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Flight en route time is expected to be longer when traffic demand exceeds airspace
capacities. When demand is high, flights can often be subjected to rerouting, Miles in
Trail (MIT) and vectoring, etc. During summer months, convective weather, which could
severely affect the capacities of major air routes and airports, accounts for the most sig-
nificant share of weather-relate delays. Flight en route time prediction could help airline
dispatchers and traffic management coordinators make strategic plans, and alert travelers
of potential delays. This paper aims to use machine learning techniques to model traffic
volume and especially the effect of convective weather within 100 miles of great circle line
between city pairs on the en route time. Several best off-the-shelf algorithms including
LightGBM, XGBoost and Random Forest are tested and compared. These algorithms are
trained and validated on four data sources: historical flight punctuality data, NEXRAD
level III data, surface weather observing data and wind aloft data.

I. Introduction

Estimated Time En route (ETE) is one of key time-related parameters in airline operation. The others
parameters include Estimated Taxi-In Time, Estimated Taxi-Out Time and Estimated Turn-round Time,
etc. The common way to calculate ETE is based primarily on flight route/profile and aircraft performance
information [1]. Only limited weather information like head/tail wind speed at cruise altitude is explicitly
considered [2]. It is well known that weather is a major cause of delay in the National Airspace System
(NAS). During summer months, especially April to July, most of the delays are due to convective weather,
low ceiling and visibility, airport winds, etc [3]. Traffic volume also plays an important role in affecting en
route time. Even in a clear weather day, inbound flights to the banked hubs are expected to have a longer en
route time at the morning and afternoon peak hours. This paper is an endeavor to improve the pre-departure
en route flight time prediction by employing machine learning techniques on weather and traffic information.

Many research works on predicting flight delays have been done. Choi, etc used Airline On-time Per-
formance dataset and Integrated Surface Database to predict weather affected airline delays [4]. Using the
same data sources, Kim, etc built Long Short Term Memory RNN model to predict the sequences of flight
delays and claimed to get the best accuracy result [5]. Both papers focused on classification application.
Rebollo and Balakrishnan employed random forest to predict aggregate delays at airport level and conside-
red the delay state at other airports when making predictions [6]. Callaham, Klein, Sridhar, etc have been
developing various Weather Impacted Traffic Index (WITI) models and using the models to predict delay
at airport and system level [7] [8] [9]. There are three more relevant regression work to our paper. Glina, etc
use Quantile Regression Forest to generate near arrival Estimated Time of Arrival (ETA) prediction and
associated prediction interval widths for individual flights [10]. For flights 60 NM away from DFW, the Mean
Absolution Error (MAE) is around 75 seconds. No weather data is used in [10]. Kern, etc use METAR data
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and scheduled traffic data to enhance flight ETA prediction generated by Enhanced Traffic Management
System (ETMS), achieving MAE reduction of 42.7% [2]. GE Aviation proposed ”Flight Quest Phase I” in
2012 to solicit solutions for gate and runway ETA prediction of en route flights. The Root Mean Square
Error for runway ETA prediction obtained by the winning team is 3.2 minutes. Detailed flight data (flight
history/plan/track), weather data (METAR/TAF/AIRSIGMET) and FAA advisories are provided to the
participating teams [11]. Recently Sternberg, etc wrote a literature review on flight delay prediction problem
from the aspects of data, method, problem and scope. Related researches like delay propagation are also
covered [12]. As a matter of fact, because flight delay is so prevalent and affecting people’s everyday life,
predicting flight delays is a popular project topic in many machine learning classes and competitions. The
contribution of this paper include: we use machine learning methods to do en route time prediction at pre-
departure phase, and we are use more public available weather data than the existing work and we have a
detailed introduction for data processing and comparison for a variety of algorithms.

The paper is structured as follows: in the first chapter, several high-level convective weather products,
terminal and wind aloft prediction and weather translation models are briefly introduced. The considerations
of selecting the three hub airports are also listed. The goal of the first chapter is not just to highlight the
up-to-date aviation related weather technologies, but more importantly, it points to the sources of potential
features that future versions of machine learning models can use. In chapter 2, the procedures of acquiring,
cleaning and joining flight and meteorology data sets are presented in detail. The reasons for selecting these
features are explained. In chapter 3, several commonly recognized best machine algorithms are tested and
compared. Important analyses like feature importance ranking, correlation analysis are performed. It needs
to be pointed out that there are many other important en route time related factors which are not currently
considered in this paper, for example, filed route and pilot behavior modeling. Chapter 4 lists these features,
if included in the data set, that could likely improve model performance. Chapter 5 is a summary of the
main points of this report.

II. Major Convective Weather Products

1. Corridor Integrated Weather System (CIWS)

Developed by Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), Corridor Integrated
Weather System (CIWS) is a three-dimensional weather visualization, analysis and forecast product, and is
widely used in many Air Traffic Management (ATM) decision support tools [13] [14] [15]. The goal of CIWS is
to improve tactical ATM decision making by providing accurate short-term (0-2 hours) convective forecasts
of Precipitation [Vertically Integrated Liquid (VIL)] and Echo Tops. Improved forecast accuracy enables
air traffic controller to use otherwise lost capacities like the over-the-top route. NEXRAD raw data is the
major data source of CIWS. There are many other data sources like Airport Surveillance Radar (ASR) that
used by CIWS to provide different products or do quality check against NEXRAD. CIWS is not publicly
available. More description about CIWS can be found in [16][17].

A related product which is specially designed for terminal weather forecast is Integrated Terminal Weather
System (ITWS). The products of ITWS include wind shear and microburst detection and prediction, detail
wind information, etc which are critical to airport operation [18] [19].

2. National Convective Weather Forecast Product (NCWF)

National Convective Weather Forecast Product is designed and implemented by National Center for At-
mospheric Research (NCAR). The main features of NCWF include: visualization of the current convective
hazards and 1-hour extrapolation forecasts of thunderstorm hazard locations; the diagnostic analysis combi-
nes NEXRAD with vendor-provided echo top mosaics and cloud-to-ground lightening; the Convective Hazard
Detection field is depicted based on a 6 level intensity scale; Target user of NCWF are airline dispatch, ge-
neral aviation and Federal Aviation Administration (FAA) Traffic Management Units (TMU). Since NCWF
is designed to focus on large areas of convective activity, small convective cell complexes, which can be of
concern for congested airspace, do not have NCWF forecasts [20]. More introductions and limitations of
NCWF can be found in [21].
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3. Collaborative Convective Weather Forecast Product (CCFP)

The Collaborative Convective Forecast Product (CCFP) was jointly developed by the FAA, NWS and the
airline industry. It is a strategic forecast (2 to 8 hours in the future, updated every 2 hours) for intense
convective activity based on many different inputs (NWS, Center Weather Service Units (CWSUs), airline
meteorologists, etc). CCFP is designed for traffic management personnel (operation managers and flow
managers) to mitigate the influence of severe convective events. It is not intended to forecast all thunderstorm
activity, but only these with tops above 25,000 ft and 25% or greater coverage. More information about
CCFP can be found in [22][23].

4. High-Resolution Rapid Refresh (HRRR) Data

HRRR model, which covers the contiguous United States, is a subset and derived from the Rapid Refresh
(RAP) model. HRRR model is designed for aviation and nowcasting. It has the highest spatial resolution
(3 km) as well as high temporal resolution (1 hour). Many weather datasets, including NEXRAD data,
Radiosonde data, METAR data and Satelite winds, etc and aircraft data are assimilated by HRRR model.
Because of its higher spatial and temporal resolution, HRRR model could capture the development, structure
and movement of thunderstorm more accurately.

The full list of HRRR model products can be found on the website of Earth System Research Labora-
tory [24]. The last two days of HRRR output can be downloaded from NOMADS server. Unfortunately, there
is no official website to archive the historical HRRR data. University of Utah runs an unofficial archive and
only data after June 15, 2016 are available [25].

A. Other Relevant Weather Forecast Products

1. Terminal Aerodrome Forecast (TAF)

TAF is the international standard code format for terminal forecasts issued for airports. TAFs are issued
4 times a day at 6 hour intervals and are generally applied to 24 or 30 hour period. The forecast includes
forecasted wind speed, wind direction, visibility, ceiling, type of precipitation (i.e. snow, rain, etc.) and/or
weather phenomenon [26].

2. Winds and Temperatures Aloft Forecast

Winds and Temperatures Aloft Forecast (FBs) is generated by National Centers for Environmental Pre-
diction(NCEP) from runs of the North American Mesoscale (NAM) forecast model. The forecast is issued
four times a day for the following levels: 3, 6, 9, 12, 18, 24, 30, 34, 39 thousand feet. The forecast is useful
for pilot in determining the most favorable altitude abased on winds and direction of flight, identifying areas
of possible aircraft icing and temperature inversion and predicting turbulence by observing abrupt changes
in wind direction and speed at different attitude [27].

Wind aloft prediction is of fundamental importance to enable Next Generation Air Transportation System
(NextGen) concepts like Four-Dimensional Trajectory Based Operations (4D-TBO). A detailed introduction
to more wind prediction models and requirements can be found in [28].

B. Weather Translation Models

Use the definition from Krozel’s paper [29], weather translation model transform weather forecast data into
characterizations of weather-related NAS constraints, threshold events (e.g. VFR to MVFT) and expected
resource performance (e.g. capacity and permeability of a NAS element). There are two representative
weather translation models: Convective Weather Avoidance Model (CWAM) and Convective Weather Avoi-
dance Polygon (CWAP). Developed by MIT Lincoln lab using detailed weather observations and aircraft
trajectories, CWAM models the probability that a pilot will change the route to avoid convective weather.
To predict the most likely weather-avoiding trajectories, CWAP is further developed by MIT Lincoln to
define the boundary of a no-fly zone. Weather translation techniques are also frequently used to determine
the physical acceptance limit of Flow Constraints Area (FCA), which is the upper bound for the actually
acceptance rate.
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Figure 1: Number of UA and Non-UA Flights by City Pair May 2013-2015 (AOTP Data)

III. Data Acquisition, Cleaning and Manipulation

Three hubs of United Airlines (UA) IAH, DEN and ORD are selected for this paper. The intention is we
will only focus on flights belonging to a single airline company to minimize the impact of airline behavior.
As shown in Fig 1, UA flights account for 2/3 or more total traffic between three city pairs. Also these
three cities are among top-six weather-delayed U.S. major airports. The main weather issue of IAH is
thunderstorms and fog. The problem of DEN result from snowstorms, thunderstorms, hail and tornadoes.
ORD is suffer from snow, low clouds/fog, wind, thunderstorms [30]. Convective weather can be blamed for
the on-time performance of all three airports in the summer times.

Nine months data from four publicly accessible datasets are used in this paper. Bureau of Transportation
Statistics Airline On Time Performance dataset (AOTP), which is the historical flight punctuality data (no
flight route information) [31]; Automated Surface Observing System (ASOS) data, which is used to evaluate
airport surface weather condition [32]; The Next Generation Weather Radar (NEXRAD) level III data, which
consists numerous meteorological products, including several products that are used to predict and track
convective weather [33]; Integrated Global Radiosonde Archive (IGRA) data, which comes from radiosonde
and pilot balloon observations, is used to obtain the wind direction and speed at cruise altitude [34]. The
reason to consider these three weather datasets are: if the convective activities block the historical flight
route, the flight needs to take reroute and hence the en route time will usually increase; degenerated weather
condition at the destination airport will force some flights to take air delay; wind aloft will influence the
ground speed, thus affects the en route time.

In this chapter, we will talk about how to obtain, clean these datasets and discuss what the useful features
are. After getting the target and the features needed, we will join them into one table to be used in training
and analyzing machine learning algorithms.

A. Airline On Time Performance (AOTP) Data

AOTP data is the on-time arrival data for non-stop domestic flights by major air carriers since 1987. It
includes features such as origin and destination airports, carrier ID, OOOI times (gate out, wheel off, wheel
on, gate in), airtime (en route time) and causes of delay, etc. This data set is easy to access and is already
in clean and well organized csv files. We use Selenium and and Chrome driver to automatically download
AOTP data in batches.

The columns we choose are

1. Flight date, CRSDepTime, wheel off time. Flight date is local scheduled departure date (sche-
duled gate out date). Flight data and wheel off time determine when did the flight leave the origin
airport and therefore what weather condition the flight was going to subject to.
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2. Carrier, flight number. En route time is also largely affected aircraft type, the information AOTP
doesn’t provide and ideally can be mapped from flight date and flight number. Here we use carrier as
a feature to capture its choice choosing certain fleet types to fly city-pairs.

3. Origin and destination airports. We are only interested in flights that serve between three a
city-pairs.

4. Airtime. This is the target of the machine learning algorithm.

We use the number of hourly actual landing flight as a feature to model the traffic demand, because it is
easy to obtain from AOTP data. In reality, in clear weather day the number of scheduled and actual landing
flights is very close; in a bad weather day, the number of actual landing flights can be estimated from Airport
Acceptance Rates (AAR), which is available from Flight Schedule Monitor (FSM), etc. Another option is to
use the schedule demand data, as it is the true demand. Scheduled demand information can be downloaded
from the FAA Aviation System Performance Metrics (ASPM) Dataset [35].

B. Automated Surface Observing System (ASOS) Data

ASOS data are generated from the automatic observation of runway visual range, wind speed and direction,
etc around ASOS sites. There are three different temporal resolution ASOS data: 1-minute, 5-minute and
hourly. ASOS data, if reported hourly, is compiled into Integrated Surface Database (ISD). Because ISD
data is integrated from many data sources, thus has more columns than ASOS data. We use rnoaa package
to get ISD data from three ASOS stations near DEN, ORD and IAH. The data field definitions and values
for missing fields can be found in INTEGRATED SURFACE DATA documentation [36]. Linear interpolation
results are used to to replace missing values. Data is saved as csv files.

We select the following columns

1. Data and time. They are used to interpolate and joint the data sets.

2. Wind direction and speed. They will affect the flight landing.

3. Ceiling height. Low ceiling height will necessitate instrument flight rules.

4. Visibility. Low visibility will affect airport surface operation and therefore throughput.

5. Temperature, dew point, air pressure. They are important meteorological parameters that related
precipitation.

C. NEXRAD Level III Data

NEXRAD level III data are derived products from Level-II base data (reflectivity, mean radial velocity, and
spectrum width, etc). NEXRAD Level III has over 75 products including storm tracking information, hail
index, storm structure, etc. We use two convective weather related products: Digital Vertically Integrated
Liquid (DVIL), which is effective indicator of storm and heavy rain fall, and Enhanced Echo Tops (EET),
which is the radar indicated top of an area of precipitation.

There are 22 NEXRAD stations located in these three 200 miles wide corridors, shown in Figure2a.
NEXRAD data is in a unique binary format. We use a Java API from Unidata to convert Level III data
into NetCDF files, then use Casssandra database on Amazon AWS to further process these files.

NEXRAD data is stored by data products in matrices, with two axes indexed by azimuth and range
respectively. The location of the station, azimuth angle and range distance uniquely determine a cell in the
airspace. NEXRAD data can not be directly used by machine learning model since there are too many cells
for each station and too many data products. We want to extract a single feature to represent the severity
of convective clouds blocking jet routes. The method used here (Algorithm 1) is similar to the scanning
method in the WITI algorithm [37]. We create a set of parallel flight lines as surrogates for jet routes, find
the cells that could possible block those lines, check if any of those flight lines intersect the blocking cells,
and then calculated the percentage of blocked lines or blocked ratio. A blocking cell is defined as any cell
where Flight Altitude - EET ≤ 4000 and DVIL ≥ 3.5. This criterion is a research result of MIT
Lincoln Lab [38].
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(a) 22 NEXRAD Stations (b) 9 IGRA Stations

Figure 2: Locations of NEXRAD and Wind Stations

Algorithm 1 Blocked Ratio Calculation

1: Take flight corridor (OD city pair) and a timestamp as input, and get the list of stations (precalculated)
that intersect the corridor

2: For stations in list, convert, read and process the closest radar products within 10 mins of the timestamp.
Processing involves finding the locations of potential blocking cells

3: Creating evenly spaced lines (225) parallel to the original flight line (OD Great Circle)
4: For each flight lines, iterate through potential blocking cells to check intersection
5: Blocked ratio is the number of blocked lines divided by the total number of lines

1. Verification of Blocked Ratio Calculation

To verify the blocked ratio calculation, we visualize the blocked cells and the flight lines using QGIS, and
compare the result from NOAA’s Weather and Climate Toolkit (WCT). The logic is: if the blocked area
overlaps with severe weather affected region shown in WCT, we have confidence the weather products mosaic
and visualization was done correctly; if the percentage of flight lines intersecting the blocked regions is the
same with the blocked ratio, we are assured that ratio computation is right.

Three timestamps are selected in May 1, 2015, which is a bad weather day. In Figure 3a, the green region
near Denver is the blocked area. We export the shapefiles from WCT, create a single shapefile for that time
stamp, filter out the non-blocking cells and show the result as red boundary. We can see the red boundary
matches perfectly with the blocked area. In Figure 3b, it can be seen that in total 7 out 225 flight lines are
blocked in DEN-IAH Corridor, so the blocked ratio is 0.031, which is the same as the result from Python
code. Figure 4 shows the comparison between the blocked area and Echo Tops picture in CIWS. We find
the weather affected regions matches well.

D. Integrated Global Radiosonde Archive (IGRA) Data

Reported from radiosonde and pilot balloon observations twice a day, IGRA data consists of pressure,
temperature, relative humidity, dew point depression, wind direction and speed, etc at different pressure and
geopotential height. There are 9 IGRA stations in these three corridors, shown in Figure 2b. We assume the
cruise altitudes of all flights are 35000 ft. We only interested in the wind direction and speed at the cruise
altitude. To study the effect of large-scale variations in winds aloft, in each corridor 3 stations are selected
and wind is decomposed into head/tail wind and crosswind assuming flight flying great circle. IGRA data is
in condensed radiosonde format. We use Python to parse, clean the data file and save the wind information
at the cruise altitude as csv file.

Figure 5 shows the head and cross wind for flights from DEN to ORD. The fluctuations of wind speed
are fairly consistent for the three stations, which verifies our understanding that different from surface wind,
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(a) Blocked Area 3am 05/01/2015 GMT (b) Blocked Area 5pm 05/01/2015 GMT

Figure 3: Blocked Area Matches with WCT Results

(a) Blocked Area 11pm 05/01/2015 GMT (b) Echo Tops 11pm 05/01/2015 GMT (CIWS)

Figure 4: Blocked Area Comparison with Severe Weather Region Shown in CIWS
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Figure 5: Wind Information for Flights from Den to ORD in May 2013
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E. Joining Datasets

It needs to be pointed out that the three aforementioned weather products: NEXRAD, ASOS and IGRA
are weather observation data, rather than weather forecast data. However, because we are predicting the
en route time of short-haul flights, and short-term convective weather is reasonably accurate, we could use
these products to get a sense how much benefit machine learning and weather products at this resolution
could bring us. To develop more realistic prototype, weather and traffic products introduced in chapter 1
and 4 can be considered.

AOTP data is in local time. From May to July, which are the three months under study, ORD and IAH
use Central Daylight Time (CDT UTC-5 hours) and DEN is in Central Standard Time (CST UTC -6 hours).
All three weather products are recorded using UTC time. ASOS data is employed to capture the impact of
landing condition on the en route time. When joining ASOS with AOTP data, for every flight we use the
ASOS information that is 2 hours ahead of its departure time. NEXRAD and wind aloft data are used to
represent the en route weather condition. When joining these two weather products with AOTP, we use the
information that is 1 hour ahead of a flight’s departure time. In total there are 15 features: 1 (actual hourly
landing flights ) + 7 (ASOS columns) + 1 (NEXRAD blocked ratio) + 6 (head/tail and cross wind at three
stations ).

IV. Methods and Results

A. Preprocessing and Some Discussions

We first standardize the dataset, which is beneficial for the numerical stability and is a requirement for some
algorithms like Support Vector Machine(SVM) with RBF kernel. Fig 6 shows the box plot for the en route
times between three city pairs. It can be clearly seen that even for the same city pair, the average en route
times are distinctly different. We use one hot encoding to transform city pair information to six boolean
columns. It needs to be pointed that there is a time dimension in the date. A natural question is should
we treat it as a time series prediction problem or an ordinary machine learning problem where data points
are considered independent. We regard the time component in the data relevant but not as important as
in applications like stock market prediction. In this report we do not consider the problem as time series
problem. More discussions are left to Chapter V. 80% of data is used as training set and 20% is for test set.
We use 5-fold cross validation to pick the best hyper-parameter combination for each algorithm. Python
scikit-learn package is used to implement the algorithm, unless stated otherwise.

Root Mean Square Error (RMSE), which represents sample standard deviation of the prediction error,
is an important metric we care about. Another index we pay attention to is the percentage of data whose
prediction error is within 5 minutes and 15 minutes. R2 is a commonly used metric in regression. We don’t
put too much emphasis on R2 because the criterion for a good R2 differs for different applications.

B. Generalized Linear Models

Because generalized linear models are easy to implement and interpret, therefore we use it as a benchmark
for other methods. The other goal to use generalized linear models, specifically Lasso [39], is to identify the
factors that are mostly likely to cause flight delays. The objective function of Lasso take the following form:

1

2n
‖y −Xw‖2 + α‖w‖1

Larger α results in smaller coefficients. Bias-variance tradeoff can be made by adjusting this hyper-parameter.
Using cross validation, α is picked as 0.001.

From Fig.7a we can see blocked ratio has the largest positive value, which shows the value of including
NEXRAD data. After normalization, blocked ratio 1 corresponds to 2.60, which is estimated to cause 8.0
minutes extra en route time. Headwinds are all associated with positive coefficients, which is consistent with
our command knowledge that headwind increases en route time. Because the average en route time between
IAH and ORD is the largest among three city pairs, hence categorical variable ORD IAH and IAH ORD
have positive correlation with en route time. The positive sign of AAR, negative signs of visibility distance
and ceiling height are all in line with our knowledge.
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Figure 7: Generalized Linear Model Lasso Results

C. Random Forest Regression

Using trees as building blocks, Random Forest (RF) is a widely used ensemble learning method that fixes
overfitting problem of a single decision tree. Random Forest is an extension to Bagging method. By only
considering a subset of random features in each candidate split, random forest decorrelates decision trees
and therefore improves the generalization performance [40].

There are three main hyperparameters to tune in random forest: number of trees, maximum features
considered when making split and maximum depth. Random forest doesn’t suffer from overfitting as the
number of trees increase, so we pick a sufficiently large number 1000 as the tree number. Maximum number
of features controls the process of decorrelation and maximum depth affects the complexity of a single tree.
Based on the cross validation results, maximum feature number is selected as 5, which is the square root of
total number of features. Maximum depth is 18. We use the default values for the other hyperparameters.
The result of random forest is shown in Figure 8.
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Figure 8: Random Forest Results

D. Boosting Tree

Different from random forest which build trees independently on bootstrapped datasets, boosting grows trees
sequentially, with each tree fitted on a modified version of the original dataset. There are two state-of-the-art
boosting trees algorithms: XGBoost [41] and LightGBM [42]. Apart from speed advantage, XGBoost uses a
more regularized model formulation to control overfitting, thus generally has slightly better performance
compared with original version of gradient boosting tree. Same as XGBoost, LightGBM is designed to be
distributed and efficient. By changing from depth-wise to best-first tree growth and changing the way to
handle categorical variable, developers of LightGBM claim their algorithm also has accuracy improvement
in comparison with existing boosting frameworks.

Three major tuning hyperparameters in boosting is number of trees, learning rate and maximum depth
(in LightGBM, number of leaves plays the same role). These hyperparameters are determined (Table 1)
using cross validation for both methods.

In many application, data rather than algorithm is the deciding factor for success. As shown in the
classical paper [43], for a given problem with very large dataset, very different algorithms perform almost
the same. We draw the learning curves for our three best performing algorithms in Figure11. It can be seen
that there is large gap between training and cross validation curves and as the number of training example
increases, there is a notable increase in the model performance. These are the clear evidences for a high
variance problem and increase the data size will help improve the result.

One disadvantage of feature importance ranking is that it can not tell us whether an importance feature
positively or negatively influence the target. By normalizes the influences of other predictors, Partial Depen-
dence Plot (PDP) gives a visualization of the marginal effect of a given variable (or multiple variables) over
the target [44]. Current version of scikit-learn only support PDP for gradient boosting. From Figure13 we
can clearly see that lower ceiling height, shorter visibility distance, high head wind and high blocked ratio
contribute to longer en route time. Larger AAR also results in longer en route time, but the trend is not
significant.

Models # of Trees Learning Rate Maximum Depth/# of Leaves

XGBoost 1000 0.01 10

LightGBM 1000 0.01 186

Table 1: Boosting Methods Selected Hyperparameters
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Figure 9: Histogram of XGB Prediction Error
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Figure 10: LightGBM Prediction Error
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Figure 11: RF and XGBoost Learning Curves
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Figure 12: Histogram of NN Prediction Error

E. Neural Networks

As one of most commonly used machine learning algorithms, neural networks is well known for its powerful
approximation ability and its black box nature, heavy computation requirement and proneness to overfit-
ting [45]. In this paper, neural networks is implemented using Keras with Tensorflow backend and compared
with other methods. The major tuning hyperparameters include number of hidden layers, number of hidden
unites and batch size. The hyperparameters we use is single hidden layer, 45 hidden units and batch size 40.
The result is shown in Figure12.

F. Other Machine Learning Methods

Two nonparametric methods: K-Nearest-Neighbor (KNN) and Support Vector Regression (SVR) are also
tested. For KNN, two most important hyperparameters we can optimize are the number of neighbors and
weighting metrics. From cross validation result we choose the number of neighbors as 10 and the distance
based weighting strategy. For SVR, we choose RBF kernel. The penalty parameter and kernel coefficient,
which are used to balance bias and variance, are selected as 500 and 0.01 respectively.

Summary for the performance results of all 7 algorithms are listed in Table2. Three tree ensemble methods
are the best performers, which are anticipated since they have won numerous machine learning competitions
in recent years. Apart from easy implementation and very few tuning parameters, KNN gives us the best

11 of 16

American Institute of Aeronautics and Astronautics



1.6 0.8 0.0 0.8 1.6

AAR

1.5

1.0

0.5

0.0

0.5

P
ar

tia
l d

ep
en

de
nc

e

1.0 0.5 0.0 0.5 1.0

ceiling_height

0.5

0.0

0.5

1.0

1.5

P
ar

tia
l d

ep
en

de
nc

e

1.6 1.2 0.8 0.4 0.0

visibility_distance

0.2

0.0

0.2

0.4

0.6

0.8

P
ar

tia
l d

ep
en

de
nc

e

1.6 0.8 0.0 0.8 1.6

1_HeadWind

1

0

1

2

3

P
ar

tia
l d

ep
en

de
nc

e

1.6 0.8 0.0 0.8 1.6

2_HeadWind

4

2

0

2

4

6

P
ar

tia
l d

ep
en

de
nc

e

0.6 0.0 0.6 1.2 1.8

Blocked_ratio

2

1

0

1

2

3

4

5

6

P
ar

tia
l d

ep
en

de
nc

e

Figure 13: Partial Dependence Plot for Selected Features
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Figure 14: Histogram of KNN Prediction Error
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Figure 15: Histogram of SVR Prediction Error

result among all non-ensemble models using the least amount of time among all 7 models.

V. Future Works

On the model side, potential improvement could be achieved if we treat our problem as a time series
predictive problem. By explicitly considering the time dimension rather than regard the data as independent
and identically distributed, we can hope the temporal effects like arrival queuing can be better captured.
Stratified random sampling based cross validation will be replaced by time series cross validation. Dedicated
methods like recurrent neural network will be used.

Once a model is selected, in general there are two ways to improve the model performance. One way is
feature engineering, which is to use domain knowledge to introduce or create more relevant features. The
other way is gather more data, as it could mitigate overfitting for high capacity models. In this chapter,
we focus on feature engineering and we will talk about where can we get better pertinent features to model
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MODELS RMSE R2 5/15MINS PCT
RMSE BY AIR ROUTE

ORD DEN DEN ORD IAH DEN DEN IAH IAH ORD ORD IAH

GLM Lasso 8.16 0.48 60.1%/95.3% 7.29 6.91 9.66 7.79 8.84 8.36

RF 7.17 0.60 67.2%/95.8% 6.55 6.31 8.37 7.08 7.86 6.79

XGBoost 7.17 0.60 66.6%/96.0% 6.58 6.27 8.32 6.76 7.95 6.76

LightGBM 7.10 0.61 67.1%/95.7% 6.53 6.14 8.20 7.03 7.85 6.80

NN 8.16 0.48 62.1%/94.4% 7.89 6.73 9.49 7.83 8.75 8.19

KNN 7.60 0.55 65.6%/95.2% 6.88 6.60 8.73 7.49 8.40 7.44

SVR 8.05 0.49 67.0%/94.5% 7.19 6.59 9.43 7.90 8.85 8.23

Table 2: Summary of Machine Learning Results

traffic and weather situation.

A. Traffic Related Features

Different aircraft have different performances. For example, among the three typical short to medium range
aircraft series A320, B737 classic and M80, A320 has a higher cruise speed than B737 classic family and
M80. Adding fleet type information to the dataset is anticipated to improve the prediction. To the best of
our knowledge, there is no publicly available dataset that could map historical flight number aircraft type
information.

Another relevant feature is airport flow configuration, which is mainly driven by wind direction. For
example ORD has two primary directional traffic flows: east and west. It is expected flight from DEN to
ORD will have different en route time for different configurations.

Even between the same city pair, there are several commonly filed routes. The reasons behind routing
decisions include severe weather avoidance and arrival fix offload. A flight route sometimes can be modified
several times before departure. One related work on predicting pre-departure routing decisions was recently
done by Arneson, etc [46]. Like aircraft type information, historical flight route information is not publicly
available and can be purchased.

We have some sample data for flight from ORD to DFW. Other conditions being equal (clear-weather-
day, same flow direction, similar landing time), the average en route of M80 is 115.3 minutes, B737 114.5
minuets, A320 114.2 minuets. For the same aircraft type B737, a flight will spend around 4 minutes longer in
north flow than in south flow. We have some national playbook route information between major airports.
Table 3 shows some commonly flew routes between IAH and DEN. We can see that the difference of nominal
Expected En route Time (ETE) can be as large as 30 minutes.

NAME TYPE FREQUENCY ORIGIN DEST NMI ETE SECONDS

HOLIDAY GULF ROUTES PLAY 6 IAH DEN 1239 9360

DEN GCK 1 MODIFIED PLAY 4 IAH DEN 969.32 7500

TEXAS TO DEN PLAY 4 IAH DEN 1112.93 8460

TX TO DEN PLAY 1 IAH DEN 881.99 6900

Table 3: DEN to IAH Route Options Example

To model the network effect in the NAS on the en route time, similar to the authors did in [6], we could
include the average delay information of all three airports at the time of prediction (or even include other
major hub airports) as model features.

Traffic Flow Management (TFM) actions like Mile-in-Trail (MIT) can also have an impact on the en
route time, as some flights may be instructed to speed down or do vectoring to maintain required space.
Historical TFM information can be acquired from National Traffic Management Log (NTML).

The number of air-hold flights at a given time near an airport is another useful feature, since it is directly
related to the queueing effect. This information can be ordered from commercial vendors.
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B. Weather Related Features

One apparent drawback of blocked ratio is that it doesn’t have depth information. A giant convective cloud
that totally blocked all the arrival fixes and runways may have a blocked ratio less than 1. Whereas several
dispersed convective clouds with big gaps in between can possibly block all the flight lines. Part of the reason
we adopt this scanning-based approach is that we don’t have routing and position information. If we could
get this information from Aircraft Situation Display (ASDI) data, it would be very valuable to check the
relative location of the filed route and blocked area and determined the extra miles that needs to be flown.

Higher temporal and spatial resolution products can help to increase the prediction performance. For
example, we can use CIWS/HRRR as weather forecast source for terminal and en route meteorological
conditions, and use HRRR for wind aloft prediction. Weather translation models, if available, can also be
used and is expected to bring great benefit to the model performance.

VI. Conclusions

This is the first work that use machine learning methods to do pre-departure en route time regression
at the flight level. Several state-of-the-art machine learning models have been trained and tested on nine
months publicly available traffic and weather data. The RMSEs of the best performing models are around
7.1 minutes. We pointed out the future work that can be done to improve the model performance. Among
these we think gathering more data, adding aircraft type, flow configuration and filed route information will
be great help to improve the prediction.
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