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Abstract— Collaborative Trajectory Options Program
(CTOP) is a relatively new Traffic Management Initiative
(TMI) which assigns delays and/or reroutes around one or
more Flow Constrained Area (FCA)-based airspace constraints
in order to balance demand and capacity. CTOP allows
flight operators to submit a set of desired reroute options,
called a Trajectory Options Set (TOS), for each flight. This
paper aims to answer the following question: given TOSs and
scenario-based capacity information, what is the best system
performance we can achieve in terms of total route and delay
costs? Three disaggregate stochastic programming models,
including one static model and two dynamic models, are
proposed in this paper, which provides three benchmarks for
a Collaborative Decision Making (CDM)-compatible CTOP. If
we further assume the travel time between constrained areas
is the same for all flights, which is a mild condition, we can
get three corresponding more aggregate models which have
better computational efficiency. Important issues like equity,
maximum delay, intra-airline cancellation, and substitution
are discussed. A realistic CTOP use case has been created to
test effects of TOS participation and to compare static versus
dynamic planning techniques. These results can be coded in
a decision support tool and can help air traffic managers
understand, initiate, and perform post-analysis for CTOP
programs.

Keywords— CTOP; TOS; Stochastic Programming; Static
Model; Dynamic Model; TMI

NOMENCLATURE

Notation Used in All Six Models
N Number of flights
Ni Number of route options for flight i
cij Cost of flight i taking route j
δij Binary indicator whether flight i takes route j
dij Ground delay of flight i if taking route j
P Number of PCAs, k = 1, · · · , P
T Number of time periods, t = 1, · · · , T
Q Number of scenarios
pq Probability of scenario q occurring
akq,ij Air delay of flight i taking route j before entering

PCA k under scenario q
Mk
tq Real capacity of PCA k in time period t under

scenario q
τkq,i Time period in which flight i crosses PCA k under

scenario q
tkij Time period in which flight i taking route j is

scheduled to cross PCA k

Ωij Ordered set of indices of the PCAs which flight i
taking route j crosses

Φk Set of indices of the routes which are planned to
cross PCA k

Bkq,i,t Binary indicator whether flight i crosses PCA k in
time period t under scenario q

Bki,j,t Binary indicator whether flight i taking route j will
cross PCA k (first PCA on route j) in time period t

C Set of ordered pairs of PCAs. (k, k′) ∈ C iff k is
connected to k′ in the directed graph of PCAs

∆k,k′ Number of time periods to travel from PCA k to k′,
defined for all pairs (k, k′) ∈ C

P kt,r Planned direct demand at PCA k in time period t
from flights with same path r

Lkt,r,q Number of flights with same path r that actually
cross PCA k in time period t under scenario q

Ak,qt,r Number of flights with same path r taking air delay
before entering PCA k

M Limit on delay a flight can take
Notation in Semi-Dynamic and Dynamic Models
ts Time period at which stage s begins
dqsij Ground delay of flight i which is scheduled to depart

during stage s taking route j under scenario q
δqsij Binary indicator whether flight i, scheduled to depart

during stage s, will take route j under scenario q
B Total number of branches in the scenario tree
Nb Number of scenarios corresponding to branch b ∈

{1, . . . , B}
Bkq,i,j,t Binary indicator whether flight i taking route j will

cross PCA k (first PCA on route j) in time period
t under scenario q

P k,qt,r Planned direct demand at PCA k in time period t
from flights with same path r under scenario q

Notation in Dynamic Models
δqtij Binary indicator whether flight i, scheduled to depart

in time period t, will take route j under scenario q
Yqit Binary indicator whether flight i is released for

departure during time period t under scenario q
Depi Original scheduled departure time for flight i
ob, µb Start and end nodes of branch b

I. INTRODUCTION

The goal of Air Traffic Flow Management (ATFM) is to
alleviate projected demand-capacity imbalances at airports
and in en route airspace through formulating and applying
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strategic Traffic Management Initiatives (TMIs). Two classi-
cal types of TMIs are Ground Delay Programs (GDP) and
Airspace Flow Programs (AFP), which apply ground delay to
flights bound for congested airspace which would otherwise
experience costly and unsafe air delay. These traditional
TMIs have several limitations, including the need for at
least one TMI for each region of congested airspace, low
common situational awareness among the Federal Aviation
Administration (FAA) and airspace users, and low flexibility.

Designed to be a superset of the classical TMIs, a Collabo-
rative Trajectory Options Program (CTOP) combines many
features from its predecessors and brings two important new
features: first, it can manage multiple constrained regions in
an integrated way with a single program; second, it allows
flight operators to submit a set of desired reroute options (cal-
led a Trajectory Options Set or TOS), which provides great
flexibility and efficiency to the airspace users. In a TOS, each
option is associated with a Relative Trajectory Cost (RTC)
and some usage restrictions, such as time window of validity
of the routing option. RTC is expressed in equivalent ground
delay minutes, which encodes flight operators’ conditional
preferences among different route choices [1].

Maximizing airspace utilization and preserving equity
among competing airspace users are two objectives of
ATFM. In the current Collaborative Decision Making (CDM)
paradigm, Ration-by-Schedule (RBS) is accepted as the
standard principle for equitable resource allocation [2][3].
A major research question for TMI optimization is how
to plan rates for airports or airspace Flow Constrained
Areas (FCAs). “Rate” is the number of flights that will be
admitted to the FCA in given time interval. Since there is
inherent uncertainty in weather forecasts, and the demand
can also be stochastic due to flight cancellation, drift, pop-up
flights, and TOS submission in CTOP, we need to deal with
a sequential Decision Making Under Uncertainty (DMU)
problem. Various DMU frameworks have been explored
by researchers, including Markov Decision Process (MDP)
[4][5], Chance-Constrained Programming (CCP) [6][7][8],
and Robust Optimization (RO) [9]. Simulation-based optimi-
zation has also been used to determine the GDP parameters
under uncertainly [10]. The dominant approach in ATFM
literature is stochastic programming, in which the capacity
uncertainty is represented by a finite number of scenarios
arranged in a scenario bush (two-stage case) or scenario tree
(multistage case). Most of the literature on TMI optimization
is focused on capacity uncertainty and the Single Airport
Ground Holding Problem (SAGHP).

Two pioneering works on applying two-stage and mul-
tistage stochastic programming on SAGHP were done by
Richetta et al. in the early 1990s [11][12]. The first sto-
chastic model that conforms to the current CDM operating
procedure, published by Ball et al. [13], is a two-stage high
aggregate model that directly computes Planned Acceptance
Rates (PARs) for a weather-impacted airport. It was later
proved that under very mild conditions, the model in [11] can
also generate CDM-compatible solutions [14]. In the afore-
mentioned models, once a ground-delay decision is made,

it cannot be revised, even though the flight is still on the
ground and further ground-holding is possible. Mukherjee
formulated a flight-level multistage model that allows a flight
to take ground delays multiple times based on the latest
capacity information and the scenario tree structure [15].
Importantly, his model gives the theoretical system cost lower
bound for the scenario-based SAGHP optimization problem.

This paper presents two major extensions to the classical
SAGHP stochastic programming models. First, we genera-
lize the single constrained resource planning models to the
case of having multiple constrained resources; second, we
generalize single route delay planning models to the case
in which a flight can have multiple rerouting options apart
from taking delays. Using the dominant DMU framework
in ATFM, we have solved a very general and fundamental
research problem, whose result is not only meaningful to
CTOP research in the U.S., but also is helpful to researchers
in other regions. In this work, six disaggregate stochastic
programming models are formulated, including three fully
disaggregate and three partially disaggregate models. The
models are disaggregate because the route cost (RTC) is
different for each flight. Some models are partially disag-
gregate because once the routing decision for each flight has
been made, we can group flights by the congested regions in
which they travel, in order to reduce the number of decision
variables and constraints. Similar to the theoretical value
of Mukherjee’s work for the SAGHP [15], our dynamic
models can give the theoretical lower bound for the very
general multiple constrained resources multiple route options
rerouting, ground and air hold problem.

There are five companion CTOP planning papers to this
work: in [16], we proposed a deterministic mixed-integer
linear programming model to optimally allocate route and
slots to flights, and demonstrated the benefit of intra-airline
cancellation and substitution. The models in [16] can be
viewed as special cases of models in this paper where capa-
city information is known perfectly. In [17], we presented
a highly aggregate CDM-compatible two-stage stochastic
model which can generate rates for the FCAs; in [18], we
identified and addressed some of the problems in [17], and
proposed a multistage model for FCA rate planning; in [19],
we pointed out why CTOP rate planning is essentially a
multi-commodity flow problem, given the correct boundary
conditions, and formulated three highly computationally ef-
ficient aggregate stochastic models to plan delays for flights
traversing multiple congested regions; in [20], we studied
the impact of demand uncertainty on TMI optimization,
introduced a heuristic saturation technique, and discussed its
important role in GDP and CTOP rate planning.

II. SOME CONCEPTS AND MODEL ASSUMPTIONS

A key concept used in this paper is a Potentially Con-
strained Area (PCA), which is the physical airspace region
or resource in which demand may exceed capacity and whose
future capacity evolutions are represented by a finite set of
scenarios. This is different from a more familiar concept of
FCA, which serves like a valve to control the traffic flows
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into a region. In this paper, we will not have FCAs in our
models since we will control individual flights rather than
setting limits for the amount of traffic into a certain airspace.

A related concept is the PCA network, which refers to a
directed graph that links the PCAs and models the potential
movement of traffic between them (Figure 4).

Here are the key assumptions used in this paper:
• The flights captured by CTOP are not controlled by

other TMIs at the same time; in other words, we do not
consider the TMI interaction.

• The assigned route information, the topology of the
PCA network, unimpeded PCA entry times, CTOP
window, and scenario-based PCA capacity information
are all available. These are our model inputs.

• All flights are required to exit the PCA network by the
end of the planning horizon. This boundary condition
ensures that results from different models can be fairly
compared.

• Flight separation will be enforced by the Air Traffic
Control (ATC) controllers. We need to make sure the
number of flights traversing the PCA in each time period
is no larger than its physical capacity; therefore the
model is a strategic interval-based model. The bin size
used in this paper is 15 minutes. We can only delay a
flight by integer multiples of the size of a time bin.

• We can proactively ground-hold and air-hold flights.
Therefore, models are centralized and will be used to
achieve the theoretical system cost lower bound.

III. TWO-STAGE STATIC STOCHASTIC MODEL

In this section, we will introduce the two-stage static
model. In a two-stage model, we will make the first stage
decision at the beginning of a CTOP: determining both the
route and ground delay for each flight. At the second stage,
we will take the recourse action and determine the air delays
needed to pass the constrained areas.

A. Fully Disaggregate Version

In a fully disaggregate model, we will determine route,
the amount of ground delay and air delay for each flight.

The objective function minimizes the total route cost,
ground delay, and expected air delay costs. α and β are the
weighting coefficients. Since the size of a time interval is 15
minutes, dij = 1 means flight i will need to take 15 minutes
of ground delay before flying route j.

min
δ,d,a

N∑
i=1

Ni∑
j=1

(cijδij+αdij)+β

Q∑
q=1

pq

N∑
i=1

Ni∑
j=1

∑
k∈Ωij

akq,ij (1)

For each flight, one and only one route should be chosen:

Ni∑
j=1

δij = 1, for i = 1, · · · , N (2)

Only if we choose route j for flight i, can dij or akq,ij be
nonzero. M is a parameter and can be flight or even route

specific. It puts limit on the maximum delay flight i can take.

0 ≤ dij +
∑
k∈Ωij

Q∑
q=1

akq,ij ≤ δijM ∀i, j (3)

The ETA of flight i for PCA k along route j under scenario q
equals to the nominal PCA entry time plus the ground delay
taken on the ground and the amount of air delay taken before
PCA k and all upstream PCAs:

τkq,i =
∑

j=1...Ni

(i,j)∈Φk

(tkijδij + dij +
∑

k∈Ωij ;id(k)≤id(k)

ak
q,ij) ∀i, k, q

(4)
Route j may sequentially cross several PCAs. Here id(k) is
the sequence number of PCA k on that route.

Auxiliary binary variable Bkq,i,t connects the flight arrival
time and flight count. A flight can only arrive at a PCA once:

T∑
t=1

Bkq,i,t ≤ 1 ∀i, k, q (5)

If τkq,i = t′, then Bkq,i,t′ = 1:

T∑
t=1

tBkq,i,t = τkq,i (6)

Note that if the route j assigned to flight i does not pass
PCA k, then τkq,i = 0 and thus Bkq,i,t = 0 for all t.

Finally, we have the set of physical capacity constraints:

N∑
i=1

Bkq,i,t ≤Mk
tq ∀ t, k, q (7)

It is easy to see that if a flight takes the route-out option and
does not pass any PCAs, then Bkq,i,t = 0 ∀q, k, t and will
not take any slot.

In a fully disaggregate model, we track the motion of each
individual flight as it moves in time, hence it is a Lagrangian
type of model. After solving the model, all the information
for every flight will be known. Fully disaggregate model
provides more direct control, but it interferes with current
traffic flow management practices, such as accepted practices
in the FAA rationing logic for allocating arrival slots to
flights

B. Partially Disaggregate Version

If we assume the travel time between two consecutive
PCAs is the same for all flights, which is a rather mild
assumption, we can aggregate flights by paths and get a
more efficient formulation. A path is defined by a sequence
of PCAs that flights traverse. For example, in Figure 4,
PCA1→ PCA EWR is one path, and PCA→ PCA EWR is
another path. A path is different from a route, which starts
and ends at airports and is composed of waypoints. Different
routes can have the same path, if they cross the same PCAs.
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Again in this first stage we need to select route and amount
of ground delay for each flight:

Ni∑
j=1

δij = 1, for i = 1, · · · , N

0 ≤ dij ≤ δijM ∀i, j

(8)

Once the route and ground delay have been determined for
flight i, we want to know when it will reach the first PCA k
on the assigned route j. The binary variable Bki,j,t satisfies:

T∑
t=tkij

tBki,j,t = tkijδij + dij (9)

∑
j=1...Ni

(i,j)∈Φk

T∑
t=tkij

Bki,j,t ≤ 1 ∀i, k (10)

Constraint (10) means flight i will only pass PCA k once.
We can pre-process all the candidate routes for all flights

and categorize them according to paths. The planned direct
demand at PCA k from flights with the same path r is:

P kt,r =

N∑
i=1

∑
j∈Path r

Btk,i,j t = 1, · · · , T (11)

In (11), k is the first PCA on path r, k = r1. The rest of
constraints are similar to [19] section III.

Lkt,r,q =

{
if k = r1 P kt,r − (Akt,r,q −Akt−1,r,q)

else UpPCAkt,r,q − (Akt,r,q −Akt−1,r,q)

UpPCAkt,r,q = Lk
′

t−∆k′,k,r,q
(k′, k) ∈ r

Mk
t,q ≥

∑
r

Lkt,r,q

P kt,r, L
k
t,r,q ≥ 0

(12)

We require all flights to land or exit the PCA network at the
end of the planning horizon:

T∑
t=1

P k=r1
t,r =

T∑
t=1

L
k=r−1

t,r,q ∀r, q (13)

The left-hand side of (13) is the total demand of commodity
r (flights that fly path r) which enter the PCA system through
the first PCA on path r. The right-hand side is the cumulative
amount of commodity r which exits the PCA system via the
last PCA on path r.

The objective function now becomes:

min
δ,d,a

N∑
i=1

Ni∑
j=1

(cijδij + αdij) + β

Q∑
q=1

pq
∑

k∈PCAs

T∑
t=1

∑
r

Akt,r,q

(14)
We call the second model a partially disaggregate model
because, when assigning routes and ground delays to flights,
we consider each flight individually, but once the flights
enter the PCAs we treat them as aggregate traffic flows.

The second model can also be viewed as an Lagrangian-
Eulerian type model, because we will first make decisions
for each flight, then focus on observing traffic flows at
specific locations, i.e. PCAs, in the airspace. After solving
the model, we do not know how much air delay each flight
will take. This information will only be known after we run
the resource allocation algorithm.

IV. MULTISTAGE SEMI-DYNAMIC STOCHASTIC MODEL

A shortcoming of the two-stage model is that it does not
take advantage of the structure information of a scenario tree.
In this section, we will formulate a Richetta’s type multistage
model to overcome this limitation [12]. Similar to Richetta’s
SAGHP model, in CTOP we will determine the route and
ground delay at a flight’s original scheduled departure time,
not when CTOP is just proposed. Richetta’s multistage model
is often called a semi-dynamic model because, in contrast to
Mukherjee’s dynamic model, in Richetta’s model the ground
delay, once assigned, cannot be revised. This also holds true
for our model: a flight can be only ground-delayed once and
assigned a route once. As a result, Richetta’s type model is
less efficient in terms of system delay cost, but has a higher
predictability about departure time and route assignment than
Mukherjee’s type model. The essence of Richetta’s type
model is that, by delaying the time of assigning ground
delays and/or reroutes, we can take advantage of more
weather information and make better decisions.

1

2

4

3

1 2 ... T

Scenarios

t1 t2 t3

P=0.3

P=0.2

P=0.4

P=0.1

Fig. 1. A scenario tree with four scenarios [15]

In this model, we will use the concept of stage. A stage can
comprise several time periods, at which we have the same
weather information. For example in Figure 1, there are four
stages, and dotted vertical lines indicate the starting times
of each stage. Because we have multiple PCAs in a CTOP,
the branching point in a scenario tree means we have new
weather information for at least one PCA. This time the route
and ground delay decisions are also scenario-dependent.

A. Fully Disaggregate Version

The objective function minimizes the expected route,
ground delay, and air delay costs:

min

Q∑
q=1

pq

N∑
i=1

{
Ni∑
j=1

(cijδqsij + αdqsij) + β

Ni∑
j=1

∑
k∈Ωij

akq,ij}

(15)
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Note that the original departure stage number s is uniquely
determined by the flight ID i. One and only one route should
be chosen for each flight i:

Ni∑
j=1

δqsij = 1, for i = 1, · · · , N, for q = 1, . . . , Q (16)

Only if we choose route j for flight i can dqsij and akq,ij be
nonzero.

0 ≤ dqsij +
∑
k∈Ωij

akq,ij ≤ δqsijM (17)

The ETA of flight i at PCA k along route j under scenario
q is:

τkq,i =
∑

j=1...Ni

(i,j)∈Φk

(tkijδqsij +dqsij +
∑

k∈Ωij ;id(k)≤id(k)

ak
q,ij) (18)

The capacity constraints are the same as in static model (5)-
(7).

The most important set of constraints in a multistage
model are nonanticipativity constraints, which ensure that
decisions made at time t are solely based on the information
available at t [21].

δqb1sij = · · · = δqbNb
sij

dqb1sij = · · · = dqbNb
sij

(19)

The constraints mean if a set of scenarios are on the
same branch, we should take exactly the same actions with
respect to the set of scenarios. The branch(es) information
is determined by stage s, which is in turn determined by
a flight’s original scheduled departure time. For example, if
flight i is scheduled to depart at time period t1 + 1, then we
have:

δ12ij = δ22ij d12ij = d22ij

δ32ij = δ42ij d32ij = d42ij

The major improvement of this model over the two-stage
static model is that the model explicitly takes into account
the updated capacity information.

B. Partially Disaggregate Version

In a multistage model, binary variable Bkq,i,j,t becomes
scenario-dependent and now satisfies:

T∑
t=tkij

Bkq,i,j,t ≤ 1

T∑
t=tkij

tBkq,i,j,t = tkijδqsij + dqsij

(20)

The direct demand at PCA k with same path r is also
scenario-dependent now:

P k,qt,r =

N∑
i=1

∑
j∈Path r

Bkq,i,j,t (21)

The other constraints are the same as in [19], section IV; we
omit them here. The objective function is:

min

Q∑
q=1

pq{
N∑
i=1

Ni∑
j=1

(cijδqsij + αdqsij)+

β
∑

k∈PCAs

T∑
t=1

∑
r

Akt,r,q}

(22)

V. MULTISTAGE DYNAMIC STOCHASTIC MODEL

In this section, we will introduce Mukherjee’s type mul-
tistage model, also known as the truly dynamic model, for
CTOP. The idea of this model is that when making ground
delay/rerouting decisions, we will consider the fact that a
flight may be further ground delayed/rerouted later on, in
other words “plan to replan.”

A. Fully Disaggregate Version
The first set of constraints enforce that in any scenario

q, a flight can only depart once and only one route can be
chosen:

T∑
t=1

Ni∑
j=1

δqtij = 1 ∀i, q (23)

and the route is chosen at the actual departure time:
Ni∑
j=1

δqtij = Yqit ∀i, t = Depi, . . . , T, q (24)

Note that the t in δqtij is no longer solely determined by
i. The key difference between Mukherjee’s type model and
Richetta’s type model is that we explicitly use the actual
departure time as a decision variable, since we will impose
the nonanticipativity constraints at the actual departure time.
For every branch in the scenario tree we have the following
nonanticipativity constraints:

δqb1tij = · · · = δqbNb
tij ∀i, b, j, ob ≤ t ≤ µb (25)

Because of constraint (24), (25) also has the following effect:

Yqb1it = · · · = YqbNb
it ∀i, b, ob ≤ t ≤ µb (26)

Constraint (26) is what we have seen in the GDP problem
[15]. The ground delay for flight i under scenario q is:

T∑
t=1

(t− Depi)Yqit (27)

Again, only if we choose route j for flight i can air delay
akq,ij be nonzero.

0 ≤
∑
k∈Ωij

akq,ij ≤M
T∑
t=1

δqtij ∀i, j, q (28)

The ETA of flight i at PCA k along route j under scenario
q is:

τkq,i =
∑

j=1...Ni

(i,j)∈Φk

(tkij

T∑
t=1

δqtij+
∑
k∈Ωij

akq,ij)+

T∑
t=1

(t−Depi)Yqit

(29)
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The capacity constraints are the same as in static model (5)-
(7). Finally, the objective function is:

min

Q∑
q=1

pq

N∑
i=1

{α
T∑
t=1

(t− Depi)Yqit +

T∑
t=1

Ni∑
j=1

cijδqtij+

β

Ni∑
j=1

∑
k∈Ωij

akq,ij}

(30)

B. Partially Disaggregate Version

Binary variable Bkq,i,j,t satisfies:

T∑
t=tkij

Bkq,i,j,t ≤ 1

T∑
t=tkij

tBkq,i,j,t = tkij

T∑
t=1

δqtij +

T∑
t=1

(t− Depi)Yqit

P k,qt,r =

N∑
i=1

∑
j∈Path r

Bkq,i,j,t

(31)

The other constraints are same as in [19], section IV, omitted
here. The objective function is:

min

Q∑
q=1

pq{
N∑
i=1

(α

T∑
t=1

(t− Depi)Yqit +

T∑
t=1

Ni∑
j=1

cijδqtij)+

β
∑

k∈PCAs

T∑
t=1

∑
r

Akt,r,q}

(32)

VI. ADDITIONAL MODELING CONSIDERATIONS

A. Equity Issue

The current formulations only consider the efficiency
issue. As in [16], we can easily add an equity term to the
objective function to make efficiency-equity tradeoffs.

B. Limit on the Delays

It is straightforward to add the maximum ground and/or
air delay limits, a concern for airlines, on each flight for
fully disaggregate models. For example, for the multistage
dynamic model we can have:

T∑
t=1

(t− Depi)Yqit +
∑

j=1...Ni

(i,j)∈Φk

∑
k∈Ωij

akq,ij ≤Mij ∀q (33)

We may also want to restrict the maximum number of
flights taking air delay before a PCA, i.e. the length of
the queue before a constrained resource, which air traffic
controllers care about. However, it is not easy to impose
such a constraint for fully disaggregate models.

On the other hand, for partially disaggregate models it is
easy to add the constraint for queue size, since we explicitly
model the “inventory” of airborne flights at each PCA:∑

r

Ak,qt,r ≤ # of Flights Limit ∀k, t, q (34)

There is no way to restrict the maximum delay for each flight
in the partially disaggregate model because we do not know
the airline delay information at the flight level.

C. TOS Route Restrictions

In the proposed models, we ignore many practical restricti-
ons including TOS route restrictions. There are three optional
requirements for each route that can be provided by the flight
operator: Required Minimum Notification Time (RMNT),
which allows for needed preparation time, such as adding
fuel; Trajectory Valid Start Time (TVST) and Trajectory
Valid End Time (TVET), which are the earliest and latest
acceptable takeoff times for that TOS option, respectively.

From the current time, flight’s scheduled departure time
and RMNT, we can directly add the minimum ground delay
needed (MGDij) for flight i to take route j:

two-stage : dij ≥ δijMGDij
semi-dynamic : dqsij ≥ δqsijMGDij ∀q

dynamic :

T∑
t=1

(t− Depi)Yqit ≥
T∑
t=1

δqtijMGDij ∀q

(35)

Similarly, TVET and TVST also impose upper and lower
constraints on the required ground delay time.

D. Intra-airline Cancellation and Substitutions

Like Mukherjee et al. did for the GDP problem [15], we
can formulate an optimization model for CTOP to enable
collaborative decision making by allowing airlines to execute
scenario-contingent cancellations and substitutions. The two
key differences here are that we have multiple PCAs and that
we need to consider the air delays before reaching PCAs.
Define
• vta,q,k: Number of slots owned by airline a for PCA k

during time period t under scenario q
• c(i, λ, µ): Cost for flight i to take λ time periods of

ground delay and µ time periods of air delay
• Bqi,λ,µ: Binary indicator whether flight i takes λ time

periods of ground delay and µ time periods of air delay
under scenario q

vta,q,k can be determined from the solutions of stochastic
models. c(i, τ, µ) is flight-specific and can be nonlinear to
capture the downstream missed connection effect of crews,
passengers, and the airframe. The optimization model re-
mains linear due to the introduction of binary variable Bqi,λ,µ.∑

λ,µ

Bqi,λ,µ = 1

∑
λ

λBqi,λ,µ =

T∑
t=1

(t− Depi)Yqit

∑
µ

µBqi,λ,µ =

Ni∑
j=1

∑
k∈Ωij

akq,ij

(36)

When making flight substitutions, we assume a flight can
choose any route from its TOS. The other constraints in the
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Fig. 2. Weather forecast for 2210z, taken at 1522z on July 15, 2016

dynamic substitution model are the same as (23) to (29). We
only need to replace M t

q,k with vta,q,k.
Each airline a will minimize its total ground delay and air

delay cost function:

min

Q∑
q=1

pq
∑
i∈Fa

{
∑
λ,µ

c(i, λ, µ)Bqi,λ,µ +

T∑
t=1

Ni∑
j=1

cijδ
q
tij}

(37)

VII. EXPERIMENTAL RESULTS

To demonstrate the performance of the proposed models,
we created an operational use case based on actual events
from July 15, 2016 [22].

A. Southern ZDC and EWR with Convective Activity

This use case primarily addresses convective weather
activity in southern Washington Center (ZDC). Figure 2
shows the pattern of convective weather activity for that
day. Southern ZDC is adversely impacted by the weather.
We further assume there is demand-capacity imbalance at
EWR airport. In principle, the EWR imbalance could be
addressed by an isolated GDP. However, much of the traffic
bound for EWR passes through southern ZDC; therefore,
we show how the EWR arrival traffic can be folded into
the same CTOP that addresses southern ZDC. Note that the
traffic congestion at southern ZDC is comparable to an AFP
with two ‘wing’ FCAs added, shown in Figure 3. The PCA
network is shown in Figure 4. We assume there is a four-hour
capacity reduction in ZDC/EWR from 2000z to 2359z.

B. Creating Capacity Profiles

For comparison purposes, we use the same capacity data as
in [19]. The capacity changes can be modeled by a scenario
tree, shown in Figure 5. Though this is a very simple tree, it
has more than one branching point, which is more complex
than a scenario bush. We expect the dynamic models will
take advantage of the structure information and outperform
the static model. The three scenarios correspond to good,
average, and bad demand-capacity imbalances. The capacity
information is listed in Table I.

Fig. 3. Traffic routing around the original PCA

CA_EWR (EWR)

(network exit)

CA

CA1

CA2

Fig. 4. Geographical display of a PCA network

Note in GDP optimization, we usually add one extra time
period to make sure all flights will land at the end of the
planning horizon. Because CTOP has multiple constrained
resources, we need to add more than one time period
depending on the topology of the PCA network. In this use
case, we add four extra time periods, because the maximum
average travel time between the three en route PCAs and
EWR is around 1 hour (4 time periods). We assumed nominal
capacity for the extra four time periods in Table I.

C. Traffic Demand

We used historical flight data from September 8, 2016,
a representative clear-weather day for traffic demand. We
avoided using the actual flight data from July 15, 2016,
because flight plans and airline operational schedules were
likely influenced by weather forecasts and related ATFM
events on that day. We only kept flights which pass through
one of the 3 PCAs created in ZDC plus all EWR arrivals.
The resulting set contains 1098 flights, among them 890
flights that traverse the PCAs in their active periods. To form
the base (preferred) route for each flight, we drew historical
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Scenarios

P=0.4

P=0.3

P=0.3

2100Z 2200Z 2300Z 0000Z

Fig. 5. Scenario tree used in the experiment

filed flight plans (from Sept. 8, 2016) from System Wide
Information Management (SWIM) data.

A typical TOS package that might be submitted for this
day would have one route for each PCA and one route that
avoids all PCAs. To model the TOSs that airlines might
submit in response to a CTOP, we drew from a combination
of reroute TMIs from SWIM data and from Coded Departure
Routes (CDR). There are in total 1368 TOS options for 890
flights, on average 1.54 options per flight.

D. Model Comparisons

From Figure 4 we know there are 7 possible paths: direct
demand to EWR, cross one of the three PCAs then land at
EWR, or cross one of the PCAs then exit the system. We
require all the CTOP captured flights to land at EWR or to
exit the PCA network at the end of the planning horizon.

To compare the results with aggregate models in [19],
we first restrict flights to only take their most preferred
route. The results are summarized in Table II. To show
the minimum system cost we can potentially achieve in a
CTOP, flights are allowed to choose a route from their TOSs
before departure. The results are shown in Table III. The
optimization models are solved using Gurobi 7.5.2 on a
workstation with 3.6 GHz processors and 32 GB RAM [23].

There are several key observations from these two tables:
• The overall system cost could decrease by over 50%

if flight operators submit TOS options for flights. This
shows the benefit of allowing rerouting in the face of
congestion.

• There are discrepancies between fully disaggregate mo-
del and partially disaggregate model results. The discre-
pancies are caused by rounding down the travel times
between PCAs into 15-minute intervals.

• The second part of Table II has exactly the same results
as the aggregate models paper [19]. This is anticipated
and verifies the correctness of the results in both papers.

• The two-stage solution outperforms the deterministic
policy (SCEN1-3), as it should, since it explicitly con-
siders the uncertainty when making holding decisions.

• The semi-dynamic model solution is better than the two-
stage model solution, and the dynamic model in turn
performs better than the semi-dynamic model, which is
also expected, because the dynamic model uses more

weather evolution and flight schedule information than
the two-stage static model.

• Partially disaggregate models are in general faster than
fully disaggregate models. This is one of the motivations
to develop partially disaggregate models.

• The computation times of deterministic, two-stage, and
semi-dynamic models are all very short for a flight-
by-flight level optimization problem. For fully dynamic
models, the computation time is still acceptable. In all
cases, the optimality gap between early stop solutions
at 3 minutes and optimal values are less than 1%.

VIII. CONCLUSIONS

In this paper, we proposed six stochastic programming
models for CTOP to test varying levels of flight aggregation
and dynamics in the planning process. The performance of
these six models is tested on a realistic CTOP use case, in
which we have shown the overall system delays cost could
decrease by over 50% if flight operators submit TOS options
for flights, and a dynamic stochastic model could outperform
a deterministic model by around 13%. The models are
also promising in terms of computation time, and can be
coded in a decision support tool to help air traffic managers
understand, initiate, and perform post-analysis for CTOP
programs.

The future work includes testing on more realistic capacity
data and testing using a larger New York Metroplex use
case, investigating the impact of cost ratio, air holding
limit, lead time, etc. on the model solutions, investigating
the value of weather forecast information, incorporating
demand uncertainty, incorporating more realistic constraints
on route and ground delay assignment, further improving
the computational efficiency by employing optimization and
computation techniques, and comparing the six models with
FCA rate-planning models in [17][18].
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X. APPENDIX

A. Acronyms

ATFM Air Traffic Flow Management
ATC Air Traffic Control
TMI Traffic Management Initiative
GDP Ground Delay Program
AFP Airspace Flow Program
FCA Flow Constrained Area
PCA Potential Constrained Area
CTOP Collaborative Trajectory Options Program
TOS Trajectory Options Set
FAA Federal Aviation Administration
RTC Relative Trajectory Cost
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Resource/Time Bin 20:00 15 30 45 21:00 15 30 45 22:00 15 30 45 23:00 15 30 45 00:00 15 30 45

SCEN1

PCA 13 13 13 13 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
PCA1 44 44 44 44 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
PCA2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EWR 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

SCEN2

PCA 13 13 13 13 13 13 13 13 13 13 25 25 25 25 25 25 25 25 25 25
PCA1 44 44 44 44 44 44 44 44 44 44 50 50 50 50 50 50 50 50 50 50
PCA2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EWR 8 8 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10

SCEN3

PCA 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 25 25 25 25
PCA1 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 50 50 50 50
PCA2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
EWR 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10 10 10 10

TABLE I
CAPACITY SCENARIOS

Disaggregate Model
Fully VS. Partially

Ground Delay Periods Air Holding Periods
Expected Cost Running Time Early Stop Early StopIf This Scenario Occurs: If This Scenario Occurs:

SCEN1 SCEN2 SCEN3 SCEN1 SCEN2 SCEN3 Mins at 1 Min at 3 Mins

SCEN1 106 106 106 0 194 383 491.0 0.05
SCEN2 300 300 300 0 0 197 418.2 0.08
SCEN3 489 489 489 0 0 0 489.0 0.30

Two-Stage Model 300 300 300 0 0 189 413.4 0.52
Semi-Dynamic Model 182 300 424 0 0 67 342.0 1.12 342.0

Dynamic Model 145 302 478 0 0 12 314.9 9.41 324.1 317.1
Perfect Information 106 300 489 0 0 0 298.5

SCEN1 88 88 88 0 198 392 481.6 0.03
SCEN2 280 280 280 0 0 209 405.4 0.03
SCEN3 470 470 470 0 0 0 470.0 0.03

Two-Stage Model 280 280 280 0 0 197 394.0 0.02
Semi-Dynamic Model 156 280 403 0 0 67 319.9 0.32

Dynamic Model 116 280 463 0 0 7 289.9 1.38 292.6
Perfect Information 88 280 470 0 0 0 279.4

TABLE II
DETERMINISTIC VS. STOCHASTIC SOLUTIONS COMPARISION (DELAY COST RATIO β/α = 2) WITHOUT TOS

Disaggregate Model
Fully VS. Partially

RTC Costs in Mins Ground Delay Periods Air Holding Periods
Expected Cost Running Time Early Stop Early StopIf This Scenario Occurs: If This Scenario Occurs: If This Scenario Occurs:

SCEN1 SCEN2 SCEN3 SCEN1 SCEN2 SCEN3 SCEN1 SCEN2 SCEN3 Mins at 1 Min at 3 Mins

SCEN1 76 76 76 75 75 75 0 127 232 325.93 0.10
SCEN2 222 222 222 125 125 125 0 0 49 184.00 0.07
SCEN3 262 262 262 148 148 148 0 0 0 182.93 0.35

Two-Stage Model 250 250 250 125 125 125 0 0 25 173.33 0.33
Semi-Dynamic Model 216 254 266 107 124 133 0 0 16 164.03 0.32

Dynamic Model 216 254 266 95 124 136 0 0 15 160.73 4.93 163.49 161.93
Perfect Information 76 222 262 75 125 148 0 0 0 142.24

SCEN1 76 76 76 53 53 53 0 129 249 315.73 < 0.01
SCEN2 222 222 222 100 100 100 0 0 50 159.6 < 0.01
SCEN3 288 288 288 112 112 112 0 0 0 150.40 < 0.01

Two-Stage Model 270 270 270 100 100 100 0 0 16 145.60 0.02
Semi-Dynamic Model 216 254 266 73 99 109 0 0 11 133.63 0.37

Dynamic Model 216 254 266 61 99 113 0 0 7 128.83 3.43 134.83 128.83
Perfect Information 76 222 288 53 100 112 0 0 0 115.9

TABLE III
DETERMINISTIC VS. STOCHASTIC SOLUTIONS COMPARISION (DELAY COST RATIO β/α = 2) WITH TOS

RCL Rate Computation Loop
RBS Ration by Schedule
SAGHP Single Airport Ground Holding Problem
DMU Decision Making Under Uncertainty
ETA Estimated Time of Arrival
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