
delay as a result of node competition is directly impacted
by the number of RNs associated with the BN. To capture
the impact of both hop delay and competition delay, the
delay cost factor ci between an RN i and its assigned BN
b(i) can be represented as:

ci = αh(i) + (1− α)|b(i)|, (2)

where |b(i)| indicates how many RNs are assigned to
b(i). The parameter α ∈ [0, 1] is used to adjust the trade-
off between the hop delay and the competition delay.
Note that this cost function is only defined to guide the
deployment of backbone nodes, and we only consider
the factors that impact the backbone access delay. As a
matter of fact, the accurate transmission delay is difficult
to know during the deployment phase, and it is difficult

to model the exact relationship between the two cost
factors as many dynamic factors such as traffic and
transmission collisions in each hop are unknown. In
this paper, we focus on designing a general deployment
algorithm, and the accurate modeling of the cost function
is out of our scope. As the goal of deployment is for the
longer period network planning, our algorithm does not
depend on specific MAC scheme. If a MAC with well
scheduled transmission slot such as TDMA is used, there
would be no backoff.

To evaluate the overall backbone network deployment
performance, we consider the average backbone access
delay cost factor c̄ of all RNs as follows:

c̄ =
1

n

n∑
i=1

ci =
1

n

n∑
i=1

(αh(i) + (1− α)|b(i)|), (3)

and the objective of the backbone network deployment
is to minimize c̄.

2.2 The Problem
Our problem is to deploy k BNs to form a Reinforced
Backbone Network where the BNs are connected and
each RN i is assigned to exact one BN b(i), with the
objective of minimizing the average backbone access
delay cost of all RNs. The problem is described as
follows:

min c̄, (4)

Subject to:

∃PI,J ,∀bI , bJ ∈ NB ,

∃b(i) ∈ NB ,∀i ∈ NR.

A solution to this problem involves two parts: the
deployment of k BNs and the assignment of each RN
to a BN.

In order to provide the Reinforced Service to RNs,
an RN should be able to access at least one BN, either
directly or through multi-hop RN relays. As the objective
of the backbone deployment is to minimize the average
backbone access delay from all RNs, thus for a lower
overall access delay and connectivity from an RN to the
BN network, each BN should be within the transmission
range of at least one RN. Consider each RN corresponds
to a transmission area, and each BN can choose which
RN transmission area it should stay. In total, there are
nk candidate deployment options. With the BN network
connection constraint, only some of these candidate de-
ployment locations are feasible. As a result, there are
fewer than nk potential ways of feasible deployment.
Because k is known as a constant, the deployment solu-
tion has a polynomial complexity. As we assume R > r,
we can first virtually deploy a BN to the center of an
RN transmission area, i.e., the current position of the
RN. In this way, the RN positions serve as the reference
searching points to coarsely determine the BN positions,
which makes the deployment possible and at a lower
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computational cost. The actual deployment position of
BN can be close to the RN and different, and adjusting
the position of the BN within a short distance of the
RN will not affect the connection constraint significantly.
After physically deploying the BNs, a BN can adjust
its position within the corresponding RN’s range while
maintaining the connectivity with its neighbors through
physical signal strength measurement.

After the deployment of all BNs, the next step is to
associate each RN to a specific BN. Since the RN network
is already given, we can have the following hop number
matrix H :

H(n×n) =


h(1, 1) h(1, 2) . . . h(1, n)
h(2, 1) h(2, 2) . . . h(2, n)

...
...

. . .
...

h(n, 1) h(n, 2) . . . h(n, n)

 , (5)

where the item h(i, j) is the shortest path hop number
between RNs i and j, and h(i, i) is 0 for any RN i.
Apparently, H is a natural symmetric matrix. Assuming
the BN nodes {b1, b2, ..., bk} have already been deployed
on the existing RN positions, the hop number from an
RN to every BN can be found in the matrix H . Note
that given the locations of BN nodes as the candidate
facility locations, and the hop number h(i, bJ) from an
RN i to each BN bJ as the connection cost, if we let
α = 1 in Eq. (3), the simplified problem is equivalent to
the NP-hard k-facility location problem [7]. As a result,
the assignment part of the problem is NP-hard and thus
the problem defined in Eq. (4) is NP-hard. Therefore, it is
important to design a practical algorithm with acceptable
complexity to solve the problem efficiently.

3 ITERATIVE AND ADAPTIVE BACKBONE DE-
PLOYMENT

As discussed earlier, in order to minimize the average
backbone network access delay cost, it would be good
for BNs to stay close to the RNs. Specifically, each BN
should be within the transmission range of one or more
RNs. Considering the transmission area of each RN
as a deployment option for a BN, with n RNs and k
BNs, there are O(nk) combinations for the deployment.
Instead of searching through all the O(nk) possible
combinations for BN deployment and all the O(kn)
possible association between n RNs and k BNs which
takes a significantly long time, we propose an iterative
and adaptive (ITA) backbone deployment algorithm. The
algorithm has four steps:

1) Initial deployment to determine the initial positions
of k BNs;

2) RN association, which greedily assigns the RNs to
associate with k BNs based on the current round of
BNs deployment to minimize the average backbone
network access delay cost;

3) Adaptation of the positions of k BNs based on the
association of n RNs;

4) Checking the connectivity to ensure that the k BNs
forms a connected backbone network.

The algorithm runs iteratively through the steps 2, 3 and
4 until either the objective function cannot be improved
any more or the BN network becomes disconnected.

3.1 Initial Deployment of Backbone Nodes
A simple solution of initial deployment is to randomly
pick k RN positions and put k BNs close to these ref-
erence locations. However, this cannot guarantee that k
BNs are connected. The classic Furthest First [8] scheme
or Subset Furthest First [9] scheme also cannot ensure
that the initial BN deployment meets the connection
constraint. Motivated by the self-deployment scheme
in robotic research area [10] where robot nodes spread
out from a central location until no node could move
out further, we deploy the k BNs initially within a
close distance between each other so that the backbone
network is connected. Different from robot deployment
which only considers a flat network with a simple goal
of keeping the nodes connected, the problem is made
much more challenging with the objective of deploying a
limited number of backbone nodes to optimally serve the
RNs while ensuring the backbone network connectivity.
Note that in our deployment, the change of BN positions
is virtual, i.e. no actual placement is involved, until a
solution is found.

In order to reduce the number of transmission hops
from RNs to their assigned backbone nodes for a lower
hop delay and balance the association between the n
RNs and k BNs for a lower competition delay, we
choose to initially deploy the BNs close to the mass
center L⃗mass of the n RNs, i.e. the mean location of
all the RNs in the network. As discussed earlier, we
use the RN positions as the reference to find the BN
deployment points. Denote the locations of the RNs as
vectors L⃗RN

1 , L⃗RN
2 , ..., L⃗RN

n . We first find the RN position
closest to the mass center, denoted as L⃗(0)1 = L⃗RN

i∗ where
i∗ = argmini∈RN |L⃗RN

i − L⃗mass|, to virtually deploy
the first BN. In order to ensure the backbone network
connectivity, we initially keep the remaining k−1 BNs as
close to the first BN as possible. Since the n RNs already
form a connected network, a Breadth First Search (BFS)
can be performed to traverse the RN network and a
spanning tree consisting of the n RN positions is derived.
Note that nodes on the d-th layer of the tree returned
by BFS is exactly d hop away from the root node. The
remaining k − 1 BNs are then virtually deployed on the
positions of the k−1 RNs closest to the root BN in terms
of the hop number on the tree. The k locations of the
initial BN positions are denoted as L⃗(0)1, L⃗(0)2, ..., L⃗(0)k,
where (0) indicates the index of the iteration during the
progressing of the algorithm, which is currently in the
initial stage. As the transmission range of a BN is much
larger than an RN, the connectivity of the k selected
RN locations in the RN network ensures that the initial
deployment of BNs forms a connected BN network.
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3.2 Random Greedy Assignment

Given the locations of the k BNs in iteration t,
L⃗(t)1, L⃗(t)2, ..., L⃗(t)k, there is a need to associate each RN
to a BN to reduce its delay in accessing the backbone net-
work. In this section, we first formulate the assignment
problem, and then propose a random greedy solution.

Without loss of generality, we assume b1, b2, ..., bk have
been deployed on RN positions 1, 2, ..., k and it’s a feasi-
ble deployment. Then we can show that the assignment
part of the objective function in Eq. (4) is a the convex
cost flow problem [11] [12], with the general format as
below:

minx′Qx+ c′x

subject to


∑

xout −
∑

xin = n, for source node s;∑
xout −

∑
xin = −n, for sink node t;∑

xout −
∑

xin = 0, for all the other nodes;
(6)

and 0 ≤ xe ≤ ue, e ∈ E.

Next, we construct a flow problem in Fig. 2. We have
a source node s on the left side and a sink node t on the
right side, as well as a column of nodes denoting the RNs
1, 2, ..., n and another column of nodes denoting the BNs
b1, b2, ..., bk in the middle.

Fig. 2. Convex Cost Flow

For every node in Fig. 2, the outgoing flow equals to
the incoming flow except for the source s and the sink
t, satisfying Eq. (6). For each arc e in the flow, it has
a flow xe, a flow upper bound ue, a quadratic cost qe
and a linear cost ce. The tuple (xe, ue, qe, ce) is used to
represent the state of each arc.

There are three types of arcs. The arcs originated from
node s are represented as y1, y2, ..., yn, with the flow
upper bound on each arc being 1 and all the costs being
0. Thus the quadruple of these arcs is (yi, 1, 0, 0). The
arcs terminated the flows at node t are represented as
z1, z2, ..., zk. The upper bound, the quadratic cost, and
the linear cost on each arc are n, (1−α) and 0 respectively.
Thus the quadruple is (zj , n, 1 − α, 0). The arc starting
from an RN i and ending at a BN bj between the

middle two columns has flow value aij , upper bound 1,
quadratic cost 0, and linear cost αhij . The parameter hij

is obtained by looking up the hop number matrix in Eq.
(5). The quadruple of this kind of arcs is (aij , 1, 0, αhij).

We define the flow function in Fig. 2 as:

n∑
i=1

(0yi+0y2i )+

n∑
i=1

k∑
j=1

(αhijaij+0a2ij)+

k∑
j=1

(0zj+(1−α)z2j ),

which can be simplified as:

n∑
i=1

k∑
j=1

αhijaij +

k∑
j=1

(1− α)z2j . (7)

Next we show that the constructed flow function has
the same format as our objective function in Eq. (4). In
Fig. 2, there is exactly one unit flow coming out of each
RN, as each RN on the left can only be assigned to one
BN b(i) on the right. So for RN i, there is only one aij
is 1 and others are all 0, and hij = h(i) for bj = b(i).
Therefore, we have

n∑
i=1

k∑
j=1

αhijaij =
n∑

i=1

αh(i). (8)

For the BNs, since
∑

xout −
∑

xin = 0, all the unit
flows into a BN bI need to flow out. The number of
unit flows into bI is determined by the number of RNs
assigned to this BN. So the flow zj coming out of the BN
bI is equal to the number of RNs assigned to bI , which
is denoted by |bI |. As a result, we have

k∑
j=1

z2j =
k∑

I=1

|bI |2

=
∑

i:b(i)=b1

|b1|+
∑

i:b(i)=b2

|b2|+ ...+
∑

i:b(i)=bk

|bk|

=

n∑
i=1

|b(i)|. (9)

By substituting the results in Eq. (8) and (9) into Eq.
(7), the cost of our flow problem turns to be

n∑
i=1

k∑
j=1

αhijaij +

k∑
j=1

(1− α)z2j

=
n∑

i=1

αh(i) +
k∑

I=1

(1− α)|bI |2

=

n∑
i=1

αh(i) +

n∑
i=1

(1− α)|b(i)|. (10)

Eq. (10) is exactly the same as our objective function in
Eq. (4) except one more divisor n, which can be ignored
here. So far, we have formulated the assignment part of
our problem as a convex cost flow problem.

According to [12] some variant of the convex cost
flow problem can be solved through a polynomial time
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algorithm. However, the complexity is still considerably
high. Therefore, we propose a Random Greedy Assign-
ment (RGA) approach, in which the n RNs take turns
to associate with a BN in a random order as shown in
Algorithm 1.

The algorithm is performed at each iteration round. At
the beginning of the association process, the association
results from the last round is cleared up as in Line 2. The
RNs are associated with BNs one by one in a random
sequence to reduce the occurrence of any unpreferable
solution. For the assignment of each RN, the access delay
cost from the RN to any BN is calculated based on Eq.
(2), and the RN is associate with the BN that provides
the least access cost, as on lines 5-9. After the association
of RN i is completed, the number of RNs associated with
the selected BN b(i) is increased by one, as on line 10, so
that the updated competition delay can be used in the
next iteration of the loop. By considering the current load
of the BNs, the algorithm attempts to balance the access
load among k BNs to reduce the competition delay in
accessing the backbone network. The complexity of the
algorithm is O(kn).

Algorithm 1 Random Greedy Assignment
1: L← {1, 2, ..., n}
2: |bI | ← 0,∀bI ∈ {b1, b2, ..., bk}
3: while L ̸= ∅ do
4: Randomly select an RN i from L
5: for I = 1 to k do
6: b(i) = bI
7: cIi = αh(i) + (1− α)|b(i)|
8: end for
9: i∗ = argminI c

I
i , b(i) = bi∗

10: |b(i)| = |b(i)|+ 1
11: L = L \ {i}
12: end while

Due to the prohibitively high complexity of the op-
timum solution for the assignment problem, we can
only compare it with the proposed random greedy as-
signment problem in small scale networks, where 25
connected and randomly deployed RNs are assigned
to 2 BNs whose locations are fixed. The simulation
results is shown in Fig. 3 for different value of R/r.
It is observed that the difference between the optimum
algorithm and the heuristic algorithm (RGA) is less than
5%, and the performance of GA is very close to that
of the optimum solution. Therefore, it can be expected
that the heuristic algorithm is effective in achieving near
optimum performance with much lower complexity.

3.3 Adaptation of BN Positions
After associating the RNs with the k BNs, for a BN
bI , there are |bI | RNs assigned to it. Without change of
association, adapting the position of the BN bI to its best
position T⃗(t)I can help reduce the average delay cost, as
the average hop number from all RNs associated to bI
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Fig. 3. Performance comparison of assignment algo-
rithms.

and thus the average hop delay can be minimized while
the competition delay stays the same. The value of T⃗(t)I

can be determined as follows.
The BN bI constructs a sub hop-matrix H(t)I based on

the hop matrix H in Eq. (5) by simply obtaining the rows
and columns corresponding to the RNs assigned to it in
the current round t. The sub hop-matrix thus has the
size |bI | × |bI |. Recall that the locations of the RNs are
denoted as vectors L⃗RN

1 , L⃗RN
2 , ..., L⃗RN

n . As a BN uses an
RN position as the reference in each movement, bI can
pick up the target position T⃗(t)I as follows:

i∗ = arg min
i:b(i)=bI

 1

|bI |
∑

j:b(j)=bI

h(i, j)

, T⃗(t)I = L⃗RN
i∗ .

(11)
Here h(i, j) is the (i, j)-th element of H where RN i
and j are both assigned to BN bI . In other words, it
is an element of the sub hop-matrix H(t)I . Because H is
symmetric, the sub hop-matrix H(t)I is also symmetric.
Based on Eq. (11), T⃗(t)I corresponds to the position of the
RN whose associated row has the minimum summation.
Overall, it takes O(n) time to construct the sub hop-
matrix and O(n) time to sum up each row. So the finding
of new targeted positions for all BNs has a linear running
time O(kn) in each round t.

After finding the target position, instead of having
a BN directly move to its target position which may
lead to a large oscillation and prevent the system from
reaching a better deployment option, in our scheme,
the BN moves towards its target location gradually.
Specifically, if the BN has the current position L⃗(t)I and
the target position T⃗(t)I , it moves with a step length l

proportional to the vectorial difference between L⃗(t)I and
T⃗(t)I towards an intermediate location L⃗′

(t)I :

L⃗′
(t)I = L⃗(t)I + l · (T⃗(t)I − L⃗(t)I). (12)

To deploy the BN close to an RN, the position of the
RN closest to L⃗′

(t)I should be found, denoted as L⃗(t+1)I ,
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which could be the virtual position of the BN in the
following iteration:

i∗ = arg min
i∈NR

|L⃗RN
i − L⃗′

(t)I |, L⃗(t+1)I = L⃗RN
i∗ . (13)

Therefore, the BN will virtually move from L⃗(t)I to
L⃗(t+1)I at the end of iteration t, and stay at L⃗(t+1)I in
iteration t+1. This can be illustrated using the example
in Fig. 4, where the position 1 is the current bI position
L⃗(t)I . The RNs between “N Network Part A” and “N
Network Part B” are assigned to bI after one round of the
RGA. The position 2 is the target T⃗(t)I , and the position 3

is L⃗′
(t)I . As the initial BN movement is in the granularity

of RN hop, the proportion should be bigger than 0.5 to
make sure a BN could move to its target position in case
sometimes T⃗(t)I is only one hop away from L⃗(t)I . The
position 4 of the RN node closest to 3 is finally taken as
the new position L⃗(t+1)I of bI , to ensure that the average
access delay cost from RNs to the BN network is smaller.

Fig. 4. Move toward the BN Target

3.4 Checking the BN Network Connectivity

In order for the backbone network to be functional
and support more efficient and long range transmission
for RNs, the BN network needs to be connected. So
the adaption of backbone node positions is under the
constraint of the backbone network connectivity. There
are two common methods to check whether the BN
network is connected, one is with the construction of a k-
node spanning tree and the other is with the construction
of an adjacent matrix. In this work, we take the first
method as it has a lower computational complexity. The
construction can root from an arbitrary BN and attempt
to traverse all the k BNs. If the constructed spanning tree
has a size k, the BN network is connected; otherwise,
the step length of adapting the BN position needs to be
adjusted or the adaptation cannot be performed.

As the determination of the BN deployment is a virtual
process, the connection between two neighboring nodes
needs to be calculated based on the link model in Eq. (1)
with a safety threshold to ensure the connectivity under
some fading conditions. After the physical deployment,
the position of a BN node can be adjusted based on the

strength of the signals received from the neighboring
nodes.

3.5 The Complete Algorithm

The complete algorithm is an iterative process consist-
ing of random greedy assignment, adaptation of BN
positions, and connectivity checking as shown in Algo-
rithm 2.

On lines 1 to 4, the positions of k BNs are initialized,
and Random Greedy Assignment is performed on line 5
for initial RN association. As long as the average delay
cost c̄ is reduced with the current BN assignment, the
iterations proceed and the updated positions of the BNs
are then determined as on lines 8 to 12. The adaption of
the BN positions is based on the control law. The check of
the network connectivity is performed over the updated
positions of BNs on line 13. If the BN network remains
connected, the BN positions are virtually updated and
the algorithm proceeds to the next round. When the
connectivity cannot be maintained, the positions of BNs
are adjusted to where they can still keep the network
connected and an adjustment process is performed on
line 21 for a BN to adapt its position under the con-
nection constraint until the delay cost can no longer be
improved.

The idea of the self-adjustment process is to let the
BNs probe the neighboring areas and find their opti-
mal positions without any change to the current RN
assignment. In this way, the value of (1−α)

n

∑n
i=1 |b(i)| in

Eq. (3) remains the same while the value of α
n

∑n
i=1 h(i)

can be optimized. Each BN bI probes its neighboring
RNs, denoted as RNI , by tentatively moving to each
of them and then calculates the corresponding objective
function value

∑
i:b(i)=bI

h(i). It then can find which
position among RNI could obtain the minimum total
hop delay for RNs that are assigned to bI , i.e. j∗ =
argminj∈RNI

∑
i:b(i)=bI

h(i). The BN bI is thus adjusted
to the position of RN j∗ as it is the position that can
improve the objective function most. As each BN probe
O(n) RNs, so k BNs probe O(kn) times in total. As
k is a constant, the running time of probing is linear
to the network size. There is a tradeoff between the
number of BN adaptation steps which depends on the
step length parameter l in the equation 12 and the total
cost of the deployed backbone network. If l is set to a
larger value, it would lead to the faster adaptation of
BN positions towards its target one and an overall faster
speed of finding the virtual BN deployment positions,
but a larger adaptation step may skip some candidate BN
positions in between thus making the total backbone cost
higher. The self-adjustment process is used to fine tune
the position of BN to find a better solution. Normally
RNI includes the positions of the RN nodes that are
connected to BN bI in one-hop, but the adaptation
process can be carried successively if necessary when
l is set to a very large value. For example, when a
BN moves to the position of a selected neighboring RN
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node i, it can further probe the neighbors of i to find a
better solution. Therefore, the reduction of the number of
adaptation steps is at the cost of number of adjustment
steps needed to find a good solution. The tradeoff has
been confirmed in our performance evaluation when we
study the impact of l.

Our algorithm stops when the average delay cost
cannot be reduced any more or the BN network is
disconnected. Suppose that the maximum value of delay
is c̄max and the minimum is c̄min, both are finite values
depending on the network topology. As the algorithm
decreases the average delay cost in each iteration, and
the decreasing step is no less than min{α, 1 − α}/n
according to Eq. (3), the convergence step of the al-
gorithm is bounded by n (c̄max − c̄min)/min{α, 1− α}
in the worst case. The actual steps of convergence are
studied by simulations in Section 5.

Algorithm 2 Iterative and Adaptive Backbone Deploy-
ment

1: Input: n RNs, k BNs
2: Calculate L⃗mass, i∗ = argmini∈RN |L⃗RN

i − L⃗mass|
3: Let L⃗(0)1 = L⃗RN

i∗ be the root, get L⃗(0)2, ..., L⃗(0)k by
BFS over the RN network

4: t = 0; c̄(0) = MAX VALUE; T⃗(0)I = NULL, ∀I =
1, ..., k

5: Run Random Greedy Assignment, and get b(i),∀i =
1, ..., n

6: Calculate c̄(1) based on the assignment
7: while c̄(t+1) < c̄(t) do
8: for bI = b1 to bk do
9: i∗ = argmini:b(i)=bI

(
1

|bI |
∑

j:b(j)=bI
h(i, j)

)
,

T⃗(t)I = L⃗RN
i∗

10: L⃗′
(t)I = L⃗(t)I + l · (T⃗(t)I − L⃗(t)I)

11: i∗ = argmini |L⃗RN
i − L⃗′

(t)I |, L⃗(t+1)I = L⃗RN
i∗

12: end for
13: Constructing a spanning tree SPT BN over the

backbone network with BNs tentatively placed at
L⃗(t+1)I ,∀I = 1, ..., k.

14: if Size of (SPT BN) == k then
15: Move BN bI virtually to L⃗(t+1)I ,∀I = 1, ..., k
16: t = t+ 1
17: Run Random Greedy Assignment, and get

b(i),∀i = 1, ..., n
18: Calculate c̄(t+1) based on the assignment
19: else
20: Keep BN bI at the current location L⃗(t)I , ∀I =

1, ..., k
21: Adjusting BN positions to reduce the cost while

keeping the network connected
22: break
23: end if
24: end while
25: Return the current values of L⃗(t)I ,∀I = 1, ..., k

4 GENETIC ALGORITHM FOR PERFORMANCE
BOUND

Genetic Algorithm(GA) [13] has been shown to be a
good solution in finding a global optimal solution. In
this section, we present the application of GA in seek
of the solution that can achieve the optimum, i.e., the
performance bound of our algorithm.

Genetic Algorithm is a stochastic optimization algo-
rithm based on the mechanisms of natural selection and
natural genetic operation. It starts with a fixed-size pop-
ulation of solutions. Each solution consists of a string of
numbers, alphabets or other types of variables, typically
binary numbers. The solutions in GA evolve generation
by generation. For each generation, GA decides which
solution can stay in the next generation based on the
probability generated according to a solution’s fitness
function which is related to the objective function of
the optimization problem. After this natural selection
process, once we have the next generation’s population,
GA applies the genetic operators such as mutation or
crossover to these solutions and therefore produces the
new solution for the next round of natural selection.

As discussed earlier, since R > r and also the objective
of the deployment is to minimize the average backbone
access cost, the BNs are deployed within the communi-
cation ranges of one or a set of RNs. The total possible
combinations of the deployment is O(nk), which can be
achieved in polynomial time. We will find all the possible
BN deployment combinations first and then use GA to
search in the possible assignment combinations to look
for the optimum solution. In the following we introduce
our design in applying genetic algorithm for achieving
the optimal assignment for a given deployment option,
which consists of several steps.

4.1 Coding
Each solution si corresponds with a string of integer
numbers with string length n, which represents one of
the assignment results of n RNs. Each RN could be
assigned to one of the k BNs from b1 through bk. For
simplicity, we use 1, 2, ..., k to represent the BN that an
RN is assigned to. For each si, we can find out the
hop number from each RN to a BN (located within the
transmission range of an RN) by looking up Eq. (5) and
the number of RNs assigned to each BN respectively.
As mentioned earlier, there are S solutions in each
generation, where S is a fixed size.

4.2 Initialization
To start the GA, we need to set up an initial population
of solutions. Normally, an initial solutions is generated
randomly, but in this case, total randomness may cause
no RN assignment to one or more BNs. To avoid this
problem, we first randomly pick k RNs and assign them
to BN from b1 to bk individually, and then assign the
remaining (n− k) RNs to the set of BNs randomly.
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4.3 Selection
GA selects the next generation with population size S
from the previous solutions, and pick one each time
with the probability related to the fitness functions of
the solutions in the previous generation. For example,
the solution si is picked with the probability of P (si)s

P (si) =
F (si)∑S
i=1 F (si)

, (14)

where F (si) is the fitness function of solution si. We
set F (si) by applying the σ-truncation method [14] to
the average delay cost as a result of the assignment si.
Denoting the average delay cost value with solution si
as c̄(si). Based on the σ-truncation method, we have
cne(si) = −c̄(si) and g(si) = cne(si)− (c̄ne− c · σ), where
c̄ne and σ are the mean and standard deviation of cne(si)
in the current population respectively. The parameter
c is a constant between 1 and 3 [14]. Thus, the fitness
function of si is given by

F (si) =

{
g(si), if g(si) ≥ 0;
0, otherwise. (15)

4.4 Crossover
In genetic algorithms, crossover is an operation to vary
the programming of a chromosome or chromosomes
from one generation to the next. Since we consider the
deployment of an enforced backbone network based on
the existence of an RN network, the objective function is
not dynamic [15]. We thus use simple random crossover
operation, where a single crossover point is randomly
selected on both parents’ solution sequences. All data be-
yond that point in either sequence is swapped between
the two parent solutions. The resulting solutions are the
children.

4.5 Mutation
For every generation, we divide the whole generation
into two halves. We apply the directional mutation on the
first half in order to speed up the convergence of the
good solutions to their nearby local optimal value. At the
same time, we apply the random mutation on the second
half solutions to have some solutions get out of the bad
local optimal point.

4.5.1 Directional Mutation
For a solution si, the mutation of the jth item happens if
the assignment for the jth RN changes from its current
BN to another BN bp. The mutation probability is given
by

Prob(si(j) = p) =
λcmax − c̄(si(j) = p)∑k

q=1(λcmax − c̄(si(j) = q))
. (16)

Each solution si is an assignment combination with
a cost c̄(si), and cmax = maxj c̄(si(j)) is the maximum
delay cost factor and λ is a constant larger than 1. In Eq.

(16), each RN has a higher probability to take the BN
with the lower delay cost factor. This selection is greedy
in probability and can conduct a local optimal solution.

4.5.2 Random Mutation

To avoid our solution being trapped to an unfavorable
local optimal position, we employ the random mutation
to let the solution move away from the local optimal
value. For a solution si, each item has a probability
Probrm to change from its current BN assignment, and
probability 1 − Probrm to stay with the current BN.
Therefore, if some RN of si is assigned to BN bI , then it
will have the probability Probrm

k−1 to be assigned with k−1
other BNs except the current bI . Normally the Probrm is
very low.

4.6 The Complete GA

The complete steps of GA is described in Algorithm 3.
GA has several ways of termination. We set a limit to
the generation number Gt, beyond which the algorithm
will stop and report the best solution it has ever found.

Algorithm 3 Genetic Algorithm
1: while untested BN deployment combination exists

do
2: Pick an untested deployment combination
3: if This BN network is connected and is not an

obviously bad option then
4: Set up an initial population P0 with S solutions
5: i = 1
6: for i = 1 to Gt do
7: P ′

i = Selection(Pi−1)
8: Update the best c̄(si)
9: Split P ′

i into P ′
i1 and P ′

i2

10: Pi1 = DirectionalMutation(P ′
i1)

11: Pi2 = RandomMutation(P ′
i2)

12: Pi = Pi1 ∪ Pi2

13: i = i+ 1
14: end for
15: end if
16: end while
17: Select the best c̄(si) among O(nk) group of results

In summary, we first find all the deployment com-
binations within polynomial running time O(nk). We
can get rid of a number of deployment combinations,
as they either don’t satisfy the connectivity constraint
or are obviously bad options (e.g, more than one BN
are positioned at the same place, or all BNs are at the
boundary of the network).

For each possible deployment combination, we use
GA to look for an optimum. After GA running through
every deployment combination, we select the best one
as the overall optimum, which is used as our simulation
bound to evaluate our ITA’s performance.
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5 PERFORMANCE EVALUATION

In this section, we use simulations to evaluate the per-
formance of our proposed algorithms. 100 RNs are gen-
erated one by one in random locations in a 350m×350m
area. Each new RN is ensured to get connected with
those RNs that are already distributed. Thus these 100
RNs form a connected network with random topology.
We set the RN transmission range r = 30m, with the
default number of BNs k = 5 and default BN transmis-
sion range R = 6r. The trade-off coefficient α in Eq. (2)
is set to be 0.5 and the moving proportion l in Eq. (12)
is 0.55. The value of Gt defined in Section 4.6 is 150 in
our implementation, which is large enough to obtain the
near optimal solution. A simulation result is obtained by
averaging over several runs of simulations with different
random seeds.

According to the default parameter setup, an RN
network with random topology is formed as in Fig. 5,
where a Reinforced Backbone Network deployed using
the ITA algorithm is also shown.

Fig. 5. RN network and its RBN deployment.

5.1 Impact of k
The impact of the number of BNs k is shown in Fig. 6,
where k varies from 5 to 10 while other parameters keep
the default values. ITA has the close performance to the
optimum performance bound provided by GA for all
the tested values of k. To demonstrate the effectiveness
of the adjustment process of ITA executed in line 21
of Algorithm 2, we also implement a reference scheme
without the adjustment process. As expected, the adjust-
ment process of ITA can effectively reduce the average
delay cost when k is small. This is due to the fact that
with fewer BNs the iterations in Algorithm 2 are prone
to terminate when the BN network gets disconnected.
When the value of k is larger, the adjustment does
not affect the performance much. With more BNs, the
algorithm usually guarantees the iteration and adaption
loop stops when the average access delay cost cannot
be improved without conflicting with the connectivity

constraint. In this case, the adjustment process is not
needed. It can also be observed that the average delay
cost of both ITA and the performance bound decrease
with increasing k, as with more BNs, the average BN
association size is reduced and thus each RN can have
a lower competition delay cost.
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Fig. 6. Impact of k.

5.2 Impact of R/r

The transmission range ratio R/r indicates the trans-
mission range difference between BNs and RNs. The
impact of R/r is presented in Fig. 7 with R/r varying
from 3 to 8. When R/r is small, the adjustment process
is shown to be very effective in reducing the average
delay cost compared with the reference scheme which
does not perform adjustment. When the BNs have a
relatively short transmission range R, Algorithm 2 are
more possible to jump out of the iterations when the
BN network becomes disconnected, therefore the adjust-
ment process is crucial to improve the performance in
this situation. Alternatively, when R is relatively longer,
e.g. R/r ≥ 7, the connectivity of BN network can be
guaranteed irrespective of where the BNs are deployed,
and the iterations in Algorithm 2 generally terminate
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Fig. 8. Impact of α: (a) Association size variance; (b) Average hop
number.

only when the average access delay cost factor cannot
be further improved. As a result, ITA and the reference
scheme without adjustment are observed to have very
close performance in this case. Another interesting obser-
vation is that there is little change in average delay costs
of ITA and GA when R increases further, i.e. R/r > 6. As
the RN network area is fixed, a further increase of R does
not change the network topology and thus the average
delay cost stays the same. This observation provides a
reference for setting the transmission range of BNs in a
practical deployment.

5.3 Impact of α
In Section 2.1, a parameter α is introduced to adjust
the trade-off between the hop delay and the competition
delay in calculating the delay cost. In Fig. 8, the impact
of α is studied when α changes from 0.1 to 0.9 and other
parameters are fixed. A smaller value of α emphasizes
more on achieving the balance of association sizes to
relieve the impact of hot spots. On one hand, as a result
of controlling the load associated with each BN, the
variance of association sizes is very small in Fig. 8 (a)
with smaller values of α, e.g. α ≤ 0.3. On the other
hand, the average hop number is relatively larger in Fig.
8 (b) for smaller α as RNs are possibly assigned to BNs
far away in this case. On the contrary, a larger value

of α relaxes the control of load balancing among BNs,
and instead gives the freedom for each RN to select the
closest BN greedily in order to reduce the hop delay.
Therefore, the average hop number in Fig. 8 (b) reduces
significantly when α increases at the cost of a higher
association variance as in Fig. 8 (a).
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Fig. 9. Impact of l

5.4 Impact of l

Varying from 0.55 to 0.95, the moving proportion l
defined in Section 3.3 introduces a trade-off between the
number of iteration steps and the number of adjustment
steps as shown in Fig. 9. With a lower l, the BNs move
towards their target positions for a smaller distance in
each iteration, thus it requires more iteration steps to
move to their target positions. When l is higher, although
a BN could move to its target position in much fewer
iterations, it could probably pass over those positions
that may provide a lower access delay due to the higher
moving granularity. As a result, after all the iterations,
the algorithm needs more steps to perform the adjust-
ment, reconsidering those positions it has ignored.

The results in Fig. 9 also demonstrate that the iterative
algorithm described in Algorithm 2 converges quite
fast in actual network settings, i.e. the number of total
convergence steps is less than 10, and each convergence
step takes only O(kn) time to complete. As a result,
ITA is much more time efficient than GA, as the former
takes less than 1 hour to complete while the latter takes
about 100 hours to obtain the solution for the default
network setting even though many bad positions have
been removed manually which has significantly reduced
the GA time.

5.5 Impact of InitialPosition

In Section 3.1, our proposed algorithm finds the initial
positions around the mass center of the RNs through
the BFS traversal of the BN network. An alternative and
conventional way of initial position setup is to randomly
pick up the initial positions, where an RN position is
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Fig. 10. Impact of the initial BN positions (a) Average delay cost; (b)
Total number of convergence steps.

randomly picked first and a BFS traversal of the RN
network is then performed around this selected RN to
find the other k−1 BN initial positions so as to guarantee
the connectivity of the initial BN network. In Fig. 10, we
study the impact of the initial positions by comparing
the two ways of initial position setup. The results are
obtained by averaging over five different random RN
networks and each way of initial positions setup is run
for 50 simulations in each RN network. As illustrated in
Fig. 10 (a), the average delay costs for the two ways
of initial positions selection are close, indicating that
the initial deployment through BFS is quite robust with
different initial positions. The initialization in reference
to the mass center, however, leads to a faster convergence
speed of the backbone network formulation, while the
initialization using randomly selected locations generally
takes a longer period of time to converge as shown in
Fig. 10 (b). The performance results demonstrate that our
proposed way of BN position initialization could help
expedite the BN network formulation without increasing
the average delay cost.

6 RELATED WORK

Many efforts have been made in recent years to con-
struct a backbone network to carry the total network

traffic by selecting a minimum set of backbone nodes
out of the total network nodes, in order to reduce
the total network transmissions and hence collisions
for improving the network throughput [16]–[23]. These
studies normally assume the network nodes have the
same transmission ranges, and the backbone nodes are
selected from existing nodes. Although backbone nodes
with higher transmission ranges were considered in [24]–
[27], these studies also assume the RNs and MBNs are
already placed, and a-priori form a connected network.
Xu et al. [25] simply selects the nodes that first claim
the leadership in a neighborhood to be clusterheads,
while TBONE proposed in [24] attempts to minimize
the number of backbone nodes, giving priority to higher
weight nodes. The focus of these efforts relates to de-
veloping system-level protocols for routing, scheduling,
MBN election, etc. In [26], [27], the authors exploited
network spectrum domain characteristics and designed
a novel cost metric to simultaneously increase multiple
types network performance.

Instead of selecting backbone nodes, more recently, the
backbone network deployment problems are studied in
[3], [5]. In [3], the authors formulate the Connected Disk
Cover (CDC) problem, which aims to place the minimum
number of mobile backbone nodes (MBNs) such that all
RNs are covered by at least one MBN, and the placed
MBNs have the same coverage distance and form a con-
nected network. In many practical scenarios, however,
there is only a fixed number of backbone nodes that can
be deployed, and the deployment can be only performed
under the constraint of the available backbone resources.
Although the authors in [5] also perceived the issues
and attempted to deploy a limited number of backbone
nodes, they failed to consider an important constraint,
i.e., backbone network connection. In addition, the paper
is impractically based on an implicit assumption that a
regular node can reach any backbone nodes directly.

Besides work on mobile backbone networks, other
closely related work includes base station selec-
tion/placement for cellular and indoor wireless systems,
e.g. [28], [29]. However, practical considerations for cel-
lular base station placement usually restricts the set of
possible locations to a discrete set of candidates and
trivial solutions are used for the assignment problem
(e.g. assign each RN to the nearest MBN). Cluster orga-
nization has been widely studied in the literature [30],
[31] and is generally performed in two steps, select-
ing cluster heads among nodes based on some criteria
and forming clusters by associating each cluster head
with a set of members. The work in [4] assumes that
there are an unlimited number of cluster heads, and
the goal is to minimize the total number of cluster
heads in the deployment. However, the algorithms for
cluster organization cannot be directly applied to our
backbone deployment problem, where we consider back-
bone nodes have a longer transmission range which
is different from the cluster heads. The placement of
Internet transit access points is studied in [32] to provide
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Internet connectivity in multi-hop wireless networks,
and the gateway placement for throughput optimization
in multi-hop wireless mesh networks is addressed in [33]
and [34]. Besides the difference in network types and
thus constraints on the deployment, these studies do not
consider the cost of access delay and the gateways that
can access Internet are assumed to be connected.

Our work distinguishes itself from the aforementioned
work in that it studies the optimal deployment of back-
bone network with use of the limited number of back-
bone nodes and ensuring backbone connectivity. The
initial results have been presented in [35]. In this paper,
we present more details of our design as well as a more
complete overview of related work.

7 CONCLUSIONS

In this paper we propose algorithms for the deploy-
ment of a Reinforced Backbone Network to improve
the communication performance of a meshed wireless
network. The objective of the deployment is to minimize
the average backbone access delay cost from regular
mesh network nodes which have lower capabilities.
We formulate the problem and discuss its complexity.
Inspired by the theories in data mining and robotics
fields, we propose an iterative and adaptive algorithm
(ITA) which can construct a robust Reinforced Backbone
Network insensitive to the initial deployment positions.
Moreover, we exploit genetic algorithm to obtain the
lower cost bound of the problem. We have performed
extensive simulations to study the impact of different
parameters on the performance of the proposed ITA
algorithm and compare the results with that obtained
through the genetic algorithm. The results indicate that
the ITA algorithm can quickly converge and achieve
the performance close to that obtained through the ge-
netic algorithm, which requires several days of running.
Our study indicates that the proposed ITA algorithm is
promising for the deployment of a connected Reinforced
Backbone Network with a limited number of available
backbone nodes.

For future work, we will extend the algorithm to work
in a mobile environment and develop a closed-form
mathematical performance bound.
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